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Is the Solar System Stable?

Jurgen Moser

This article is based on the first of three Pauli lectures,
given at the Eidgendssische Technische Hochschule in
Zurich in January, 1975. It originally appeared in German
in the Neue Ziircher Zeitung of May 14, 1975.

The Stability Problem

The stability problem of classical mechanics, that is,
the question as to the stability of the solar system, has
fascinated astronomers and mathematicians for centuries.
It is simply the question of deciding whether the
planetary system in the distant future will keep the
same form as it now has or whether after a long time
perhaps one or another of the planets might leave the
solar system or whether collisions might even lead to a
catastrophic change. Since Newton, that is for about
300 years, one has known the laws which govern
planetary motion. To a first approximation, the planets
move in elliptical orbits in which the sun is located at
one of the foci of the ellipse. This is however only a
crude approximation to the true motion. The forces
between the individual planets cause perturbations so
that the form of these elliptical orbits very slowly but
steadily changes. The description of these changes, the
so-called secular perturbations of the elliptical orbits, is
the problem that is treated by classical perturbation
theory. Now it is conceivable that the relatively weak
forces between the planets after a sufficiently long time
would so greatly change the present orbits that a planet
might be thrown out of the system or that a collision
might occur. For example, one can imagine that the
eccentricity of a planet might continually increase until
its perihelion came so close to the sun that it would
meet with misfortune. Although such an eventuality
does not agree with our observations over the last
millenia, it is something altogether different to prove
mathematically from the equations of motion that it
cannot occur.

As a matter of fact the literature already contains a
considerable number of stability proofs. About 100
years after the publication of Newton’s Principia,
Lagrange gave his famous stability proof for the solar
system. Further proofs of this type were given by
Laplace and Poisson, and one might well ask why the
question is again being raised 200 years later. In general
one proof is sufficient and the carrying out of several
proofs tends to make a critical listener rather suspicious.
Actually it is a question here of approximations of
varying degrees of accuracy in which the perturbing
forces are taken into account only to the first or second
powers of the planetary masses. In practice this means
that the changes in the elliptical orbits will require a
substantial amount of time before they become

noticeable. Sommerfeld speaks in his book with F. Klein
very tersely of Laplace’s “mock proof” (Scheinbeweis),
of the stability of the planetary system. How justified
these approximations are remains to be seen. When one
restricts consideration to a few decades or centuries
these stability proofs certainly give the right conclusion,
but from this one naturally cannot draw any conclusions
about motion in many millions of years. Formerly one
was primarily interested less in long range predictions
than in the practical computation of the positions of the
planets, the so-called ephemerides — a question that was
of interest already to the Babylonians. Perturbation
theory is in fact an outgrowth of the necessity to
determine the orbits with ever greater accuracy. This
problem can be solved today, but in what is for the
theoretician a rather disappointing way. With modern
calculating machines, one is now able to compute
directly results even more accurately than those
provided by perturbation theory. Today the ephemerides
of the Nautical Almanac in Washington are computed in
this way.

But the mathematical problem only begins here. It is
a tried and true technique of mathematics to extract the
essential properties of a problem and to idealize it. We
deal not with the planets of the solar system, which are
after all extended masses, and all kinds of forces are
disregarded, such as, for example, the solar wind and
relativistic effects. Instead we consider an idealized
problem and study n mass points which move in
3-dimensional space according to Newton’s laws. For the
most part one assumes further that n — 1 of these
fictious mass points have very small masses compared to
the remaining one, which plays the role of the sun.
Furthermore, we do not ask for the development of the
motion for a limited time but for all eternity. This is
now a purely mathematical problem, the solution of
which has a rather limited meaning for the real world,
but which entails, by virtue of the demand for a
description for all time, very astonishing subtleties. Even
this idealized mathematical problem was formulated at
least a 100 years ago and is rather vaguely known as the
n body problem. In the previous century this problem
was of the greatest interest and, as we shall now see,
Dirichlet, who today is best known for his monumental
works in number theory, and Weierstrass, the function
theorist, as well as Poincaré, a universal mathematician,
all played essential roles in the treatment of this
problem. Thus it is a matter of describing the behavior
of the secular perturbations over long time intervals and
even for all time. Can changes in the shape and position
of the orbits completely alter the configuration of the
planetary system? Lagrange proved in connection with
his stability proof that these perturbations are subject to
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periodic oscillations and thus do not increase without
bound. The periods of these oscillations are relatively
long, requiring from 5x104 to 2x106 years. But one
must further mention that one is dealing here with an
approximation and that in a certain sense this statement
can be regarded as a refinement of the age-old
description of the planetary orbits by epicycles.

