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Rigorous upper and lower bounds are obtained for the thermodynamie free-energy density a(p, v)
of a classical system of particles with two-body interaction potential ¢(r) + v”¢(yr) where » is the
number of space dimensions and p the density, in terms of the free-energy density a®(p) for the
corresponding system with ¢(x) = 0. When ¢(x) belongs to a class of functions, which includes those
which are nonpositive and those whose »-dimensional Fourier transforms are nonnegative, the upper
and lower bounds coincide in the limit v — 0 and lim, .o a(p, v) is the maximal convex function of
p not exceeding a’(p) + 3ap?, where @ = [ ¢(x) dx. The corresponding equation of state is given by
Mazwell’s equal-area rule applied to the function p®(p) + 4ap? where p®(p) is the pressure for ¢(x) = 0.
If a%p) + }ap? is not convex the behavior of the limiting free energy indicates a first~order phase
transition. These results are easily generalized to lattice gases and thus apply also to Ising spin
systems.

The two-body distribution function is found, in the limit v — 0, to be normally identical with that
for ¢(x) = 0, but if the system has a phase transition it has the form appropriate to a two-phase system.

Some of the upper and lower bounds on a(p, v) are simple enough to be useful for finite v. Also,

some of our results remain valid for quantum systems.

1. INTRODUCTION

HASE transitions such as melting and boiling

are familiar experiences, but their explanation
from the first principles of statistical mechanies still
presents a major challenge to the theoretical phys-
icist. One of the earliest steps towards a theory
of the gas-liquid phase transition was taken by
van der Waals.! Seeing the interaction between the
molecules of a classical fluid as a competition be-
tween two distinet parts of the intermolecular force,
a short-range repulsive part and a long-range attrac-
tive part, he arrived at the equation of state

p = ETp/(L — pb) + 30’ = paulp, T)  (L.1)

where p is the pressure, £ Boltzmann’s constant,
T the temperature, p the number density, and —«
and b are positive constants characterizing long-
and short-range parts of the potential, respectively.

When 7 exceeds the critical temperature 7', =
—4a/27bk, the van der Waals equation of state (1)
gives a good qualitative representation of the iso-
therms of a real fluid; for T < T,, however, each
isotherm includes a section where the compressibility
is negative, in violation of the thermodynamic
stability principle. The reason for this failure is
that the argument leading to (1) assumes a single-
phase system; it does not allow for the possibility
of coexisting liquid and vapor phases.
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1J, van der Waals, thesis (Leiden, 1873) (cited by Kac,
Uhlenbeck, and Hemmer, Ref. 6 of this paper).

Maxwell® showed that the coexistence region could
be included in the theory by using van der Waals’
equation of state for both liquid and vapor phases
and using the thermodynamic equilibrium condition
that the two phases must have equal pressures and
chemical potentials. This leads to the following
modification of (1) for T < T,:

p = {pvdW(p) T)if p < o(T) or p > PZ(T)} (12)
PeaeT) if p(T) < p < pu(T)

where p,(T), p:(T) and P...(T) may be determined
by the graphical construction shown in Fig. 1.

A very interesting derivation of van der Waals’
equation of state with Maxwell’'s rule was given
recently by van Kampen.® In this derivation the
volume @ occupied by the system is divided into
a large number of cells, each small compared with
the range of the long-range attractive forece, but
large enough to contain many particles. Avoiding
the pitfall of assuming a uniform distribution of
particles over cells, which leads* to a generalized
form of the van der Waals equation of state, van
Kampen obtained the distribution over cells by
minimizing the free energy. His method leads to
the modified equation of state (2), which implies
a first-order phase transition. When p < p, or p; < p,
van Kampen’s method indeed gives a uniform dis-
tribution over cells, but when p, < p < p; it leads

2J. C. Maxwell, Scientific Papers (Dover Reprint, New
York), p. 425.

¢ N. G. van Kampen, Phys. Rev. 135, A362 (1964).

4 O. Ornstein, thesis (Leiden, 1908) (cited by N. G. van
Kampen, Ref. 3 of this paper).
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to the conclusion that this distribution is nonuni-
form, as it should be when two phases coexist.

Van Kampen’s treatment is, however, not math-
ematically rigorous. In particular the conditions to
be satisfied by the interaction are not specified, and
various limiting processes are hinted at but not
carried out explicitly. It is the purpose of the present
paper to provide a rigorous treatment similar to
van Kampen’s and to extend it to a more general
class of long-range potentials than the purely attrac-
tive potentials considered by van Kampen.

The intermolecular potential we consider has the
form proposed by Kac® and investigated thoroughly
for a one-dimensional system by Kae, Uhlenbeck,
and Hemmer,*

o(r) = (1) + w(r, 7, (1.3)

where r represents the separation of a pair of par-
ticles, q(r) is a short-range potential, and w(r, ¥)
is a potential (we call it the Kac potential) whose
range is proportional to the reciprocal of the param-
eter v. Kac, Uhlenbeck, and Hemmer studied a one-
dimensional system with

o0 = {+oo it r <1, (1.4
0 if r>r,
w(r, v) = jay exp (—), (1.5)

where r,, v, and —a are positive parameters. For
finite v they found no phase transition, but in the
van der Waals limit v — 0 the equation of state
approaches as a limit Maxwell’s modification (2)
of the van der Waals equation of state and thus
does show .a first-order phase transition. Unfor-
tunately their method is very difficult to generalize
to other potentials or to more than one dimension.

An important feature of the work of Kaec, Uhlen-
beck, and Hemmer was the use of the limit process
¥ — 0 to provide a clear distinction between the
short (finite) range of the contribution ¢(r) to v(r)
and the long (infinite as ¥ — 0) range of the con-
tribution w(r, ). It is this feature which we shall
exploit here; but unlike Kac, Uhlenbeck, and
Hemmer, we do not restrict the system to one
dimension nor the potential to the form defined by
(4) and (5). Instead of the special form (5) for
w(r, v), we use

w(r, v) = 7ve(n), (1.6)
where » is the number of dimensions of the space
8 M. Kac, Phys. Fluids 2, 8 (1959).

¢ M. Kae, G. E. Uhlenbeck, and P. Hemmer, J. Math.
Phys. 4, 216 (1963).
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F1a. 1. Typical isotherms for the van der Waals equation
of state (solid lines) and Maxwell’s modification (dotted line).
The shaded areas are equal.

considered; this reduces to (5) if » = 1 and ¢(x) =
Lae™®. If the function ¢(x) is bounded in a neighbor-
hood of the origin, say in z < 3, then the Kac
potential (6) has the property

o, M < ¥ Max le@)] if v <8 (1D

so that

lim w(r,v) = 0 forall r. (1.8)
70

At the same time the integral of the Kac potential
over all »-dimensional space,

f w(r,v) dr = fqa(x) dx = q,

is independent of +. This fact is compatible with
(1.8) because the limit operation ¥ — 0 does not
commute with the one associated with the infinite
region of integration.

The basis of our method is to obtain upper and
lower bounds on the free energy

AN, @,v) = —kT log Z\N, 2, v), (1.10)
where Z(N, Q, v) is the classical partition function

1.9

for N particles at temperature ' = 1/kf in a
r-dimensional cube Q, defined by
Z(N, Q,7) = (1/N)(mkT/2xk")"™"*
PV dx, --- 1.11
xfﬂ fne X, -+-dxy  (1.11)
and
V= Y ox—x) (1.12)
iSisN
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with v(r) defined in (3). The upper and lower bounds
are obtained by dividing the cube @ into M congruent
smaller cubes w; - -+ wy and using estimates of the
interactions across cell boundaries to relate the free
energy of the cube € to the sum of the free energies
of the cubes w, +++ wy.

