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For the same one-dimensional fluid model discussed in Part I, we have derived general expressions
for the two- and three-particle distribution functions. It is seen that these distribution functions depend
on all the eigenvalues and eigenfunctions of the basic Kac integral equation, and the dependence
is so transparent that the generalization to s particles is obvious. The fluctuation and virial theorems
are discussed and shown to be consequences of our general formula. In the van der Waals limit,
the behavior of the two-point distribution function is discussed, both for distances of the order of
the hard core and for distances of the order of the range of the attractive force. The long-range behavior
is, in first approximation, equivalent to the one-dimensional version of the Ornstein~Zernike theory,
but only in the one-phase region and not too near the critical point. In the two-phase region, all
distribution functions are linear combinations of the two corresponding distribution functions of the
saturated vapor and liquid, with coefficients proportional to the mole fractions of vapor and liquid.
This is shown for our model; we also give arguments for our belief that these relations are general,
and express the geometrical separation of the two phases. The relation to the Ornstein-Zernike theory
is discussed in more detail, especially in connection with a recent formulation of this theory by
Lebowitz and Percus. We conclude with some comments on the relevance of our results for the

three-dimensional problem.

I. INTRODUCTION

HE first attempt to go beyond the question
of the equation of state of a nonideal gas to
the deeper problem of the correlation in position
of the molecules in a gas or liquid, was made by
Ornstein and Zernike in their well known theory
of the critical opalescence.” Zernike, Prins and others’
later used the same ideas to interpret the results
of the x-ray scattering in liquids in terms of the
so-called two-point correlation function. This cor-
relation function is found to be essentially the
Fourier transform of the angular distribution of
the scattered rays, and it is therefore directly ob-
servable. This cannot be said of the so-called n-
point correlation functions (n = 3, 4, ---) but
these functions can be defined precisely for a system
in equilibrium, and with increasing =, they describe
the structure of the system in more and more detail.
The general theory of these correlation or distri-
1 L, S. Orsntein and F. Zernike, Proc. Acad. Sci. Amsterdam
17, 793 (1914); Physik. Z. 19, 134 (1918); 27, 761 (1926).
See also F. Zernike, Dissertation, Groningen, Netherlands
1916, reprinted in Arch. Neerl. Zool., Serie 13A, 4, 74 (1917).
For more recent accounts compare Landau and Lifshitz,
Statistical Physics (Pergamon Press, London, 1958), p. 366;
M. Klein and L. Tisza, Phys. Rev. 76, 1861 (1949); M. Fierz,
Pauli Memorial Volume (Interscience Publishing Co.,
New York, 1960), p. 175; and especially P. Debye, Non-
Crystalline Solids (John Wiley & Sons, New York, 1960),
pp. 1-20; J. Chem. Phys. 31, 680 (1959).

¢ F, Zernike and J. A. Prins, Z. Physik. 41, 184 (1927);
P. Debye and H. Menke, Physik. Z. 33, 593 (1932).

bution functions was developed in the forties mainly
by Kirkwood, Yvon, de Boer, Mayer,® and their
collaborators. These authors developed the general
expansion theorems for these distribution functions
in powers of the fugacity or in powers of the density,*
which generalize and include the corresponding ex-
pansions for the equation of state. They also pro-
posed various approximation schemes, of which Kirk-
wood’s superposition approximation is the best
known. This leads to new attempts to discuss the
problem of phase transitions, which are of great
interest.’

So far as we know, no one has tried to relate these
general developments with the basic ideas of van
der Waals in a systematic way, and it seems to us

3 Since the literature is quite extensive, we refer to the
reports by J. Yvon, Fluctuations en densité (Hermann & Cie.,
Paris, 1937); by J. de Boer, Rep. Progr. Phys. 12, 305 (1949);
by A. Munster in his book, Statistische Thermodynamik
(Springer-Verlag, Berlin, Germany, 1956), Chap. 8; and
by J. Mayer, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1958) Vol. XXII, p. 152.

* For a complete discussion of these expansions see J. E.
Mayer and E. W. Montroll, J. Chem. Phys. 9, 2 (1941).
Compare also the account given by G. E. Uhlenbeck and
G. W. Ford in Studies in Statistical Mechanics, (North-Holland
Publishing Company, Amsterdam) Vol. I, Part B.

5 We are thinking especially of the attempts by Kirkwood
and his co-workers to derive the liquid-solid phase transition
and to show that such a transition even exists for a system
of hard spheres. See J. G. Kirkwood and E. Monroe, J.
Chem. Phys. 9, 514 (1941); J. G. Kirkwood, E. K. Mann
and B. J. Alder, J. Chem. Phys. 18, 1040 (1950).
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of interest, therefore, to derive the expression for
the distribution functions for the one-dimensional
gas model described in Part I of this series and to
see what these functions become in the van der
Waals limit. In Sec. II, the derivation of the two-
and three-point distribution function is given, from
which the general expression for the n-point function
can easily be inferred. It is found that the distri-
bution functions depend on all eigenvalues and eigen-
functions of the basic Kac integral equation (Part I,
Eq. 10), and one may say that this gives a physical
interpretation of the eigenvalues and eigenfunctions,
although we do not know as yet whether these
eigenvalues and eigenfunctions are uniquely deter-
mined by the set of distribution functions. Another
general expression for the distribution functions,
also derived in Sec. II, is in terms of the resolvent
of the Kac equation and the eigenfunction ¥,(z)
corresponding to the maximum eigenvalue A(s).
This expression is especially important for the
discussion of the distribution functions in the two-
phase region.

In Sec. III we derive the well-known virial and
fluctuation theorems. General proofs of these basic
theorems are of course available, but it seems worth
while to prove them directly from the Kac equation.
Since these theorems connect the two-point distri-
bution function with the equation of state, they
give valuable checks for any successive-approxi-
mation method. Furthermore, they provide a link
with the original derivation of the van der Waals
equation.

In Secs. IV and V, the van der Waals limit and
the successive approximations in powers of 6 of
the two-point distribution function are discussed for
the one-phase region. It is seen that one must dis-
tinguish the case when the distance between the
two molecules is of order & from the case when this
distance is of the order of the range of the at-
tractive force 1/v. The short-range behavior is,
as expected, in zeroth approximation, the same as
for a gas of hard rods, since in the van der Waals
limit the attractive force is very weak. In first
approximation, the attractive force influences some-
what the short-range behavior, but the moreinterest-
ing effect is on the long-range behavior. We find
in this approximation, an exponential dependence
on the distance, but with a range which is modified
by the compressibility of the gas. This behavior is
related to the form predicted by the one-dimensional
version of the Ornstein—Zernike theory, and this
relation is general (i.e., independent of the form of
the long range attractive force) when we approach
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the critical region. However in the critical region
our development breaks down, and deviations from
the Ornstein—Zernike theory should be expected to
occur. We will come back to this in Part III of this
series, where the behavior of the two-point distri-
bution function in the critical region will be dis-
cussed in detail.

In Sec. VI, the distribution functions in the van
der Waals limit are discussed for the two-phase region.
We show that all distribution functions in this
region are linear combinations of the two corre-
sponding distribution functions of the saturated
vapor and liquid with coefficients proportional to
the mole fractions of vapor and liquid. In our
opinion, this shows for the first time that the geo-
metric separation of the two phases follows auto-
matically from the theory. In fact it seems that
this property of the distribution functions is a
deeper formulation of the condensation problem than
the property of the constant vapor pressure (hori-
zontal portion of the isotherm), which it implies.
This has already been indicated in a basic paper
by Mayer® in 1947, and perhaps our results can be
looked upon as a strict proof, for a special case,
of the general considerations given in that paper,
although the precise connection is still dark to us.

In See. VII we discuss in detail, the connection
of our results with the Ornstein—Zernike theory and
especially in respect to a recent, very interesting
formulation of this theory given by Lebowitz and
Percus.” We conclude with some comments on the
relevance of our results for the three-dimensional
problem.

II. GENERAL EXPRESSIONS FOR THE
DISTRIBUTION FUNCTIONS

First let us recall the general definitions for the
distribution functions. For the canonical ensemble,
the s-particle distribution function is defined by

N1

e, N, V) = & =9

na(rl

X fv . j;dr”l drNDN(l'l "'rzv), (1)

where

¢ J. E. Mayer, J. Chem. Phys. 15, 187 (1947). Compare
also his ‘faper J. Chem. Phys. 16, 665 (1948) and the account
in Handbuch der Physik, edited by 8. Fligge (Springer-
Verlag, Berlin, Germany, 1958) Vol. XII, p. 165.

