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The discussion of the properties of the Kac one-dimensional fluid model presented in Parts I and II
of this series of papers breaks down near the critical point. In Sec. II of the present paper we develop
a new successwe-approxunatlon method for the eigenvalues and eigenfunctions of the Kac mtegral
equation which is valid in the critical reglon and which connects smoothly with the developments in
the one- and two-phase regions given in Part I. The perturbatlon parameter is (y8)? where 74 is the
ratio of the ranges of the repulsive and attractive forces. The main physical consequence is that in the
critical region the long-range behavior of the two-point distribution function is represented by an
infinite series of decreasing exponentials with ranges all of order 1/¥(v4)% and with amplitudes of
order (v8)!. This leads to deviations from the Ornstein—Zernike theory and to a specific heat anomaly
which are discussed in Sec. V. We conclude with some comments on the possible relevance of our

results for the three-dimensional problem.

I. INTRODUCTION

S we noted already in the first two parts of
this series of papers,' the discussion of the
approach to the van der Waals limit which was
given there breaks down near the eritical point.
This is evident from the way the quantity B?
which is proportional to 9p/dl, enters into the
expansions for the eigenvalues and eigenfunctions
of the Kac equation and into the expansions for
the short- and long-range behavior of the two-point
distribution function. For B = 0 all these expansions
blow up. It is therefore necessary to develop a new
asymptotic treatment of the Kac equation in the
critical region and this is presented in this paper.
It turns out that the critical region should be
defined by the ranges in temperature and specific
volume given by

T - Tc)/Tc ~ (’Ya)§; (- lc)/lc ~ ('Ya)*’ (1)

where 7'. and I, are the van der Waals critical
values and where vé is again the ratio of the ranges
of the repulsive and attractive forces. In Sec. II
we will show that in this region one can again
“tame”” the Kac equation by an appropriate change
of variables, and that this leads to a consistent
successive-approximation method for the eigen-
functions and eigenvalues. In contrast to the one-
and two-phase regions, the expansion parameter is
no longer v6 but (v8)}, and also the zeroth-order
eigenfunctions are no longer the harmonic oscillator
eigenfunctions (= Weber functions), but correspond

* Present address: Institute for Theoretical Physics,
N.T.H. Trondheim, Norway.

1J, Math. Phys. 4, 216, 229 (1963), hereafter referred to
as I and II, respectlvely
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to the eigenfunctions of an oscillator for which the
potential energy is a fourth-degree polynomial in
the deflection. As a result, the eigenfunetions and
eigenvalues can no longer be determined explicitly.
However, it is possible to discuss qualitatively how
the eigenfunctions change when one goes away from
the critical region, and it is of special interest to
note the difference in behavior when one goes
towards the one-phase region or towards the two-
phase region. In the first case, the eigenfunctions
become again the Weber functions with only slight
distortions, but in the second case (two-phase
region) they approach the eigenfunctions for a
potential which has two equal or almost equal
minima. It is well known that for such a two-
minimum potential, the lowest eigenvalue is almost
doubly degenerate, and this corresponds to the
beginning of the degeneracy which is characteristic
for the two-phase region.

In Sec. III the consequences are discussed with
respect to the form of the isotherms in the critical
region. In I we have already pointed out that,
to any order in 48, the successive-approximation
method always gives a phase transition and a
van der Waals-like equation of state. We now find
that in the critical region (i.e., for finite v8), there
is a qualitative difference of the isotherm net from
the prediction of the simple van der Waals theory,
(i.e., for v = 0). For finite v3, the transition from
the one-phase to the two-phase regime oceurs con-

tinuously in the critical region.” Strictly speaking,

2 The concept of a critical region in contrast to a critical
point has often been discussed especially in order to explain
various anomalous ecritical phenomena which apparently
were in conflict with the van der Waals equation. For a review
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for T < T, the isotherms do not have a horizontal
portion, and as a result the densities of the two
coexistent phases cannot be defined unambiguously.
However, although it is difficult to make precise
statements because of the uncertainty one always
encounters when one tries to join two different
asymptotic developments of the same funetion, it is
possible to make a reasonable extrapolation of the
locus of the coexistent points from the two-phase
region into the critical region. We then find that,
for finite 8, the critical density remains at the
van der Waals value, but the critical temperature
is lowered by AT, with AT./T. =~ 0.702(y6)!. At
the new critical point, the locus of the coexistent
points is still parabolic but it is much flatter than
the van der Waals theory predicts.®

In Sec. IV and V the consequences are discussed
with respect to the two-point distribution function.
The main result is that in the critical region the
long-range behavior of this distribution function is
represented by an infinite series of decreasing
exponentials. The ranges of these exponentials are
all of order 1/v(v8)!, and also the amplitudes are all

of the older literature, see for instance J. P. Kuenen, Die
Zustandsgleichung (Vieweg, Braunschweig, 1907), Chap. 5,
especially for the effects of gravity and of impurities on the
critical phenomena. The only attempt we know of to deduce
a critical region from the ideas of van der Waals is by G.
Bakker [Z. Physik. Chem. 49, 609 (1904)]. He pointed out
that there may be a range in temperature where the thickness
of the capillary layer is of the same order as v;} — vt In
this region one would not see a meniscus, although the two
phases are still present. This is also suggested by Mayer. For
a review of his arguments, which are partially formal and
partially physical, and are based on the fugacity and virial
expansions, see the book by J. E. Mayer and M. G. Mayer
[Statistical Mechanics, (John Wiley & Sons, Inc., New York,
1940), Chap. 14]. Mayer’s conclusion is that there may be a
temperature T, < T. where the meniscus would disappear,

although there are still horizontal parts in the isotherms for .

temperatures between 7, and 7. In this temperature range,
the isotherms enter the two-phase region with a horizontal
tangent. Because of the resulting shape of the coexistence
curve near the critical point, this region is often referred to
as Mayer’s derby hat.
From the experimental point of view the existence of such
a critical region is still controversial. For a review of recent
experimental results see the book by T. O. Hirschfelder,
Ch. F. Curtiss, and R. B. Bird [Molecular Theory of Guases
and Liquids (John Wiley & Sons, Inc.,, New York, 1954),
Chap. 5, Sec. 2]. See also the work by H. W. Habgood and
W. G. Schneider on Xenon [Can. J. Chem. 32, 98, 164 (1954)].
3 The question of the shape of the coexistence curve near
the critical point has been much discussed. Guggenheim
[J. Chem. Phys. 13, 253 (1945)), pointed out that the data
are better represented by the law (v, — ) ~ (T, — T)t
than by the van der Waals result (s — 9,) ~ (T, — T)*
which follows from the parabolic form of the coexistence
curve near the critical point. Compare also M. A. Weinberger
and W. G. Schneider, Can. J. Chem. 30, 422 (1952), and the
more recent discussion by B. Widom and O. K. Rice, J.
Chem. Phys. 23, 1250 (1955). The Guggenheim result would
imply that at the ecritical point also (83 p/dv*)y would be
zero, and B. H. Zimm [J. Chem. Phys. 19, 1019 (1951)] has
given a plausibility argument for the vanishing of all deriv-
atives at the critical point. However, also in this respect,
there are no results which are generally accepted.
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of the same order of magnitude, namely (y8).
The Ornstein—Zernike theory is therefore not valid
in the eritical region. However, we can show that
if one goes away from the critical region towards
the one-phase region, our results go over into the
expansions of the long-range behavior of the cor-
relation function derived in IT, of which the Ornstein—
Zernike exponential was the first term. The situation
seems to be that, if one approaches the critical
point, more and more exponential terms become
excited, so to say. Outside the critical region these
terms are of decreasing order of magnitude, but in
the critical region they all contribute.