From these upper and lower bounds, the equation
of state in the van der Waals limit is calculated
by means of a succession of limit operations. First
the thermodynamic free energy is calculated from
A(N, Q, v) by taking the thermodynamic limst. The
simplest way of taking this limit is to double the
side of the cube Q repeatedly, adjusting N at each
step to the value pQ where p, the density, is a con-
stant, and the symbol Q is used to represent the
volume of the cube as well as the cube itself. The
thermodynamic free-energy density, a function of
p and v, is then defined as

a(p, ’Y) = lnim A(PQ: Q, 'Y)/Q (113)
where A(N, @, v) may be defined for nonintegral
N by linear interpolation.”

The next operation is to take the van der Waals
limit ¥ — 0. This gives the van der Waals free-energy
density

a(p, 04) = linf)l alp, v)

= lim lim A(pQ, Q, 7)/Q.

¥-0 Qoo

(1.14)

It is important to take these two limits in the right
order. Taking the limit @ — o first, as in (14),
means that the range of the Kac potential, although
very large, is much less than the size of the container.
If they are taken in the opposite order, then the
Kac potential has a range much larger than the
size of the container and in consequence of (8) its
effect disappears. In fact, by applying (8) to (10)
and (11) we obtain

lim AN, @,7) = A°(N, Q), (1.15)
¥—-0
where A° is the free energy for N particles of the
reference system in a cube Q. By reference system
we mean one for which the interaction potential is
g(r) instead of ¢(r) 4+ w(r, v). Taking the thermo-
dynamie limit of (15) we obtain, in constrast to (14),
the formula

lim lim A(PQ) Q, 'Y)/ﬂ = ao(P)

- y—0

(1.16)

where

7 M. Fisher, Arch. Rat. Mech. Anals. 17, 377 (1964).
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a’(p) = lnim A%(p2, Q)/0 (1.17)
is the thermodynamic free-energy density of the
reference system at particle density p, and is not
in general equal to a(p, 0-+).

The upper and lower bounds on A (N, Q, v) which
we shall derive lead to upper and lower bounds on
a(p, 0+). These bounds depend on the volume w
of the cells w; used. The bounds can be simplified
by a third limit process w — o, after which, in
favorable cases, the upper and lower bounds are
equal so that a(p, 0+) can be calculated. This triple
limit process corresponds to the following relation-
ships:

(1.18)

among the four characteristic lengths of our cal-
culation: the range of the short-range potential, the
size of the cells, the range of the Kac potential,
and the size of the container.

Once a(p, 0+) has been found, the equation of
state can be calculated by differentiation. The main
result of our work is to show rigorously that under
suitable conditions the equation of state is indeed
given by Maxwell’s rule (2) applied to the gen-
eralized van der Waals isotherm

Doaulp, T) = (o, T) + 3’ (1.19)

where p°(p, T') is the pressure of the reference sys-
tem, calculated by differentiation from a°(p). This
result can be used to investigate the conditions under
which the system will have a first-order phase transi-
tion in the van der Waals limit. A further result
is to show, by studying the two-particle distribution
function, that if there is such a first-order phase
transition then two phases of different densities are
present during the transition.

For rigorous arguments it is necessary to impose
conditions on the short- and long-range potentials.
We shall assume that the short-range potential
satisfies

ro Lo'” Ky 'K QY

gt) = + o for r <1y, (1.20a)
lo@)| < Dy~ (1.20b)

where r, (the hard-core diameter), D,, and ¢ are
positive constants; and we shall also assume that
the shape function ¢(x) of the Kac potential satisfies

for r, <7,

le(®)] < Dgr™™* for all -, (1.21a)
o(r) iscontinuousat » =0, (1.21b)
[ o(r) dr exists as a Riemann integral. (1.21¢)

Further, when in Sec. V the function o(r) is ex-
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pressed as the sum of two parts satisfying the condi-
tions (5.2), both parts are required to satisfy (1.21).
The extent to which the conditions (1.20) and (1.21)
can be weakened will be discussed in Sec. IX, along
with the possibilities for generalizing this work to
quantum systems and to lattice gases.

II. UPPER BOUND ON THE FREE ENERGY

Finding an upper bound on the free energy is
equivalent to finding a lower bound on the partition
function. To obtain a lower bound, we divide the
cube Q into M smaller cubical regions @, --+ wa,
each of side (s 4+ ¢) where s and ¢ are positive
lengths such that (s 4 ) is a submultiple of the
side of Q@ (see Fig. 2). Since the small cubes com-
pletely fill @ its volume, which we also call @, is
given by

Q= M(s + 1) 2.1)

For each w;, let «} be the cube of side s consisting
of all points within «; whose distance from the
boundary of w; is at least it. A lower bound on
Z(N, Q, v) can be obtained by selecting any set
of integers N,, N, -+ N, which add up to N,
and considering only the contribution to the integral
in (1.11) from configurations where there are N,
particles in the cell w{, N, in «}, and so on. The
quantity so calculated we denote by Z(N,, Ny - - N ).
There are N!/(N,IN,! --- Nx!) ways of choosing
the N, particles to go in the cell w{, N, to go in
w}, ete., and since the particles are identical all these
different ways give the same contribution to the
integral. Multiplying a typical contribution by
NI N.! we thus obtain

Z 2 2N,y Ny -+ N
= TT LL/Nt)(m/2e8y

xf [ e dx, - dgy,  (2.2)

where the first N, of the N »-fold integrations are
taken over the region !, the next N, over ), and
0 on.

To obtain a lower bound on the integral in (2.2)
we write

V=V +V" 2.3)

where ¥’ is the contribution to the total potential
energy from pairs of particles that are both in the
same cell, and V" is the contribution from pairs
that are in different cells. If VZ.. is some upper
bound on V", then (2) implies

101

!
|
7
|

Fr1e. 2. Division of £ into cells.

7> II [(1/N1)(m/2x776)"" ]

Xf f ¢ PRV s gy e dxy
@’y @’

= [II Z(N:, o', 1) "=, (24
where Z(N;, o', v) is the partition function for N,
particles in a cube «’, of side s.

To obtain a lower bound on the exponential factor
in (4) we consider the short- and long-range con-
tributions separately, writing

V=@ 4+ W 2.5)

A convenient upper bound for W'/, the long-range
contribution to V", is

W' < 3 NN wae(ks;) (2.6)
<7
where
wmax(kii) = lv‘e[a‘x w(x - y} 'Y)
Eui

T€wo

where w, is a cube of side (s + #) centered at the
origin, and k;; is the vector from the center of w,
to that of w;. For an upper bound on §’’, the short-
range contribution to V', we may use the same
method, in conjunction with the condition (1.20),
and obtain, if ¢ > r,, the upper bound

Q"< D, E Nt'Ni(ri:',min)_’—‘

i<y
= %Dz Z N.' z:, N;’(rii,min —V—G)

where 7,; min is the least distance from w} to o}
and Y.’ means a sum with the j = i term omitted.
To estimate this last sum we may group the cubes
} into shells centered on w}. The first shell contains

(2.8)
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3" — 1 cubes, all points of which are a distance
at least ¢ from all points of w}, the next shell con-
tains 5° — 3” cubes, each one at least 2¢ + s from
w}; and so on. Writing also N,,, for the maximum
value of N;, we obtain

Q" <D TN, 3 Naul@n + 17

—@2n - Y/t + (0 — D)

< 3D,NNoJ 1™ (2.9)

where

Jo=2n" @+ 1) —@n— 1] < . (2.10)
Substituting (9) and (6) into (5), (4), and (2), we
obtain

AN, Q, 7) < E A(Nh o’y )

+ 2 NoNwoa(ki) + 3D:J NNpet 7™,
i<y
where A(N, @, ) is defined in (1.10). The upper
bound (11) holds for any choice of Ny, Ny, -++ Ny
whose sum is N, and in particular for the choice
which minimizes the right side.