7J. L. Lebowitz and J. K. Percus, ‘“Asymptotic behavior
i)'fhﬁ:ie) radial distribution function’” (Preprint) (to be pub-
ished).
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1 1
Dv = omizov m
X exp [_klf Z_‘, e(jr; — rfi)]- )

The corresponding formula for the grand-canonical
ensemble are

pa(rl cee I, V,Z) = Zna(rl A P V)N)PNi

Nza

®3)

where
Py = (A"Z(V, N)/G(V, 2). Y

In the following we will always have in mind a
single-flutd phase. In this case one knows that in
the thermodynamic limit the distribution functions
approach the definite values

lim n,(, -- 1, N, V) = a1, - 1,;0),
oy ©
].im p,(l'l s ra, V; z) = ﬁi(rl e rl; z)'

Vo

and these functions differ only in the dependence on
v, and 2z, respectively, which however are uniquely
related to each other by the second Mayer relation

1/v = z¢/'(2). (6)

Furthermore one knows that in this case the 7,
and p, are spatially homogeneous. Adding a constant
vector to ry --- r, will not change the functions 7,
and p,. Therefore 7,(r;,, r,, v) depends only on
|ty — 12|, Ais(ry, 12, T3, v) depends only on the lengths
of the sides of the triangle (r, r,, 3), etc. Finally
it is known that in this case, the functions 7, and
7. have the product property. This means that if
the s particles are divided in groups containing a;,
a, --+ particles, then for configurations in which
these groups are very far apart from each other

™

and similarly for p,. Note that the meaning of “far”
depends on the value of v or 2. The product property
implies that if all particles are far apart from each
other, then %, — (1/v)* and p, — p;. Note that this
product property is the only direct relation between
the 7, or p, and the lower distribution functions.
One cannot find the lower distribution functions
only by integrating over the positions of some of
the particles. There are integral relations between
the distribution functions, the so-called fluctuation
theorems, but these relations are more complicated.
We return to them in the next section.

For small density or small 2z, the distribution
functions approach the Boltzmann factor

oy = ﬁ’a;'ﬁa: ttty
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_ 1
n,(r1~--rs;v)—>7;

X o |~ Sl —d ], ®

and as we have already mentioned, the complete
virial and fugacity expansions have been worked
out (see reference 4).

After these preliminaries, let us return to our
one-dimensional model. We prove that all the dis-
tribution functions can be expressed in terms of the
eigenvalues \,(s) and eigenfunctions ¥,(z, s) of the
Kagc integral equation (Part I, Eq. 10), and especially
we will show that

lf de ;) = 3 (0,5 | 7,5 + o)
0 n=0

A+ o)
Ao(8) — A(s + o)

n,s+¢]0,s), (9a)

l ff dz dy €™ sz, y; 1)
0

@ @

= E Z(O,sln,s-f—a)

n=0 n’'=0

M + o) , ,
NG) — MG £ o) n,s+ o |n,s+ o)

X
>‘n'(s + al)
A(8) = M(s + o

Here, s = p/kT and the symbol (k, m | ¥, m’) =
(&', m’ | k, m), stands for the matrix element

X 3 (n',s+d|0,s). (9b)

o | 1,y = [ dz e, mvate, m). (10)

The distribution functions are expressed in relative
coordinates, so that

Aoty — L D
ﬁa(tg - tl; t; —

fig(z; 1) = Iy 2> b, (11)

sz, y; ) = ) 2624,

where &, ., t; are the coordinates of the particles.
We have not derived in detail, the expression for
the Laplace transform of the s-particle distribution
function, but the structure of the Eqgs. (92) and (9b)
is so transparent, that the generalization to the
higher distribution functions seems obvious.

Proof of Eq. (9a)

As an artifice, we introduce an additional ex-
ponential attraction between all pairs of molecules
and start from the new partition function
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1 L L

XL, N) = A”N!/o fo dty---dby TT (4 = 4]

X exp [ ée""'“"" + ¢ g;e""‘""'], 12)

using the same notation as Part I, Eq. (2). It is
then easy to show, that

(a InZ

aé €=0

L
= %ff dty dt, e """ 'ny(ty, b3 N, L),
o

from which follows the analogous expression

L
——'—““al é —olti—t
(29) g [ at a5,
0

(13)

in terms of the grand-canonical quantities. Since
in the thermodynamic limit, In G — Lx(z, €), one
obtains from (13) in this limit,

6):((2, G)) _ ® — 0T o .
< Je -0 = j; dre Pz(x; 2),

where x = &, — .

Exactly in the same way as in Part I, Sec. II,
one can associate with the partition function (12)
the integral equation

(14)

+ o

[[ iy &.@,o50,9000,v) = MG,2), a9

—

with

b [W@WE) T
Rz, 2";9,9) = [W(y)W(y')]

X exp [BA@ + v) + 1@ + )]
X «/;w dre "Py(z l Yy, NPz’ l Y, 0. (16)

We omit the proof, since it will be obvious to the
reader. The notation is again the same as in Part I
except that in the P functions, the different ranges
of the exponential attractions are indicated. The
function %(2, € is related to the maximum eigen-
value Ao(s, € of Eq. (15) by the equation [similar
to Part I, Eq. (18)]

Ao(s, & = (1/2) exp [3( + 9], 17

where s = p/kT = X(z, €). To calculate the left-
hand side of Eq. (14), one must make therefore a
perturbation calculation for A, up to first order in e.

It is easy to see that for ¢ = 0, Eq. (15) is separable
and that then the eigenfunctions are given by

UHLENBECK, HEMMER, AND KAC

V@, 2, 8) = Yulz,s + W'o)N,.D,(z'), (18)
corresponding to the eigenvalues
A(8) = M(s + n'a), (19)

where ¢,(z, s), N\.(s) are the eigenfunctions and
eigenvalues of the Kac equation, Part I, (10), D,(z)
are the Weber functions, and N, are the normaliza-
tion constants (27) #(n!)~}. Setting

Als, 9 = AV + AV + -1,
‘I’(.’I?, .’l?’, s, E) = \I’(O)(x) xly S) + ei‘P(l)(x; x” 8) + - )

one finds by a straightforward perturbation calcula-
tion for the maximum eigenvalue and the corre-
sponding eigenfunction

(1) ’ 1 - Ao(s) + 7\n(8 + o)
\IlOO (.’II,SL' 78) - % ; )\0(8) — )\"(8 + 0‘)

X <07 § l n,s + O'\I’,(‘?)(x, x,: S),
Koo’ (8) = Nol®)

- )\n(s + U) 2:|
1
X [2 + ';))\O(s) — MG+ o) 0,s|n,s+ o) |,
(20)
where the completeness relation
E(O,SIn,s+g)2=1 (21)

has been used.
Now return to Eq. (17). We have found the
maximum eigenvalue of (15):

Ao(s, © = No(8) + eAse'(s) + --- .

Introduce here:
s =Xk, ¢ =x0) + e+ -,

where x(2) = p/kT follows from Part I, Eq. (18).
One then obtains from (17), by equating the terms
proportional to ¢,

(0 _1[AY@ 1
Xl(z)“( 5% )‘ z[xo(g 2] @2)

using Eq. (20) from Part I. Substituting in (14) one
obtains Eq. (9a), from (20), since in the thermo-
dynamic limit 5.(z, 2) = #Ai,(z, I) with 1/l = 2x'(2).

Proof of Eq. (9b)

To generalize the trick used for the two-point
distribution function, one is inclined to introduce
three additional exponential potentials correspond-
ing to the three distances between the three particles.
However to ensure the triangular relation between
the three distances it then becomes necessary to
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associate with each molecule, an additional “internal
coordinate” p;, which can be X1, and to average
over-all sets of values of the u;. We start therefore
from the new partition function

1
2VAYNY

L L
X Zf f dt,
{uil JO 0

X eXp [V Ze"Ylh‘°til _|_

<7

Z(La N; €, €2, e3) =

- dty IT St = ¢])

1<
3

a=1 1<q

(23)

By differentiating after the e, and then setting
them equal to zero, and by summing over the g,
it is found, using also the fact that ps(t,, t;, &35 L, 2)
is symmetrie in £, &3, &5
< 8 In G )

0¢; d€; d€3/ (0

= fff dt, dt, dts ps(h, by, b5 L, 2)

0<t;<t<taSL

X; exp [—Up‘ ]tl—‘tzl—o'pz Itg_tal_ap‘ |t3_t1|],

where the sum goes over the six permutations of
the indices 1, 2 and 3. This result is similar to Eq.
(13). By going to the thermodynamic limit, setting
InG = Lz e, e, ) and t, — t, = x,t; — £, = y,
one obtains

a5e)..o = et ne
<6€1 de, D€/ oy dx dy ps(x, y; 2)
0

X PZ exp [—op,2 — op,y — ap(z + y)], (24

which is similar to Eq. (14).