It seems to us that this picture of how the devia-
tions from the Ornstein—Zernike theory develop if
one approaches the critical point, is probably also
valid in three dimensions, and that it is independent,
of our assumption of an exponential attractive
potential. In fact, we show in See. VI that the whole
discussion of Sec. IV can be generalized to the
case where the attractive potential consists of a
sum of m exponentials, and that this does not change
the qualitative picture.

In Sec. VII we conclude with a few comments
on some recent experimental results on the critical
opalescence and on the so-called specific-heat
anomaly in order to see whether there are some
experimental indications for the existence of a
critical region.

II. THE EIGENFUNCTIONS AND EIGENVALUES IN
THE CRITICAL REGION

We will develop all quantities around the critical
point of the zeroth-order equation of state, that is
the van der Waals equation

s =1/(L = 8 — »/T,
in the notation used in I and II. The critical quan-
tities are given by:
s, = 1/88; I = 35; @

Instead of I, Eq. (33), it turns out that around the
critical point one can “tame” the basic Kac integral
equation [I, Eq. (10)] by the substitution

2 = (vo)'le — n.2/v, 3)

where 7. = 7(s.) = (2vo.)}/l,. This is motivated
by the fact that in the one-phase region the “tamed”’
eigenfunctions depend on the variable [see I, Eq. (38)]

z = (B/D'lz — n@/). @

If one now defines the critical region in temperature
and specific volume by the equations corresponding

27
Voo = g 0.
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to (1),
vo = vo[l + Vl(‘Ya);], ®)
= lc[l + 4 76)*]7 (6)

then one finds that B/l is of order (v8)}, so that
(4) goes over into (3). However, one must of course
still show that the substitution (3) works! We
proceed in the same way as in I. For the variable
y in the Kac equation, one makes the analogous
substitution

2 = (yd)ily — n2/)Y,
and we put
2 =2+ (Ol — ),
YIrd) ™% + 71.2/v)"] = (v)""H(),

1/12

Y(r) =

where the factor (y8) /™ is introduced in order to
keep H(z) normalized to one. Finally we put for s
the expansion*

s =3g,[1 — 3n(¥0)*"° + s:(v8) + &) + -+, @)

where the numbers s,, s, --- will depend on the
given numbers », and I, through the equation of
state, which is still given by [see I, Eq. (20)]

L= —2(s)/No(s), ®
in terms of the maximum eigenvalue A,(s) of the
Kac equation,

Making all these substitutions, introducing the
expansions (5) and (7), and developing the kernel
in powers of (y8)/* up to order (y5)*? one finds,
after carrying out the integrations over { and r
and using (2),

T 3ty — (@) etr0)™] —

+ H(z)[3A + (g)llzz{@_l - 1)( 53
(3 o) of o
o1

+5 @) ae]=0 o

where the new eigenvalue parameter A is related
to the original A by the equation

12 sysrs GH
"0

( 6)4/3 4

¢ It follows from the van der Waals equation and Egs.
55) and (6), that in (7) the coefficient of the term of order
v3)¥ must be (—3s). It is also not difficult to show that
only in this way one obtains a consistent approximation
procedure for the Kac equation.

L — 9”_1 2/3 § ( _ &
+3 (—s2 + 2 vl)(vs)‘“ L34 (10)

From (9) one sees that one obtains a consistent
approximation procedure by putting

HE) = HYG) + 0 H@)
+ @)HPE) + -

A = O(0)Y® + Qyd)™® + Elvo)* + (11)
In lowest order [i.e., (v8)*°] one gets
d: z" v
[@ —®t?
+ 6 <— — l)z + ®:|H‘°’(z) -0, (12

and in next order [i.e., (v8)*?],

[Z% _ _'f_ +2 U2y (6) (— - l)z + @:IH“’(z)

=[(>ii w7
rasts ((e-Bak-alpve.

These equations determine, in principle, the eigen-
functions H!”(z), H!"(z) and the corresponding
eigenvalues 0,, @, as functions of the constants
vy, 8, and 8.,

Turning now to the equation of state, we start
from the general expression

0 = [tz aysswn| gl |

" -
P {—(20_2@— @+ y)}fa dr 7¢"P,(x | y, 7).

By expanding », and s around the critical values,
and by using the same taming substitutions for
z and y ,one obtains:

) = o(e)] 38 — 60/6r0) [ aeeH O

+ (v 6)*{ —25(6)} f_ T dz zH® (2)HP (2)

Lo ]

From (10) and the equation of state (8), one then
finds that one must have, by comparing the result
for I with the defining equation (6),

+ o
+ 25 f_ & PHO G + ‘1—3 o, (14)
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[[ e =1 9
2@ [ aeHPOHPE)
+2 [T armOe + =0, 9)

and these equations determine, in principle, the
dependence of s, and s, on », and [,.

III. ISOTHERM NET IN THE CRITICAL REGION

Since the equation of state is expressed in such
an implicit fashion in terms of the lowest eigenvalue
and eigenfunction of Eq. (12) which can not be
determined in closed form, it is convenient for the
discussion to make use of the following physical
analogy. Writing Eq. (12) in the form

FPHO /4R + [0 — V() + FAH® =0, (17)
with
V@ = 452" — (n), = (s, — 4)/4(6)}, (18)

one sees that Eq. (12) can be looked upon as a
Schrédinger equation for a particle moving in the
potential V(z) and under the influence of a quasi-
“electric”’ field of strength F. Furthermore it is
easy to show that from Eq. (15) it follows that

L = (3)! 0,/oF . (19)

Hence [, is proportional to the ‘“‘electric moment”
produced by F, and the discussion of the isotherm
becomes equivalent to the discussion of the Stark
effect for the lowest state of the motion of the particle
in the potential V(z).

