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In the algebraic formulation of the Ising model, the partition function is expressed as the trace
of a power V¥ of the transfer operator V, or equivalently, as the sum of Mth powers of the eigen-
values of V. In the derivations of Kaufman, Onsager, and more recently of Schultz, Mattis, and
Lieb (SML), the transfer operator is first reduced to & more amenable form for computation and
then, in principle at least, diagonalized. For the infinite lattice, only the largest eigenvalue of V is
needed, and this is all Onsager and SML compute. Kaufman finds all the eigenvalues and is thus
able to write down the partition function for the finite lattice. In the present work we give an alterna-
tive derivation of the SML form for V¥, and show how the Kaufman result can be obtained from this
form without actual diagonalization. Instead of diagonalizing V, the evaluation of the trace is done
directly after assigning a simple representation to V.

I. INTRODUCTION

INCE Onsager’s celebrated solution of the two-
dimensional Ising model in 1944, there have
been numerous alternative derivations of the On-
sager result, a number of derivations of correlations
and spontaneous magnetization, and some general-
izations to other types of two dimensional lattices.
Reviews of the work prior to 1960 are given in the
articles of Domb® and Newell and Montroll.?
Roughly speaking, one can divide the methods
used into two categories: the combinatorial approach,
which essentially counts polygons on the lattice; and
the algebraic approach. The combinatorial approach
began in 1952 with the work of Kac and Ward.* Their
approach has since been refined and been given a
rigorous treatment,® and in its present form is the
most popular method.® The popularity is undoubt-
edly due to the relative simplicity of the method
compared with the original formidable algebraic
approach of Onsager, and even with the simplified
algebraic approach of Kaufman.” In recent times
the algebraic approach has been given little at-
tention. Recently however, Schultz, Mattis, and
Lieb® (called SML hereinafter) have shown how the
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algebraic formulation of Onsager, leads to a many-
fermion problem, the solution of which requires
only an elementary knowledge of spin-3 and the
second quantization formalism for Fermions. Much
of the mysticism surrounding the algebraic method
is clarified by SML; their steps are simple and their
language more familiar. Of particular interest is
their lucid discussion of correlations and spontaneous
magnetization, and their new derivation of the trans-
fer matrix formulation, which is the heart of the
algebraic approach.

In brief outline, the problem is formulated alge-
braically as follows. Consider a square lattice con-
sisting of M rows and N columns with a set of NM
particles of two types arranged on the vertices of
the lattice. If we let only nearest-neighbor particles
interact, with interaction energy —J,(—J,) between
like particles in rows (columns) and +J,(+J;) be-
tween unlike particles in rows (columns) and assign
a coordinate ., to the vertex at the intersection
of the nth row and mth column, with values 41
or —1 depending on the type of particle, the Ham-
iltonian for the system in configuration {u;,, --- ,

“MNL

H(ﬂll: 7”MN) = _Jl E”’m,nﬂm+l,n

- J2 Z Mom ,nMm n+1y (1)
defines the rectangular two-dimensional Ising model,
and the problem is to calculate the partition func-
tion Z defined by

ZMN= E

Br1=x1

—8H TN
E e BH (p11 “MN),

sMN=*1

@

where 8 = (ksT)"", kp being Boltzmann’s constant,
and 7 the absolute temperature.

For boundary conditions one usually takes
Erima = Bm.n A0 ey ¥4n = Mm.n, S0 that the lattice
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is assumed to be wrapped on a torus. In this case
the sums in (1) are over n from 1 to N, and m from
1 to M. The toroidal boundary conditions will be
used in the present work.

The reduction of Z,y to the transfer operator
form is well known, we merely quote the result. For
detailed derivations, see for example the book by
Huang® or SML.

The transfer operator V is defined by

N N
V = exp (Kz > 7',1,1',1,+1> exp (—KT > rf,) , (3
n=1

n=1

where

K.=8J,, i=1,2, (42)

K* is related to K, through
tanh KF = ¢, (4b)

and the operators 7, 7 = 1, 2, satisfy the relations
(a0 18- = maris — 1hmn = 0, (52)
(7o) 7]+ = mumh + 7i7 = 0, (5b)
fore=j=1,2nn" =12 ..., N,
and
()P =1 for i=1,2 n=12---,N, (5c)

with I the unit operator and 0 the null operator.
The first term in V arises from interactions in a
row and the second from interactions between near-
est-neighbor rows.
In terms of V, the partition function is given by

Zyuy = (2 sinh 2K,)*¥ Tr (V). (6)

A common feature of the Onsager, Kaufman, and
SML derivations is that they all compute the eigen-
values of the transfer operator. Kaufman actually
computes all the eigenvalues and is thus able to
write down the partition function for the finite
lattice from

oN
Zyy = (2 sinh 2K )M D" \X )
n=1

Of more interest, phase transition-wise, is the infinite
lattice where it is easily shown that the free-energy
per particle is given by

—B-l (MN)_I anMN

M ,N—reo
(M/N=const)

= —(28)7'In (2sinh 2K,) — g7 lim N "' In A, (8)

Noo
with An.. the largest eigenvalue of V.