One now associates again with the partition func-
tion (23), the corresponding integral equation, which
is

ff} dy dy, dy, dys K, (x,y)

X [cosh (Z x,,af) cosh (Z y,,a,f)]

X ¥(y) = A¥(x), (25)
with x = (z, &1, 22, 23), ¥ = (U, ¥1, ¥z, ¥s) and

_ W<x>W<xl>W<xz>W<xs>]*
K(x,y) [W(y)W(yl)W(y2)W(y3)

X exp [ + y)]
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@ 3
X j; dr e_"PY(x I Y, T) HPUa(xa I Ya) T)} (26)
a=1

which is similar to Egs. (15) and (16). The ap-
pearance of the cosh functions instead of exponential
functions is due to the summation over the u;.
The maximum eigenvalue Aq(s, €, €, €) of Eq. (25)
is again related to the function %(2, &, €, €) by
Ao(s, &, €, &) = (1/2) exp [0 + & + & + &)], 27)

with s = 9/kT = %(2, e, €, ¢), and to determine
the left-hand side of Eq. (24) one must perform a
perturbation calculation for A, up to first order
in €, € and €. This is now much more involved,
and we refer to Appendix A for some of the details
and the completion of the proof.

By introducing the resolvent R,(z, y; p) of the
Kac integral equation, [Part I, Eq. (10)], the ex-
pressions (9a) and (9b) for the distribution functions
can be transformed into

® =0T 1
lj; dx e fiy(zx; ) = 0 _f dx dy Yoz, s)

X Ra+e<x} Y, )\_01(8_))%(% S) (283')

l ff dr dy e " "z, y; 1)
[}

1
X Yolz, SR (x x'“l)
0\t s+¢ 1) Z;AO(S)

X R0 20y s ol ). @80

The proof is simple. The resolvent is defined in
terms of the iterated kernels by

R.(z,y; p) = K.(z,9) + oK' (z, )

+ K@)+ -0, (29

where

KP@,y) = [ @K@, K6, ),

with K”(z, y) = K.(z, y). Since in terms of the
eigenfunctions,

Kfl)<x) y) = Z; Ai+1(8)¢"(x, S)‘Pn(y, 8)!

then Eq. (28a) and (28b) follow from (9a) and (9b)

(30)
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by expanding the fractions in the latter equations in
powers of A.(8 + ¢)/A:(s), and performing the sum-
mations over n.

We conclude this section with some simple checks
of the general formulas (9a) and (9b).

(a) For v = 0, i.e. for a gas of hard rods, the v,
are independent of s, so that {0, s | n, s + ) = 8,0,
and Ao(s) = e**/s. Therefore Eq. (9a) gives

1
i4el— 0k —1
using s = p/kT = 1/(I — §). This is equivalent
to a well-known result first derived by Zernike

and Prins®
(b) Fory =

! f dz &> (s I) = @D
0

0, one obtains from Eq. (9b)
® —gz—0o’y=h.c. .
l-/:/; dxdye s (x;y)l)

= lf dx e ny " (z; 1)
0

f ayermtwy, Gl
0
which is expected, since it is known® that Kirkwood’s
superposition principle is valid for one-dimensional
systems with nearest-neighbor interaction.
(¢c) For large z, 7i,(x; 1) — 1/, since

lim 7ia(z, 1) = lim o f dz ¢z, )
(]

z—® o0

I . R
Ins) [F7

using the fact that (0, s | n, 8) = 8,. In a similar
way one proves that for large y

©

lim dr e gz, y; ) =

y—® JO

1",
lfo dx e~ s(x, ).

We have thus verified the product property for 7,
and 7. It can also be shown that for large I, 7,
and 7i; approach the corresponding Boltzmann factor
[see Eq. (8)], but we will leave the proof to the
reader.

8 The result of Zernike and Prins [Z. Physik. 41, 184
(1927)] can be written

W) = 2 S — k) e,

x — ko
exp | —

X exp [ — s :'
where S(y) is again the stepfunction. By taking the Laplace
transform one obtains (31).

9 Z. W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood,
J. Chem. Phys. 21, 1098 (1953). Compare also the discussion
of one-dimensional systems by A. Munster (Statistische
Thermodynamik, Sec. 8.8).
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III. THE FLUCTUATION AND VIRIAL THEOREMS

From the product property of the distribution
functions #, and 3,, it follows that the corresponding
cluster functions, defined by

x(1:52) = nn;2)
Xa(ty, T252) =

Xs(T, I3, 135 2) =

PolTy, 1252) — BTy 2)Pu(r2; 2)

Ps(T1, T2, T35 2) — Pa(Ty, Ta; 2)Pi(Ts; 2)
— P(ts, 155 2)pu(ry 5 2)
— Po(Ts, 115 2)Bu(T2; 2)
+ 25.(1:; 2B (125 2)P(rs5 2), (32)

ete.,’® have the cluster property, which means that
for any configuration where the s particles are
divided in two or more noninteracting groups the
x. (13 r,; 2) vanishes. As a consequence the
integrals

.1
iggva...fvxa(rl ...ra;z)drl

must have a thermodynamic meaning, and the
results are the so-called fluctuation theorems. From
the definitions of the 3, one easily finds"

dr, (33)

10 The general rule is as follows: Divide the s particles
in a number of groups and form the product of the functions
51 which depend on the particles in each group. Then x, will
be the sum of products for all possible ways of division of
the s particles with the coefficient (—1)*1(k — 1)!, where
k is the number of groups into which the s particles were
divided. Similar formulas hold for the functions #,; one
obtains the same functions x. except that z must be expressed
inv.

11 There is the following difficulty: Eqs. (34 a & b) are
derived, starting from the normalization condition

which follows from the definition of p.. The average of
NI/(N — 8)! over the grand canonical ensemble can be
expressed in terms of N and its derivatives after the chemical
potential 4 and this then leads to the Eqs. (34 a & b). Now if
one uses the same argument for the canonical distribution
function n,(r; -+ r,; N, V), which is normalized according to

N!
fv_,_fvdrl "-dl',n,,(fl ---r”N, V) —(N__s)!)

then one obtains a different answer because it is the averaging
over N which brings in the derivatives of the specific volume
after the pressure. On the other hand, for a single-fluid phase,
the limit functions #(r; *+- r,; ) and g1, -+ 1,; 2) are
identical and therefore also the cluster functions formed
from them should be the same if one expresses » in z or
vice versa.

This paradox has often been discussed in the literature
[see for instance J. C. Mayer, Handbuch der Physik, edited
by S. Fligge (Springer-Verlag, Berlin, Germany, 1958)
Vol. XII, p. 156)]. The mathematical reason for the apparent
discrepancy must lie in the interchange of the two limiting
processes which are required to derive Eqs. (34 a & b).
Apparently this interchange is nof allowed for the canonical
dlistribution functions, although the exact reason is not
clear to us.

Downloaded 28 Feb 2008 to 150.214.103.146. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



VAN DER WAALS THEORY. II.

1 _@iQ_l ‘
lim 7, IEX3E v ale) — e W
¥
1 .JWiPi®]
B_%fo dr, drz dts x5 = v dplvap\v
1 4
JBTO (1), 2
sl T3 6w
ete.

These results can also be derived directly from
the expressions (9a), and {9b) for the distribution
functions. For instance from (9a), it follows that

S el a 11
j;dxe [ng(x, I) l*’]_ pr ]

1 - Aofs)
AN SN E )

using the completeness relation (21). Now for e — 0,
{0,8|n,8s+ o) —0forn = 0,and (0,5]0,s + o) —
1 + O(¢*), which follows from the normalization
condition. Therefore for ¢ — 0 the right-hand side
of (35) becomes

1 1

Tl

0,5 [n,s+ ), (35

A1 + 0(”)

—onle) — 3N E) — -

1 1 M(@E _ 1

kT 8l

TTT 2B N 2l 2Pap’
using I = —A}/Ao, 8 = p/kT. Therefore

.1
E{E ’L'" fL dt, dis x.

"oy 1] _1_Hral
= 2]; dx [n,?(x, h— lz] =3 Fap’ (36)
which is Eq. (34a). In a similar way one can verify
Eq. (34b).