To obtain an upper bound on the thermodynamic
free energy in the van der Waals limit, we apply
the triple limit process described in See. 1 to the
inequality (11). This is simplest for the case where
all of Ny, N, - -+ Ny are equal:

N1=Nz="'=NM=p(8+t)v. (2.12)

Replacing > <, in (2.11) by 4 >_; 3/ and dividing
both sides by € we obtain
A(pQ, Q,7)/Q < [M/Q)A(p(s + 8, &', %)
+ 3e's + 97/9) 220 2 Wan(ks)

+ 3D, J,0°(s + D)t

To take the limit @ — « we require the following
lemma:

:Li_'lg I/M z‘: ’Z' wmnx(kii) = ;’ wmax(k)

where > ¢ is an infinite sum over the complete
infinite lattice of possible vectors k,; except k = 0.
To prove (14) it is sufficient to show that the
difference between its two sides vanishes. This dif-
ference can be written as the limiting value, for
large M, of the expression

1/M 2 ;" Winax(Kiy)

(2.12)

(2.13)

(2.14)

(2.15)
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with D_/ meaning the sum over an infinite network
of cells outside ©, continuing the pattern established
by the cells inside @, but not including the cells
inside €. Let & be any small positive number. By
(1.6) and (1.21a), the infinite sum on the right of
(14) converges absolutely, and therefore we can find
a number ¢ such that

;’ [Wasx(B)| < 33.

|k|>e

(2.16)

The sum over 7 in (15) may be divided into two
parts, the first part including all those cells whose
distance from the boundary of @ is greater than o,
and the second, those for which it is not. For each
value of ¢ in the first part of the s-summation, the
sum over j covers only a subset of the values of &
covered in the sum (15), and hence this part of the
i-summation contributes at most 5 to the expression
(16). In the second part of the 7-summation, the
number of terms is at most [2 — (@"* — 2¢)’1/(s + 1),
and this number does not exceed 2vs Q" (s + )’
because

if z>y>0  (217)

Consequently, by (1), the second part of the 7-sum-
mation contributes to the expression (15) an amount
not exceeding 2vo Q7" Y |[Wnax(k)}, which can be
made < 14 by making Q large enough. Thus the
complete expression (15) is less than § for all large Q,
and since § is arbitrarily small, the result (14) follows
from the definition of a limit, Q.E.D.

Taking the thermodynamic limit of (13) with the
help of (1) and (14) we obtain

alp,v) < A(p(s + 0", ', 7)/(s + 1)
+ 30°(s + 8" Zk‘, Winex ()

+ 3D.J,0%s + 1)/ (2.18)

The second limiting process is the van der Waals
limit v — 0. To evaluate the van der Waals limit
of the middle term on the right in (18) we substitute
from (7) and (1.6), obtaining

s+t Zk:’ Wae(k) = 277 337 A Max o(x)  (2.19)

xv — yr S va-l(x — y)

where the sum goes over all nonzero vectors n with
integer components. A, stands for the cube of side
2v(s + t) centered at the point v(s + #)n with its
sides parallel to those of @, and A = 2'v'(s + )’
is the volume of one of the cubes A,. The network
of overlapping cubes A, can be disentangled into
2" separate nonoverlapping networks, each of them
just filling »-dimensional space (except for one net-
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work where the cube centered on the origin is
missing). In the limit ¥ — 0 these networks become
infinitesimally fine and, by Riemann’s definition of
an integral,® the contribution of each of them to
the second sum in (19) tends to [ ¢(x) dx; the van der
Waals limit of (2.19) is therefore

(s + 0" lim ./ wou(k) = f o(x) dx = .  (2.20)

¥—0 k

Using this result, and also (1.15), in (18) we obtain
alp, 0+) < A’(p(s + &), &) /(s + 1) + 30’

+ iDuT0(s + O /0T. (221)

The final limiting process is to make the cell size
infinite by making s — . As Fisher has shown’
the last term in (21), which represents the short-
range interactions between cells, can be eliminated
if we make t depend on s in such a way that

t/s—0 and />0 as s— =, (2.22)

This can be done, for example, by making ¢ « §"
where 7 is a constant satisfying

/(v + e < g <1. (2.23)

Applying this limit on both sides of (21) and using
the continuity of a’(p), we obtain, since the volume
of the cell o’ is ¢,

a(p, 04+) < a’(p) + o' (2.24)

That is, in the van der Waals limit the increase in
free-energy density brought about by introducing a
Kac potential into a system with short-range forces
cannot exceed the increase that one would calculate
by treating the particles as a smoothed-out uniform
medium,

The result (2.24) can be strengthened in some
cases by using the fact’® that a(p, v) is a convex
function'® of p, so that a(p, 0-), being the limit
of a sequence of convex functions, is also convex.
Because of this (2.24) implies

a(p, 04+) < CE {a’(p) + }ap’}

where CE {f(p)} means, for any function f(p), the
conver envelope of that function, defined as the
maximal convex function not exceeding f:

(2.25)

8 W. Rogosinski, Volume and Integral (Oliver and Boyd,
London, 1952), Theorem 58.

¢ D. Ruelle, Helv. Phys. Acta 36, 183 (1963).

10 G, Hardy, J. E. Littlewood, and G. Polya, Inequalities
é(lllambridge University Press, London and New York, 1959),

ap. 3.
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CE {f(p)} = Max ¢(s) for each value of p
o(-)
¢(+) is convex

¢(f) < f(¢) forall ¢

Since the maximum of any family of convex fune-
tions is'! itself convex, the function CE {f(p)} is
convex. If f(p) is convex, then CE {f(p)} and f(p)
coincide; otherwise the graph of CE {f(p)} consists
partly of convex segments of the graph of f(p) and
partly of segments of double tangents of this graph
(Fig. 3). The construction of CE {f(p)} from f(p)
is sometimes called the double tangent construction.

It will be shown in Sec. VI that the replacement
of a’(p) + lap’® by its convex envelope is equivalent
to the replacement of van der Waals’ equation of
state by Maxwell’s modification (1.2).

(2.26)

III. LOWER BOUNDS ON THE FREE ENERGY:
NONNEGATIVE-DEFINITE KAC POTENTIALS

A lower bound on the free energy is most easily
found when the shape function ¢(x) defining the
Kac potential (1.6) is nonnegative definite: that is
to say, when its »-dimensional Fourier transform

) = [ o®) ep CripR dx B

is nonnegative. In this case it is possible to find a
lower bound W.,;. on the long-range contribution

W= 2 velvx: — x,)]

i<i

=3 E 2 velv(xi — x)] — INYe(0)  (3.2)

fie)

fip)

23 { f(f)}

f
F1a. 3. A function f(p) and its convex envelope.