However, what will happen in time intervals of
several million years? It is a question here of a
resonance problem in which the motions of the eight
planets play the role of oscillators. Of course, resonance
occurs when one deals with a system with a frequency
which coincides with one of the eigenfrequencies of the
system or an integer multiple of one. The simplest
resonance phenomenon is that of pumping a swing. With
relatively small forces which are carried out periodically
at the frequency of the swing one can increase the
amplitide of the swing as high as one wants and can
even cause the swing to overturn. In the case of the
solar system, such phenomena also play a major role.
Indeed, because there is no friction to speak of, any
oscillation once established is never damped out. This is
the reason why the resonance effects are so subtle for
undamped systems in contrast to all everyday physical
experiments — or swings. In our solar system there are a
great many resonances. For example, it is known that
Jupiter and Saturn have a frequency ratio of about 5/2
so that after 5 Saturn years Jupiter has gone through
exactly 2 if its years and the forces after this period
continue to act in the same direction. This indeed has a
strong effect on the orbit of Jupiter, a perturbation
whose period to a first approximation is about 900
years.

In reality, however, one must expect such resonances
for all rational frequency ratios and even those in which
a linear combination of the frequencies with integer
coefficients vanishes (commensurable frequencies). This
is naturally utterly absurd, for in fact the rational
numbers are dense, and from a physical point of view
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Figure 1 ®

one can not distinguish between rational and irrational
frequencies. On the other hand, the mathematical
development definitely requires such a distinction, and
we arrive at a paradoxical situation. The equations of
motion for the n body problem are very easy to write
down but impossible to comprehend intuitively.
Therefore it may be useful to describe a very simple
geometrical problem that actually contains some of the
difficulties of the n body problem and may serve as a
crude model for planetary motion (Figure 1). We
consider an oval in the plane and define the “orbital
motion” in the exterior of the oval as follows. We draw
from a point 1 in the exterior one of two tangents to
the oval and prolong the tangent to the point 2 which
has the same distance from the point of tangency as 1.
From 2 we lay out the next tangent to the oval up to
point 3, which again has the same distance as 2 from
the point of tangency. Continuing in this manner we
obtain the “orbit” through the point 1. Can this
sequence of points be unbounded? This would be the
analogue of the stability problem. Although this
problem seems quite elementary it is actually very
difficult. One can show that for curves which are
smooth enough (admitting 5 derivatives) and have
positive curvature the orbits are always bounded, ie. we
have stability.

It is remarkable that in this simple problem the
smoothness of the bounding curve should play a role.
What happens if corners are admitted? The simplest cases
are polygons. Actually the mapping is not continuous in
this case but the problem of stability remains clearly
meaningful. For general polygons, however, it remains an
open question whether the orbits are bounded or not. But
there are two special cases which can be fully treated:

1) When the oval degenerates into a 2-gon every orbit
goes to infinity along a pair of straight lines (Fig. 2).
2) When the oval is a triangle then all orbits are closed
but they have different periods. Points belonging to
orbits of the same period form hexagons and
triangles which constitute an interesting tesselation
of the plane. Points in the hexagons have periods 3,
9,15,21,...,in general 3(2j — 1),j=1,2....

