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The papers exchanged by Ludwig Boltzmann and Ernst Zermelo concerning the recurrence
paradox are summarized. The historical context of the paradox, Zermelo’s proof of the paradox,
his opinions of its consequences, Boltzmann’s reply, and the ensuing discussion are described.

INTRODUCTION

In late 1896 and 1897 Ernst Zermelo and Ludwig Boltz-
mann debated whether statistical mechanics could adequa-
tely explain the laws of thermodynamics. The four articles
which make up the debate are, in spite of their age, of more
than historical interest; the ideas are surprisingly current.
Indeed the 85-year-old debate is still discussed and still
without a clear-cut victor.

The articles are part of the attempt to use statistical me-
chanics to explain natural phenomena. Historically the
growth of the essentially descriptive gas laws and laws of
thermodynamics was followed by explanations of these
phenomena by applying statistics to the hard-sphere model
of a gas.

For example, A. Kronig in 1856, successfully related
macroscopic quantity of pressure with the microscopic
bouncing of gas of hard spheres off the walls of a contain-
er.! He derived a single-valued function which related the
mass and velocity of the gas molecules to the pressure. (For
further reading, the work of Paul and Titiana Ehrenfest? is
an excellent review of the history of statistical mechanics.)

At roughly the same time that Kronig published his the-
sis in statistical mechanics, thermodynamics solidified an-
other concept. In 1857, with the work of Sadi Carnot and
Lord Kelvin as a base, Rudolf Clausius® published his find-
ing that the ratio of the heat content of a system to its
absolute temperature would always remain constant or in-
crease. Eventually Clausius named this concept entropy.
Kelvin called it the degredation of energy; the law of disor-
der is another descriptive name. In essence the second law
describes nature as tending toward the disorder of matter
and the dilution of energy. The task of statistical mechanics
is now to explain this law of disorder.

Ludwig Boltzmann rose to the task. By 1872 he and
James Clerk Maxwell had developed the distribution func-
tion which bears their names. The function relates the
number of molecules in a given energy state to the energy of
the molecules. It has the form

fAr=ae™PA4r,

where A7 defines the small range of speeds, @ and 3 are
constants, and € is the total energy.

Armed with this distribution function Boltzmann set out
to find a single-valued function of the coordinates of the
system which acted like entropy.

The result was the A function*:

H=23flogfAr.

Calculation of the H function leads to a constant decrease
in value with increasing time. The value of H acts exactly
the reverse of entropy, entropy constantly rising and the #
value constantly lowering. Boltzmann had apparently suc-
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ceeded in finding a single-valued function of the coordi-
nates which acted like entropy.

Not everyone, however, was convinced that Boltzmann
was correct or indeed that their could be any single-valued
function of the coordinates of the hard spheres which acted
like entropy. Loscmidt pointed out in 1876 that Newton’s
Laws are symmetrical with time reversal while Boltz-
mann’s function is not.” This is called the reversing para-
dox (Umkehr Einsatz). In 1896 Zermelo published the arti-
cle which began the exchange which is the subject of this
paper.

Boltzmann made some changes in his / theorem but this
did not quiet the detractors—Zermelo® in 1900, Henri Poin-
caré’ in 1906 among others. Indeed Boltzmann has not
succeeded to this day, as Ilya Prigogne points out in From
Being To Becoming,® mentioning Boltzmann’s H theorem
and Zermelo’s recurrence in the same paragraph.

Though few admit it, the argument involves more than
just using statistics to help Newton’s laws explain Clau-
sius’s equation. The change in entropy depends on the di-
rection of time; if time were reversed, so would the sign in
the change in entropy. Thus explaining the change in en-
tropy is closely related to explaining the. direction of time
which in turn impinges on what one feels is the nature of
the universe. Would God order His universe through
chance occurrences? The discussion becomes tinged with
emotion.