1 Proof: Since CE{f(p)} > ¢(p) both ends of any chord
of the graph CE{f(p)} Lie above or on the ends of the corre-
sponding (same end ordinates) chord of any ¢(p) and hence
above or on the graph of ¢(p) itself; consequently the chord
of CE{f(p)} also lies above or on the curve Max ¢(p) =
CE{f(p)}.
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to the total potential energy V, and by substituting
such a lower bound into the basic definitions (1.10)
and (1.11) we obtain

AN, Q,7) > AN, @) + Wain.  (33)

To find a suitable W;, we substitute the Fourier
inversion formula of (1) into (2), obtaining

W = —3Nv'6(0)

+ 3 [ dp 2(o)

ﬁ: exp (2ziyp-x;) ’ (3.4)

for almost all configurations x, -« - xy. The “excep-
tional” configurations for which formulas such as
(3.4) may fail will be ignored since they form a
set of zero measure and therefore do not affect the
configurational integral in (1.11). Let 6 be any
positive number. Since ®(p) is'* a continuous func-
tion of p, and ®(0) > 0, we can find a positive
number p, (depending on §) such that

&(p) = (1 — 8)2(0) (3.5)

whenever p is inside a cube of side 2p, centered at
the origin. Since ®{p) > 0 when p is outside this
cube, it follows from (4) that

W + iNY'¢(0) = 3(1 — )30y

dep

¥(p) f_.; exp (2riyp+x) (3.6)

where

¥(p) = "I_'I (1 = |pal/po) if |pa] < po for all n,

0 otherwise, 3.7

and p, - -+ p, are the components of the vector p.
Applying Parseval’s theorem to (6) we obtain

W + 3NvY'e(0) 2 (1 — 9)2(0)3r

X [ d(‘YX){‘Z:; Yv(x — x,.)]}2 (3.8)

where

v@) = [ ¥() exp (~2rip-y) dp
(3.9)
= I'Is_m: 22(7"2?/1:20)
n=1 T YnPo

and y, --- y, are the components of the vector y.
A lower bound on the integral in (8) can be
obtained by confining the integration to a cube Q*
concentric with 2 and similarly oriented but having

12 This follows from the existence of [ |¢(x)| dx.

L. LEBOWITZ AND O. PENROSE

a side of length @'” + I where [ is an arbitrary
positive quantity. Applying the Schwartz inequality
to the resulting integral and writing &* for the volume
of the cube ©* we obtain

W+ IN76(0)
> 11— 930 3 [ 9lrx — x) derol/°

2
> 1 - 030N [_wwar|/e @10
u<y
since the integrand is nonnegative and every point
x inside the sphere |x — x,;| < [ is also within Q*.

Let us choose ! so that [ — « and /@' — 0
in the thermodynamic limit; for example, we may
take I « ©'*”. Then in this limit we have Q*/Q — 1
and [,<y: ¥(y) dy — 1, and the lower bound on
W/Q implied by (10) has the thermodynamic limit
—307"0(0) + 3(1 — 8)®(0),".

Since this result holds for arbitrarily small §, it
is also true in the limit 8 — 0; that is to say, there
exists a sequence of lower bounds on W, call them
W min, With the property*®

lim Wai/@ = —307"(0) + 33(0)6’

1o

(3.11)

—307’¢(0) + 3ap’
in the notation of (1.8).
This result enables us to take the thermodynamic
limit of (3), obtaining
a(p, v) = a’(p) ~ 3o7’¢(0) + }ap’

for nonnegative-definite potentials. In the van der
Waals limit this formula reduces to

(3.12)

a(p, 0+) > a’(p) + 3ap’ (3.13)
which when combined with (2.24) gives
a(p, 04) = a’(p) + 3ap’ (3.14)

for nonnegative-definite Kac potentials.

IV. LOWER BOUND ON THE FREE ENERGY:
NONPOSITIVE KAC POTENTIALS

Another case where a lower bound on the free
energy can be found fairly easily arises when the
Kac potential is nonpositive; that is when

o(x) <0 forall x. 4.1)

In this case it is again necessary to divide the cube
© into cubical cells w; -+ wy, each of side s + ¢

18 A proof of (3.11) for systems with periodic boundary
conditions was given by E. Lieb, Phys. Rev. 130, 2518 (1963).
We are indebted to E. Newman and M. Austin for advice on
the proof presented here.
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(see Fig. 2). The definition (1.11) of the partition
function may be written

Z(N, @,7) = . ZNM Z(Ny, +-+ Ny  (4.2)
where the sum is over all sets of M nonnegative
integers adding up to N and Z(N,, « -+ , N)) means
the contribution to (1.11) from configurations with
exactly N; particles in cell w;(7 = 1,2 --- M). Since
there are (N + M — 1)I/N!(M — 1)! terms in the
sum it has the upper bound

Z\N, 2,v) < (W + M- DYNI(M - D]
X Max Z(Ny, +++, Nu),

Nye»

(4.3)

the maximum being taken over all sets of non-
negative integers N, --- N, which add up to N.
The combinatorial argument which led to (2.2) gives,
when applied to Z(N,, +++ , Ny), the formula

ZNy, +o+ y Nu) = TTTA/ND(m/20076)™ 7]

Xf ...f e_ﬁvdxl...

where the first N, of the N integrations are over
the cell w,;, [not ! as in (2.2)] the next N, over w,,
and so on.

To obtain an upper bound on the integral in (4)
we separate the potential energy V into three parts:

V=@ +@g+W (4.5)

where Q' is the contribution to V from short-range
interactions between particles that are in the same
cell, § the contribution from short-range interactions
between particles that are in different cells, and
W is the total contribution from long-range inter-
actions. If Q.;. and Wai, are lower bounds on 4]
and W, then (4) and (5) lead to the inequality,
analogous to (2.4),

Z(le w0, Ny) < {I{IZ%N,-,(»)}

dxy (4.4)

X exp [~ (Quin + Wai)/kT]  (4.6)

where Z°(N,;, w) is the partition function for N,
particles of the reference system in a cube of side
s+t

To find a suitable lower bound on @, we split
it into two parts:

a=q +qQ 4.7

where Q" is, as in (2.5), the contribution to § from
pairs of particles whose centers are both within the
inner cells of side s denoted by w? (t = 1,2 -+ M)
in Sec. 2, and @ is the contribution of pairs of

particles, at least one of which is in the “corridor”
consisting of points that are not in any of the !
(see Fig. 2). The argument used to prove (2.9) proves
at the same time that

Q” 2 _%D2NNm&vat_,-e- (4-8)
The contribution @'’ has the lower bound
Q”, Z _Noorrél (4‘9)

where — @’ is a lower bound on the interaction of
a given particle with all its neighbors, whose exist-
ence is a consequence'* of (1.20), and N,,,, is the
number of particles in the corridor. It can be shown'®
that the number of particles in a given region,
multiplied by the reciprocal close-packing density
p5}, does not exceed the volume occupied by all
points whose distance from the region is at most r,.
Hence, N... and N, have (provided s > 2r,)
the upper bounds

Nuaxps' < (s + 2r0)

Noowepi! (@7 4+ 2r) — M(s — 2r)
= M{(s + t + 2r, M) — (s — 2ro)"}
< wM(s + ¢ + 2 MY

X [t 4+ 2n(1 + M7V7)]

by (2.1) and (2.17).
Substituting (10) and (11) into (7), (8), and (9),
we obtain

(4.10)

(4.11)

G > Quin) 4.12)
where
Quin = —1D.Nopy(s + 2r)"J, 17"
— pM(s + t + 2 MY
X [t + 2n(1 + M™%, (4.13)

The details of this formula are unimportant; all
that is important is its behavior under the triple
limiting process described in the introduction. This
behavior is

lim lim lim @i/ )

g—® Y0 Q-

= lim lim {—3D,pp.(s + 2ro)’J,t7""°

o 40
— s + )7 + 2r) @’}
=0
by (2.1) and (2.22).

1 (. Penrose, J. Math. Phys. 4, 1312 (1963).
15 Q. Penrose, Phys. Letters 11, 224 (1964).