Those of the triangles have period 12, 24, 36, ...,
in general 12,j=2, 3, . .. (Fig. 3). For a square the
problem can also easily be handled but even for a
general quadrilateral the above question is open.
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Figure 3
The Prize Question

We return to planetary motion and to the
mathematical formulation of the problem and its
solution. One attempts to describe the coordinates of
the secular perturbations analytically using generalized
Fourier Series. These are series the terms of which are
of the form

Ajcos G+ - tjgwg) t

+ Bj sin (jywy + .. Fjwt

with certain frequencies w;, . . . , wg and combination
frequencies j; w; + ...+ js wg. This point of view is
not far removed from the epicycle theory, but it is
mathematically more precise. Such functions are today
known as quasi-periodic functions. In fact various
mathematicians succeeded, as for example Weierstrass, in
obtaining such series developments formally, assuming
that wy, . . ., wg are incommensurable (that is their
ratios are irrational). But these series may not converge
and therefore their usefulness was very much in
question. On the other hand, when they converge they
describe the small oscillations in the variations of the
ellipse. Changes of elements that are thus described
remain forever within given bounds.

The mathematical problem can be described as
follows: “For an arbitrary system of mass points which
attract each other according to Newton’s laws, assuming
that no two points ever collide, give the coordinates of
the individual points for all time as the sum of a
uniformly convergent series whose terms are made up of
known functions”'. This is the word for word
translation of a prize question which King Oscar IT of
Sweden proposed in 1885, that is, 90 years ago. The
prize was awarded to H. Poincaré, although he did not
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in fact solve the problem. His great work actually
indicated that such series developments, contrary to all
expectations, diverge and thus do not exist. One will be
even more surprised to hear that in 1963 an excellent
young mathematician in his middle twenties succeeded
in solving this problem and in proving the existence of
such solutions with complete rigor, at least in the case
of the 3 body problem! This mathematician, V. I.
Arnold, was a student of Kolmogorov, who a few years
before had laid the cornerstone of the proof. More
precisely, the breakthrough was based, of course, on the
work of many others, and essentially the ideas go all the
way back to Poincaré’s results.

In the 1940’s Siegel solved the first problem of this
type. His formulation of the question was, however,
more idealized and was not really applicable to
mechanical problems. In 1954 Kolmogorov indicated
that, for certain mechanical systems, in some sense the
majority of solutions are quasi-periodic. He indicated a
possible method of solution but the actual proof was
first provided by Arnold 8 years later, and, in a special
case, by the author. In accordance with the modern
usage this theory became known by the acronym KAM.
The principle result of this theory guaranteed the
existence of such quasi-periodic solutions for certain
classes of differential equations which included the n
body problem. The series developments in question turn
out to be convergent for certain choices of the
frequencies but are meaningless for other frequencies.
This last result was already shown by Poincaré. The
orbits which admit such a representation are precisely
those for which no resonance occurs. However, since
such resonance-free orbits can lie arbitrarily near to the
others, it is entirely possible that an arbitrarily small
perturbation in the intial values will change a
quasi-periodic stable orbit to an unstable one. One can
show, however, that the unstable orbits are much rarer.
or, as one would say more technically, in phase space
have relatively small measure. This means that one is
lead to a new concept of stability in which the
restriction applies only to the majority of certain orbits.
Whether the relatively rarer unstable exceptional orbits
actually exist is still an open problem. We must say at
the outset — and it will be shown in what follows
that the weakened concept of stability is very
meaningful and satisfactory for the physical applications.

New Applications

But in what does the great progress lie? If the
determination of the orbits can be handled very well
with computing machines, such a proof seems
superfluous and at very least historically too late. To
this one can make the following reply:

1. The stability of undamped systems for all rime can
not in principle be decided by finite calculations and
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lies therefore beyond the range
machines.

of calculating

2. What is more important, however, is that such a
result which, by the way, is of the greatest interest
in itself from the point of view of mathematics, is
also of essential importance to theoretical researches
in statistical mechanics. The development of
statistical mechanics had led to the expectation that
most mechanical systems, at least when they are
made of sufficiently many particles, are ergodic, that
is, after a sufficiently long time their behavior is
entirely independent of the initial conditions. This
stands, however, in the most striking contrast to
stability. In fact, physicists have, beginning with this
point of view, in the past century attempted to show
that almost all mechanical systems display this
unstable behavior provided only that one waits long
enough. That this is not so for many realistic systems
is now, through the work of the last decade, proved
once and for all.

