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A system consisting of N noninteracting point particles bouncing elastically from the walls
of a rectangular box is studied. The macroscopic observables are assumed to be the center
of mass, total energy, and total momentum. The initial N-particle probability distribution
P(0) corresponding to these observables is set up. LiouviQe's equation is solved exactly and

analytically for P(t), and exact expressions are obtained for various reduced distributions
and moments and for the time dependence of the macroscopic observables. It is shown that
the expected value of any analytic phase function relaxes to equilibrium. The evolution of the
nonequilibrium entropy 8 (t) is investigated. It is found that 8 (t }undergoes a nonmonotonic in-
crease from a minimum at t = 0 to a maximum at t ~, and that S(t- ~) is the usual canonical
entropy. It is shown that statistical irrevexsibility occurs for arbitraxy N, but that predicta-
bility occurs only for large (but not necessarily infinite) ¹

I. INTRODUCTION

The purpose of this paper is to study and to
illustrate certain general principles of nonequilib-
rium statistical mechanics by means of an exact
analysis of a particular N-particle system. The
system chosen is the N-particle Knudsen gas
(i. e. , a gas in which the mean free path is much
longer than the container, so that collisions be-
tween particles may be neglected) enclosed ln a
rectangular box with perfectly reflecting walls.

The spirit of this papex is that the Knudsen gas
provides a useful "model" system, for which
exact calculations can be carried out, and which
may illustrate some of the important characteris-
tics of the statistical mechanics of more compli-
cated systems (i. e. , systems in which inter-
actions are important). Of course, certain
effects not obtained in the present study will show
up in moxe complicated systems. For instance,
the only relevant time parameter in the present
problem is the "hydrodynamic time, "which is
related to the length of the container. In systems
with intexparticle interactions, the "kinetic time"
(related to the interaction length) is also expected
to be important.

Model systems have been widely used for the
study of the principles of nonequilibrium statisti. —

cal mechanics. Such systems have been espe-
cially popular fox' the study of the question of the
origin of irreversibility. Most of the systems
(e.g. , the Ehrenfest dog-flea model, ' the Kac
ring model, ' the moving markers model') have
been nonmechanical; that is, nonmechanical
probabilistic concepts have been more or less arbi-
trarily introduced into the system. An important
characteristic of these nonmechanical models is
that probability is introduced at all Hoes, rather
than only at the initial instant.

Several studies of truly mechanical models have
been carried out in the past "; these studies
are based on the use of Liouville's equation, so
that probability is introduced into the theoxy only
at the initial time, this probability being then
propagated in time by Liouville's equation. As
has been pointed out previ. ously, "the element of
probability which is introduced at the initial time

in statistical mechanics is crucial; in fact, this
element of probability is sufficient to introduce
irxeversibility into the theory. Thus, the study
of a mechanical system by means of Liouville's
equation should not be called a "mechanical analy-
sis"; it is, rather, a "statistical-xnechanieal
analysis of a mechanical system. "

To the authors' knowledge, the present work is
the only statistical-mechanical study of an N-par-
ticle mechanical system in which the wall foxces
are included in an approximately realistic way,
and in which Liouville's equation is solved exact-
ly and analytically for all time. A complete dis-
cussion of previous work in this field will be given
in Sec. VII.

In See. II, the initial N-particle probability dis-
tribution is set up. The authors take the point of
view that statistical mechanics arises due to the
observer's lack of complete information about the
mechanical system, and that the initial distribu-
tion should be set up in such a way as to reflect,
as accurately as possible and with no unwarrant-
ed assumptions, the initial information which the
observer does possess. This point of view is
sometimes called the "information-theory point
of view. '"~ "-". If the reader does not subscribe
to this point of view, then he should omit Eqs.
(2. 1)-(2.6) of Sec. II and simply consider (2. 7) to
be the assumed initial distribution, with no justi-
fication being given for that distribution. It is
assumed, in Sec. II, that the given initial infor-
mation consists of the expected values of the
center of mass, total energy, and total momen-
tum; these quantities are thus the "macroscopic
observables. " The choice of these particulax
quantities as observables may seem unduly re-
strictive, i.e. , the use of the particular initial
distribution (2. 7) may seem unduly restrictive.
However, these three quantities are the only
simple, global (i.e. , dependent on the state of
the entire N-body system) mechanical quantities
possessing much dix ect physical significance.
Another possibility is the total angular momentum,
but this quantity is quite complicated to deal with
when the system is confined to a rectangular box.
Thus, as long as the observables are restricted
to global quantities, the given initial informa-
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tloll (Rnd consequently tile givell lnltlal dlstrlbu-
tion) is actually quite general. For simplicity,
nonglobal quantities (such as the expected density)
will not be considered.

In Sec. III the exact, analytic solution for
arbitrary time of Liouville's equation is obtained.
ln Sec. IV, this solution is used to obtain exact
analytic expressions for various reduced distri-
butions, all of the moments of the N-particle
distribution, and the timedependenceof the macro-
scopic observables. It is found that the expected
value of any analytic phase function approaches
equilibrium as t-~. In Sec. V, the time depen-
dence of the nonequilibrium entropy S(t) (as de-
fined by Robertson" ) is studied. It is found
that S(t) undergoes a nonmonotonic increase to its
asymptotic value S(t -~)„and that the asymptotic
value agrees with the conventional equilibrium
expression for the entropy. In Sec. VI, it is
shown that the present analysis is also applicable
to a one-dimensional gas of N particles which
interact elastically with each other and with the
walls. Detailed comparison of the present work
with the work of others is given in Sec. VII, and
further discussion is given in Sec. VIII.