(4.14)
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A simple lower bound on W, the total long-range
interaction, is given by

W >3 E Z NN jWaia(k,;) (4.15)
where
wmin(kii)
= Minw(x —y, v) = Min wk,; + 2r,v). (4.16)
X€wg I€we
¥€uyg

the y-dependence of w.;.(k) not being explicitly
shown. These formulas are analogous to (2.6) and
(2.7) but the 7 = 4§ terms are now included. Since
N:N; £ §N? + 3N}, and wain(ks;) < 0 by (1),
we may deduce from (4.15) the inequality

w 2 _% Z Z (%Nf + %N?) lwmin(kii)l
= —3 Z N? Z [mia(l:s) |-
B i

The sum over j may be extended, without destroying
the validity of (17), to include the infinite network
of cells continuing outside Q the pattern established
inside it by the cells w, - -+ wy. In the notation of
(2.14) the resulting inequality is W > W, with

Wmin = % Z N? ; wmin(k)-

Substituting this into (6) and using (3) and (1.10),
we obtain

AN, Q) 2 kT log[N! (M — DY/ (N + M — D]

4.17)

(4.18)

M
+ Min Y {A°(N,, )
N

1vo* NM i=1

+ %Nf ; wmin(k)} + Qmin- (4-19)
The second term on the right can be simplified by
means of a simple property of the convex envelope
of a function, defined in (2.27). This property is

M7 3 (N) = M X CE {f(N)

im] i

> CE {f(M* 5; N)}

(4.20)

where the first inequality follows from the fact that
CE {f} is a lower bound on §, and the second from
the fact that CE {f} is convex.

Using (4.20) in (4.19) we obtain

AN, Q,7) > kT log [N! (M — DY(N + M — )]
+ M CE {A"N/M, «)

+ N/ M) Zk‘, Wain®)} + Gin (4.21)

J. L. LEBOWITZ AND O. PENROSE

where CE { } is the convex envelope of the quantity
in braces regarded as a function of N/M.

To apply the triple limiting process described in
Sec I we first divide (4.21) by £ and take the thermo-
dynamie limit @ — o, using Stirling’s approximation
for the factorials. In the notation of (1.13) the result
is

a(p, v) = —kT{(s + &)~ log [1 + p(s + #)’]
+ plog {1+ p7'(s + )71}
+ CE {(s 4+ 7 Ap(s + 1), w)

+ 1% + 8) D Warn(k)} + ng Omin/ Q. (4.22)

since
N/M = pQ/M = p(s + ).
In order to carry through the other two limit

processes we require the following lemma;:

Let f.(¢) be a sequence of functions converging
uniformly on an interval to f(¥) as n — o ; then
we have

lim CE {1.(8)} = CE {{(®)}.

n—w

(4.23)

Proof: Given any & > 0 there exists an 9T such
that for n > 9%, [f.(8) — f(&)| < & for all £ in the
interval. We then have from the definition (2.26)
of the convex envelope

CE {f.(®)} =2 CE {f(®)} — ¢
for all £ in the interval and n > 9t

since CE {f({)} — & is a convex function which
is < f,(¢). Similarly

CE {{(®)} = CE {f.(®)} — &

for all ¢ in the interval and n > 9.
Hence
ICE {fs(&)} — CE {{®)}| < &

for all ¢ in the interval and n > 9
which, since § is arbitrary, proves the lemma. Q.E.D.

In our case we consider an interval, 0 < p < p, < p,
where p, is any density less than the close packing
density p.. Taking the limit v — 0 of (22) we obtain

a(p, 0 +) > —kT{(s + )™ log [1 + p(s + 8)]
+ plog [l + p7'(s + )7}
1 CE {(s + 07" A°Lo(s + £, o]

+ 3o’} + lim @uin/Q (4.24)
Qe
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since, by an argument like that which led to (2.20),

(s + " Tim 2 i) = [ o) dx = @
¥—0 k
and the convergence is uniform because the differ-
ence between the sum and the integral is independent
of p. Finally, taking the limit s — <, where the
convergence is again uniform (Sec. 7k of Ref. 7),
and using (14), we obtain

a(p, 0+) > CE {a’(p) + 3ep’}.  (4.25)
Combined with (2.25) this gives
a(p, 04+) = CE {a’(p) + 3ap’}  (4.26)

for nonpositive Kac potentials. The result obtained
by Kae, Uhlenbeck, and Hemmer® is an example
of (4.26).

V. LOWER BOUND TO THE FREE ENERGY:
MORE GENERAL KAC POTENTIALS

When the Kac potential is neither nonnegative-
definite nor nonpositive, a lower bound can still
be obtained, though the method is more complicated
than before. We express ®(p), the »-dimensional
Fourier transform of ¢(x) defined in (3.1) as the
sum of two parts

®(p) = o.(p) + @-(p)

8o chosen that

(5.1)

&,(p) >0 forall p,

®_(0) = Min ®_(p) = min &(p) = Pnin,
] » (5.2)

fcm(p) dp < =,

&.(p) is continuous. J

The inverse transforms of ®,(p) and $_(p) will be
denoted by ¢.(x) and ¢_(x) and we shall require
also that ¢, (x) and ¢_(x) satisfy (1.21). These con-
ditions can be satisfied (provided d®/dp, > — =
at p = 0) by taking

&.(p) = { [2(0) — ®nil(1 —p/p)" i p < p’
0 if p>9p

(5.3)

where p’ is the smallest value of p at which ®(p)
attains its minimum value &,;, and » 1s a positive
integer (> 2) chosen sufficiently large to make
(1 — p/p")" < [8(P) — Puinl/[B(0) — Puial, for
p < p’. When &, (p) is given by (3) ¢.(x) can be
computed explicitly and shown to satisfy (1.21), and
hence so will ¢_(z). [Even when d®/dp = — o at

107

p = 0 there is every reason to believe that the
division of ® into &, and ®_ can be made in a
way to satisfy all our conditions, provided ¢(x)
satisfies (1.21).]

Since ¢, (x) is a nonnegative-definite function its
contribution to W, which may be written W, can
be estimated by the method used in Sec. III. In
analogy with (3.11), the result has the form W, >
W . min Where

Hm W min/ @ = —307°0.(0) + 32.(0)0".

Qo

(5.4)

The other contribution W_ has a lower bound
analogous to (4.15)

W_> 41 Z Z NN w_ min(k;;) (5.5)

where as in (4.16) k; is the position vector from
the center of the cell w,; to that of w;, and

W_ min(k:;) = Minw_(x — y, )

xX€Ewi

yeai (5.6)
= NIiIl w_(k",' + 2!’, '}’),
r€uwo
where w_(x, ) = 7’¢_(vx) and w, is a cube of

side s + ¢ centered at the origin.

The quadratic form in (5) can be diagonalized
using a Fourier transformation. We define the func-
tion

W(p) = ; W- min(K) exp (2rip-k)  (5.7)
where the sum goes over all the different values
taken by the vector k;; as both ¢ and j range over
the values 1, 2, - -+ M. These values lie on a simple
cubic lattice of spacing s + ¢ with a lattice point
at the origin and are inside (not on the surface of)
a cube of volume 2°Q centered at the origin. The
sum in (7) therefore covers just [22" (s +£)™' — 1] =
[2M"” — 1)’ = M’ lattice points. The function W(p)
is periodic in p, the unit cell of the periodicity being
a cube of side (s + ¢)~'. Although the notation
does not show it, W(p) depends on s + ¢, v, and
Q as well as on p.
The inverse of (7) is

W_ i) = (M")™ 22 W(p) exp (—2wip-k)  (5.8)
P

where the sum goes over M’ values of p lying inside

a cube of side (s + #)™' and on a lattice of spacing

MY (s + )7 = [22" — (s + ¢)7".] Substituting

(8) into (5) and rearranging, we obtain

W- > ¥M)™ Zp: W(p) In(®)]® (5.9)
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where

n(p) = 2_; N exp (2rip-k) (5.10)

and k; is the position vector of the center of w,.
For a lower bound on the sum (9) we may replace
W(p) by its minimum value, obtaining

W_ > M) Ep: n@)|* Min W (p)

) .11)
- % 3. N! Min 7).