Consider first the case when F is small. Since
V(z) = V(—=z), the lowest eigenfunction H{” (2) is
also symmetric in z when F = 0. Hence one has a
quadratic Stark effect, so that I, = 0 for F = 0,
which follows also immediately from (15). By the
usual perturbation theory one finds

2
F E@ —@)0

n=1

Bu(F) = 0, —

to 2
X I:f dz zH5°)H,(.°):| + O(F*), (20)

where the 0, and H® are the eigenvalues and eigen-
functions of the unperturbed equation. Therefore
for F = 0, 3°0,/9F* < 0, and not only 80,/6F = 0,
but also 3°0,/0F® = 0. This implies that at the
critical density, that is for I, = 0, all isotherms
have an inflection point with a negative slope.
In fact one obtains from (19) and (20)

III. 63

Viz)
-(ev.)* (Gyl)i ,
' &
NN E N
_%Vlz

Fra. 1. The potential V(z) of Eq. (17) for a temperature
much below the critical temperature.
... -
0l 1,0

76)*/
462 n=l @ - ®0

2
x[ f dzzH5°’H,E°’:|, @1)

which is always negative. The isotherms have
therefore no horizontal part in the critical region.
However the behavior of the slope (21) as function
of the temperature is quite different for positive
or negative », that is, for T < T, or T > T..
Clearly, for negative », (I > T.), the potential
V(z) has only a minimum at z = 0, and for », < —1,
V(2) becomes a parabola and the eigenfunctions
become the Weber functions. For v, < —1, it is
simple to develop a perturbation method for the
0, and H!”(z) and hence for the slope (21). One
finds for », < —1

@) =91ty o] e

It is also easy to see that this is in agreement with
the equation of state in the one-phase region,

-1 _7n
S=1 5P
2__ 2
#1[1-J o ®) ”}], 23)
with

BYP =1— 2,0~ 8P,

which was given in I, See. IV. Using (5) and (6)
one obtains from (23) the expansion (7) for s with

8 = 6nl — 305 + 4 — 6LBE — 4,)7Y, 24)

from which (22) follows.

The discussion is quite different for the case
v, > 0, that is T < T.. The potential V(z) now
has {wo minima (see Fig. 1), and for », > 1, this
leads to the well-known near degeneracy of the
lowest energy level corresponding to the symmetric
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S

Fic. 2. Shape of
the isotherm below
the critical point;
Eq. (30);
- ——-van der Waals;
= === Eq. (30a).
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and antisymmetric combination of the two lowest
harmonic-oscillator eigenfunctions around the two
minima. Using the WKB method® one finds

0, — O, 2 [(2)}/x] exp [— @)1,
f T HOH® = (60)},

Only the first term in the sum in (21) contributes,
so that for », > 1,

%)
al 1,=0

The slope of the isotherm drops therefore very fast
to zero if », increases.

Consider next the case when F and therefore [,
are not small. Again, to discuss s;(/;, »,), one must
distinguish between the cases »; < —1 and », > 1.
For temperatures above T'. (v, << —1), the “potential”’
function V(z) — Fz has still only one minimum
at 2 = 2o, determined by

1
— ey exp [~ @),

11

(25)

52 — e — F = 0. (26)

The “energy” 0, is then given approximately by
@, = V(z) — Fzy + 2'§(z§ - 21’1)*; @7)

where the last term represents the ‘“‘zero-point
energy”’ 3hw of the oscillation around z, [with
E = 1, m = %, potential energy 1o’z — 2,)° =
3V /de*)o(z — 2,)%, so that w = 2}(d*V/de?)} =
27422 — 2,))Y]. From (19) and (27) one gets

@ = —2, + 278, — 2)7 92,/0F
= —z + 2%20/(% - 2”1)§;
using (26). In zeroth approximation, the minimum

2z, = —(2)¥,, and substituting this in (26), and
expressing F in s, by (18), one obtains the first
three terms of the equation of state (24) which
also follow from the van der Waals equation. One
can say that these van der Waals terms correspond
to the “classical” approximation of the Stark effect.
In first approximation, z, becomes

§ Compare D. M. Dennison and G. E. Uhlenbeck, Phys.
Rev. 41, 313 (1932).

7 = =D — 26)'L/Bh — )1

and this leads to the last term in the equation of
state (24), which represents therefore, so to say, the
first “quantum” correction to the van der Waals
equation. Note that the corresponding result for
the energy levels 0, is given by

0, = —&l + 2w, — »,/BE — )}
+ In@BLE — o)},  (28)

and that in this approximation the eigenfunctions
are the Weber functions D,(y), where

y= 2—9(3& - 4”1)}{2 + (3/2)”1}- (29)

It is also not difficult to find the higher approxima-
tions. The results are collected in Appendix I, since
they are needed in Sec. IV.

For temperatures below T.(», > 1), the potential
function V(2) — Fz can have fwo minima which will
be of unequal depth and the sign of F [or of (s, — 4)]
determines which minimum is deeper. If in zeroth
approximation we assume again that the energy
0, is given by the value of the potential function
at the deeper minimum, then one finds (in exactly
the same way as above) for the equation of state

— 2% sign (s, — 4)
— (s; — 4)/120, + 067, (30)

and this follows also from the van der Waals equation
[first three terms in (24)] plus the Maxwell rule
(see Fig. 2). Again one can say that the van der
Waals equation is the ‘“‘classical” approximation
of the corresponding Stark-effect problem. Especially
the horizontal portion of the isotherm at s, = 4
is due to the fact that the deeper minimum switches
from the right to the left when F changes sign.
Adding to the minimum energy, the zero-point
energy does not change the qualitative picture; the
horizontal portion remains. The finite slope of the
isotherm, which we discussed before [see Eq. (25)]
is due to a second “quantum mechanical”’ effect,
namely the penetration of the barrier between the
two minima if they become of almost equal depth.
By using the WKB method one can show that
this penetration effect changes Eq. (30) to

L= —2d(s, — 4)/[(s, — 4 + €T
— (s, — 4)/12,,

ll=

(30a)
where

e = (2Y/7) exp [—(20)"]
and this agrees with Eq. (25).
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So far we have discussed the isotherm net mainly
for v; < —1 and », > 1. Although it is qualitatively
clear how the isotherms change going through the
critical region, it is difficult to make precise state-
ments if », is of order one, and it is clearly not
possible to answer unambigously the question of
what the shape of the coexistence curve is in the
critical region. However, it seems reasonable to say
that, because of the symmetry of the function
V(z), the critical density is not changed if vé is
finite, but that the critical temperature is lowered
because for », > 0, V(z) will have two minima,
which is somehow an indication for the separation
of the two phases. One can then define the new
critical temperature as that value of », for which
the lowest energy level is just at zero, which is the
value of V(z) at the maximum. To determine this
value one can use the variant of the WKB method
which was developed by Kramers and Ittmann.®
With this method one finds that the relation between
v, and O, for I, = 0 and 6, close to zero, is given by

b= @—’é)' + %l (%)Tln 36m) + C + ’5'} e

where A = 20,;! and C is the Euler constant.
Hence », = (&m)} = 0.702 if ©, = 0, so that the
critical temperature changes by AT, with AT./T, =
0.702(v6)%. For still lower temperatures, that is,
for »; > 0.702, the lowest eigenfunction will have
two maxima. It is tempting to identify the positions
of these maxima with the value of I,(3)! for the
incipient “gas’” and “liquid” phase. Doing this
one obtains

L=\ (32)

Eliminating [A] between (31) and (32) then gives
for the extrapolated coexistence curve’ the equation

_ () L 7 |
v1—<16) +48[1n(367r)+0+2:|l1

= 0.702 + 0.143%. (33)

This is still a parabola, but it is appreciably flatter
than the van der Waals result », = 1} (see Fig. 3).