Consider a Knudsen gas of X identical particles
of mass mwhich bounce elastically from the walls
of a rectangular box. The walls are located at
x= O, x=1.„y = O, y =I.2, z = O, and z =I., Suppose
that the available measuring instruments are
capable of making rough (i. e. , macroscopic)
measurements of the center of mass R, total
energy II, and total momentum P. Since the
information furnished by these measuring
instruments ls less than complete, it is nec-
essary to use a statistical, rather than a
mechanical, description of the system'. ~" "

An initial measurement of R, II, and P yields
the following information:

&R&o &If&o &P&o. (2. 1)

Here, ( )t means "expected value at time f,"i.e. ,

where X represents a point in the 6N-dimensional
phase spRce, Rlld P(X, t) ls 'tile P-particle proba-
bility distribution function for the phase point X.
The only general prescription for finding the ini-
tial distribution corresponding to given initial
information appears to be haynes' principle
of maximum uncertainty. '~ According to this prin-
ciple, the initial distribution is that function max-
lmlzlng the uncertainty

—fP(X,0)lnP(X, 0)dX

with l.espect to those dlstl. lbutlons satlsfylng the
given information. Applying this principle to the.
lnltlal lllfol'111Rtloll (2. 1) tile illltiRl dlstl'lblltloll ls
found to be '4

P(X,0)=a-exp(-;Nor. R-pfl-y», (2. 4)

where A. is chosen to normalize I',

fp(x, o)dx= 1, (2. 5)

and the coefficients NOI, p, y are chosen to satis-
fy the given information (2. 1). Equation (2. 4)
gives P(X,O) for any phase point such that all the
particles are inside the box; I' is zero if any
particle is outside the box. Using

R=X Tr. ,

a=(2r~) Igp. p, , P =gp. , (2. 6)

distribution (2 4) may be wrlttell lll 'tile nlol8
convenient form

p(x, o)=z '

x exp[-Z ~ gr;-(P/2m) Q(p, -po)']. (2. 7)

(p;&o=po

(p&o = &po

((p. —p,) /2mg=3/2P,

(Iso = 3N/2P +Np o o/2III,

(2. 12)

(2. 13)

(R~)o=&1"f~&,

= I/n —I /[exp(n I )- I], (2. 14)
p.

where p runs over the integers 1, 2, and 3 corre-
sponding to the directions x, y, and z. Equations
(2. 11), (2. 13) Rlld (2. 14) detel'Illille py, p, Slid

p, in terms of the given information. [It follows
from (2. 14) that (Ril&o is a monotonic decreasing
function of n&, with

(R )o I. nRs
p, o p, p,

(R &o-L, /2 as m -0,
(R &,-0 as n -+~.0 p,

Thus, for any given (RII&o in the permitted range
0 (Ril&o 2, (2. 14) de'tel'1111118S R unique OI~ ill
the range —~ & o. ~ ~. ] Equation (2. 10) shows

p,
that po is the expected momentum of each particle
EqllRtloll (2. 12) shows that 3/2p Is the I116RII I'Rll-

Here the partition function Z is given by

Z= fexp[-n gr.
—(P/2m) g(p, —p, )o]dX,

the new coefficient P, is defined by IIo= -IIIy/P,
the particles are labeled byi, and the sums run from
from i= 1 to ¹

By direct integration, one obtains the following
relations.
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dom kinetic energy" (i. e. , the mean kinetic ener-
gy as seen in a frame moving with the mean vel-
ocity p, /ggg) of each particle.

The initial distribution (2. 7) may be written as
a product of distributions for each degree of free-
dom (gi)g, p;~) as follows:

"N 3
P(X, 0) =JI . II . P(g,p, 0), (2. 15)

x =.j p,. =-].

P(r ~,p, o) =Z, ~

x exp [-gg'„g; -(t)/2ggg)(p;& -Po)g) ], (2. 16)

1(2
2ggggg 1 -exp( —Q)gL)g)

lP, p (2. iS)

III. TIME DEPENDENCE OF P(X,~)

A. Reduction to One Degree of Freedom

The distribution P(X, f) obey8 Liouvllle 8 eglua-
tion

According to (2. 15), the degrees of freedom (and
hence also the particles) are statistically indepen-
dent at t=0.

g sP(X, f)/sf =LP(X, t), (3 1)

where the Liouville operator L is defined by"

Lg(x) = g [II,g(x)], (3.2)

where [, ] is the Poisson bracket. The formal
solution Qf (3. 1) 18

P(X, f)= exp(- gLf) P(X, O}. (3. 3)

The Hamiltonian for the Knudsen gas is H
= ZrIIg)g, where Hg)g =Pg)g /2m + V (vg)g')q and
where V&(g ) is the wall potential tzero for 0&g
(L)g, infinite for g (0 or g )L&) Thu. s, the
Liouville operator may be written I =ZLg)g,
where Lggg operates only on the variables(g . , Pg&)
Thus (3.3) and (2. 15) imply

Pf 3
P(X, f)= II II P(gg)g, f), (3 4)

a=I j[L-1

P(rgp pg~ t)=exp(-gLg, f)P(rg~ pgp 0) (3 5)

Thus the time evolution of P(X, f) may be obtained
by finding the distribution P(g g&, Pg&, f) for a
single particle in a one-dimensional square well
0 &x

&
(I.&, subject to the initial distribution

P(.;„'",P,, "O) g -.by (2. 16).

B. Solution of the One-Dimensional Problem

Irj. this sub-section, the subscripts i and p, will be omitted.
An extension of the method used by M. Born to solve a one-dimensional problem similar to the present

problem will be used to obtain an exact analytic expression for the one-dimensional distribution P(g, p, f).
The method used by Born is as follows: Replace the initial condition P(g, p, 0) by the extended initial con-
dition P (g, p, 0) which is identical to P(g, p, 0) in the region 0(g ( I and is defined for g outside this region
by

P( g, p, -0)=P(g, p-, 0), (s. 6)

P(g +2L, p, o) =P(r, p, 0),

while at the same time replacing the actual Hamiltonian [containing the wall potential V(g )]

II =p'/2~+ V(g )

by the free-particle Hamiltonian

rf= p'/2m

(3. 'f)

(3. 6)

(3.9)

The new problem, with initial condition P(g, p, 0), Hamiltonian II, and range (-~ (g &~), is much simpler
than the original problem. However, as shown by Born, ' the solution P(g, P, t) of the new problem is, . for
0(g (I, the same as the solution P(g, p, f) of the original problem, i.e.