Substituting this result into (4.6) and using (4.3)
and (1.10) we obtain

AN, @,v) 2 kT log [NV (M — DY/IN+ M — 1]

+ Min 3 {A°(N,, @)

NyvosNM =1

+ %Ng, Min W(P)} “‘E" W«k,min + Gmin (5'12}
»
where W, .. satisfies (4).

The inequality (12) is very similar to (4.19) and
the effect on it of the triple limit process can be
studied by the method used for (4.19). The result,
analogous to (4.25), is

a(p, 0+) 2 CE {a’(p) + 3a-p’} + }a.p’,  (5.13)
where
a, = (2/p") lim lim lim W, ../ Q
o r0 e 5.14)
= & (0)
by (4), and
e = lim lim lim (s + ©)" Min W{p). (5.15)
FE s R ) r

The first step is to carry out the limit process 2 — o
in (15). It follows from the definition (7) that

W(p) — {;m W)l < 2w wu®]  (5.16)
where the sum is over all lattice points k outside
a cube of volume just less than 2'Q centered at the
origin. This sum is independent of p, and because
of (1.21) it tends to zero as @ — «. Therefore W{p)
approaches its limit, as € — o« uniformly in p,
8o that

lim Min W{p) = Min lim W(p)

Shebon P »

Q=

“1\{5112(1’,7)

(5.17

where

LEBOWITZ AND O. PENROSE

2@ = 2 w0 k) exp (2ripk),  (5.18)
the sum going over an infinite lattice with spacing
s+t

To study the effect of the next limit process,
vy — 0, we consider separately the cases where p
iz inside and outside a cube T of side 2p, centered
at the origin. The dependence of p, on v will be
chosen so0 that in the limit 4 —» 0 the sum (18)
may be replaced by an integral if p € T and by
zero otherwise.

By writing vq for p and x for vk in (18), and using
an argument similar to that which gave (2.20), we
find that

(s 4ty }{l_g} 2 (va, )

]

[ o exp (2rig-x) dx

= o_(q.

In order to use this result in (15), we must show
also that the convergence to the limit is uniform
provided vq &€ TI'. To do this we use the definitions
(3.1), (1.6), (18), and (6), to obtain the estimate

/M) — (s + 8" 22 (0, VI

(5.19)

;[ ezrip'k e?wiﬂ‘?w‘(k + y’ ,Y)
we

— Min w-(k + 2z, )] dyi

z€we

<[ e = 1 loute 4y, )
+ lw-(k +y,7) — Min w_(k + 2z,7)[} dy

< mpols + B f [w_(x, v)| dx

+|[ o=+ T 620

Since we have required that [ lp.(¥)| dy < o,
the first part of the last member of (20) tends to
zero with v provided that

lim po = 0. (5.21)

0
The second part also tends to zero with v, as in
the argument leading to (2.20), because of the
Riemann integrability of ¢.. Since both parts are
independent of p, the convergence to the limit in
(19) is indeed uniform for yq € T, and it follows that

Downloaded 28 Feb 2008 to 150.214.103.146. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



LIQUID-VAPOR TRANSITION

(s + 1ty 115112119 2 ®y) =
= Min &_(q) =

Tim Min &_(p/+)
¥-+0 pPET

$_(0)
(5.22)

by (2), provided lim,., po/y = «.

To complete the estimates of Min 3 (p, v) for
(18) we must also find a lower bound for Z (p, v)
with p outside I'. Whenever p is outside T, we can
find a direction parallel to an edge of the cube T
such that the component of p along this direction
exceeds p,. If 1 denotes a vector of length s + ¢
along this direction we therefore have

Pofs+ 8 <p1<} (5.23)

the second inequality being a consequence of the
fact [see (8)] that all the allowed values of p lie
inside a cube of side (s 4+ )7 centered at the
origin. On multiplying both sides of (18) by 1 —
exp (2#ip-1) and taking absolute values, we obtain,
since Jl] = s + ¢,

2sin (=p-1) | 22 ()]
= !; [0~ min(K) — W min(le — D] exp (2rip-k)|

S E lw—.miu(k) - w—.min(k - l)l

Z Max w_(k + 4x, 7)

XEwgy

- Z Min w-(k + 4x, 7)

xCwe

(624

where w, denotes, as in (6), a cube of side (s + ¢)
centered at the origin. Applying once more an
argument of the type which led to (2.20), we find
that both sums in the last member of (24) tend to
the same integral in the limit v — 0. Thus (24)
can be written in the form

12201 < %lese(@p-D] 3(y)  (5.25)

where & does not depend and on p and tends to 0 with
v. Combining (23) and (25) we obtain

|2° @, )| £ 8(v)/4ps(s + 1) for p outside T (5.26)

since sin ¢ 2> 2a/7 for 0 < z < /2. Let us now
choose p, in such a way that

lin? 8(7v)/po = 0. (6.27)

?'ﬂ

This is compatible with the previous requirements

(5.21) and lim po/y = o ; for example, the choice
« [y + 6(y)]? satisfies all three requirements.

Combining (27) and (26) we obtain

2 (7 =0. (5.28)

lim Min
=0 poutside T
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Combining (15) and (17) and then using (22) and
(28), we obtain

= lim lim (s + &)’ Mm 2@

a— ¥yl

= lim ®_(0)

(5.29)
= @..(0) == @m;n.

This completes the evaluation of a..
Our main results (2.25) and (13) can be sum-
marized in the formula
E {a’(p) + $0-p"} + 3sp’ < a(p, 04)
L CE {a(p) + 3ap’}.  (5.30)
From (30) we can find a(p, 0-+) exactly provided

the upper and lower bounds coincide. This can
happen in two ways:

(i) Where a’(p) + }a
envelope, (e.g., if a_ =
does so too since a =
implies
a(p, 0+) = CE {a’(p) + Jap’} = a’(p) + }ap’

if a%p) + 3a_p’ = CE {a’(p) + }a-p’}. (5.3D)
In the special case a_ = 0 this reduces to (3.14).

(ii) If @, = O then we have @ = a_ so that (30)
reduces to
a(p, 04) = CE {a’(p) + %ap’} if a. =0. (5.32)

The result (4.26) is a special ease of this, since (4.1)
implies ®(0) < ®(p) for all p.

_p° coincides with 1ts convex
0) the function a’p + 3ap’
+ + a. > a_; thus (30)

VI. EQUATION OF STATE

For a system with finite v, the thermodynamic
pressure p(p, v) is given”*® by

—a(p”'alp, v))/3(p™")
= p da(p, v)/3p — ale,v), (6.1)

the differentiation being at constant v and also at
constant 7', although the dependence on 7 is not
explicit in the notation. Since a(p, ¥) is”"® a convex
function of p at constant v the derivative on the
right of (1) exists'® except on a countable set of
values of p; it seems likely that this countable set
is in fact empty but no proof is known.

Taking the limit v — 0 on both sides of (6.1)
we obtain

p(p, 04) = p l;lir; dalp, v)/3p — alp, 0+).

plp,7) =

6.2)

To evaluate the right side of (2) we must show
that the order of the operations v — 0 and 8/dp

10 Ref. 10, p. 94.
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can be reversed. To this end we use the inequality'’
for the right~ and left-hand derivatives of a convex
function

fa(p — €, ) — a(p)}/(—€) < D_a(p, v)
< D.alp, )
< lale + ¢ v) — alp)l/e

(6.3

where
D.a(p, v) = 1}_{? lalp £ ¢, v) — alp, V)/(£e), (6.4)

with e an arbitrary positive number.
Taking the limit v+ — 0 on both sides of (3),
followed by the limit ¢ — 0, we obtain

D_a(p, 0+) < lim D_a(p, v)
10 6.5)
< lim D,a(p, v) < D.a(p, 0+).
¥—0

Hence if a(p, 0-+) is differentiable all four of these
expressions are equal, so that lim,_, D a(p, v) exists
and is equal to da(p, 0+4)/dp. Substituting this
result into (2) we obtain

p(p, 0+) = (pd/dp — Da(p, 0+) (6.6)

at all points where a(p, 0+) is differentiable. Equa-
tion (6) can be interpreted geometrically by the
statement that —p{p, 0-+) is the place where the
tangent at p to the graph of a{p, 0+) intercepts the
a-axis.