IV. THE TWO-POINT DISTRIBUTION FUNCTION IN
THE CRITICAL REGION

To determine the long-range behavior of the two-
point distribution function in the ecritical region

¢ H. A. Kramers and G. P. Ittmann, Z. Physik 58, 217
(1929). See especially Sec. 6.

7 Note that the equation for the coexistence curve as
derived from the van der Waals equation plus the corrections
of O(v) (see I, Sec. 4) diverges at the critical point, so that a
direct extrapolation is not possible.

q.(33)
/m d.Waals

F1c. 3. Shape of the coexistence curve near the critica
point; van der Waals; - - — — van der Waals + v cor-
rections [Eq. (23)]; -—-— Eq. (33).

we will follow the same method as used in II,
Sec. V for the one-phase region. However, since
in the latter region 7i,(z; I) decays to 1/I* according
to the Ornstein—Zernike exponential exp (—Byz/l)
[II, Eq. (54)], and since in the critical region B/l
is of order (vy8)!, one should expect that in the
critical region the range in z is of order 1/v(yé)3.
We therefore replace, in the basic formula [II,
Eq. (9a)] for the Laplace transform of 7,(z; 1),
the variable ¢ by ov(y6)? and we start from

! f " g a(z; 1) exp [—ov(yo)ia]

_ = )\o(s) 2
=1+ X5 TG + oo

34

b= [ do ol 9ulais + ovra).

We first compute b2 up to order (y3)}. Introduce
the variable z of Eq. (3) and the expansion (11) for
the eigenfunctions. Notice that s + oy(y)! is
obtained from the expansion (7) for s by adding
8¢ to s, so that the equation (12) for H is not
affected by the change of s to s + oy(y8)}. Using
the orthogonality and normalization relations, one
obtains

b2 = 8,0 + (va)*{ f ) dzH" (z, 9)
2
X [H @z, s + oy(v&))) — HV (e, S)]}

+ 2(y8)!5,0 f_ ) dz{H (z, s)

X [Hs Gz, s + ov(v8)') — HP (2, 5)]
+ Hi (@, s)[H @z, s + ov(v8)') — H (2, 8)]}. (35)
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The second term can be calculated as follows. From
Eq. (13) for H™ and the fact that H® and O,
are not affected by the change s — s + ov(vd)?},
one shows that

AN :l
[dz’_48+ +* oL Fe+ 0,
X [HP"@, s + oy(v)) — H"(, s)]

= [~ @z — 00) + QUOIH."C, 9, (36)

where Q,(c) = Q.(s + oy(y8)}). Multiplying (36)
with H” (2, s) and integrating gives for n = 0

f“’ dzH" (2, ){H (2, s + ov(v8)) — H (2, 9)}

= —(g)*(_) ‘TO[ de zH{® (z, )H (z,5). (37)
1] —

To calculate next the terms in (34) containing
the eigenvalues, it turns out that we need to extend
the expansion (10) up to order (y8)°. This leads to

M) — MG + ov(v8)) = w(s.)
X {3((9,. — Qo + a)(¥8)"° + 3[Q0) — 20)](v8)**
+ 3|:E..(U) 2(0) + — V10](’Y’5) + - } )

which gives

4/3 )\0(3)
300 S = MG + G
_ a _ (vd)ls
T e+0,—0, (406, —0,)°
(v8)%s’
X [Q,,(o‘) - Q0(0)] + (0’ + @n _ @0)2
x{#le s B (14 020
[2.00) — QO _ Eulo) — z«»}_
+ ole + 0, — 6,] o (38)
Notice also that from (36) for n = 0 one gets,

by multiplying with H” (2, s) and integrating,

(o) — 2(0)
= -3 ‘/‘—“" dz zH" (2, 8)* = oly, (39)

where we have used the equation of state (15).
Substituting all these partial results in (34) one
finds after some simple rearrangements

Loy(vo)t fo " exp [—w(vﬁ)*x][ﬁz(x; n— l—i]

;2 ag
('Y‘» Za‘-l-@ -0,

n=1

X [ f dzzHé"’H,‘.‘”:I + (O)'R.

Here R is a collection of terms for which we refer
to Appendix II, where it will be proved that in
fact B = 0. Of course Eq. (40) is valid only in the
critical region, so that ! is always given by Eq. (6),
and the eigenvalues 0, and eigenfunctions H:* must
be determined from Eq. (12). With B = 0 one can
invert the Laplace transform, and one finds

2 (75)

(0) 7y (0)
3 n-l |:-/. dz HO H ]

X exp [—(0, — Olyz(v8)]. (@D

This is the final result. It shows that in the critical
region the decay of 7i.(z, I) to the uncorrelated
value 1/I° is represented by an infinite series of
decreasing exponentials which are all of order (y3)?
and have ranges of order 1/v(yé8)*.

Before starting a detailed discussion of Eq. (41)
we conclude with some remarks.

(a) The fluctuation theorem [see II, Eq. (34a)]
can be checked as follows. From (41) one gets:

fo ) dx[ﬁz(x, D) — H - % lg (8

- (0) gy (0)
X g —®0U dz 2H HY ]

and from (21) one sees that to order (y6)~!, the
right-hand side is equal to (—21%)/(8s/8l) and this
is also the leading term of the fluctuation integral.

(b) In the range z ~ 1/v, Eq. (41) gives, to
lowest order,

(40)

1-1,2(1), l) = +

1 2
oz, 1) = 5% + =53 (o)}
I 31l

{ >4 dete o+ (z)*lllHé°’H‘°’}

- }— + o0t [ al+ @UIEVEY, @)

where the equation of state (15) has been used to
extend the summation from zero to infinity which
then allows the application of Parseval’s theorem.
One can derive (42) also directly from the basic
formula [II, Eq. (9a)] replacing ¢ by ¢y and expand-
ing to order (vé8)!, but we will leave this to the
reader. Eq. (42) clearly shows that in the critical
region 1/v is not the ultimate range, since in this
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range 7i,(z, ) still differs from 1/I* by a constant
of order (vé)!.
(¢) To check the virial theorem [see II, Eq. (40a)]

s--7+¢5'n2(6+ l)—-vovf dx xe A, (x; )

in the critical region, one still needs the correction
of order (v8)! in the short-range behavior of 7,(z; I).
In Appendix ITI we prove that

1

(8", 1) = =9t ZgTi (vo)!

x [ e + QUPHPCY.  (9)

Using (42) and the expansions (5), (6), and (7)
for », I, and s, it is then easy to check the virial
theorem up to order (y8)%.