3. There is finally a third ground which appears to be
more or less coincidental: the mathematical theorems
of KAM deal not only with the planetary system but
also with general Hamiltonian systems (thus, systems
which describe undamped processes of motion) and
can therefore be applied to many other problems.
This is precisely the advantage of a general
mathematical formulation. One of these applications
is the stability problem of proton accelerators, which
since the 1950’s have been built in every greater
numbers and greater size. The purpose of these
machines is to accelerate electrons or protons to
extremely high velocities and then to shoot them at a
target in order to observe the results of the
consequent disintegration, namely, new elementary
particles. The greater the energy of the particle is, the
more interesting the resulting observations will be. In
order to achieve these high velocities, the protons are
accelerated in a circular channel more and more until
the particles reach a velocity near the velocity of
light. These channels, in the case of the proton
synchrotron at CERN in Geneva, have a
circumference of over 600 meters; and air is pumped
out of them in order to create a high vacuum and
avoid collisions with gas molecules. A magnetic field
is created by a series of magnets, and this field holds
the particles in a nearly circular path. This leads to a
stability problem because the magnetic field must be
constructed in such a way that the protons do not
deviate too far from an ideal circular path and
thereby lose their energy on the walls of the
chamber. In the process, the particles run around the
vacuum chamber millions of times.

The question of stability is an essential point in the
construction of these accelerators. Although one was at
first content to make experiments with calculating
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machines, it soon became clear that after a few
iterations the unavoidable computational error got out
of hand and it became impossible to follow or to
predict the paths. One needed theoretical results which
showed that one could guarantee stability in such a
system over a very long time interval, and that is
precisely the significance of the theory we are
discussing. The latest stage in this development is
represented by the so-called storage rings of which one
has been operating at CERN since 1971 (Figure 4).
Roughly speaking, it is a matter of accelerating protons
in two circular channels in opposite directions and then
aiming the beams at one another. In this way the
available energy is not only doubled, as one would
expect, but, because of relativistic effects, is increased
by the square. In order to achieve the motion of
protons in opposite directions, one connects such a
storage ring (ISR — intersecting storage ring) to the
proton synchrotron and introduces bunches of protons
alternately in one or the other direction into the storage
ring. There they are stored, a process which can last
from 3 to 11 hours, until they are made to collide.



The construction of this machine presents
unbelievable technical difficulties and demands unheard —
of precision which would make even Swiss watch
manufacturers blanch. There is an obvious comparison to
be made here, which is of importance to our stability
problem: During the storage process the proton packets
must orbit 1010 to 1011 times around the circular path
and in the course of this time be contained within a
tunnel that is 16 by 5.2 centimeters. When one equates a
circuit of the protons in the storage ring with a year in the
astronomical problem, then the above number represents
a time which surpasses the age of the earth. That is, one
can follow the protons for a longer time, in this analogy,
than the solar system has existed in its present form. In
addition to this, the experimental physicist or technician
can alter the conditions and the parameters at will. We
discuss this example here because it requires stability over
time intervals which exceed anything that was dreamed of
in astronomy 100 years ago and therefore in a certain
sense justifies the idealized stability question concerning
infinite time intervals, if indeed such justification were
necessary. When one applies the results of KAM theory in
this situation one finds that the majority of accelerated
protons are conserved within the circle of the storage rings
but that the relatively rare exceptional orbits lead to a
slow and very slight loss in the proton rays. Such losses
are in any case unavoidable and are also observed.
Whether these exceptional orbits can be considered to be
responsible for this loss must be regarded as still
unresolved in view of the fact that many additional forces
and- effects which affect the particles and may deflect
them have been neglected. Such applications can provide a
strong stimulus to mathematical research. One must
certainly ask how it is that this age-old stability problem,
just when it is losing its interest for astronomers, has
suddenly been solved. One can well hypothesize that the
development of proton accelerators has influenced the
rebirth of interest in this question.
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Stability of Periodic Orbits