In reading the papers one can sense Boltzmann’s impa-
tience with the refusal of some of the scientific community
to accept his ideas. In 1906 Boltzmann committed suicide
after fits of mental depression, aggravated, it was said, by
the opposition to his views.

There is further reason to resurrect four 85-year-old pa-
pers. Both Zermelo and Boltzmann were great intellects.
Their sharp interchange helps to further ones own under-
standing of statistical mechanics.

CONCERNING A LAW OF DYNAMICS AND THE
MECHANICAL THEORY OF HEAT

Zermelo’s first paper’ in the series was published in
1896. He announced in the first paragraph “...in a system of
point masses...a particular arrangement of masses, once as-
sumed, must recur.” When an arrangement of point masses
recurs, so must any single-valued function of their coordi-
nates. Entropy ‘“continually” increases, a function of
point-masses cycles. Thus a function of point masses can-
not explain entropy.

As Zermelo said “...cither the Carnot—Clausius principle
or the statistical mechanical view of nature must be refor-
mulated, if one cannot give up the latter entirely.”

Zermelo had used a theorem of Poincaré'® to prove that
any system of mass points must cycle. Zermelo offers his
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readers his own version of the proof of that theorem. He
uses what has become known as the continuity of phase
space. The notation is Zermelo’s.

A system of N point masses has n = 6N variables; 3N
coordinates and 3N velocity components. Differentiating
with respect to time, the first 3N are the velocity compo-
nents and the second 3NV the acceleration components, that
is, the force. The velocities are independent of the position
and the accelerations are indeperident of the velocities. The
equations have the form

dx

E o= X, (X1, X X,) 1)
dt m ( 1%2 ) (
None of the variables X, contain the variable x,, so that
ax,  dx, 9x,
+ + -+ =0. 2)
ox, dx, ax, (

[This condition is necessary for Eq. (1) to be an analytic
function and Liouville’s theorem to be valid.]
In such a system the initial state

x,=§&, X=60.%,=§, ([=1)

corresponds to a definite changed state expressed through
the integral of Eq. (1):

X, = ¢ (t - 10551’52"“’571) . (3)

A group of initial states g, corresponds to a definite later
group g,. He defined as the ““area” of g, the n times integral

vo [ db, dfy.d. .

which corresponds to the group of initial states. For any
other state there is another area:

y= f dx, dx,..dx, .

Since the function satisfies Eq. (2), Liouville’s theorem is
valid and the second integral equals the first and

dy = dxdx,-dx, = dy, = const . (4)

Thus the succeeding states will have equal areas.

Zermelo defines a group of states, G, as the “future” of
8o by demanding that G, contain all the states which follow
the initial state. Each new state also has a future, G. Since
all future states which follow g, were in the earliest G, G can
only decrease. New states can never enter. Equation (4) is
still valid, however, and so the area of G too, must remain
constant. A state leaving G, Zermelo says, cannot be of
finite area and he names these states “‘singular.”

“Now g, is contained in G, and must be part of an over-
whelming number of latter futures G,.” This in turn means
that there are states in the future which must return togo; g,
mist recur. “It follows directly,” Zermelo continues, “that
there can be no single valued continuous function of the
coordinates of the states, S (x,,x,,...,x,, ) which continuously
increases.” Each time a state returns so must the value of S.

There is a simple proof of this. If the function § continu-
ously increases for all initial states of g, then it must do the
same for all states of the larger group G, the future of g.
Because of Eq. (4), the integral over G,

J‘del dx,-dx, ,

must continuously increase. This is impossible...since G
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does not change. The value of the integral is constant.

Stripped of its mathematical sophistication, Zermelo’s
argument is still elegant. A closed, adiabatic container lim-
its the positions and velocities available to the molecules.
Thus the number of positions in the phase space of this
system is finite. Eventually, a system changing from one set
of coordinates into a new set will run out of unused ar-
rangements. It must now enter an-arrangement it used be-
fore. The laws of dynamics now force the system to follow
the same path through the different arrangements. The sys-
tem must cycle.