A second group of ‘“‘thermodynamical”’ rela-
tions for the distribution functions follow from
the fact that the Helmholtz free energy ¥ =
—kT In Z(V, T, N). This has as a consequence that
the internal energy is given by

v  3NET

E=‘I’—Tﬁ= 2

+ %ffv dr, dr, o(lt; — rns(r, 12; V, N), (37

and the pressure by

2 Following H. 8. Green [Proc. Roy. Soc. (London)
189, 103 (1947)], the simplest way of deriving Eq. (38) is by
assuming a cubical vessel of volume ¥V = L3 By setting
r;* =r;/L, the limits of integral in ¥ then become independent
of L and one can carry out the differentiation after V or L
under the integral signs.
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which becomes, in the thermodynamic limit,

P = I—Cvz - %fdrr%ﬁz(r;v). 39
This is called the virial theorem, since it can also
be derived directly from the virial theorem of
Clausius. If the intermolecular potential ¢(r) con-
tains a hard-sphere repulsion, then at r = d =
diameter of the sphere, dp/dr is not defined and
(39) must be replaced by

p = %T' -+ BkT7.(d" ; v)

- 2z f dr d%“r" Tio(r; ), (40)
d

d

where b = 2r d® and 7,(d"; v) = lim,., n.(r; v).
Note that the one-dimensional version of Eq. (40) is

p = 5“—17—' + kTny(s%; 1)

- fm dz x Duses fio(z; D), (40a)

dx

where § is again the length of the hard rod.

By further differentiation after 7 and V, one
obtains from (37) and (38), thermodynamic rela-
tions involving the higher distribution functions.
For instance, from (37) one gets for the specific
heat per particle at constant volume, the general
expression '

¢, = 32_k + 2—,:%,:5 f dr so(?‘){«’(r)ﬁz(r; v)
-+ j dr; lp(ris) + @(res)ts(ry, 1o, 135 0)
+ 3 ff drs dr, [t 12, 13, 145 0)

— Moty Iz; V)7a(Ts, 1 v)]}-

The question arises as to the verification of these
relations directly from the expressions (9) or (28)
for the distribution functions, and here one en-
counters the following apparent difficulty. Since
@arer. = —ae ', the integrals in (37) and (40a)
involving 7i.(z; ), are similar to the Laplace trans-
form of 7i,(z; 1), if ¢ is made equal to v. However,
according to (9a), the Laplace transform of 7.(x; )
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depends on all the eigenvalues and eigenfunctions
of the Kac equation, while according to (37) [which
for our model becomes (¢ = E/N)),

e= alf dre i@ );  (41)
the Laplace transform for & = v has thermodynamic
meaning and therefore can depend only on the
maximum eigenvalue \,. The reason for the re-
markable simplification occurring when ¢ = v be-
comes clear if we go back to the derivation of Eq.
(9a). Clearly, if ¢ = v, the device of adding the
exponential attraction e " amounts to increasing
the strength of the real attractive potential from
v to v + e Equations (14) and (17) are still valid,
but the associated integral equation is now almost
exactly like the Kac equation, except that » is
replaced by v + e. The kernel, developed in powers
of e is therefore

Ks(x: Y, e) = K,(.’L', ?/)[1 + (6/41})(“; + y) + - ']7

and performing the perturbation calculation one
now finds

Ao(s, € = No(8) + e\ (s) + --
with
00 =39 [ dovi.

From the analog of (22) one therefore obtains instead
of (9a), the equation

® — YT . — L +w 2 — 1
! fo do €z ) = o5 f_ Cdmodi@ — 3 @2

It is easy to verify that this equation is equivalent
to (41). In fact, since in terms of the chemical
potential,

e = p — T(3u/dT) — p(dr/dp),
and since [see Part I, Eqgs. (18), (19)]
g = kT In (A2),

In Ag(s,») = v — Inz,

one finds
/KT = 3v — (/X0)(ONo/ ),
which, together with

Do [[ dx ay BB g )

|

A 77
= o5 [ avavi@,

reduces (41) to (42).
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The virial theorem (39a) can be verified in a
similar manner. We omit the details, because in a
way these verifications are simply a rearrangement
of the general thermodynamic argument. The
question remains how to derive the basic identities
like Eq. (42), which can also be written in the form

)\0(8) f da z ‘//O(x ) — ko(s)

) _f:,fdx dy Yo(@, 8)¥oly, s)R'”<“"’ v Vl(é)

directly from the Kac integral equation. Such a
derivation is given in Appendix B.

IV. THE VAN DER WAALS LIMIT OF THE TWO-
POINT DISTRIBUTION FUNCTION; THE SHORT-
RANGE BEHAVIOR

To investigate in the range z of order &, the
behavior of 7,(z; ) in the van der Waals limit,
1.e. for y — 0 after setting v = »yy, it is simplest to
start from Eq. (28a). The first step is to ‘“‘tame”
the kernel K,..(z, y) as in Part I, Sec. III, by the
substitution

z=2a + 12/M)¢,  y=y + 22}

where 7(s) is determined by Eq. (29) in Part I.
The contribution of the first term of the resolvent
series (29), to Eq. (28a) then becomes

| W& ® —terarr
x() fdx dy’ h(x)h(y)[W(y):' fa dr e~
X P, |y, D) exp (3om)i@ + v’ + 2n(2/v))
— [7*/v + 2’ + ¥')/(2v)"] tanh (3v7)},

where h(z') is defined by Eq. (34) in Part I. One
must now substitute the expansions (36) in Part I,
for h(z") and A(s), and expand everything in powers
of v. Because of the taming, the zeroth approxima-
tion is very simple, since fory — 0, P, (&' | ¢/, 7 —
8(z' — ), and since ' (z’) is normalized to unity,
one obtains for y — 0,

"|(2vo)‘

w(s)

_exp[n@) — s+ o+ 3708 _ A
w8 + o + 37°) w(s) ’

or one can say that for y — 0, K,..(z, y) can be
replaced by 48(z' — y') = Aé(x — y) where A
is defined by (43). Hence K, ) (z, y) — A%8(z — v),
etc., and one obtains

f dr exp [—(s + o)7 — 1n°7]

(43)
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@

l dx e iy(x; 1)

A2 1
P R

using s + (37°) = 1/(I — &) which follows from I,
Eqgs. (30) and (31).

In zeroth approximation, one obtains therefore,
exactly the same result as for a gas of hard rods
[see Eq. (31)]. This would of course be expected,
since for small vy, the attractive force at distances
of order 8 is very weak and, in zeroth approximation,
will not affect the arrangement of the molecules,
which arrangement will be determined only by the
repulsive core.

In the first approximation, the attractive force
will have an influence even at distances of order 8.
To calculate this effect, one must collect all terms
of order v in the resolvent series. One then finds

1
1+ ol — 8’ —1

'YV{)(l _ 6)4 0_26205
B {1 + ol — 8" —1}°

See Appendix C for some of the details of the
lengthy calculation. The results derived in Part I,
Sec. IIT must be used.

As mentioned previously in the introduction, it
is interesting to check these results with the virial
theorem in the form of Eq. (40a). To do this, one
must find 7,(67; 1) from Eq. (44). Multiply both
sides of (44) by ¢e®® and then go to the limit ¢ — .
The left-hand side, (with 2’ = = — §) becomes

lf de e Tiy(x, ) =
[}

+ + . (44)

lim vf dz’ e " fy(x’ + 8; 1)
(4

(5% o [ d’ e = m(57; ),
]
and by calculating the limit of the right-hand side,
one obtains
A8 1) = 1/1(1 — 8) + ywo(l — 8)/PB+ --- . (45)

Consider first the zeroth approximation, and sub-
stitute in (40a). One obtains

D = _1_ — 2 fm d -z 1
T 1= " ) iz x e Tz, ),
If we introduce yx = 2’ into the integral, then

since in the limit v — 0, 7., (z'/v; 1) = 1/, the
integral becomes

©

Vo ’ -z’ Vo

_F./‘ dz’ x'e”® = —-l§,
0
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so that the van der Waals equation is obtained
once more. The second term in (45) leads to a
part of the correction to the van der Waals equation
of order ¥ mentioned at the end of Part I, Sec. IV.
For the complete correction, one must know also
the v correction to the long-range behavior of
no(z; 1), and this is also needed to resolve the
difficulty of the apparent nonagreement of the
fluctuation theorem [Eq. (36)] and the first term
of (44) with van der Waals’ equation. In fact, from
the first term of (44) one finds

R RS IS W ()
[, ["2(”’ D zz] = ~utorE
which agrees with (36) if p/kT = 1/(I — §). We
shall see that the long-range behavior of 7,(z; I),
which is of order v, gives in the fluctuation integral,
a zeroth-order contribution, which brings Eq. (36)
into agreement with the van der Waals equation.