P(g, p, t)=P(g, p, f) for 0&g&L.

A yroof of this statement is given in the Ayyendix.
According to (2. 16) and (3. 6), the new initial condition P(g, p, o) is, for I.(g (L, , -

P(~, p, 0) =Z, exp(-n lg I- (p/2m)[p- e(g )p,]'}for —L&g &L,

(s. io)

(s. ii)

where |)(g ) = —1 for L(g (0 and 8(g-) =+1 for 0 (r ( I. The partition f. unction Z, is given by (2. 17).
Outside of the region -L (g &L, P(g, p, 0) is given by the periodicity condition (3. f). It follows from the
free-particle Hamiltonian (3.9) that the distribution P at the time t is

P(g, p, t)=P(r pf/m, p, o)- (s. i2)
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Since P(r, p, p) is periodic in r with period 2I., it can be written as a Fourier series in r:

P(r, P, 0) = a, (t)) +Zan(P) cos(nor/L)

+isbn(P)

sin(n)[r/L). (3. 13)

(3. 14)

Evaluating the coefficients with the help of (3. 11) and then using (3. 12) and (3. 10), the following expres-
sion is found for P(r, p, t) in the region 0(r(L:

-o[L[
I'(v, P, ))=Z, s, ,[))( & & ~+a, 's, ()) & [)—( —)) e [corn

n = 1 o['L'+n'm' L, I, m
00

+g, ' s, (p) Z . . . , -[1 —(-1) e ]sin —r—

where s, ([))) and s, (p) are defined by

s (p) =exp -P(P —P, ) /2m +( —1) exp -P (P+P, ) /2m (3. 16)

Equation(3. 14) is the exact, analytic expression for the one-dimensional distribution for a particle in a,

box 0 &r (I' subject to the initial condition (2. 16).

C. Solution of the N-Particle Problem

"The solution to the original problem (3. 1) with initial condition (2. 7) [i.e. , with the initial information
(2. 1)] is given by (3.4), where the one-dimensional distribution P(rt, Pt, t) is given by (3. 14) and (3. 15),
and the one-dimensional partition function is given by (2. 17). Note (hat 5(X, t) does not, strictly speaking,
relax to equilibrium. According to (3.4) and (3. 14), P(X, t) undergoes an oscillatory behavior at any fixed
phase point X. However, as will be seen in the following section, the system approaches equilibrium in a
certain "weak" sense.

IV. APPROACH TO EQUILIBRIUM

In this section, various reduced distributions, moments, and expected values will be calculated.
Integrating (3. 14) over all momenta, the reduced distribution for the configuration (r„.rN) is found

to be
3

P(r„rN, t) = II 11 P(r; ~, t),
i=1 p, =i

where the one-dimensional distribution for ~z alone is given by

2n -~ 1-(-1)"e nor -n'~'t' nmP, t

(n'L'+n' &')'"

(4. 1)

(4. 2)

and where the phase angle for the nth term is defined by

C = cos ' [o[L/(o['L'+n'm')'"]. (4. 3)

In (4. 2) and (4. 3), the subscripts i and p. have been omitted. According to (4. 2), P(rt&, t) relaxes to the
equilibrium value P(r;&, t- ~)=L, with a relaxation time v& ( for relaxation in the

&
direction) given by

rtj = (2mp)"'L&/m where t[ =&, y, & (4 4)

Similarly, the reduced distribution for the momenta (p„~ ~ ~ p&) may be obtained by integrating (3. 14) over
all coordinates. The result will not be written down here. It is found that P(p, ~ ~ p~, t) does not relax
to equilibrium, but instead undergoes an oscillatory behavior [at a fixed point (p„pN)] similar to the
behavior found in Sec. III for the N-particle distribution. However, as will be seen, the momentum dis-
tribution relaxes to equilibrium in a certain "weak" sense.

It is possible to carry out an exact calculation of all the moments of P(X, t). Since, by (3.4), the degrees
of freedom are statistically independent, it suffices to consider only the moments of the one-dimensional
distribution P(rt&, pt&, t). Omitting the subscripts i and t[, , these moments are defined by

(r~p ) =
frump p(r, p, t)drdp where j, k =0, 1, 2, . . . (4. 6)

Using (3. 14), it is possible to do the integral explicitly, for arbitrary j and k. The result is

(r p )t ——(r P ) +E ~(t),
where (r~p ) = fr~P P (r, P)drdP,eq eq

(4. 6)

(4. 7)



173 STATISTICAL-MECHANICAL ANALYSIS OF FINITE IDEAL GAS

(4. 9)

As. ready mentioned, the even momentum moments (p ) are constant in time. Thus, all moments
2n

(r jp )t of the one-dimensional distribution P(r, p, t) [and hence all moments of P(X, f)] relax toward equi-
librium, with the equilibrium values being given by (4. 7) and (4. 8). It follows that the expected value
(g(X)) of any analytic iV-particle phase function g(X) relaxes to the equilibrium value (g(X))eq.

P (r, P) = (2I ) '(P/27rm)'~ s (P), (4. 8)

with so(P) given by (3. 15). The distribution Pe~ (v, p) is an equilibrium distribution, i.e. , Peq satisfies
the time-independent Liouville equation. The dzstribution Peq(x, P) is independent of x, and is an even
function of P with maxima near p =+ P„. T)us Peq (r, p) differs from the canonical distribution; this may
be traced to the fact that any even power p " of the momentum is a onstant of the motion, so that the
system "remembers" all initial even moments of the momentum: (P ")t=(P "),. If the initial mean momen-
tum is zero, then by (2. 11), (4. 18), d (3. 15), it is seen that Peq(r, p) is the canonical distribution. The
time-dependent part Ej k(f) of the j-k moment may be calculated explicitly, but will not be written down
here since the expression is rather lengthy. For all moments except the even moments of P, (i.e. , for all
cases except j = 0, k = 2n), the dominant term of F&k(t) (for large t) has a time dependence given by

t exp(-v't'/2PIAn).