Zermelo chooses as his example » = 3, which, he said,
would form “‘stream lines” or “pipes” through phase space.
The system could not escape from these pipes and each pipe
leads back into itself.

In the derivation, Zermelo carefully and explicitly eli-
minates translations of the center of mass, molecules flow-
ing into cavities and around solid objects. No broken light
bulbs or open perfume bottles allowed. He admits the pos-
sibility of irreversible changes but comments,

If we have a gas confined in an adiabatic container
there is an unending variety of initial states in which the
gas undergoes friction, heat conduction, or diffusion. On
the other hand there are far more, equally likely initial
states,...which inspite of such processes, periodically re-
peat....it is impossible...to carry out a mechanical deriva-
tion of the second law. Just as it is impossible, using the
same assumptions, to derive a velocity distribution as a
stationary final state.

REPLY TO THE CONSIDERATIONS ON THE
THEORY OF HEAT OF ZERMELO

“The paper only shows that my pertinent works have not
been understood” wrote Boltzmann in reply to Zermelo.!!
“Nevertheless” he continued “the paper made me happy
since it is the first evidence that my work has been noticed
in Germany at all. I have repeatedly stressed...that Max-
well’s velocity distribution is not a law of the usual mechan-
ics. It cannot be derived from the equations of motion
alone.” Later he adds, “The theorem of Poincaré...is obvi-
ously correct. Its application to the theory of heat is not.”
Throughout the paper Boltzmann argues that differences
in degree make for differences in kind. Zermelo let n = 3
while Boltzmann’s value for n approaches infinity.

Early in his paper Boltzmann describes his H function.
“To a certain extent the amount the velocity distribution of
asystem deviates from Maxwell’s.” Plotting H against time
for “a very large number” of molecules gives a curve with
the value of H asymptotically approaching a low value
H_ ;.. Extending time or reducing the number of molecules
puts “bumps” in the curve. The bigger the bump the
smaller its probability. Boltzmann freely admits that given
an infinite amount of time, another H value as high or even
higher than the original would occur, not with the same
positions of the molecules but with the same entropy value.
In this sense the H curve is periodic. Then, in the last sen-
tence of the paragraph, Boltzmann agrees that the original
arrangement of molecules would recur.

Boltzmann did not give up the fight, however. He de-
mands of Zermelo that his recurrence be something that
takes place in “‘observable time.” In an appendix Boltz-
mann calculates the length of time needed for a 1-cm® cube
of gas to cycle. He finds the results of his calculation “reas-
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suring.” The number of seconds needed for a cycle has
“many trillions of places.” “If all of the stars visible with
the best telescopes were circled by the same number of
planets as our sun; and each of these planets had as many
people as our earth; and if each of these people lived a tril-
lion years...then all of the seconds experienced by all of the
people would have fewer than 50 places.”

In scattered places, Boltzmann describes the nature of
Maxwell’s velocity distribution. Throwing a die 6000 times
results in an equal number of ones, twos, threes, etc., not
because the particular number order is any more likely
than getting 6000 ones. Equal numbers occur because of all
the possible combinations the vast majority consists of ap-
proximately equal representations. of the numbers. While
Zermelo maintains that the number of states leading to
Maxwell’s distribution is small, Boltzmann claims that
Maxwell’s distribution describes the overwhelming num-
ber of states.

The return of an initial condition is still a nagging possi-
bility. Boltzmann mentions that tliere are marny possible
events with a small probability that we do not expect to
occur. A mixture of hydrogen and oxygen at room tem-
perature has some molecules colliding with enough energy
to form water. “We do not, however, find water.” It is
possible, he continues with a second example, that no air
molecules strike a certain area causing a noticeable change
in pressure. “We are not surprised when this does not oc-
cur.” Boltzmann is quick to point out that for smaller sys-
tems, large deviations are possible—indeed the smaller sys-
tem, the larger the possibility of deviation.