V. THE VAN DER WAALS LIMIT OF THE TWO-

POINT DISTRIBUTION FUNCTION; THE LONG-
RANGE BEHAVIOR

(46)

To determine the behavior of 7.(x; I) for x of
order 1/y, we use Eq. (9a) for A,(z; ). Replace
o by oy and then expand the right-hand side in
powers of y. First consider the matrix element

<O>S ln)s+0'7>

= de ‘Po(x,S,‘Y)l//n(x,S + ‘77;7)'

—®

(47)

With z = 2’ + 2(s)(2/7)}, we know that
lﬁ(x, S, 'Y) = h(x’} S, 'Y)
= hw)(x,) S) + y%h(l)(x,) S) + Tty

where the h*'(z/, s) are determined in Part I,
Sec. III. Therefore,

'Pn(x; s+ a7, 'Y)
= h(z — s + o2/}, s + ov,7)
- KO, 9 +

dn 0, (', 3)
s

X I:h,(,”(x’,s) — 2¥s

Since A" is orthogonal to h” for n > 0, then for
n > 0 [using Eqs. (38) and (39) in Part I}, one finds

3
0,8 |n,s 4+ oy) = _U<1’£) % 4 + Ofy). (48)
For n = 0, one obtains
0,5 10,54+ om) = 1 - 2B (1) 4 06, aag)
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Note that (48) and (49) are consistent up to order
v with the completeness requirement

E(Orslnrs'l"r)')z =

Next we consider the eigenvalues. We know that

MG, 7) = @@ + () + 067, (50)
where p{" is given by Eq. (39) in Part I. Therefore,

)\,,(S + oY, 'Y) = O)(S)
X {1 + 7[ oy #.(.”(S)] + om}. (5)
Using all this one obtains from Eq. (9a),

-2 -1

—oyr -
lj; dz e iy(z; 1) =

o le wd#”’] 123(@)2
+aw’[ ,+w ds +2l ds

w 1
X[ﬁJr —o(@ @) + p7 — “’]Jr"'

Now there is the following complication: One would
be inclined to replace w’(s)/w(s) by (—1I) according
to Part I, Eq. (31), but this is not correct. The ex-
pansion of the eigenfunctions and eigenvalues was
done at constant s, while the Laplace transform of
fig(z; 1) is taken for a fixed value of I = —A}(s)/A(s).
Since Ao(s) and w(s) differ by a quantity of order v
[see Eq. (50)], one has

(52)

_ _M(i)_‘i’[ o dus” ]
l_)\o(s)_w L b e N
and so up to order v,
‘*’_,__ ¥ duo
I PR S 3

This v correction must be taken into account in
the first term in Eq. (52), but can of course be
neglected in the other terms. Since in zeroth order

TR S (s
i I+ 19 = l I’
o = & (@)2 _ 2l — 9
i’ ds B*
uf;” -V = B; P - R = 2———”°(ll— ’i’
one can simplify (52) to
o 1

Pop(l ~ 8t 1
T B ‘B + ol
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Since for a gas of hard rods one finds [see Eq. (46)],
up to zeroth order in v,

® w'y:-h c. — _1_ _ l (l - 6)2
fo dee™ " @i ) = 2 -t e
one obtains
[ e e bte; ) — 2= D]
0
_wl—9 1
- I‘B B + ol

Hence by inverting the Laplace transform one
concludes

s " (x; 1)

T A )
This holds for z of order 1/y, so that 75" (x; I)
should be replaced by 1/I°. However in the form
(54), it can be seen that our result connects with the
short-range expression (44) derived in the previous
section, since from (44) follows that for ¢ — 0,

o

fia(x; ) =

(54)

j; dr e n-2(x l) — _[ + 'YVU( lﬁB

so that for x — =, we obtain

me; ) = 5+ 2l

and the second term is just the amplitude of the
long-range exponential decay in (54). Note also
that if one substitutes (54) into the fluctuation
theorem (36), one obtains [using (46)]

fmdx[ﬁz(x, l)—l—12:|= +(l—5)

(=29

LY

gt 2z
as is expected since according to the van der Waals
equation

_kTol_ 19l _(1—29
2Pop 200 2B

It is also easy to verify that, (54) together with (45)
substituted into the virial theorem (40a), gives the
complete ¥ correction to the van der Waals equation.

We have also calculated the terms of order 4° in the
long-range behavior of 7i,(x; [). Because the calcula-
tion is straightforward although very lengthy, we will
record only the result since it is needed in Part III of
this series. Call the inverse Laplace transform of
the right-hand side of Eq. (44) 2(2; I} snort range, Which
consists therefore of 75 " (z; I) plus the first cor-
rection due to the attractive force. Then we find
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2 D) = 73 Darer e + P @7 = )
N ”3“1;355)8 [_ s(21 — 39 + 29~ s)?]ya oo _ Bl = 5
% [a(zz P e 5)°(47’ gislsza —278) | wll = 5)4(11129;; 1215 + 1862)]726_57,/,
4= ;)l:ga— 36)° {1 B 8»0(13; 5)2}2726_237,,1. (55)

As a check, one can place this expression in the
fluctuation integral, and obtain the expected result
with 81/9p computed from the van der Waals equa-
tion, plus the correction of order y. The most in-
teresting feature of (55) is the appearance of the
exponential with half the range of the exponential
oceurring in first approximation.'

VI. THE DISTRIBUTION FUNCTIONS IN THE
TWO-PHASE REGION

Since at the condensation value Z of the fugacity
z, the specific volume v is a discontinuous function
of 2, all the grand canonical distribution functions
p.(r, --- 1,, 2) are discontinuously changing from
fi(r, -++ 1,; 0) to 7,(r, -+ I,; v), where v, and
v, are the specific volumes of the saturated vapor
and liquid. In the condensation region, the functions
7. therefore lose their meaning, but we can still
ask for the meaning of the canonical distribution
funetions 7,(r, - - - r,;v). Following Mayer, we assert
that for any finite s, one should expect

s 15 0) = (/W) g0, E -1 0)
+ fzvzﬁa(fl M P 92)]; (56)

where &, and ¢, are the mole fractions of the vapor
and the liquid phase, so that v = £wv, + &0, The
reason is that Eq. (56) expresses the geometrical

ﬁ/a (rl

13 We have also calculated from Eq. (28b), the long-range
behavior of the three-particle distribution function. Up to
(i — §*
6

order v one finds
+ {x [—§ (z + )]

+ exp [—% 'yx] + exp [—EZ 'yy]}

In the far range we have therefore up to O(vy) the superposition
principle

(s, b, b3 D) = Uha(ly, 823 Dby, bs; Dialle, a3 D),

na(x; Y5 l) = ﬁg'c.(x; Y l)

which should be contrasted with the form of the superposition
principle for the hard core given by Eq. (31a).

separation of the two phases because of the following
argument: Physically, since there is no outside force
field, one must expect that in the equilibrium state
the condensed phase is in the form of a large sphere
surrounded by the vapor phase and that the position
of the sphere is purely random. Of course, since we
are discussing the thermodynamic limit exclusive
of surface phenomena, this cannot be proved in
detail, but one might expect that all results are in
harmony with this picture. This is the case if the
fi(r; -+ 1,; v) fulfill Eq. (56). The first factor
(1/v) in (56) is the probability per unit volume of
finding one particle say at ry; it is independent of
whether the particle is in the liquid or vapor phase
because the position of the large liquid sphere is
random. However ¢f the first particle is in the
liquid or vapor phase, then all remaining (s — 1)
particles will be in the same phase, because the
chance that some of them are in the other phase
will be proportional to the ratio of surface to volume
of the liquid sphere and is therefore negligible in
the thermodynamic limit. Since v,7i,(r; -+« T,; v1)
and v.7,(r, --- 1,; v;) are the conditional proba-
bilities to find (s — 1) particles in phase 1 and 2
if the first particle is in the same phase, and since
¢, and & are the a priori probabilities to find the
first particle in phase 1 or 2, this accounts for the
second factor in Eq. (56).
Several points should be noted:

(@) The 7.(r; --- r,; v) are still spatially homo-
geneous, although there are two phases. This is
clearly again due to the fact that the position of
the liquid sphere is random.

(b) The #,(r, --- r,; v) do not have the product
property. The presence of the two phases produce
correlations even when the particles are far apart.
In particular,

+ ’-:‘—)
U

if the two particles are far apart, and since

_ 1
7a(T1, T2; 0) -3 (i—i
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%4+%_é=&Mgzﬁ

v Vs

the fluctuation integral will go to infinity, which is
in accord with the constant vapor pressure.

