PhyzJob: The Kinetic Theory of Gases

1. Consider two equal volumes of gas: one jar of hydrogen (H_2) and one jar of oxygen (O_2) .

a. If the gases have the same temperature, which molecules have a greater average kinetic energy? $H_2 \quad D_2 \quad H_2 \text{ and } O_2 \text{ molecules have equal KE's}$ Explain your answer:

HYDROGEN

OXYGEN

TIE

b. If the gases have the same temperature, which molecules have a greater average speed?
 __H₂ __O₂ __H₂ and O₂ molecules have equal average speeds
 Explain your answer:

c. If the H_2 and O_2 molecules had equal average speeds, which gas would be hotter? $_H_2$ $_O_2$ $_H_2$ and O_2 molecules have equal temperatures Explain your answer:

- 2. The average kinetic energy of the molecules in a gas can be calculated from the absolute temperature via the following equation: $KE_{avg} = (3/2)kT$ (k is called Boltzman's constant and is $k = 1.38 \times 10^{-23} \text{J/K}$)
- a. What is the average kinetic energy of a nitrogen molecule (N_2) at room temperature?
- b. The *rms* ("root-mean-square") speed of the molecules can be calculated via the average kinetic energy (since *KE* depends on v) by this relation: $v_{rms} = \sqrt{(2KE/m)} = \sqrt{(3kT/m)}$. The mass of a nitrogen molecule is 4.65×10^{-26} kg. What is the *rms* speed of a nitrogen molecule zipping around the room?
- c. If the *rms* speed were doubled, what would the temperature of the nitrogen be?