(g(X))t -(g(X)),q= Jg(X)P,q(X)dx,
N 3

w~ere Peq(X) =.Il ll Peq(~, p, p, ~)g=lP =1

(4. 10)

(4. 11)

Thus, the relaxation time is dependent on the probabilistic spread of the initial velocities.
Explicit expressions for a, few of the moments will now be given. Subscripts i and p, will be omitted.

The expected position of the i "particle is
I. 4+I 2 1 I'-n'v't' / nvp, t

exp~ cos ] ~ + 4~
v2ta h(~I./2) «dd n'(+21,2+n&vm) i 2mPI. &

(4. 12)

with P (xf&, p, ~) given by (4. 8). Thus, although the exact X-particle distribution P(X, t) does not possess
a limit s t-~ Ii.e. , P(X, f) does not relax to equilibrium], the system still "effectively" approaches equi-
librium in the sense that the expected value of any analytic phase function approaches the equilibrium
value given by (4. 10). The effective asymptotic distribution is Peq(X), given by (4. 11). This behavior has
been termed a "weak" approach to equilibrium. ~0 This seems to be the type of behavior which Gibbsmo had
in mind in his discussion of the relaxation of P(X, t). Thus, this behavior may also be called "Gibbs phase
mixing. "

It is interesting to investigate the relaxation times associated with the various moments. For long t,
the predominant term in Ejk(t) is proportional to the expression (4. 9). For k = 0 (i.e. , for any moment
(r& &) of r& alone), the time for relaxation of (4. 9) is (2mP)'~'I, &/m, in agreement with the relaxation
time (4. 4) found for P(x, t). For k c 0, the function (4. 9) has a maximum at t = ( mkP)'~ 21&/v, and it then
falls off exponentially Witch the relaxation time (2mP)~~2L &/v. Thus, the moment (x&&pnk) has the relaxa-
tion time ( v'2 + 0 k)(mP)'~'Q/w for k = 0, 1, 2, ' ' ' . Thus, higher-momentum moments fall off more slowly.
Generally speaking, one may say that phase functions having a simple momentum dependence (i.e. , whose
expansions in powers of x and P contain only low powers of p) relax rapidly, whereas phase functions
having a complicated momentum dependence relax slowly. The reason for this is that Gibbs phase mixing
implies a stretching out of the initial distribution into finer and finer filaments, 20where the filaments
(for the particle in a box) are nearly parallel to the r& axis. ' The condition for a phase-function to be
relaxed is that the function must vary only a small amount when the phase point varies from one filament
to another. Thus, a function with a smooth momentum dependence will approach equilibrium more rapidly
than one with a complicated momentum dependence.

The meaning of the fundamental relaxation time 7&, given by (4. 4), is that 7'& is on the order of the
time required for a particle moving at the initial "random root mean square" speed v(e&) =-[({tg -v,&)'),]'I',
e,~

=- p»/m =(p&)/m to cross the container in the g direction. To show this, use (2. 12) and (4. 4).
At t=o,

((v~ ~»)) =m~((t„-P,„))=(Pm)-~=2I. „~/W~ ~, v(~~)=Drr, „/v~ -I.„/~„.

(4. 13)

where the @„aredefined by (4. 3). The expected position is seen to oscillate with decreasing amplitude
around I,/2. The second moment of x is —eI

4nI. &/v' (-1)"[1-(-1P e -n~v tm (nxp, t(t)f =~ +' exp cos~ -' +4
—nl " n'(n'I. '+n'v') "* 21 ~~P

1 e

Equations (4. 12) and (4. 13) may be obtained by integration beginning with (4. 2). According to (4. 12) and
(4. 13), the asymptotic value (for long times) of the variance of r is
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o'(r) =(r') -(r) ~ =L'/12
in agreement with the variance found directly from
The expected momentum of the i h particle may be

tanh{nL/2) n odd 2L2 „I g 2L2

(4 14)

the asymptotic reduced distribution P(r, t-~) =I
calculated from (3„14). The result is

nvPot)

It is seen that f&)t exhibits an oscillatory relaxation to (p) = 0, and that the predominant time dependence
(for long times is texp(- v't /22L~Pm), in agreement with (4. 9).

The expected values of the macroscopic observables (R), (H), and (5) will now be calculated. The ex-
pected value of the p. component of the center of mass is

n

(Rp)t = (N Z rip)t =(r1 )t, (4. 16)

since the distributions for the ri& (i =1, 2, N) are identical. Thus (R&)t is given by the right-hand
side of (4. 12) (with the subscript p placed on n, L, , and P,). The variance of R& at time t is

a'(R )=(Rp )t -(Rp)t2 —N 'a~(r~), (4. IV)

as may be shown by using R =N Zr;& and the statistical independence of the i' Thus, although by
(4. 14) the dispersion (i.e. , he square root of the variance) of ri& increases to L/(12)""as t- ~, the dis-
persion of R& increases only to L/(12N)'" ~ The small dispersion of R is, of course, due to the fact that
Rf ls a sum function.

The expected energy is constant, since H is a constant of the motion:

&H)t =&H)o (4. 18)

(4. 19)

where (H)0 is given by (2. 13). The expected value of the p component of the total momentum is
N

Pt .
7

zP t 7@t

where (p )t is given by (4. 15) (with the subscript p placed on I, n, and p, ). Equations (4. 16), (4. 18),
~d (4. 19, coupled with (4. 12) and (4. 15), give the time dependence of the macroscopic observables
(R)t, (H)t, and (Pg~. It is interesting to note that the macroscopic observables approach the values they
would have in the canonical distribution having expected energy(H)„(i. e. , (R) -L/2 and (P) -0), even
though the equivalent asymptotic distribution given by (4. 11) and 4. 8) is not the canonical distribution.

