1. Consider two equal volumes of gas: one jar of hydrogen $\left(\mathrm{H}_{2}\right)$ and one jar of oxygen $\left(\mathrm{O}_{2}\right)$.
a. If the gases have the same temperature, which molecules have a greater average kinetic energy?
$\mathrm{H}_{2} \quad \mathrm{O}_{2} \quad \mathrm{H}_{2}$ and O_{2} molecules have equal KE 's
Explain your answer:

b. If the gases have the same temperature, which molecules have a greater average speed?
$\mathrm{H}_{2} \quad \mathrm{O}_{2} \quad \mathrm{H}_{2}$ and O_{2} molecules have equal average speeds
Explain your answer:
c. If the H_{2} and O_{2} molecules had equal average speeds, which gas would be hotter?
$\mathrm{H}_{2} \quad \mathrm{O}_{2} \quad \mathrm{H}_{2}$ and O_{2} molecules have equal temperatures
Explain your answer:
2. The average kinetic energy of the molecules in a gas can be calculated from the absolute temperature via the following equation: $K E_{\text {avg }}=(3 / 2) k T$ (k is called Boltzman's constant and is $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$)
a. What is the average kinetic energy of a nitrogen molecule $\left(\mathrm{N}_{2}\right)$ at room temperature?
b. The rms ("root-mean-square") speed of the molecules can be calculated via the average kinetic energy (since $K E$ depends on v) by this relation: $v_{r m s}=\sqrt{ }(2 K E / m)=\sqrt{ }(3 \mathrm{kT} / \mathrm{m})$. The mass of a nitrogen molecule is $4.65 \times 10^{-26} \mathrm{~kg}$. What is the rms speed of a nitrogen molecule zipping around the room?
c. If the rms speed were doubled, what would the temperature of the nitrogen be?