Boltzmann compares Zermelo to the dice player, who .

having learned that getting 600 snake eyes in a row is possi-
ble, thinks his dice are loaded because such an outcome
never happened to him.

Boltzmann also mentions that Zermelo has described
what we would call a thought experiment. The perfectly
isolated system with perfectly smooth walls in Zermelo’s
experiment does not exist. “Disturbances could come from
the electrical properties of the atoms, or, passed on to the
atom through disturbances in the light ether.”

Boltzmann flirts with, then rejects, cosmological consid-
erations. He refused to speculate on why the earth is cur-
rently in such an unlikely state. Boltzmann then points out
that one conclusion from the theory of Poincaré would be
the return of the entire universe to its original state. This he
dismisses as “beyond proof.” “How can we decide if the
length of time allotted to the universe is infinite or if the
number of molecules is?” Boltzmann finds that speculating
about the nature of the universe predicted by Poincaré’s
theorem is as barren as the thought that the second law will
lead “after all irreversible processes have been played our”
to “a universe where nothing happens or disappears for
lack of occurrences.”

CONCERNING MECHANICAL EXPLANATIONS
OF IRREVERSIBLE PROCESSES: AN ANSWER
TO BOLTZMANN’S “REPLY”

Zermelo'? opens his answer to Boltzmann’s reply much
as he closed his first paper, “mechanical systems are perio-
dic...and therefore not irreversible.” He reasserts his faith
in the second law, which was deduced from experiment,
over a theory that lacks any direct proof. Boltzmann’s ideas
would, claims Zermelo, degrade the second law into a
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“simple law of probability valid only for a limited time.”
Zermelo admits, however, that Boltzmann is correct in
stressing that the enormous number of molecules puts the
Poincarean period beyond observation.

Zermelo’s argument has changed, however. No longer
does he rely on the return to a specific state with each mole-
cule in the same place. A return to the exact state is not
needed. As Boltzmann pointed out, all that must returnisa
physical state of equally low entropy.

The argument for the return no longer rests on the cer-
tainty of running out of virgin phase space, it has become
probabilistic. Zermelo proved that all states have the same
area and thus have the same probability of occurring. Even
high H value, low entropy, states have a chance of appear-
ing, and if one waits long enough, will.

Zermelo jumps on Boltzmann’s admission that the H
curve can occasionally reach new maximas and then return
to a low value. “It does not suffice” claims Zermelo, “to
show that all disturbances finally return to a long standing
equilibrium.” In order to reflect the second law the # func-
tion must ‘“‘always decrease.”

Zermelo gives the argument a new twist. He understands
Boltzmann as claiming that his H curve usually falls from
an initial maximum. In a mechanical system, state follows
state. Suppose we choose as an initial state any later state.
Zermelo has Boltzmann assuming that here too the H
curve would fall from a maximum. The constantly chang-
ing H curve must consist of nothing but maxima. “Absurd”
finds Zermelo. ,

Zermelo introduces his own version of the reversing par-
adox. Probability does not contain temporal terms. There-
fore, Zermelo claims, probability cannot “‘determine the
direction of events.” We could, at least as far as probability
is concerned, interchange the beginning and the end.

Picking up on Boltzmann’s comment on the current un-
likely state of the universe, Zermelo has a second argu-
ment. In any curve repeatedly returning to a maxima, every
rise must have its fall. Thus, Zermelo finds, rises must be as
likely as falls. Why, then do we never see the rising part of
the H curve. Large numbers are now on Zermelo’s side. He
points out that entropy does not measure a single event. It
is unlike, for instance, the eccentricity of the Earth’s orbit.
Here we could see only the rising or falling part of what is
really a periodic curve. “We are concerned,” Zermelo re-
minds us, “with the entropy of every conceivable system.”
Why, he asks, “with so many things to observe, do we only
see the increasing side of entropy?”’