Combining (6) with (5.31) or (5.32), we obtain

2(p, 0+) = (od/dp — 1) CE {a"(p) + }ep’} (6.7)

for all Kac potentials to which (5.31) or (5.32)
applies, including nonnegative definite and non-
positive potentials.

If the graph of a(p, 0+) = CE {a’(p) + Lap’}
has a straight segment (see Fig. 3) then the geo-
metrical interpretation of (6) shows that p(p, 0+)
is constant along this straight segment; and the
chemical potential [a(e, 0+) + p(p, 0+)]/p =
da{p, 0-+)/dp is also constant. This behavior of the
thermodynamic functions characterizes a first-order
phase transition.

Since the straight portion of the graph CE {a°(p) +
$ap’} touches the graph a’(p) + %ap® at both ends,
the quantity

Doaul(p) = (pd/dp — 1)(a%(p) + 3ap”)  (6.8)

takes the same value, call it p,.., at the two ends
of the phase transition region. Moreover, if p; and

. Y7 Obtained by making & — 0 in Eq. (3.18.3) of Hardy,
Littlewood and Polya (Ref. 10).
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g, are the abscissas of the two points of contact,
then we have

fp " Bt = P A7)

= {—[a’(p) + 3ap’ + puaclo ' }i!
= {(d/dp)[a’(p) + 3ap’}:.

using (8) first as a definition of P,:.(p) and then
to evaluate 7,,,. Since the slopes of the graph
a’(p) + 3ap® at the two points of contact are equal,
the expression (9) vanishes. This shows that p; and
p, are related to P,..(p) by Maxwell’s equal-area
construction (Fig. 1). The replacement of a’(p) +
1ap® by its convex envelope is precisely equivalent
to making Maxwell’s modifieation (1.2) in the func-
tion #,4s(p) defined by (8).

For values of p where the upper and lower bounds
of a{p, 0+), in (5.30) do not coincide we still obtain
bounds on lim, ., da{p, v)/8p and hence on plp, 04}
by an argument due to Fisher'®: owing to the con-
vexity of the graph of a(p, 0+) its slope at p = p,
must lie between the slopes of tangents to its upper
bound crossing its lower bound at p = p,.

A result similar to that obtained for the pressure
holds also for the internal energy density

u(B, p,v) = (8/3B)[Ba(B, p, v)].  (6.10)

Bince —pBa(B, p, v) is convex in 8 we obtain, as in
the derivation of (6),

’M(ﬁ, P 0+) = a/aﬁ[ﬁa(ﬁ; p, 04+)]. (6~11)

Unfortunately we have been unable to prove any
similar general statements about the specific heat
and compressibility which correspond to second
derivatives of the free-energy density. At sufficiently
low densities, however, one can show that all the
density derivatives of p(p, v) approach the cor-
responding derivatives of p(p, 0+) by using Vitali’s
theorem together with the results of Lebowitz and
Penrose’ for the convergence of virial expansions.

(6.9)

VII. THE PAIR DISTRIBUTION FUNCTION

In order to understand better the effect of the
Kac potential on possible phase transitions in the
reference system and in the van der Waals system,
it is useful to study the two-body distribution func-
tion. (In this section we do not aim at such a high
standard of rigor as in the earlier sections.)

18 M. E. Fisher, “Bounds for the Derivatives of the Free
Energy and the Pressure of a Hard Core System near Close

Packing” {(to be published).
1 J, L. Lebowitz and O. Penrose, J. Math., Phys. 5, 841

(1964).
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Instead of the usual two-body distribution func-
tion®® n,(x,, X,), we shall study its space average

() = Q7 fnz(x, x + 1) dx. (7.1)

This distribution function when the system has N

particles in a box Q@ and a Kac parameter v will

be denoted by 7.(r; N, @, v). This function can be
determined from the formula®

3 [N, 0, Mg dr

= (a/arl)ﬂ_lA[N) 2,7, ﬂQ'(f)]u-o (72)

which holds for arbitrary bounded functions ¢'(r).
The integration may be taken over all space, since
A(t; N, @, v) = 0 for large r. The symbol A[N, &,
v, n¢'(r)] denotes the free energy analogous to
(1.10) when the short-range interaction potential
is not ¢(r) but ¢(r) + 7¢'(r), and 7 is a parameter.
Taking the thermodynamic limit and then the van
der Waals limit in (2) we obtain, provided all the
relevant limits and the derivative exist,

3 [ s 0, 00)0') dr

= (8/am)alp, 0+, 7¢'D)]s=0  (7.3)

where

7ia(r; p, 0+) = lim lim 74,(x; 0@, Q,7)  (7.4)
i

=0 Q-

and

a[p) 0+, nq’(r)]
= lim lim A[oQ, @, 7, 7¢'(")]/Q.

y-0 Q-®

(7.5)

The permutation of the limit operations v — 0 and
@ — o with integration and differentiation in
deriving (3) is justified on the left by Lebesgue’s
theorem.”® On the right it is justified [as in the
argument based on (6.3) and (6.5)], by the convexity
of A[N, , ¥, n¢’(t)] as a function of ». This convexity
can be verified by calculating the second derivative
of A with respect to 5. In a similar way we can obtain

3 [ #85 D@ dr = G/ondlp, /@l (T6)

20 T, L, Hill, Statistical Mechanics (McGraw-Hill Book
Company, Inc., New York, 1956), Sec. 29.

2 Equation (7.2) is the classical analog of a_ quantum
formula given by Bogolyubov and Zubarev, Zh. Eskperim.
i Teor. Fiz. 28, 129 (1955) [English transl.: Soviet Phys.—
JETP 1, 83 (1955)]. This was first used in this type of work by
M. E. Fisher. .

2 F, Riesz and B. Sz.-Nagy, Functional Analysis (Frederick
Ungar Publishing Company, New York, 1955), p. 37.
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where the superscript zero denotes quantities be-
longing to the reference system with a modified
short-range potential g(r) 4 4¢'(r). When the condi-
tions of validity for our main result (5.31) or (5.32)
are satisfied, (3) reduces to

3 [ ntes 0, 000/ dr

= (3/97) CE {a’[p, n¢'(D)] + }ap'}so.  (7.7)

Two cases may be distinguished. In the first of
these the graph of a’[p, #¢’(r)] + 3ap’ coincides
with that of its convex envelope and so (7) combines
with (6) to give

3 [ s 0, 000@ dr = 3 [ 8, de@dr (78)
which implies
7io(t; p, 04) = A(x, p)

since ¢’(r) is arbitrary. In this case, therefore, the
Kac potential does not affect the distribution of
pairs of particles, as one might expect from (1.8).