V. NONEQUILIBRIUM ENTROPY

Robertson" has given a useful general defi-
nition of the nonequilibrium entropy. As applied
to the present problem, Robertson's definition of
the entropy S (t) is

stants a. , P, and y, which are determined by the
initial information (2. 1), and the time-dependent
multipliers n(t), P(t), and y(t), which are deter-
mined by the values of the macroscopic observ-
ables at time t. Comparing (2. 4) and (5. 2), it
is seen that

S (t) =-k fdXp(X, t)»p(X, t), (5. 1) a (t = 0) = n, P (t = 0) = P, y(t = 0)= y. (5.6)

Here A(t) is determined by the normalization
condition Jp(X, t) dX = 1, and the defining equations
for the time-dependent coefficients Nn(t), P(t),
and y(t) are

(R)t = fdXRp(X, t

(H)t = fdXHp(X, t),

(P)t ——fdX Pp(X, t),

(5. 3)

(5.4)

(5. 5)

Note the important distinction between the con-

where k is Boltzmann's constant and p(X, t) is
defined by

p(x, t)=A '(t)
x exp[-Na(t) R-P(t)H y(t) ' P]. (5.2)-

The definition (5. 2) of p(X, t) involves no assump-
tions; in particular, it is not assumed that the
system is Bt or near equilibrium. '8 The entropy
defined by (5. 1,) has the following properties~ It,
agrees with the usual equilibrium entropy when-
ever the system is represented by the equilibrium
canonical distribution; S(t) increases (but not
necessarily monotonically) in a nonequilibrium
process; S(t) depends only on the instantaneous
values of the macroscopic observables, i.e. , S(t)
is a thermodynamic- state variable.

The meaning of S(t) is as follows": Let the
values at time t of the macroscopic observables
[as predicted b~ P(X, t) determined from Liouville's
equation] be ( R)t, (H)t, and ( P)t; the entropy S(t)
is then the value of the observer' s uncertainty&4~"
about the underlying phase point X at bme t, when
the only information available to the observer is
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(R), (H&», and (5)». Thus, an increasing entropy
implies loss of information (i.e. , increasing un-
certainty) about the underlying phase point X.

Replacing the multiplier y (t) by the new coeffi-
crent p, (t) = my-(t)/P(t), p(X, t).be«mes

p(X, t) = Z '(t) exp(-n (t) ~rt - [p(t)/2m j

&r P (t)

'&lk-b. (t)] h (5. 7)

where the time-dependent partition function is

Z{t)= J dXexp{-n(t) Urt

I

I

I

I
l

- [P{t)/2 ]&[p; -p.{t)j ] (5. 6)

The relationship between the observables ( R)t,
(H&», and ( 5&» and the quantities Z(t), n(t), P(t),
and yet) is the same as that between (K&„(H&„
and (P), and the quantities Z, n, P, and y. Thus,
using (2. 9)-. (2. 14) along with (4. 16), (4. 18), and
(4. 19),

Z(t)=Z, (t)
tr() tr

where Z, (t) = (5. 9)

p.(t) =& '
&8t = &p t&»,

3/2P{t) =
& [p; -p.{t)j /2m &t

(5. 10)

{5.11)

+Nk ZIr~(t), (5 14)

where V=I rI, ,L,, and where 0& (1r =1, 2, 3) is given by
by

—n tr (t)L tr

Ir (t)=ln ()
(t)L,

+ j. — (5. 15),ntr(t)L»r

The time dependence of the quantities n(t), P(t),
and p,{t)will now be investigated. According to
{5.10) and (4. 15), p,&(t) oscillates with decreas-
ing amplitude about j~rr (t-m) =0. It thus follows,
from {5.12), that P '{t) exhibits the behavior
shown in Fig. 1. [In order to simplify matters,
Fig. 1 is drawn for the case that J,=f2=. I 3, so
that the period of oscillation of p0&{t) is the same
for all p, . In case the three sides are not of equal
length, the "nodes" in Fig. 1 at t „3to, ~ will

3/2P(t)+p, '(t)/2m =N ' (H)t =N (H)„(5.12)

p p
n '(t)-I. /[e )r 1'-1]

=&R &»=&&

Using (5. 1), (5. 7), (5. 9), (5. 11), and (5. 13), it is a
. a straightforward matter to show that the entropy
is given in terms of n (t), P(t), and p, (t) by

S(t) = —.',~y gn [2vmV'~'P '(t)]+ 1]

FIG. 1. Time dependence Of P ~(t). The initial and fi-
nal values of P

r are: a=2.(H)/81V-P02/sm, 5=2(H)/3N

wh~~~ P '(~)=&T( ) and, by»g. l, T( ) is the
conventional equilibrium temperature'

»AT( )=2(H&/Wr (5. 17)

Equation (5. 16) is just the conventional expression

not occur, and the approach of P r (t) to its asymp-
totic value will be somewhat smoother than the
behavior shown in Fig. 1. ] According to (5. 10)
and (5..11), 3/2P (t ) is the mean random kinetic
energy [i. e. , the mean value of the kinetic en-
ergy as seen in a frame whose velocity is p,
(t)/m] per particle at time t. Thus P '(t) may
be interpreted as kT(t), where T(t) is the in-
stantaneous, no@equilibrium temperature of the
system. The increase in temperature shown in
Fig. 1 is a result of the conversion of "nonrandom"
kinetic energy into "random" kinetic energy. Ac-
cording to (4. 12), (r»1r&t oscillates with decreasing
amplitude about (x;tr) = 0. It is not difficult to
show, from (5. 13), that this implies that n&(t)
oscillates with decreasing amplitude about e&(t- ) =0.