* K. Huang, Statistical Mechanics (John Wiley & Sons,
Inc., New York, 1963), p. 349 ff.
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For the infinite case it is therefore only necessary
to find the largest eigenvalue, and this is done by
Onsager and SML. Even so, one must in principle
diagonalize V, and it is this part of the three cal-
culations that is difficult, or at least complicated. In
the present caleulation, we do not find the eigen-
values of V. Instead we choose a representation of
¥ in which the problem reduces to calculating traces
of four-dimensional matrices of relatively simple
structure. The calculation is given in the following
section and the result obtained is Kaufman’s expres-
sion for the finite problem. The passage to the infinite
lattice can be followed in the manner suggested by
Kaufman and is not included here. Our procedure,
as a method for obtaining the infinite lattice result
as well as the finite result, is, we feel, much less
involved than the diagonalizing procedures of pre-
vious algebraic derivations. We remark also that
our method can be used to evaluate the short- and
long-range order (which are expressible as traces of
operators). The calculations are straightforward and
parallel closely those of SML so are not included
here.

2. THE PARTITION FUNCTION

To express V in a more convenient form we define
Fermi destruction and creation operators a, and
an = 1,2, --- N), by

(92)
(9b)
In terms of these operators one can easily show that

V¥ = LI + D)V + LI — )V,

t_ 22 2 3
Qy, + Oy = T1Tg "' Ta—1Tn

a, — a,t =TT e Ty Th.
(10)
where
N N '
U= JI7=exp [iw > (e, — 1)] an
n=1 n=1

and

V. = H exp [Kz(a:zn - an+1)<a; + an)]

n=1

N
X II exp [—2K*(asa, — 1)]

n=}

12)

with the anticyclic boundary condition

Ayer = —0y (13a)
holding for V., and the eyclic boundary condition
(13b)

ayvr = O
10 The steps follow closely those of Kaufman.

Downloaded 15 Feb 2009 to 150.214.103.146. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



1394

holding for V_, and in deriving (10) we have made
use of the fact that P, = 3(I & U) are projection
operators (which follows from U? = I), and act on
orthogonal subspaces (i.e., P.P. = 0). Equation
(12) was obtained by SML by a different method.

In the remainder of this section we will focus our
attention on the V, term in (10). The steps in the
calculation of the remaining three terms in (10)
are similar to those given below and are summarized
briefly at the end.

To simplify V, further we follow SML and trans-
form to running wave operators through

a, = N—ieir/4 Eeiunm’ (14)

where the anticyclic condition (13a) requires that
g==x2j—1)a/N j=1,---,N/2 (15a)

[the eyclic condition (13b) requires that

¢q=0,r, £2x/N, j=1,2,---,N/2—-1] (15b)

and for convenience we have chosen N to be even.
Direct substitution of (14) into (12) gives

V* = II Vq,

0<g<~T

(16)

where In terms of operators 2}, 22, (and =2 for com-

pleteness)

1 t t
Ze = MM + N-qM-a¢ — I:

2= negme + nenle an

= i(nnle — 1-am0),

V. = exp {2K,[cos ¢Z; — sin ¢=2]}
X exp {—2K*%Z.}. (18)

We will make use of the commutation relations
for the Z operators

[Zi, 2i)- = —268,,.2F, (ijk) cyelic (123)
[ 210, =0 for % j.

(19)
and

These follow directly from (17) and the Fermi anti-
commutation relations for the 5, -operators. We re-
mark in passing that the sequence of equations
(16)—(18)—(19) was obtained originally by Onsager
using a slightly more involved method.

In all previous algebraic derivations, V. were
diagonalized (simultaneously because of their com-
mutability). Let us show that for the purpose of
computing the trace, the most convenient repre-
sentation is not the diagonal one but one based on
the occupation number representation of the n.-
Fermi operators. Thus, since the eigenvalues of
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nlqnﬂ are 0 and 1 (with equal degeneracy), the
eigenvalues of =l are 1, —1, 0, 0 (equal degeneracy).
A representation of the Z-operators in which Z} is
diagonal is therefore [from (19)]

EZ=I4®---®I4®a‘r+®I4®---®L,
1=1,2,3,

0" = [T' 02} , 7'+ = [Ig 02]' (21)
02 T'. 02 02

r* are the conventional Pauli matrices

T‘=[1 0], 72=[01]’ T3=[0 ——iJ. @2)
0 —1 10 i 0

I, and I, are the four- and two- dimensional unit
matrices, respectively, 0, is the two-dimensional null
matrix, and in the direct product (denoted by &),
there are N/2 terms, with the ¢r* occuring in the
jth (¢ = 2j — 1) place.