We wish to describe another resonance phenomenon,
which enters both in astronomy and in high energy
physics. It is the question of the stability of periodic
orbits, that is, of those solutions which after a certain
time return to their initial configuration. One asks for
conditions under which all orbits whose initial conditions
lie near the periodic orbit remain for all time near the
periodic orbit. Such orbits are called stable. Only such
stable orbits are normally observable. The best example is
the circular orbit in a storage ring described above. Small
perturbations should not lead to large deviations. In order
to determine whether these circular orbits are stable, one
must use the so-alled betratron frequencies w;, w, and
the orbital frequency w, which belong to the oscillations
of the linearized system. The theory shows that in general
nonlinear resonance or unstability will occur when the
frequencies satisfy a relation

nwp + MWy = pwy

with whole numbers n, m, p for which [n| + |[m| <4; such
relations with |n| + |m| > 4, on the other hand, are
harmless. Experiments show that in fact in the first case a
loss in the beam is observed but in the second case this
loss is negligible. Loosely speaking, resonances of order
less than or equal to 4 are in general dangerous, whereas
those of order greater than 4 are harmless.

An analogous phenomenon occurs in astronomy. As
is well known, in addition to the major planets there are
many of thousands of asteroids circling the sun; their
orbits are primarily between those of Mars and Jupiter.
Their masses are minescule and therefore have no
influence on the planets. On the other hand, the asteroids
are very substantially perturbed by Jupiter. Evidence for
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this is an observation due to Kirkwood. He remarked that
the frequencies of the asteroids are not uniformly
distributed over an interval but that there are certain gaps,
the so-called Kirkwood gaps, to be observed (Figure 5).
One can consider this situation to be analogous to the
gaps in the rings of Saturn, which in fact present a similar
phenomenon. If the mean motion of the asteroids is
denoted by wgq and that of Jupiter by wj then the most
pronounced gaps are given by the formula
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and this means that it is a matter of resonances of
order < 4. It remains to characterize the periodic
orbits whose stability corresponds to the above
conditions. One imagines Jupiter on an exactly circular
orbit and lets the asteroids move on a nearly circular
orbit in the same plane in such a way that the
configuration, that is, the triangle formed by the sun,
Jupiter, and asteroid returns to its original position
after a certain period of time. Such periodic orbits
were already derived by Poincaré. The orbits for which
the resonance given above does not occur are stable,
so that the explanation is obvious: the gaps correspond
to unstable orbits. Although these are only crude
approximations to the actual situation, they
nonetheless successfully reflect the phenomenom of
gaps. The mathematical explanation of this
phenomenon is given rigorously by the KAM theory,
although an essential idea can already be found in the
work of Birkhoff, who continued Poincaré’s work.

Historical Remarks

The following historical sketch illuminates the
stability problem and its very dramatic development.
These remarks were stimulated by the fortunate
circumstance that the letters of Weierstrass to Sonya
Kowalevsky were published a short time ago. These
letters contain much interesting material on our subject
which otherwise is very little known, even to
mathematicians. Weierstrass played an  absolutely
central role in the mathematical life of the second half
of the 19th century, and mathematicians from all over
the world came to Berlin to hear his lectures. His
principal interest and his life’s work was function
theory, but he also had a serious interest in astronomy
and gave a seminar on perturbation theory in
astronomy in 1880/1881. His ideas on this subject,
and above all on the stability problem, were described
in several letters to Sonya Kowalevsky. In view of the
fact that Weierstrass published his results only very
reluctantly and only after extensive and thorough —
going revision, these informal communications are
particularly valuable.