V. DISCUSSION OF EQ. (41)

We will show that Eq. (41) goes over into the
results obtained in II for the long-range behavior
of 7i,(z; [) in the one- and two-phase region.

Consider first the two-phase region. We found
(see II, Sec. VI) that there, in the range z ~ 1/v
and up to order v,

ll (1] ll - 6 * Bl
oz, 1) = b I:F + i—ﬁ&_)z exp <-r 'Yx>:|

Qla—64 Bq
+sq [FJFV( - Mem(—fvx)],

where £, & are the mole fractions of the liquid
and vapor phase which have the specific volumes
l; and 1, so that

L+¢& = 1, Ellt =+ fnla =l
Using the expansion (5) for », and the expansion
(6) both for I, and I,, one finds

1 2

la, éﬂ) TS JN

I\, ", l L
Furthermore, near the critical point, §,; = —2
and [,, = 424, since the van der Waals coexistence
curve is given by I2 = 4»,. Hence B/l = (y8)}(2v,)}
both for the liquid and the vapor, so that the two

exponentials in (44) become identical. Finally one
has

€29

l or g, (45)

L= &l + &L, = 24 — &),

which gives
z,} [1 + b ]
2
&
Substituting all this in (44) one obtains

2 tH
7-1,2(23, l) = %2' + :9; (’Yl?)

1
— 3
{61’1 2l1 + (21/1);

X exp [— @)y 6)*90]}

This follows also from Eq. (41) when », > 1. Let
us verify it only in the symmetric case (I, = 0).
We saw in Sec. ITI that then the energy levels
O, are a series of narrow doublets corresponding
to the symmetric and antisymmetric combinations
of the oscillator eigenfunctions around the two
minima. In the series (41) only the odd values of
n contribute, and in first approximation only n = 1
and n = 3 need to be considered. One finds

0, — 0,20, 0, — 0,2 @)
f dzzHOH® = (60}, f de zHO HO =~ (2)7%;

(46)

so that Eq. (41) becomes equal to (46) with [, = 0.

Consider next the transition to the one-phase
region, which is of greater interest since more
detailed results are available [see IT, Sec. V, Eqgs. (54)
and (55)]. For »,<<—1, or better, for (3I;—4»,)>>1,
we found in Sec. III that in first approximation
[see Eq. (28)]

0, — 0, = In(38 — 4,

and that the eigenfunctions are just the Weber
functions D,(y), where y is given by Eq. (29).
It is then easy to verify that the first term of the
sum in Eq. (41) becomes

3% (372(%—)1)’% exp [—3BH — w)hva(vo)l],

and that this is also precisely what the Ornstein—
Zernike term [see II, Eq. (54)]

[yl — 8)'/VB] exp [—(B/l)ya]
becomes in the critical region up to order (vé)t.
One only has to use (45) for B/, and replace »,
and ! by their critical values.
In the next approximation, using the results
derived in Appendix I, one finds

®n - ®o = %’”'(3[‘; - 4”1)i

1
2080 — 4,)
and up to order €,

2L

+ |:n2+n——3—ll———(5 -n)],

+ o
[ amE® = g8 - £
E 1%, — 5l’]
x{nll:l-l_d 3l2_4111

el,
- 23} 61—2_4—"—) ..z} )
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omitting terms which do not contribute after
squaring. In this order, therefore, the first and
second term of the sum in Eq. (41) contribute.
One obtains

1 (vo)t [ 4 [ 1

= l2 3 (3l1 - 4 1)1/2
8 51 — 12, ]
9 (3 — 4n)°
X exp [—3B8 — 40)"ya(y8)')
L 09732 4

E 9 BEF — 4,)°

X exp [— (36 — ) *yz(v8)'] + - @7

and one can verify that the last three terms in
(47) correspond precisely to the three corrections
of order 4° to the Ornstein—Zernike result in the
one-phase region [see I, Eq. (55)] if these corrections
are computed in the critical region up to order
(v8)!. This confirms the general picture mentioned
in the introduction, and it shows again that the
Ornstein—Zernike exponential is the leading term
only outside the critical region.

Since in the experimental investigation of the
critical opalescence-one observes the Fourier trans-
form of the two-point distribution function, it is
of interest to discuss also for our model the function

fia(x; 1) —

é l? + 4:1’1 1/3
T 3EE — a0 -

i® = [ dz et

.y f_ j de e""|:'2(:c ) — ]

For the Ornstein—Zernike exponential (in any
number of dimensions), §(k) ~ 1/(k* + b®), where
b® is proportional to the compressibility, and it is
therefore customary to plot 1/§(k) = f(k) vs k°,
since this should be a straight line intersecting the
f(k) axis at a point which goes to zero at the eritical
point if the Ornstein—Zernike theory is correct.
Since Eq. (41) is of the form

> ae,

n=0

g(x) =

where the a, and b, are positive, we obtain for our
model, in the critical region,

©

2a,b,

Zb2+k2

f(k) = k) =
For %k* large compared to the b2, f(k) is almost

linear in ¥* In fact,
3

k) = 22 . +2(E b,,)

(48)

To study the curvature for smaller k°, note that
one can write

b= St
(Z bl +k2>[z(b2+k2 ] ’

where the primes denote differentiations after &
Hence, by Schwartz’s inequality, one concludes that
f’ < 0, so that the curve is convex towards the
k* axis.

For the discussion of the temperature dependence
of the Ornstein—Zernike plot, we will restrict our-
selves to the case that I, = 0 (critical density) and
that », < —1. One then can use Eq. (47); since
the last term vanishes, one can write g(z) as one
exponential by putting the second term back in
the exponent, and one obtains

bix

g(:v) = @€ ’
with

_2 oyt 1
G =B (=) [1 premmy: iy ]

Y
b = (‘75)4/3(—'6—)‘[1 +E—IV—1)§+ :I

Since the slope of the Ornstein—Zernike plot is
1a,b,, one sees that the temperature dependence
drops out up to order (—»,)}, so that the straight
parts of the plot are very nearly parallel. From (48)
one further sees that the intersection with the
f(k) axis is b,/2a,, or

10) = Hyd)(=w)[1 + 1/2(=w)* + --].

Since — (y8)'», = (T — T.)/T. to this order in (y)
one sees that, in first approximation, f(0) ~ (T — T',)
which is the Ornstein—Zernike result. However,
closer to the critical point, f(0) bends upwards
and one can show [using the exact Eq. (41)] that
f(0) is finite for T = T.. The deviations from the
Ornstein—Zernike theory which follow from our
model, look therefore about as shown in Fig. 4.