In the alternative case, where the graph of
a’lp, 7q'(r)] + iap’ does not coincide with that
of its convex envelope, the latter is a straight line
touching the former at two places, say p, and p,.
Both p, and p, depend, in general, on 5. The equation
of this straight line may be written

CE {a’[p, n¢'(®)] + 327’} = [p — p))a:

(7.9

+ (p2 — Pad(p: — p) (0 < p < pa)  (7.10)
where
a = [, 1¢'@)] + 3 (R =1,2).  (7.11)

On substituting this into (7) and using (9), which
applies when p = p, or p = p;, we obtain

y [ e 000 @ ar = 3 [ |22

P2 — P

BL73(r; pa)

+ o e @
since
9 [(p — pas: + (ps — p)ax]
9p P2 — P1

== |, _ — -2
" (o= p)’ l:a1 o+ (= p1) 5 0 a’]

= 0, (7.13)

by virtue of the double tangent construction.
[In Eq. (13) we are treating 7, p,, ps, p as independent

ete.
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variables.] Since ¢’(r) is arbitrary, it follows from
(12) that

— b ﬁg(r; Pz)
P1

7ia(t; p, 04) = 2
Pz —

+ b2 : p’: ﬁ‘z)(r; P2), (pr < p < p3). (7.14)

P2

This equation can be interpreted®® to mean that
two phases coexist whenever CE {a’(p) + $ap’} <
a’(p) + 3ap’; their pair distribution functions are
7g(r; pi) and 7i3(r; p.), and their densities p, and
ps, respectively. This is consistent with the inter-
pretation of a straight portion of the graph a(p, 04)
as a first-order transition.

In interpreting the results (9) and (14) it should
be remembered that their derivation involves the
limit process vy — 0; they therefore yield information
only about values of r small compared with the
range v~ ' of the Kac potential. For example, (14)
implies a two-phase structure on a length scale
<« 7! but not necessarily on a scale > y7*.

Vil. SIMPLE UPPER BOUND ON «a(p, 7v)

Of the various upper and lower bounds on a(p, v)
obtained in Sec. II to V, the only one simple enough
to be useful for finite values of v is the lower bound
(3.12) for nonnegative-definite Kac potentials. The
other bounds are too unwieldy because they involve
the network of cells w, » - wy.

A simple upper bound on a(p, ¥) can be obtained
by a method due in essence to Gibbs.* We rewrite
(1.11) in the form

Z(\N, Q,v) = ZO(N: ﬂ)<e—ﬁw>o

where W is the long-range contribution to the
potential energy and ( )° indicates a canonical av-
erage over the reference system. Since ¢™*¥ is convex
we have by (1.6) and (7.1)

(€7 > exp (—BWY

exp [—%B f f v'o(vM(x, X +1) dx dr]-
(8.2)

Combining (1) and (2) and then taking the thermo-
dynamic limit, we obtain

(8.1)

il

alp,v) < @) + ¥ [ ol N dr (83)

% J, E. Mayer, J. Chem. Phys. 15, 187 (1947); G. E.
Uhlenbeck, P. Hemmer, and M. Kac, J. Math. Phys. 4, 229

(1963&%
n M. Girardeau, J. Chem. Phys. 40, 899 (1964).
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where 7i; is defined as in Sec. VII. This inequality
may be strengthened in the manner used in going
from (2.24) to (2.25), to give

a(p,v) < CE {a"(p) + f o(vD)fia(r; p) dr}' (84)

A system for which the right side of (8.4) can
be evaluated is the one-dimensional system con-
sidered by Kaec, Uhlenbeck, and Hemmer.® In our
notation it is defined by (1.4) and (1.5). For this
system, the last term in (8.3) is essentially the
Laplace transform of 73, and (8.4) becomes

a(p, 7) < CE {a(p)

+ Japv[(1 + v — yro)e™™ — 1177} (8.5)
with
a’(p)

= pkT{log [p(1 — pro) "(2xh’/mkT)*] — 1}. (8.6)

In the van der Waals limit (5) reduces to (2.25).

The argument which led to (4) also applies to
lattice gases. For example, if the short-range po-
tential is taken as

Q(r)={+°° if r=0,
0 if r0,

the part of the interaction potential which prevents
more than one particle occupying any site, then
7o(t; p) vanishes for r = 0 and takes the value
p® for r % 0; consequently the lattice-gas analog
of (4) leads to

8.7

alp,7) < CE {a’(p) + 30" 2  w(r,7)}  (8.8)
with
a’(p) =kTlplnp+ (1 —p)In(l - p]. (8.9

The sum )’ goes over the infinite lattice excluding
r=20.

IX. DISCUSSION

We have shown that for a class of Kac potentials,
including nonnegative-definite and nonpositive po-
tentials, the thermodynamic free-energy density is
given in the van der Waals limit by

a(p, 04+) = CE {d"(p) + }as’} 9.1)

and the equation of state by Maxwell’s modification
of the corresponding van der Waals equation of
state. If @ < 0, the graph of a(p, 0+) may have
straight portions; these correspond to first-order
phase transitions both in the thermodynamic prop-
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erties and in the behavior of the pair distribution
function for r < ¥7'. If @ > 0 on the other hand,
the graph of a(p, 0+) cannot have a straight portion
and thermodynamically the system can have no
phase transition. A paradoxical situation arises if
the reference system has a phase transition and
a > 0; then by (7.9) the pair distribution function
has the form characterizing a phase transition, yet
there is no phase transition in the thermodynamic
sense. The explanation is that the result (7.9), which
indicates the coexistence of two phases, was ob-
tained using the limit process y — 0 and may
therefore be relied on only when r << v~'. On the
other hand, the term lap® in a(p, 0+) indicates that
on the length scale where the Kae potential operates
(distances &~ or >> v7') the system is uniform since
there is no transition. It appears therefore, that
the repulsive Kac potential causes the distinct liquid
and gas phases of a normal first-order transition
to break into droplets or froth whose chacteristic
length is >> r, but << 4. This fact might possibly
find a practical application.

Some of the results on which this paper is based
can be generalized to quantum mechanics. The re-
sults of See. ITI generalize immediately to quantum
mechanics, and so do those of Sec. II provided the
boundary condition on the wavefunction is that
it must vanish when the center of any particle
touches the wall of the container. The main result
of Sec. VIII also generalizes to quantum mechanics
by virtue of Bogolyubov’s inequality.”® On the other
hand Sec. IV and V do not generalize so readily.
Unfortunately this means that we can at present
evaluate a(p, 0+) rigorously only for nonnegative-
definite Kac potentials, which cannot produce a
phase transition. Thus it remains to be shown that
a van der Waals phase transition can oceur in a
quantum system.

The results of this paper can easily be generalized

% Cited in Ref. 4 of V. V. Tolmachev, Dokl. Akad. Nauk
SSSR 134, 1324 (1960) [Engl. transl.: Soviet Phys.—-Doklady 5,
?84 (1961)]. See also M. Girardeau, J. Chem. Phys. 41, 2945

1964).
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to classical lattice gases. The proofs require only
minor modifications, and the main results (5.31)
and (5.32) are the same. Our results apply also to
Ising spin systems since these are isomorphic to
lattice gases. In this way the Bragg-Williams and
Weiss theories can also be dealt with in a rigorous
fashion.?®

Another direction in which our results might be
generalized is to weaken the conditions (1.20) and
(1.21). For example, for nonnegative-definite Kac
potentials the hard-core condition (1.20a) can be
replaced by the condition ¢(r) > const r*~° for
small r, which is sufficient’*® to ensure the existence
of a’(p) and a(p, 7). For more general Kac potentials
the hard-core condition plays no part in the upper
bound on a(p, 0+ ) but is used to restrict the number
of particles in a cell when lower bound on a(p, 0+)
is obtained. Possibly a more refined argument could
dispense with the hard-core condition altogether.

A more interesting extension of this work would
be to study Kac potentials satisfying neither of the
conditions (i) and (ii) given at the end of Sec. V.
For these potentials upper and lower bounds on
ap, 0+) do not coincide, and it is possible that
the behavior of the system is more complicated than
in the van der Waals theory. For example the Kac
potential might bring about spatial ordering with
a length scale ¥™'. Finally from the physical point
of view the most important extension of this work
is to study the properties of the system when ¥
is finite but small. This is now being carried out
along several lines.”
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