The time dependence of 8 (t) will now be inves-
tigated. According to Fig. 1, the first term on
the right-hand side of (5. 14) undergoes a nonmono-
tonxcxncrease from a mxnimum at t = 0 to a max-
imum as t -~. Using (5. 15), the function trtr,
consider ed as a function of A

~ may be shown to
have the following properties: k1r(n&) = 0 when
n&-0; h&(n ) is monotonic decreasing as In&1
increases. Pt has just been seen that n&(t) under-
goes a damped oscillatory motion about

ntr
(t- ~)

=0. It follows that h1r(t) undergoes the be~havior
shown in Fig. 2. Thus, the second term on the
right-hand side or" (5. 14) undergoes a nonmono-
tonic increase from a minimum at t = 0 to a max-
imum as t- ~. It follows that 8 (t) undergoes a
nonmonotonic increase from the initial minimum
value S(0) [glverl by {5.14) and (5. 15) with n (0)
= n, P(0) = P j to the final maximum value

S(t--)=-,'~t I
~

'" ~ ~~+'~", {5.16)
&2g~y3 l
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ii h (t)

FIG. 2. Time dependence Of k&(t).

for the entropy of an ideal gas [except that the factor
—k IIlN!, which should be added to (5. I) 1f the system
is composed of identicRl pRrticles, hRs been omit-
ted here for simplicity].

VI. ONE-DIMENSIONAL GAS WITH ELASTIC
INTERACTIONS

Consider a system of N identical point particles
constrained to lie on the x axis, and colliding elas-
tically with each other and with the walls at 0 and
L. When two particles colbde, they simply ex-
change velocities. Thus, the mechanical evo-
lution of any phase function f (X) which doesrvt de-
pend on the labeling of the particles [i.e. , which
is symmetric in the one-particle phase points
(xf, pj)] may be found by neglecting the collisions
and treating the system as a one-demensional gas
of noninteraeting particles.

As in Sec. II, let the i.nitial information for the
one-dimensional gas be (R)„(11)„dan(P), The in. i-
tial distribution P(X, 0) is then the initial distri-
bution given in Sec. II (suitably restricted for the
one-dimensional case), and P(X, f ) is the distri-
bution given in Sec. III. Since P(X, t ) is sym-
metric in the one-particle phase points, the ex-
pected values of the symmetric phase functions
B(X), H(X), and P(X) may be found by neglecting
Rll eo11181ons between pal"tleles. Thus the evo-
lution of the macroscopic observables (8), (FEj,
and (P) is as given in Sec. IV (suitably restricted
for the one-dimensional case), and the evolution
of the entropy S(f) is as given in Sec. V.

It is thus seen that, at least in the one-dimen-
sional case, the results of the present paper carry
over to systems in which elastic collisions occur.

VII. COMPARISON WITH THE WORK OI OTHERS

As was mentioned in Sec. I, there have been
several previous nonequilibrium statistical-
mechanical studies of model meehan cal systems.
Many of these studies were carried out on systems
having only one degree of freedom, 4~ while
.some have been carried on N-particle systems. 9 '2

Born~ considers a single one-dimensional par-
ticle bouncing ba, ek Rnd forth in a perfectly re-
flecting box. Beginning with a rather unphysical

initial condition P(r, p, 0) (chosen for mathematical
convenience), Born finds exact, analytic expres-
sions for P(r, P, f ) and for the reduced distribution
P(r, f ). .As in the present paper, Born shows
that P(x, f ) approaches equilibrium as f-~. Born
does not investigate the moments of P(x, p, f ).

Synge5 studies pha, se mixing in a single one-
dimensional oscillator. Synge shows that phase
mixing (i. e. , an approach to equilibrium in the
"weak" sense defined in Sec. IV) occurs for every
one-dimensional oscillator with the exception of
the perfect harmonic oscillator; no analytic expres-
sions are given for P(r, p, f ) or its moments.

Brillouin' gives a qualitative analysis of various
one-dimensional oscillators; again, no attempt is
made to obtain an analytic solution.

Andrews' studies the single one-dimensional
particle in a box. Andrews shows that the time-
correlation function (n(t)o. (0)), where o. (t) repre-
sents the departure from equilibrium of the ar-
bitrary observable n at time t, approaches zero
as t- ~. It follows that the system effectively
approaches equilibrium as t- ~. Andrews does
not study P(x, p, t ) or its moments.

Hobson studies the one-dimensional particle in
a.box, using a rather unphysical initial distribution
which permits the use of geometrical methods for
the investigation of the evolution of P(r, p, t ). The
qualitative features of the phase mixing of P(r, P, f )
are studied, as is the approach to equilibrium of
(x)f. No attempt is made'to study P(x, p, f) or its
moments RnalyticaQy.

In the present work, the simplifying feature
which makes it possible to obtain an exact solution
is the fact that the N-body problem is separable
into 3E one-dimensional problems. Thus, the
irreversibility which is exhibited in the present
work is already exhibited in the one-dimensional
problems considered by Born, 4 Synge, 5 Brillouin, 6

Andrews, ,
' Rnd Hobson. '

Turning now to studies of N-particle systems,
Teramoto and Suzuki' consider a one-dimensional
gas of N particles in a box, where the particles
collide elastically with each other and with the
walls (this is the system discussed in Sec. VI of
the present paper). Beginning with an initial
distribution P(X, 0) which places all N particles in
the left half of the box at t = 0, the authors ex-
amine the expected number of particles (n)f in the
left half of the box at time t. Exact, analytic re-
sults are obtained for (n)f for the cases N=1,
%=2, and 1V))1. As expected, (n)f 1V/2 as f
Teramoto and Suzuki do not examine the behavior
of P(X, f ) or of its moments.