Sonya Kowalevsky came to Berlin from Russia to
study mathematics in a truly adventurous way as a 20
year old student. It was certainly not customary to

have female students there, and she was barred from
lectures, as a result of which Weierstrass gave her
private instruction. From this developed a close
friendship which endured wuntil the end of
Kowalevsky’s life. Moreover, Kowalevsky developed
into a wellknown and celebrated mathematician, and
was professor of mathematics in Stockholm, although
she unfortunately reached this position only two years
before her untimely death at the age of 41. In
addition to personal communications, Weierstrass’
letters to Sonya Kowalevsky contain a large number of
mathematical ideas and proposals to his student giving
a valuable insight into his manner of thinking.2
However, one also finds very specific indications, as
for example in the letter of 15 August 1878, that
already at that time he was in possession of the
formal series developments for quasi-periodic solutions
of the n body problem, and was occupied with the
question of their convergence. After this, there can
remain no doubt that Weierstrass was on the track of
exactly the same problem which has now been finally
solved.

Why was Weierstrass so confident that his series
representations actually converged? This is also known.
Dirichlet, who was Gauss’ successor in Gottingen, had
already told his student Kronecker in the year 1858
that he had discovered an entirely new general method
for dealing with and solving problems of mechanics.
Dirichlet died the following year without leaving
behind anything written about his discoveries, but
Kronecker communicated Dirichlet’s remarks to the
mathematical world, which sought to recover this lost
idea. Nowadays one connects the name of Dirichlet
principally with number theory, which was indeed his
main interest, while his works in mathematical physics
are less well known. These include the foundations of
the theory of Fourier series, stability figures of
rotating fluids, hydrodynamical works, stability criteria
for equilibrium, and others. Because Dirichlet’s
publications were known for the absolute rigor of their
methods and their proofs, there was little doubt that
Dirichlet’s remark should be taken seriously, and
Weierstrass was particularly interested to clarify this
problem and to recover this treasure. When in 1885 a
prize was established at Mittag-Leffler’s instigation for
an  important mathematical discovery, Weierstrass
proposed precisely this problem as one of the prize
questions, as was already mentioned. The committee
consisted of Weierstrass, Hermite, and Mittag-Leffler.
This lead, then, to the famous work of Poincaré of
over 200 pages which had a great effect on the later
development of the subject. But for Weierstrass, who
expressed his greatest admiration for this work of
Poincaré, this was nonetheless a disillusionment, for
Poincaré showed that the series developments of
perturbation theory in general diverge and thereby
Weierstrass® hopes appeared to be destroyed. By the
way, these divergence phenomena bothered Poincaré



very uttle and he overcame them in a very bold
manner. The asymptotic series developments that one
uses in the theory of flows and other applied subjects
go back to Poincaré.s ideas, as does the use of
divergent series in numerical calculations. Weierstrass,
by contrast, pursued the convergence  question
mercilessly and found that, while Poincaré’s deductions
were quite correct, they did not in fact prove the
divergence of the series in question. The existence
theorems for quasi-periodic solutions, which we now
know, say precisely that such series do converge for
certain frequencies, and that was precisely Weierstrass’
point. Thus, 70 years later, this question of Weierstrass
can finally be given a positive answer. Naturally it is
no longer possible to determine whether the new
results actually coincide with Dirichlet’s attempts or
are related to them.

What has been said here should not give the false
impression that mathematics is guided solely by such
practical applications or that the justification of its
existence is to be found in the solution of such
problems. Rather it is the vigorous interaction of
various areas of study that always leads to new
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concepts. Is the solar system stable? Properly speaking,
the answer is still unknown, and vet this question has
lead to very deep results which probably are more
important than the answer to the original question.

1. Es sollen fir ein beliebiges System materieller Punkte, die
einander nach dem Newton’schen Gesetze anziehen, unter der
Annahme, dass niemals ein Zusammentreffen zweier Punkte
stattfinde, die Coordinaten jedes einzelnen Punktes in
unendliche, aus bekannten Functionen der Zeit
zusammengesetzte und fiir einen Zeitraum von unbegrenzter
Dauer gleichmiissig convergirende Reihen entwickelt werden.

2. Briefe von Karl Weierstrass an  Sofie Kowalewskaya
1871-1891, “Nauka”, Moscow 1973
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