(c) If one substitutes (56) for s = 2 into the virial
theorem [Eq. (39)], then since

1 de - ..
6 / drr dr’nf_,(r,v)
1 d
= @ f dl' r —d—‘f‘ [Elvlﬁz(r; 1)1) + Ezvzﬁz(r; 2)2)]

= é’ﬂ (k_T > 4 22 527)2 (kT p3>
v [ v U2

kT
== =D

v

using the virial theorem for each of the two phases
separately, one obtains that the pressure p is really
constant and equal to p,.

Thus far, all these general statements are of
course not really proved. It is therefore of great
interest that for our one-dimensional model, the
relations (56) follow strictly in the van der Waals
limit. This can easily be seen from Eqs. (28a) and
(28b). We know from Part I, Sec. IV, that in the
two-phase region, the maximum eigenvalue in the
van der Waals limit is doubly degenerate and that
the two eigenfunctions for small vé do not overlap.
Since we also showed that corresponding to a given
Il = &l + &, the eigenfunction is given by

Yol@; 1) = Eo(w; L) + Heol(z; 1),

one immediately sees from (28a) and (28b) that
fia(z; 1) and 7i3(x, y; 1) fulfill the one-dimensional
form of Eq. (56) for s = 2 and s = 3. Equations
(28a) and (28b) are so obviously generalizable that
there is little doubt that Eq. (56) also holds for
arbitrary s.

VII. THE RELATION TO THE
ORNSTEIN-ZERNIKE THEORY

To show the connection between our results and
the Ornstein—Zernike theory, we will first present
the one-dimensional version of this theory. We start
with an integral equation connecting the correlation
function ¢(t,, t;) defined by

gt t) = glz) = lAy(z; ) — 1/7], (57)

with the so-called direct correlation function
¢(ti, ) = c(z). Both functions depend only on the
absolute value of the distance x = ¢, — ¢, between
the two particles at ¢, and ¢,, and in the one phase
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region they both go to zero for £ — «. The equation
is:

glty, ts) = c(ty, &) + ‘/; dty g(t, t)e(ls, t),  (58)

and to make it plausible one can argue as follows:
The correlation in position of two particles is in
the first instance caused by the direct interaction
between the two molecules and this is expressed
by the term c(¢,, ¢;). In addition, there is an indirect
effect through the action of a third particle in the
neighborhood of the two particles, and this is
described by the second term in (58). We do not
try to give a formal derivation of (58).'* From the
way in which Eq. (58) is used, it seems clear that
it is valid only in some asymptotic sense and for
long-range attractive forces. Note that one can
write (58) in the form:

0@ = @) + [ dy oz — ve), (380

which implies that for the Fourier transforms, one
has the simple relation

(k) = ek) + §(k)e(k). (59)

We now observe that near the critical point the
range of g(x) is magnified because of the small
compressibility of the gas. This follows from the
fluctuation theorem, which gives

However the range of the direct correlation function
¢{x) should not increase near the critical point since
it is determined by the attractive force. This is
confirmed by the relation

f_ :a o) dz = %0) = T f(of(o)

-1+ (%),

[ iz g = (60)

(61)

which follows from (59) and (60).

In the critical region, therefore, Ornstein and
Zernike develop in Eq. (58a), g(x — y) in powers of
y up to . Since in the range we are concerned with
g(x) > c(x), one can neglect ¢(z), and using the
fact that ¢(x) = ¢(—z), one obtains the differential
equation

4TIn a second paper, (‘“Statistical Thermodynamics
of Non-Uniform Fluids” (Preprint) (to be published), J. L.
Lebowitz and J. K. Percus have given a formal derivation
of the Ornstein—Zernike equation (58) which they claim to
be exact. However, at present it is not yet clear whether this

leads to_ a successive approximation method which would
start with Eq. (69) as first approximation.
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d’g/ds® — kg = 0, (62)
with
e 21\( 98
1= [Taw] (N3,
K2 = + o — = + ) (63)
f_ dy y’e(y) f dy ye(y)
which has the solution [using (60)]
[ A TA Y
g(z) = K(“ﬁﬁ 51‘))6 (64)

This can now be compared with the long-range
behavior of A,(z; I) discussed in Sec. VI. Clearly,
the first approximation (54), agrees with (64) both
in form and in the dependence on the compressibility
dp/al. Since « depends on the unknown function
c(x), we cannot proceed further. However, as
Lebowitz and Percus (see reference 7) have pointed
out, one can analyze the Ornstein-Zernike equation
(58a) in more detail by using the basic ideas of the
theory of van der Waals. In the first place, it is
clear that for large z, c¢(zx) should be proportional
to the potential of the attractive force ¢(z), and
that only for z close to zero will ¢(z) deviate from
o(z) due to the hard core. Then, since according to

van der Waals the equation of state has the form
p — ph.c. — ao/l2 (65)

with
- j dr o) = —150),

and since &(0) has to fulfill Eq. (61), a very plausible
ansatz for &(k) is

ok) = & (0) — ¢(k)/ T,

Qy =

(66)
with
g (0) = 1+ (I'/kT)(0p™ " /0l).

From Eq. (66), we obtain (k) by (59), and if we
now define the long-range behavior of §(k) by

(67)

g k) = gk — 30, (68)
where
70 =20/l — O],
one finds
~l.r. _ kT
70 = Syt Plep/ad
o(k) (69)

X o) = #0) — Fp/oh
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which is the result of Lebowitz and Percus. It is
easy to verify that for our model, where

o(k) = —2a07/( + &),

one obtains from (69) exactly the first approximation
to the long-range behavior of 7.(x, [) derived in
Sec. V. For low density, I’(dp/dl) = —IkT is very
large, and Eq. (69) therefore becomes

g (k) = —gk)/IKT,

o@) = —at™ "]

which is in agreement with the expected result

g DT ilz [1 - ‘o—(@] (70)

o ~ 1
ng(x, l) = Zz kT

Near the critical point dp/dl is very small, and Eq.
(69) can then be approximated for small £ by

77" (09 == WT/ (" OF ~ P@p/aD)]

which gives

al.r. ~ EE (_ 3 a_p)-i

zf_ ép)‘]
X exp [—R (—2010 a) I @D
where R is defined by
3 Z'o(z) dx
2 _ _____.________f‘r = ‘7’”(0)_
[ e

E 4o

(72)

This has precisely the same form as the Ornstein-
Zernike result (64) except that now the range 1/«
is expressed in the intermolecular potential. In fact
(64) becomes (71) by setting

(=1 <__l"_ sz)*
R\ 2q 3l/°
We believe that Eq. (69) is an exact result in the
sense that it gives the long-range behavior of the
correlation function in first approximation for any
long-range potential, and for the whole range of
density from the ideal gas to the critical region.
We are able to confirm this belief by generalizing
the discussion in Sec. V to the case that the attractive
potential is the sum of exponentials as in Part [,
Eq. (52). We found again that Eq. (69) is fulfilled
exactly. Since the calculations follow the same lines
as for one exponential, we will present only an outline
of the proof. For a potential

(73)

Gueee/ kT = —y D v; exp (—osyz),

i=1

where v; = «,;/kT, the Kac integral equation is in

Downloaded 28 Feb 2008 to 150.214.103.146. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



242

£lr)

.!-____-_-_---

~B@apraty,]

t

Y

R et

_-_ q -_
-qaf-

_h-__,______
= -«l—-—---—-—-

—I ol 1
~ ’\ i
Fia. 1. Graphical determmatlon of the ranges from Eq. (84).

m variables, and the kernel is given by

Kl(xl o Ty Y1 0 ym)
[I’% :l
xp | 5 @+ y)

f o [W@c >]
¢=1 W(yz)
X Pu'y(xs‘ l Y T)'

To investigate the approach to the limit v — 0,
one has to “tame” the integral equation by the
substitutions

z; = xi + 77.‘(2/705)*;
where

y =yl + n@/vedt,

/o)
Z w/a)l

with # defined as in Part I, Eq. (33). In zeroth ap-
proximation one then obtains, instead of Eq. (37)
in Part I, the differential equation

2 0) 1
e [ - s
X H%@ «--2,) =0, (74
where 2, = z/(s.) "}, and the matrix M is given by
M, = ¢i8; — g.0i(cie)t, (75)
with
¢, = w(l — 8)°*/a.l’. (76)

Since by an orthogonal transformation z; = 2, auys,
one can diagonalize the matrix M, so that

Z M;zez; = E Ak!ﬁe? 77
1.9 k

one finds in this approximation,

H'(l?)’"ﬂn = H NniDni(yiA§)7 (78)

i=1

Mreeonm = w(s){l + 'yl[ i 921
- X+ %)A?] + }

with N,, = (n,)"*2re,)"t. Since the maximum
eigenvalue is still w(s), one again obtains the van
der Waals equation of state as already noted in

UHLENBECK, HEMMER, AND KAC

Part 1. The van der Waals constant a, is given by
[see Part I, Eq. (53)]

Vg = % = ——f dx aer () = . 0_‘ , (79

so that
2e=1~ (B/I, (80)
where B is given by Eq. (38) in Part I.