An important payer by Frisch" gives what ap-
pears to be the first clear statement of the com.—

cept of the weak approach to equilibrium. Frisch
considers a one-dimensional system of point par-
ticles which are distributed on a unit circle and
collide elastically with each other. This system
is similar to the system discussed in Sec. VI of
the present paper, with the following important
distinction: by distributing the particles, in a
circle, Frisch throws out the effects of the walls;
the result is that the momentum is a constant of
the motion, and the momentum distribution is
time-independent. By neglecting the walls, the
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problem is of course considerably simplified.
Furthermore, this procedure for getting rid of
the walls is only meaningful for the one-dimen-
sional gas. Frisch gives an exact, analytic ex-
pression for the N-particle distribution P(X, t),
and shows that the expected value of any phase
function must approach equilibrium as t- ~. Thus,
Frisch shows that the system approaches equilib-
rium in the weak sense. Frisch studies the de-
tailed time-dependence of a few expectation values
of physical interest, obtaining, for instance, an
expression quite similar to (4. 2) for the expected
particle density. Frisch does not study the en-
tropy S(t).

J. Ford" studies a one-dimensional chain of
N particles in which nearest neighbors are coupled
by anharmonic (but approximately harmonic) forces.
A certain "linear approximation"" to the exact
mechanical motion is used. The ends of the chain
are left free, so that wall forces are not considered.
The weak approach to equilibrium is shown to occur
for this system, and the equivalent asymptotic
distribution is studied. No study is made of the
time dependence of P(X, f) or its moments.

Jepsen" studies a one-dimensional system of
N point particles distributed on a circle and col-
liding elastically (this system is identical with the
system studied by Frisch"). Since wall forces
are neglected, the momentum distribution is time-
independent. Jepsen studies the expected value of
one-particle phase functions in the limit N- ~.
No explicit, analytic results are obtained for P
(X, t) or its moments for finite N.

It may be worthwhile to compare the spirit of
the present work (and of Refs. 4-12) with the work
of Blatt" and others "-" In Refs. 22-26, irre-
versible behavior is obtained by introducing a
stochastic interaction between the surroundings
and the system of interest. Blatt" defines an
irreversible process as a process in which the
entropy increases, and he defines the entropy a,s
—k JP(X, [) lnP(X, t)dX or its quantum statistical-
mechanical equivalent —0 TrtP(t) InP(t) ] where
P(t) is the density operator. (Note the important
distinction between Blatt 8 definition of the en-
tropy and the definition given in Sec. V. ) It is
well-known that —k JP lnPdX is constant in time,
so Blatt argues that in order to obtain irreversible
behavior we are forced to choose one of the follow-
ing alternatives:

1. Replace the exact distribution P(X, t) with a
"coarse-grained" distribution P (X, t)." It may
be shown" that the coarse-grained entropy
—k fP lnPdX increases.

2. Consider the effect of the surroundings on
the evolution of P(X, f) by including a stochastic
interaction between the system and the environ-
ment.

Blatt argues that the coarse-graining procedure
is arbitrary and not physically justified, so that
the second alternative must be accepted. The
following remarks are pertinent to Blatt's point
of view:

1. It has been shown in Ref. 10 and in the pre-
sent work that even completely closed systems
behave irreversibly, in the sense that all expec-
tation values Q(X))f settle down to a constant

value as t-~.
2. It has been seen that Blatt's definition of the

entropy is not the only acceptable one, but that
on the contrary Robertson's definition" is nonar-
bitrary and yields an increasing entropy even in
closed systems.

3. Despite the above two remarks, interactions
between the system and the surroundings may be
important in determining the final equilibrium
state of the system. It has been seen in Sec. IV
that, for noninteracting clsosed systems, the
eff ective asymptotic distribution Peq(X) is not
necessarily the canonical distribution. This is
due to the fact that the system "remembers"
the distribution of all constants of the motion
Pz@'. Suppose now that a weak interaction be-
tween the particles were included in the problem.
It seems likely that the only remaining constant
of the motion would then be the total energy H(X),
since all other constants of the motion should be
destroyed by the interaction. However, the effec-
tive asymptotic distribution Peq(X) would still be
noncanonical, since the system would "remember"
the initial energy distribution. If we desire the
theory to describe an approach to the canonical
distribution, it then becomes necessary to intro-
du'ce interactions with the surroundings in order
to alter the energy distribution.

VIII. DISCUSSION

Exact, analytic expressions have been found
for the evolution of the N-particle probability dis-
tribution P(X, f), for various moments of the dis-
tribution, and for the macroscopic observables
(R), (B), and (0) for the N-particle Knudsen gas.
Even though N is finite, the system exhibits an
approach to equilibrium in the weak sense, i. e. ,
the expected value of any analytic phase function
settles down to a constant value as t- ~. As
has been pointed out many times by va, rious
authors, '~ '~' ~ "~ ' this in no way contradicts such
mechanical theorems as Poincare's recurrence
theorem. The relaxation time is the "hydro-
dynamic time" o/L, where o' is the variance of
the velocity. It is not surprising that the hydro-
dynamic time is the relevant time parameter in
this problem, since the walls of the system
(rather than the interactions between particles)
are the cause of relaxation. The effective as-
ymptotic distribution Peq(X) has been found, where
Pe&(X) is defined to be that distribution which
yieIds the correct asymptotic (as f - ~) properties
of the system. The distribution Peq(X) satisfies
the time-independent Liouville equation, i. e. ,
Peq(X) is an equilibrium distribution. Due to the
fact that any even power of any single-particle
momentum is a constant of the motion, the system
never "forgets" the initial values of the even
moments of the one-particle momenta; thus Peq
(X) is not the canonical distribution. However,
the observables (R)f, @t, and (P)t approach
the asymptotic values /2, (@„and 0 respec-
tively; these asymptotic values agree with the
values calculated from the canonical distribution
having energy (H), .