Using the property

(20)

where

(AQ@BYC® D) =(AC) ® (BD)  (23)
of direct product, we then have
N/2
Ve = ® V2:'—1 = ® Vpﬂ (24)
i=1 pt+
where
V.. = exp {2K,[cos (p+)oi — sin (p+)oil}
X exp {—2K*01} (25)
and
ot = o'rt. (26)
If we then use the property
Tr (A @ B) = Tr (4) Tr (B), @7
we have
N/2
Tr (V) = 1] Tr (V3i_)). (28)
i=1

The problem has now been reduced to the evalua-
tion of traces of four-dimensional matrices with
relatively simple structure. Let us consider V, (p
will henceforth be used for p+). Since the ¢* ma-
trices satisfy the commutation relations

[6%, ¢i] = —2ieh  (ijk) eyelic (123). (29)
V, can be written in the form
3
V, = exp (Z c,';mf)- (30)
=1
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If we then use the anticommutation relations
(31)

[G’i, O'i].p = 28,‘,‘7‘+

expansion of the exponential (30) gives

V, =1 4+ r" coshy, + (E oo l) smi”’ , (32

=1 7
where
=l - (33)
and v, is defined by
3
ve = 2, (). (34)

i=1

If we also expand the exponentials in (18) in a
similar manner, we obtain

V,=1"
+ r*[cosh 2K, cosh 2K* — sinh 2K, sinh 2K} cosp)
+ o[sinh 2K, cosh 2K* cosp — sinh 2K*% cosh 2K,]
+ ¢i[—sinh 2K, cosh 2K* sin p]
+ ¢%[sinh 2K* sinh 2K, sin p]. (35)

This expression must be identical with (32), so
equating coefficients of r* gives the connection
cosh v, = cosh 2K, cosh 2K¥

~— sinh 2K, sinh 2K¥ cos p (36)

between the ¢} parameters in (30) and K,, K%, and
p. It turns out that (36) is the only relation needed
to evaluate the trace (28). The steps needed are as
follows. From (30) we have

V¥ = exp (3 Ot

ginh (M'Yp) 37

1’

=1 +r cosh(Mvp)+(Zc )

and recalling expressions (21) and (33) for r* and
r~, and noting that Tr (¢)) = 0, we have
Tr (V;) = 2[1 + cosh (M~,)] = 4 cosh’ 3My,). (38)

To evaluate Tr (UV¥) in (10) we use the rep-
resentation {20) to get

=@ =@ —1) @9
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and then from (23) and (27)
Tr (UVY) = IITr [ =MV (40

where, using r'r” = 0, = r" o}, (**)® = r", and (37),
Tr [¢" — r)V;4] = 2[—1 4 cosh (M7,)]
= 4sinh® (§Mv,).  (41)

To evaluate the corresponding minus quantities
Tr (V¥) and Tr (UV*¥) in (10), one uses the rep-
resentation (20) with ¢‘r” in place of o°r* [to preserve
the orthogonality of the two terms in (10)]. The
above calculation then goes through with essentially
just a minus sign in place of a plus {although some
special care must be taken withthe g = Qand ¢ = =
terms (15b) arising from the eyclic boundary con-
ditions (13b).]

If we now define v; to be the positive solution of
Eq. (36), that is, the positive solution of (p = kx/N)

cosh v, = cosh 2K, cosh 2K¥ — sinh 2K,

X sinh 2K¥ cos (’%r) k=0,1,--- 42)

and note that yoy., = v fork = 0,1, --- , N, we
have finally, after combining (10), (28), (38), (40},
and (41) and the corresponding minus results, the
Kaufman expression for the partition function of the
finite lattice,

Zx = (2 sinh 2K, Tr (V)
= 1(2 sinh 2K )M

X {ﬁ 2 cosh (M'Y”") + H 2sinh (M%M)

im=1

+ II 2 cosh (M72') + H 2 sinh (M‘“')}

=1

43)

The partition function for the infinite lattice can
be obtained straightforwardly from (43) in the man-
ner suggested by Kaufman. The reader is referred
to Kaufman’s article for details.
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