Finally we will discuss briefly the so-called specific
heat anomaly.® It is well known that according to
the van der Waals theory the specific heat at
constant volume is constant (= 3k) in the one-
phase region and increases suddenly if one crosses
at a fixed density into the two-phase region. Espe-
cially at the eritical density one finds

8 We are indebted to Dr. J. V. Sengers for pointing out
to us the interest of discussing this anomaly for our model.
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0 for T>T.,
k(1 — 23(T. — T)/T. + -]
for T <T..

Since the experimental results are quite different
(this is the anomaly), it is of interest to see what
the implications are of Eq. (41) for the specific
heat. We start from the equation

Ac, = 49)

+o
X [l + L@THOC, (60
which follows from the general result [II, Eq. (41)]
by introducing the expression (42) for n.(z; ).
Since in the critical region

8 __x 1 9
T ~ " kT vou(vd)t ow,

one obtains

_ (%) _k_
Ae, = <a ), 2
(79 8 (o)
B 3k< 61’? 1, + 8 ll a”f z;’ (51)

by differentiating Eq. (12) for H{” (z) after », at
constant [,, and by using the equation of state (15).
This shows that our model gives corrections to the
specific heat which are of order &k in the critical
region, so that in this sense our model gives an
anomalous behavior of ¢, To discuss Eq. (51)
further, consider first the case I, = 0. It is easy
to show that then

2
Ac, = —3k<a ®2°)
o /4,

3]0 2 77(0) (0):|
";@ _@o[f & 7HOH

and by using the results of Sec. III one finds for
v << —1

§ 27700)2
=1 61/1.[ dzz’Hy ' (2, 1, 1))

Ac, = 3k[1/(=w)}] + -
and for », > 1°
Ac, = 8k — $k[1/@)N + -

At the critical density our model therefore smooths
out the discontinuity (49) in ¢, which follows from
the van der Waals equation. Next, consider the

? To derive this result it is simpler not to use (51), but to
go back to the general result [See II, Eq. (41)] and then
use Eq. (46) for 7i(x; ).

III. 69

£ (k) /
K2 Fig. 4. Ornstein-
Zernike plot according

f(o)/

to Eq. (47).

e

L (T-T /7,

-

dependence of Ac, on [, at fixed »,. From (51) follows
[8(ac,)/0L]),. = §k(@7s:/ v, (52)
using
8(80,/4L,),, = 1,(3s,/dl,),.,

which is a consequence of (19). Eq. (52) is just a
transcription of the thermodynamic formula

(0c./ov)r = T(&°p/dT™),,

and it shows that, at the critical density, Ac, has
always an extremum, because (s; — 4) is an odd
function of I, so that 9%,/8»* is zero for I, = 0.
Furthermore, for small I,,

Ac, = Ac,(l, = 0) + Lesk(8%s,/} 0l)rmo + -+
which gives for », < —1

Ac, = Ac,(l, = 0) — &Zk[L/(=»)""1 + -+,
and for »; > 1

Ac, = Ac,(l, = 0) — (27k/87)(2v.)}

X exp [—@)N4 + -+,

so that the extremum is probably always a maxi-
mum. The maximum becomes sharper when one
approaches the critical point from the one-phase
region, and then becomes rapidly very flat in the
two-phase region. Presumably, the width of the
maximum is smallest for », of order one.

VI. GENERALIZATION OF EQ. (41)

In order to show that qualitatively the behavior
of the two-point distribution function in the critical
region does not depend sensitively on the form of
the attractive potential (provided it has a long
range), we will generalize the discussion of Sec. IV
to the case where the attractive potential consists
of a sum of m exponentials. Since the formulas
are very long, we will only present an outline of the
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calculations. As in II, Sec. VII, we write the attrac-
tive potential in the form

Pare/ KT = —xy Zlv.- exp (—vo.z),

where v; = a;/kT, and we start to tame the Kac
integral equation in the same way as in II, except
that we replace » by 5. = 7(s.). One expands
the van der Waals v, = J_; (v:/0.) [see II, Eq. (79)]
and s as in (5) and (7), and one then introduces
new variables y,, by an orthogonal transformation
which diagonalizes, just as in II, Eq. (75), the
matrix

M;; = ‘T?‘S-‘i - 47-'0':'(0-'0;)5;
except that now,
2 (le — 8" _ 8. _ v _ v
£ ol T 270,86 owe. o]

where v;, = o,/kT.. It follows that D> ¢; = 1,
in agreement with II, Eq. (80), since B = 0, and
from the discussion given in II, this implies that
the smallest eigenvalue 4,, = 0, so that

m—1
Z M"izizi = kZ Akyﬁ-
i3 -1

The variable y,, plays a special role; only in this
variable one must make the second, or critical-
region “taming”’,

Yn = Z/('yﬁ)*,

and one then gets a consistent successive-approxima-
tion scheme with the parameter (v8)"°. Up to
order (v8)*° one obtains'

78 2 (a’:— yih)+( a)“”[%h
2y (- 5 o]

ZA,,yk+Ah-0

W),

43 M2Zh N
+ (y9) 26)" : (53)
which replaces Eq. (9) up to this order. In (53),
h is a function of ¥y, ¥2, *** , Ym_1, 2, and the new
eigenvalue A is defined by

=1+ 260 + (o - )

roo(-2a+8a) - X 6y

32 w(s,) ’

10 In this equation, » should not be confused with
»_= a1/kT. From now on, only the critical quantities ».,
v}gﬂl ?Ex)))pear and » will always mean the number defined by

q.

which replaces Eq. (10). Finally the quantity u is
defined by

» 2
> dldte = (3 oddan) =,
i=1 i=1

where a,; is the orthogonal matrix, which diagonalizes
M,;. By introducing instead of the y, the new
variables w, by

u = w{l + [u2/2(6)")(v0)},
Eq. (563) can be written (always up to order (v4)

in the form
m—1 2
_B [ P }
’75|:1 'é’{ ('Y‘s) ] l; [awi 4 wih

4/3 _az_h _ (l_l-z): Vl(“z)’
+ (r9) [azz o h o+ ML

4/3)

+‘g‘§(§f— Za.-)h:|+Ah=0,

and hence it becomes separable. It is easy to verify
that (55) is fulfilled by putting

(55)

A=rs S Al + 1) + 0G0,

(56)

m—1
h(wl c o Whey,y Z) = kHl. Nntan(Azwk)H(O)(z))

if H” () and O satisfy the equation
) ) [
{dz’ Twm Tty Zl 7
m—1
+ > Ak + %):I + @}H(O) =0, (&7
k=1
which is of the same form as (12). In fact by introdue-
ing the new variables
b = 1,1#—2/3’ @ = ®“—4/3,
m=1
& =4+‘];(81—420‘+22A*>

i=1 k=1

.2/
2 =zu 58)

and by putting H” (z) = ulA(2), Eq. (57) becomes
2 4 2 A
m—1
+ Z Ak”k) + @njlgn(é) = 0)

which is quite similar to (12). The only difference
is that, because of the extra term containing the
4, the eigenvalues @, and eigenfunctions A, will
depend on the whole set of “quantum’” numbers
n = n,, ny * -+ N,. Note still, that with the definitions
(58) and with