Zeérmelo returns Boltzmann’s dice player analogy. “As-
sume that a die gives 200 ones on the first 600 rolls, fewer
on the next 600, and finally 100 ones for 600 rolls.” One
player, Zermelo tells us, would find nothing wrong since
probability theory is valid only after many rolls. Another
player finds that the die was loaded and only became fair
after being worn down. Zermelo agrees with the second
player.

REPLY TO ZERMELO’S ESSAY “CONCERNING
MECHANICAL EXPLANATIONS OF
IRREVERSIBLE PROCESSES”

Boltzmann'? in the last paper in the series promises to
“repeat the arguments as briefly as clarity will allow.” One
of the points he repeats is the inexact nature of probability.
“If 100 out of 100,000 objects burn up in a given year we
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cannot conclude that 100 will burn up next year. On the

contrary, if we continue the conditions for 10'°° years, it
could happen that all 100,000 burn in one day, or that none
burn in an entire year. In spite of these difficulties, insur-
ance companies trust probability theory.”

Most of the paper deals with the state of the universe.
“The 2nd law can be explained mechanically by the unpro-
vable assumption that...the universe is in an improbable
state.” Any system which is isolated from the universe is
likely to be in that improbable state and must be considered
an arbitrary system. This, Boltzmann tells us, is why the &/
curve lowers, entropy increases, temperature and concen-
trations differences disappear, and the beginning and the
end are not interchangeable.

We have a choice of explanations for this improbable
universe, Boltzmann tells us. Either the universe in its en-
tirety is in this improbable state or we are in a very impro-
bable part of an otherwise dead universe. In a universe
stilled by heat death, decreases in entropy would be as like-
ly as increases. Tiny patches which greatly deviate from
equilibrium can still exist “for the short space of aeons.”

For the dead universe as a whole, both directions of time
would be equally likely, Boltzmann adds, “just as in space
there is no up or down.” In centers of increasing entropy
time would move as it does on earth, just as on the surface
of the earth, down is toward the center. In patches of de-
creasing entropy, time would be reversed.

“Indulge in such speculations according to your taste,”
advises Boltzmann. “It does not affect the mechanical view
of nature. I have asserted only that the mechanical view
agrees with all observations. Hypothetical discussions on

the nature of the universe or motion in a eompletely isolat-
ed system cannot upset the mechanical view.”

CONCLUSION

Boltzmann’s words did not end the discussion. Like the
phenomenon it predicts, the recurrence paradox keeps
coming back. Even high school physics texts'* mention
Zermelo’s criticism in a discussion of Boltzmann’s expla-
nation of entropy. Whether to deny that God plays dice or
to discern the end of the world, speculations on the nature
of the universe are to many people’s taste.
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Using path integral techniques we demonstrate how three quantum-mechanical phenomena—
alpha decay, nonexponential decay, and resonant scattering—can be treated. This procedure is an
algebraic one yet reproduces the usual results obtained via solution of the Schrodinger equation

via WKB methods.

Recently, in a pair of papers, we have shown how WKB
results may be obtained via methods based upon the Feyn-
man path integral.' This is advantageous from a pedagogi-
cal point of view for at least two reasons. First, one can
perform these calculations without ever solving any differ-
ential equations or utilizing the “mysterious” WKB con-
nection formula. Second, the use of path integral tech-
niques has become an essential element of modern field
theory and it is therefore useful to introduce students to
these methods.

We have speculated that any problem solvable via WKB
may be equally well solved using simple path integrals and
have demonstrated this in the case of simple barrier pene-
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tration and transmission through the so-called double
hump well.? In this note we wish to apply path integral
techniques to the problem of alpha decay. As will be seen,
we shall again be able to perform the calculation in a fairly
simple way, which we think is of pedagogical value.

Our previous work has dealt with calculations of the pro-
pagator function

dt .y,
G (xpx;E) = A WEt/ﬁ<xz|e Ht/ﬁ|x1>
i 1
= (X —— — 1
<2E—~H+iexl>27r M
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