P hyzE xamples: Temperature

Physical Quantities •Symbols • U nits • Brief Definitions

Temperature • $T \cdot$ kelvin: K ; also ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \mathrm{R} \cdot \mathrm{A}$ measure of the average kinetic energy in the random translational motions of the particles in a body.

Absolute temperature is measured on the Kelvin or Rankine scale.
Relative temperature is measured on the Celsius or Fahrenheit scale.
Boltzmann's Constant $\cdot k \cdot 1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Coefficient of Linear Expansion $\cdot \alpha \cdot 1 / \mathrm{K}$ or $1 /{ }^{\circ} \mathrm{C} \cdot \mathrm{A}$ measure of the degree to which the linear dimensions of a body made of a particular substance will change for each increment of change in temperature.
Coefficient of Volume Expansion $\boldsymbol{\beta} \cdot 1 / \mathrm{K}$ or $1 /{ }^{\circ} \mathrm{C} \cdot \mathrm{A}$ measure of the degree to which the volumetric dimension of a volume of a particular substance will change for each increment of change in temperature.

Equations
$K E=3 / 2 k T \cdot$ kinetic energy $=3 / 2 \cdot$ Boltzmann's constant \cdot absolute temperature $\Delta L=L_{0} \alpha \Delta T \cdot$ change in length $=$ original length \cdot coef. of lin. exp. \cdot change in temp. $\Delta V=V_{0} \beta \Delta T \cdot$ change in volume $=$ original vol. \cdot coef. of vol. exp. \cdot change in temp.

Examples

1. What is the speed of helium atoms at room temperature?
$\mathbf{1} \mathbf{T}=\mathbf{2 9 3} \mathbf{K}$ is room temperature in kelvins
The mass of a helium at om is det ermined by dividing the molar mass by Avogadro's number.
$\mathrm{m}=0.0040026 \mathrm{~kg} / 6.02 \times 10^{23}$
$\mathrm{m}=6.65 \times 10^{-27} \mathrm{~kg}$
$\mathrm{KE}=3 / 2 \mathrm{kT}$
$1 / 2 m v^{2}=3 / 2 \mathrm{kT}$
$v=\sqrt{ }(3 \mathrm{kT} / \mathrm{m})$
$v=\sqrt{ }\left(3 \cdot 138 \times 10^{-23} \mathrm{~J} / \mathrm{K} \cdot 293 \mathrm{~K} /\right.$
$6.65 \times 10^{-27} \mathrm{~kg}$)
$\mathrm{v}=1350 \mathrm{~m} / \mathrm{s}(>3000 \mathrm{mph}!)$
2. How much longer does a 100 m
length of steel pipe get when it warms up by $43^{\circ} \mathrm{C}$?
3. $\mathrm{L}_{0}=100 \mathrm{~m} \quad \alpha=12 \times 10^{-5} 1^{\circ} \mathrm{C} \quad \Delta \mathrm{T}=43^{\circ} \mathrm{C}$ $\Delta L=\alpha L_{0} \Delta T$
$\left.\Delta L=\left(12 \times 10^{-5}\right]^{\circ} \mathrm{C}\right)(100 \mathrm{~m})\left(43^{\circ} \mathrm{C}\right)$
$\Delta L=0.052 \mathrm{~m}=5.2 \mathrm{~cm}$
4. What is the temperature of a helium atom in a collection of atoms cooled to a speed of $7 \mathrm{~cm} / \mathrm{s}$?
5. $\mathrm{v}=0.07 \mathrm{~m} / \mathrm{s} \quad \mathrm{m}=6.65 \times 10^{-27} \mathrm{~kg}$
$\mathrm{KE}=3 / 2 \mathrm{kT}$
$1 / 2 \mathrm{mv}^{2}=3 / 2 \mathrm{kT}$
$\mathrm{T}=\mathrm{mv}^{2} / 3 \mathrm{k}$
$\mathrm{T}=6.65 \times 10^{-27} \mathrm{~kg} \cdot(0.07 \mathrm{~m} / \mathrm{s})^{2} /$
$3 \cdot 138 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\mathrm{T}=0.000000787 \mathrm{~K}=787 \mathrm{nK}$
(such chilly temperatures have been attained in the lab)
6. The volume of alcohol in a beaker drops from 1000 mL to 996.8 mL . Assuming no evaporation took place, what was the corresponding change in temperature?

$$
\begin{aligned}
& \text { 4. } \mathrm{V}_{0}=1000 \mathrm{~mL} \quad \Delta \mathrm{~V}=-3.2 \mathrm{~mL}(996.8-1000) \\
& \beta=7.5 \times 10^{-4} \mathrm{I} /{ }^{\circ} \mathrm{C} \quad \Delta \mathrm{~T}=? \\
& \Delta \mathrm{~V}=\beta \mathrm{V}_{0} \Delta \mathrm{~T} \\
& \Delta \mathrm{~T}=\Delta \mathrm{V} / \beta \mathrm{V}_{0} \\
& \Delta \mathrm{~T}=-3.2 \mathrm{~mL} /\left(7.5 \times 10^{-4} \mathrm{I}^{\circ} \mathrm{C}\right)(1000 \mathrm{~mL}) \\
& \Delta \mathrm{T}=-4.3^{\circ} \mathrm{C}
\end{aligned}
$$