With these results, the generalization of the
calculation of the long-range behavior of #(x; I)
is straightforward and we find

h.o. (-9
ma; ) = (o ) + =)
X Z $AY? exp [—AYV*yz], (81
k=1
where
S = E a,'k(cl,'/z/a';). (82)
=1
In the derivation one must use the identity
B’ - B
Z Ak Sy = _(—“7"——)‘ 3 (83)

which follows immediately from (77) by setting
yx = ¢/o.. For the discussion of Eq. (81), the 4,
are needed. It is now easy to show that the secular
determinant of the matrix M can be written in

the form
m 2
s — Asall = T~ a1 = 5 5020),
i=1 i=1 O3 —
Hence the A, are the m real roots of the equation
m 2
Cio; .
.2;1 o: — A L.

By putting in the expression for ¢;, and by using
Eq. (79) and the expression for B, one can write

this as
oy = 3 2m o (%) ey
1=1 T
where r = A~} From (81) it can be seen that the

m roots r; of this equation are the ranges of the
exponentials in 7,(x; ). The function f(r) is plotted
in Fig. 1. For low densities —°dp/dl = kT, and
thus it becomes very large. Then r; — 1/¢; and
since ¢; — 0, one sees from (75) that the orthogonal
matrix a;; — 8,;, and from (82) it follows that the
amplitudes s;A? of the exponentials in (81) become
2v,/1, s0 that @,(x; [) approaches the expected form
(70). Near the critical point, —I’dp/al is very small,
and from Fig. 1 we see that r, becomes very large,
while all the other ranges remain finite. From (84)
we find that in this limit, r, is determined by
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1520 _ _pdp
gl =ty

which can be rewritten as

1_ pr_ L _l_3gg>%
pmareg(ond), ®
where R is defined by (72). The range of the mth
exponential becomes therefore the Ornstein-Zernike
range (73). To show that also the amplitude checks
with Eq. (71), notice that since according to (80),
near the eritical point Y., ¢, — 1, the eigenvector

a:», must approach the value

1/2
(0) C; /Ua

YT (e

because this will give the eigenvalue zero to which
A,, approaches. From (82) then follows
2 Z S _ 20l — 5)2 ,Ysz,

sm - 2 l3 (86)
i Oy
which leads to the amplitude of Eq. (71). Finally,
we can show that not only the ranges, but also the
amplitudes of the remaining (m — 1) exponentials,
remain finite near the critical point. This follows
from the identity (83), since it allows us to con-
clude that
m-1 2 4
E Aksi = E. - §_ _

“~ l2 l4

Amsri = O(Bi))

using (85) and (86), and noting that near the critical
point (—1/2a0)(dp/3l) = B?/I°. Hence, since all
the A, are positive, all the s must go to zero at
least as B*, and from (81) it then follows that all
amplitudes except the mth remain finite at the
critical point.

We have seen therefore that Eq. (81) behaves
in the same way as the Lebowitz—Percus result (69)
in the ideal gas and in the critical region. To show
that the Fourier transform of (81) fulfills (69)
exactly, requires the proof of the identity
> Al A ()
LFLA " (1 - Zc") 1= o)’

i=1 i=1

@87

where

2
C;o;

q:n(k): ;10'2-"*—]02’

which is given in Appendix D.
VIII. CONCLUDING REMARKS

Although we have restricted ourselves mainly to
the one-dimensional case, it is clear that several
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aspects of the discussion can be generalized to three
dimensions.

1. The connection between the virial theorem and
the van der Waals equation discussed in Sec. IV
can be discussed in the same way for the three-
dimensional case. For a weak but long-range at-
tractive force, the virial theorem in the form of
Eq. (40) shows that one can separate, in zeroth
approximation, the effect of the hard core from the
effect of the attractive force. The 7,(d"; v) will be
determined by the hard-sphere repulsion, while in
the last term in Eq. (40), the 7i,(r; v) can be replaced
by the asymptotic value 1/+°; this leads to

p — ph.o. - a/vz
with

a = %7'._/; drrsd-(ad;;“—r = —%fdr¢.cer(r):

which agrees with the value C/2 derived in Part I,
Sec. V. Of course, 7:(d"; v) for a gas of hard spheres
is not known, so that as in Part I, Sec. V one can
only conclude that the equation of state is van der
Waals-like. One should note also that this derivation
is completely equivalent to the original considera-
tions by van der Waals and Lorentz.

2. The Ornstein—Zernike theory and especially
Eq. (69) are clearly valid in any number of di-
mensions. The first approximation of the long-range
behavior of 7,(r; v), which this theory gives, agrees
with the van der Waals-like equation (88) through
the fluctuation theorem, and it gives a correction
to the inner pressure (—a/v*) through the virial
theorem. If one could still find a physical (and
therefore generalizable) argument for (a) the next
approximation to the short-range behavior of
fip(r, v), corresponding to the last term in Eq. (44),
and (b) the higher approximations to the long-range
behavior of 7.(r; v), corresponding to Eq. (55),
then it would be possible, through the fluctuation
and virial theorem, to develop a successive approxi-
mation method for the equation of state which
would start from (88) as the zeroth approximation.

3. We believe that the linear relations (56) for
the distribution functions in the two-phase region
are also valid in any number of dimensions. We
have shown in Sec. VI that through the virial
theorem, these relations lead to the constant vapor
pressure in the two-phase region. Of course this
does not prove that there are two phases. The
linear functional equation (like the Kac equation),
whose maximum eigenvalue is doubly degenerate
in the condensation region with nonoverlapping
eigenfunctions, is lacking in the three-dimensional

(88)
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theory. Whether it will be possible to construct such
a functional equation from the set of distribution
functions as Mayer has tried to do, and whether
the degeneracy of the maximum eigenvalue and the
relations (56) can then be shown rigorously, remains
to be seen.

APPENDIX A—COMPLETION OF THE PROOF OF
EQ. (9b)

We must solve the integral equation (25) by a
perturbation calculation with the parameters .

Setting
¥ = ‘I,(ooo) + Z e’;lze;/Ze;"/z\Il(“m)’
ko (A1)
A= A(oo()) + Z k/zeén m/2A(klm),
kim

one finds immediately that in zeroth order the
eigenfunctions and eigenvalues are given by

\II:IOOO)(X) = ‘l/"(x; s+ N0y + N0, + nao‘s)
3
X II N..D..(z),
i=1
A;OM) = )\"(s + ny00 + Noop + naﬂa)’

where n = (n, n,, N, n3). The AL™ and especially
Asned’, are needed. Since the calculation is lengthy,
we will only list the intermediate results which

are required for the final result. One easily sees

that ¥ = ¥ = ¥ = 0 and that in
A, only the integral powers of ¢; contribute. One
finds
Yoo ®) = 2 6,000 (@),
n=0
with

a0 = 1 Aof8) + Nl + 01 + 09)
" 20(8) = Mals + o1 + a3)

X(O,Sln,8+¢1+0‘2),

and similar expressions for Wiy, and W¥y'. In

the order ¢, one obtains

A 1 [ MG+ o+ o)
EYORE: + Z M) — N+ o + o

A(s + o1+ 05)
Ao(8) — A8 + oy + 03)

X(O,sln,s+oz+03)2:|+2 > >

A8 + o2 + ay)
- >\n(s + o2 + 0'3)

n=0

_|..

X Nol8)

0,s]|n,8+ o + 03)” +
3

n,s+ o2+ o3 | ms+ o1 + 00)
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(2000 _ 1 ,¢000) _ 1
o000 = 3Aoooos = FNo(8),

@
IR A

n=0

(A2)
¥oo00 (X) =
with

a2 — lxo(s) + A (s + 20
" 4 N(8) — N(s + 2ay)

and similar formula for the terms of order e, and es.
Then in the order e, one finds

- )\O(s)[ + Z )\,,(8 + Ty + 0'2)

n=0 0(8) - xn(s + (51 + 02)
>< (0,8 [n,s + [ + G'2>2]-

The only thing we need know about the eigenfunction

Vooar () is the fact that the integral

f dx ‘péggg)q,(ooo)

<O,S ]n,s + 20'1))

A(??l’))
0000

(A3)

is proportional to 8,,o.