(59)
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¥ = wy, (60)

Eq. (5) for the critical temperature region can be
written as

Vo = VOc[]- + '71('?5)!]’

while Eq. (7) for the pressure region becomes

s = sc[l — 30,50 + (él — 4 4+ 4 ; g;

-5 4149 + 868" + ] ;

with 8§, = s,u”*° Finally, Eqs. (54) and (56) for
the eigenvalue A, can be combined to

A8 _ + %ﬁl(ﬁ)* + 370

w(sc) ~
x[l—%—i;Ai(an+%)]
w3 _afy _ 34 Q2>
+('95) < 30, 832+32ﬁ1 +

Clearly it follows from (59) that the mazimum
eigenvalue and -corresponding eigenfunction, for
which the whole set n = 0, obey in the capped
variables exactly the same equation as before.
Therefore the equation of state is still determined by

f_ a0 = —@M, 61)

where [, is defined by:

U= 1[1+ L(so)},

similar to Eq. (6).

Turning now to the behavior of the two-point
distribution function in the range of order 1/4($6)}
up to order (48)}, it is not difficult to prove that
also in this case the calculation goes in the same
way as before. The starting point is the obvious
generalization of Eq. (34). One then shows that
only the terms with n, = n, = --- =n,, =0
contribute to order (48)!, and since in this case
the equation for Hy.o...o, nn(8) is the same as Eq.
(12) for H,(z), one obtains, in complete analogy
with Eq. (41), that, in the general case,

SB[ e ]

X exp [—(0, — O)z9(58)Y],  (62)

where H, is the same function of 2 as H® is of 2z
in (41), and O, is equal to the ©, occurring in
(41)."" The only essential change is therefore the

1t These 0, should not be confused with the ® occurring
in Eq. (67), which is related to ® by Eq. (58).

fa(x; ) = zli +

replacement of ¥y by 4 = wy. Now we saw in II
[see the equation following (85)] that, at the eritical
point,

Gin = (@/o)/[ 2 e/ ).
Hence,
n 2 ¢ 2 (ai/a)
W= ol = Zl(c.-/af) B Z (/o)

since ¢; = (a;/0:)(1/vkT). Therefore we can write

1 re 2
1 5 j; dr z ¢attr(|x|)

= 27 +oo
f_ dr ¢’attr(|xl)

[ 4

so that 1/4 is just the range R of the Ornstein—
Zernike theory [see II, Eq. (72)]. The argument
given in Sec. V, showing that the first term of the
series (41) becomes the Ornstein—Zernike exponential
in the one-phase region, can therefore be repeated
in exactly the same way in the general case. We
have not investigated in detail what happens in
the higher approximations, but it seems very likely
that qualitatively at least everything will remain
the same.

»  (63)

Yl

VII. CONCLUDING REMARKS

It is well known that the Fourier transform of
the Ornstein—Zernike exponential [the function §(k)
of Sec. V] is independent of the number of dimen-
sions, and one may hope therefore that the deviations
from the Ornstein-Zernike theory which follow from
our model with regard to §(k) will at least qualita-
tively be the same in three dimensions. This is
confirmed by the results of P. C. Hemmer, who has
succeeded in generalizing to three dimensions the
discussion of the long-range behavior of the correla-
tion function reported in II.'* It is therefore of
interest to inquire whether there are any experi-
mental indieations of the deviations from the
Ornstein—Zernike theory discussed in Sec. V [see
especially Fig. 4]." Unfortunately, at present the
experiments are still not decisive. The recent work

12 This work will be reported in Part IV of this series.

13 The question of the validity of the Ornstein—Zernike
theory close to the critical point has been discussed especially
by M. 8. Green (J, Chem. Phys. 33, 1403 (1960)]. Although
we do not agree with his theoretical arguments, we are very
much indebted to Dr. Green for telling us about his work,
and about the experimental results indicating deviations from
the O-Z theory. Compare also the review by O. K. Rice in
Thermodynamics and Physics of Matter (Princeton University
Press, Princeton, New Jersey, 1955), Sec. E, where one finds
s very complete bibliography.
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by Thomas and Schmidt'* on the critical opalescence
in Argon does not show any deviation from the
Ornstein—-Zernike theory. On the other hand, devia-
tions have been reported for various binary mixtures
and these appear to point in the same direction as
those shown in Figure 4.'° It seems to us of great
interest to see whether more refined experiments
will show deviations from the Ornstein—Zernike
theory, since such deviations near the critical point
are perhaps the clearest indication of the existence
of a critical region.

With regard to the specific-heat anomaly, the
experiments'® clearly show that ¢, is nof a constant
in the one-phase region, and that it has a pronounced
maximum as function of the density at constant
temperature near the eritical point. The maximum
occurs close to the critical density, and this aspect
of the anomaly agrees therefore qualitatively with
the results for our model. However, the temperature
dependence is quite different. Instead of smoothing
out of the van der Waals discontinuity predicted
by our model, recent experiments for Argon'” show
that at the critical density, ¢, has as function of
the temperature an asymmetric logarithmic sing-
ularity at the critical temperature. It seems therefore
that in three dimensions, one has both a critical
region and a critical point! Whether this is an
universal phenomenon, more or less independent of
the intermolecular forces, remains to be seen.

APPENDIX I. HIGHER APPROXIMATIONS OF THE
EIGENFUNCTIONS NEAR THE ONE-PHASE REGION

For a systematic application of the perturbation
theory to the basic equation (12) when », € —1,
it is best to replace z by the variable y of Eq. (29).
Eq. (12) then becomes

2 4
[(—%3 — (B8l — 4p)™? g— + (BIF — 4vy)™*

l13

WY salkw -0, @

where

K@) = Gh —»w)H @),

% J. E. Thomas and P. W. Schmidt, J. Chem., Phys,
(to be published).

1s See especially D. McIntyre, A. Wims, and M. S. Green,
J. Chem. Phys. 37, 3019 (1962),

18 The most complete data are for Argon, but other sub-
stances show the same behavior. See J. M. H. Levelt, Dis-
sertation, University of Amsterdam, 1958.

17 M. I. Bagatskii, A. V. Voronel, and V. G. Gusak,
Zh. Eksperim. 1 Teor. Fiz. 43, 728 (1962). We are indebted
to Dr. M. Fisher for pointing out this reference to us.

a = g{ (3lf - 41"1)—'*(‘;l -1+ %li - %Hlx) ’
(A2)
312 — 4p)7?