Possibly the most important feature of the pres-
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ent analysis is the following result: h revers-
ibility (i. e. , a weak approach to equilibrium) oc-
curs for arbitrary N, and is not dependent on- the
assumption of large N; however, pxedic. tability
occurs only for large ¹ To make this statement
more concrete, consider the behavior of the ob-
servable (R&)f . According to (4. 16) and (4. 12),
(R~)f settles down to equilibrium a.s f-~. This
occurs for arbitrary N, and in fact the behavior
of (R~)f is entirely independent of ¹ Physically,
(R~)t represents the observer's best Prediction
about the position of the center of mass of the
system at time t, where that prediction is based
on the initial data (8)„(B)„and (5), available
to the observer. In any statistical prediction,
there is always some chance of error. To inves-
tigate the chance of making a significant error,
it is necessary to examine the variance of R& at
time t. This variance is given by (4. 17), and is
seen to be strongly dependent on N. According to
(4. 17) and (4. 14), for small N the dispersion (i. e. ,
the square root of the variance) of R& becomes
comparable to the length of the box as t ~, where-
as for large N thedispersion of 8& remains small
compared to the length of the box. Thus statistical
predictions behave irreversibly for arbitrary N,
but these predictions have a good chance of being
in error unless N is large. For large N, and for
sum functions (such as R&), predictions behave
irreversibly and are not likely to be in error. Note
that it is not necessary to let N- ~ to obtain high
predictability; it is only necessary to let Nbe large.
For instance-, a,ccording to (4. 17), predictions
about B& for t -~ should be valid to within a dis-
tance 0. OU & if N=104.

The nonequilibrium entropy S(t) undergoes a
nonmonotonic increase at t increases. The in-
crease of S(f) is a reflection of the fact that if the
observer knows only the instantaneous predicted
values (A)f, (EEjf, and (P)t of the observables at
time t, then the observer will know less and less
about the underlying state X(t) of the system as
time increases. The asymptotic value S(f- ~) of
the entropy agrees with the value calculated from
the canonical distribution having mean energy (@o.
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APPENDIX: PROOF OF EQUATION (3.10)

Consider the initial distribution

P(r, p, 0) =6(r ~,)6Q-P, ) (A. 1)

corresponding to exact knowledge of the initial
phase point of the particle. The solution to
Liouville's equation for the initial distribution
(A. 1) is simply

P(~, P, f) =6(~-~, )6(P -P, ), (A. 2)
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FIG. 3. The initial condition P{x,P, O) corresponding to
the distribution given by (A. l).

where (xf, pf) is the phase point at time f corre-
sponding to the initial phase point (x„p,). If it
can be shown that the replacement of the "old"
problem [particle in a box with initial distribution
P(r, P, 0) for 0(x( f ] by the "new" problem
[free particle with initial distribution + (x, P, 0)
defined for all x by (3.6) and (3. 7)] is valid for
the special initial distribution (A. 1), then (by
superposition) the proof is complete for arbitrary
initial distributions

According to (3.6) and (3. 7), the "new" initial
conditions place a particle not only at (v„P,),
but also at the points (r, + 2nL, P, ) and (—r, —2nL, ,P, )
for(n=0, +1, +2, . . . ) (see Fig. 3). In the "new" prob-
lem, each particle moves with constant momentum,
with no reflections from the walls. An exam-
ination of Fig; 3 should convince the reader that
the "new" problem yields, at any time t, exactly
one Particle in the region 0& x(I., and that the
position and momentum of this particle are pre-
cisely the position and momentum of the particle
in the "olcU' problem. Thus, the "new" problem
gives the correct distribution P(x, p, t) inside the
box0&x& J .
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Relativistic Thermodynamics of Moving Systems
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Thermodynamics is extended to systems moving with relativistic velocities. It is
shown that one is led naturally, although not necessarily, to the thermodynamics of Ott,
if one maintains the first and second law in their original form. The classical theory
of Planck et al. can also be obtained in the case of a homogeneous fluid; the difference
with Ott s theory is that the fluid alone is regarded as the thermodynamic system,
rather than the fluid together with the box in which it is enclosed. Subsequently, a
third form of relativistic thermodynamics is obtained by replacing the first law with a
covariant equation expressing conservation of both energy and momentum. This leads
to a formulation in which not only 8 but also T and PQ are scalars. The discussion of
heat transfer between systems with different velocities is thereby simplified. It is shown
that such processes are irreversible even for equal temperatures, unless the velocities
are equal too.

l. INlRODUCIION 2. THE NONREI. ATlVISIIC CASE

The problem is to extend the laws of thermody-
namics to a system moving with relativistic veloc-
ity u. If u is taken to be a constant, this is sim-
ply the problem of transforming the thermodynamic
properties of the system to a different frame of
reference. However, one zvants to treat u as an addi-
tional thermodynamic variable subject to adiabatic
variations. That amounts to extending the usual
space of thermodynamic variables by adding three
dimensions, corresponding to the three components
of u . Thermodynamics of moving systems is
therefore more than simply an exercise in Lorentz
transformations.

The first law of thermodynamics is affected, be-
cause the work O'A now consists of the usual term
representing the work done by expanding, CA. &,
plus an additional term O'A~, representing the work
involved in varying u, that is, in accelerating or
decelerating the whole system.

The second law is affected because Kelvin's
principle, "No cyclic engine can convert heat into
work, " receives an extended meaning: "not even
when the engine employs acceleration and decelera-
tion ot' the system (to relativistic velocities). "

The above remarks also apply to the nonrelativ-
istic case, but that. case is trivial. One has O'A„
= —Mu ~ du, where M is the mass of the system and
is constant. ' For the "internal energy" U one sim-
ply takes

U= U'+Mu ',

where U is the internal energy of the system at
rest. The first law then states

O'Q =dU+O'A,

=dU dA dA,
Q

=dUO+dA

Thus the two additional terms cancel and every-
thing reduces to the usual thermodynamics of sys-
tems at rest.

Incidentally, we note for future use that, for a
homogeneous system, (1) may be written in the
form