3 3
X(2®+l1_'3_2l:+z :Vl_%l'h)'
For the small perturbation parameter, choose
€= (3l§ - 4"1)_*

Note that 1,/(3 — 4»,)! is always of order one.
Write (A1) in the form

2 2 4
[d_2 -y (1 -
dy 6
+ aldy + 0(e)]K(y) = 0,
and expand
K@) = KW + K@) + K@) + -,
ale) = ap + ey + € + -,
19(6) = 0(0) + 61’(1) + 620(2) + R
In zeroth order, one gets
[d*/dy* — 3" + ay + 81K = 0. (A3)

Since the equation of state (15) implies that for
the ground state

f_ dy yKo(y)* = 0, (A4)
it follows that a, must be zero, and hence
K(O) —
» () = N.D,(), (A5)

0)
4, =n+ 1.

In first order one then gets

&z l:| W
[dyz 4+n+2 Kn (y)

[ < 4V1>—§ y3
3l 3
Since K% (y)*is symmetric in y, multiplication of

(A6) with K;* and integration over y gives

3,0 = 0.

oy — o:“]w. (46)

(A7)
For n = 0, one gets from (A6)

1 AN
2o =1(1-2)"pw

+|(x

4, \7}
- 3_%) + al]D1(y)-
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Since it follows from (A4) that
f dy yK;" K" = 0,

one concludes that
a = —[1 — 46/ (A8)

From (A2) together with (A5), (A7) and (AS8) one
obtaing the results (24) and (28) for the equation
of state and the energy ©,. For the first-order
correction to the eigenfunction, one then gets
from (A8)

K () = N.‘< 2

332) [§ Dyss + 0Dy

—nn — V)D,_, — 7.‘_(n_:_1§?.7’_'"_2) Dn—s]'
In second order one obtains
& v .1.] @0 ._( 4”1)
[dyz - 4 +n + K. (?J) - 3l1
2
X ( - é—) K."(y) + <— - ay — 0‘2’)1(“”( ),
(A9)
from which one finds
08 =0 +n+} — [BE/BL — 4))]

0, 2,49
x (19, 2at+d), @)

and from (A4) one concludes that

f dy y(Kél)z + 2K(§0>K¢§2)) - 0’

which leads to @, = 0. One then can determine
K (y) in the usual way; and so on!

APPENDIX II. COMPLETION OF THE PROOF OF
EQ. (41)

The quantity R left undefined in Eq. (40) is
given by

_2_ - 0(0'_®n+®o)[ e (0) (o)]2
R =g e [ azemm;

+ 2 ﬁ de Hé”’{Hé”(z, s+ ov(vo)) — HS”}

+2 f dz H“’{ P, s + ov(ye)h — é“}

_ Eo(a) - Eo(o)

2

) (A1)

miS

where the arguments of the eigenfunctions which

73

are not indicated are always meant to be 2, s. This
can be simplified by using the fact that

b=

n=0

Substituting (35) ‘and using (37) shows that the
second and third terms in (A11) are equal to

(0) 7 (0)
Z(@ _02 [f dzzH,"H, :l

so that one gets

- —2. 5 1 - @ o |
R=—%r §=1® . dzzH,"H,
_ Eolo) — Eo(0) _hn,
- ) (A12)

One now has to caleulate Eo(s) — Eo(0), for which
the equation for H.”(z) is needed, which requires
the extension of the expansion in Eq. (9) to order
(v8)®. We will not give the explicit expression, but
only note that the general form of the equations
for the successive order eigenfunctions H® () is

LH? =0, (A132)
LH® = LH®, (A13b)
LH? = LHP + LHY, (Al13¢)

where the operators L, and L, can be read of Egs.
(12) and (13). The replacement of s by s + oy (y8)!
does not affect L, but changes L, and L,, and we
indicate this by writing L.,(c), Ls(s) for the new
operators. The eigenvalue =, occurs in L, and to
evaluate Zo(s) — E,(0) one needs Li(s) — L,
From the extension of the expansion (9) to order
(v9)*? one finds

20

[Ls(o) — L3]H(§°)(z) “"zzHom( )

= [Eolo) — E(0)]H"(2),

so-that

Eolo) — E(0) = =— f de 22 H?

- f dz HO [Ly(o) — LH®.

The last integral can be transformed with the help
of (A13c), and then one gets

= (d) EO(

o 277(032
‘—f dz 2 H

+ f de HO[L)H G, s + ov(y)) — LHED]
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= "+ o®) [ dHPHY - o@)
X [ deHOEPE, s + ovlri) — H)

+ [t BOLIES G, s + ovtra)) — B,
(A14)

where we have used the equation of state (16),
the relation

La(o') =L, — 0'(%)’3 + Q0(0) - s20(");
and the fact that

(Al5)

+ o
.[amwxmww=o

for s’ = sand for s’ = s + oy(yd)L
Substituting (A14) in (A12) one obtains

R = _.2_6 i 1 I:fw° dZZH(O)H(O)]z
3 nw=] @,. - ®0 - 0 "
2 } e (0) 7y (1)
—\3 f_ dzzHy H,

2 } e (0) (1)
+(3) [ aeHOHPE, s

+ ov(v8)Y) — H"]
+
— ;1- f &z HOLIH® G, s

+ ov(y®)Y) — H{'Y. (A16)

Now express H(z, s + ov(v8)}) in terms of the
complete set of functions H”. From (A13b) written
with s replaced by s + ov(v6)}, one obtains

HP(@, s + ov(v6))
@ H,(,O)
=-2g o,

Eliminate in this way all the functions H” from

+ o
f &z HOLy()HY.

the expression (A16) for R. Using again (A15) and
the fact that the operator L, is Hermitian, one finds
the desired result

R =0.

APPENDIX III. PROOF OF EQ. (43)
We start from the equation

€

—ad +oa i
6" = s [ e ay v 3 |

X P,(z l Yy, 6) exp {%(VO’Y)*(Q: + y)}’ (A17)

which is an exact consequence of the general formula
[see II, Eq. (28a)] for the Laplace transform of
fiz(z; 1). To show this, multiply Eq. (28a) of II
by o exp (¢6) and go the limit ¢ — . The left-hand
side becomes I7,(3"; I). Using in the right-hand side
the series [see II, Eq. (29)] for the resolvent R,,,,
and the expression [See I, Eq. (9)] for the kernel
K,..(z, y), it is easy to see that the first term of
the series leads to (A17) since

lim Ue’apa(x, y) = e_.BP'r(z I Y, 0),

and that all the further terms in the series vanish
in the limit ¢ > «,

One now ‘‘tames” the integral in (A17) by the
same substitutions as used in Sec. II, replacing
the variables z, y by z and ¢. Expanding the integrand
in powers of (v8)}, using the expansions (5), (6),
(7) and (11) for », I, s, and the eigenfunction
H(z), one finds up to order (y8)}

1
ﬁ2(5+; = 2_3l [1 - %11(75)*

+io0 [ esmoer], s

where also Eqs. (15) and (16) have been used.
It is easy to verify that, to order (vs)}, (A18) is
equivalent to Eq. (43).
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