In the order ¢ (ee5)?, one obtains for the develop-
ment coefficients, a,'" of ¥y’ in Wiy, that is,
for the integral

(211) (21114, (000)
GQn = fdx Yoooo Ynotn

the expression
(211)

e, = ~30,s|n,s+ 0y + a3)
I8 + M+ 05 + 03)
2 XO(S) bl )\,,(S + Tg + 0'3)

X Zl:(n,8+02+03[m,s+a',+o-2)

m=0

An(s + o + 0'2)
Ao(8) ~ An(s + o +

+ M8+ o+ |ms+ o+ o)

Am(’g + g, + (Ta)
A(8) — Auls + o1 + 03) (m,s+ 0,4+ 0510, s)]

No other development coefficients are needed. This
leads finally in the order ¢ €3, to

X )(ms+ol+a2{03)

X

)(0;8|nas+¢71 +‘7'2>2

Au(s + o2 + ay)
)\0(8) el A,,(s + Oy + 0'3)

[(Oysln:3+¢2+0’3>

)\m(s + o + 0‘2)
N(8) — Nu(8 + 0y + 03)

X (m, s + o1 + 02 | 0, 8) + 2 similar terms with (a5, ¢3), (01, 7), replaced by (o1, a3),

(01, 02), and by (o1, a3), (02, 03)].

(A4)
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To calculate the left-hand side of Eq. (24), one
must still expand Eq. (27) by substituting for s
in the expansion for Agpo(s),

s = p/kT = %@, €, €, &)
= x(2 +

k,l,m

Ic/2 l/2 m/2 (klm)

By equating in (27), equal powers of the ;, one can
then express the x“'™ in terms of the AS:™(s),
where now s = p/kT = x(2). One finds

)_((200) — ).((020) — ).((002) - 0’
l_(220) — 1 (220)() 1
- )\0( ) 0000 4
and finally
1 1
-(222) __ 2
i 4 + Ao(8)

$lAocee + Adooo + Adono 1} (A5)
Substituting in this equation the results (A3) and
(A4), one finds that Ix®** is exactly equal to the
double sum in Eq. (A4). Since this double sum is
symmetric in ¢,, 03, o3, all the six terms on the right-
hand side of (24) are equal to each other, so that
one can write Eq. (24) in the form

(222)
X {Aoooo -

6l ff dz dy ’_)3(9:’ v; z)e—v:z-dzv—va(zﬂl) — z)-((222) . (AG)
]

Since the Laplace transform is over the two relative
distances z and y, we need only two ¢ variables.
Setting

i — 17 1.7
O = 03 = 30, oy = o0 — 350,

one easily verifies that the three terms under the
double sum in (A4) become equal to each other
and hence that (A6) reduces to Eq. (9b).

APPENDIX B—PROOF OF THE IDENTITY (42)

From Eqgs. (8) and (9) in Part I of this series,
one can easily verify that the kernel K,(x, y) of
the Kac integral equation fulfills the identity

0K,.,/dy + 0K,/ox
= ('/)K..y + K.,) + K., — 32K,.

Multiply this equation with ¢,(y; S)¥.(z; s + v),
and integrate over z and y. In each term, one of
the integrations can be performed. After a partial
integration of the second term, the result can be
written in the form

l xIc(s) + )\”(S + ‘Y)
2008 — M8+ )

f_m dz (x5 8 + v)dulz; )
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=g [ daadleis + D9

+ 1/2[ dr ¢.(x;s + 'Y) 1!’1:(93 8).

Multiply this equation with

+®

ay ¥.(y; s + 7y; 8),

—

and sum over all n. On the right-hand side, use the
completeness relation

2 less + VWlis 1) = o — ).

The term with d/dz then vanishes and one is left
with

LSO+ M6+ )
223N — N+ )

X [/::ﬂ dx Yulz; ) Ya(z; s + 7)]2

1 + o
= sz[ dz zdi(z; s).

This holds for all k. By letting ¥ = 0 and by using
(92), Eq. (42) follows. We leave it to the reader
to prove, in a similar way, the identity implied by
the virial theorem (40a).

APPENDIX C—PROOF OF EQ. (44)

After the ‘“taming” substitution and after ex-
panding up to O(y), the contribution of the nth
term of the resolvent series (29) to Eq. (28a), can
be written in the form

€xXp [nﬂ(QVo)l/

e f a’ dy’ W h(y')

% [gg:g]lﬂf fdz; e de,
< [ .f.fdt, )

i@, + 2 1P, (2o | 2, 1),
where
a=8+ ¢+ % ;

2 =z,

-dty [T e (L +v"a(i1 + 25)

t=1

a; = %n(%v)”z(l -~ 4);
o=y,
and where for A (s), h(z’) and h(y’), one should still

substitute the expansions (36) of Part I. We have
already seen that in zeroth order, one obtains (4 /w)"
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with
= (1/a) exp [—ad + 7(2v)*].
There are six sources of terms proportional to .
1. In zeroth order, s + 37° = 1/(l — 8). Since

one develops at constant I, one obtains up to first
order,

s+ i =1/(L+ Al - 9),

with Al = v dpl’/ds, where pi’(s) is given by
Eq. (39) in Part I. From the zeroth approximation
one therefore obtains the contribution

—PneAl/[1 + ol — 9)],
where
P=e"/1 + (I — &)

2. From the Aj(s), one clearly obtains the con-
tribution

—P'nyus’ = —§ny(l — B)P".

3. From the v terms in the square brackets one
obtains

P”z’}‘;l{l——(wr >+Zz( + 2+ )}

4. From the 4! terms in the square brackets
combined with the correction of O(y?) in the eigen-
functions h(z") and h(y"), one obtains

»2_@( _ _l)Q:_Qf
nP lg ! é = B

Lo owl 3 i)]
X[ - '+‘2Bz( 4l+3l2 .

5. From the product of two v* terms in the square
brackets, one obtains

in(n — VP2 2oy 20— 6~ 1/

6. In all these contributions, the function
P,(z._, | 2%, t;) was replaced by the zeroth ap-
proximation, which is §(z/ — 2/_,). One must there-
fore still calculate the contribution due to the
deviation of P, from the & function. All other factors
can now be replaced by the zeroth approximation.
From the Markoff property of P, all the 2/ integrals
can be performed immediately. One then carries
out the 3’ integral using the result that up to O(y),

[ v Frp.@ 1,0

= F(2') — y2'tF’'(z’) + yiF'' ().
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The z' integral can be performed and one finally
obtains

Y AN v.)(l—a)z]
"P2<5+a>[1 Y B |

Combining all these results, and summing over n
then leads to Eq. (44). Here, as in many of the other
calculations, a principle of maximum simplification
seemed to be operative. If the final answer was not
simple, we invariably found that we had made some
algebraic errors!

APPENDIX D—PROOF OF THE IDENTITY (87)

For the proof we are indebted to Dr. J. H. Halton
of the Brookhaven National Laboratory. The first
step is to develop the left-hand side of (87) in in-
verse powers of k°. Using the fact that

Z ( T iR = Z A;w?ﬁy
from which follows by putting z; = ¢!/s;,
> o), Lo - = X 47

one obtains for the left-hand side

E (k2r Z ( r+2)” (c C)

i

(A7)

It is now slightly more convenient to introduce
instead of the matrix M [given by (75)], the matrix

1/2
L, = 1 <%> My = 8, — ¢

0i0% \C;

In this way, (A7) can be written

Ly& v

r=0 Tt irdy, g

¢:Lii, Ly, -+ L

tré4ad
2 2
X 05,05, ** 0ipy,e

The summation over ¢ and j can be performed
immediately and give the factor

)

7

c;x(l -

Call p; = —o%/k® and for convenience of writing,
set ¢; = —d,. It is then easily seen that the identity
(87) can be written in the form

E Z dnLui lels et Lir—u'r

r=1 431,12"

®
— &’

X pispiy v piy =7 (A8)
where now

L = é; + d;.
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By substituting L and by working out the product,
one can verify that the sum over the %,, 4, -« 1,
can be written as

> ¥ % Ildal,

s=1 $185°°°1y Ta,ra**°ry k=1

where the summation over the integers r, go from

1 to (r — 1), and are restricted by the condition
(denoted by the prime)

ntre-tr,=r

Interchanging in (A8) the summations over r and
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s, the left-hand side of (A8) becomes
; Z Z I;Il dupcu

where the summation over the r, are now unrestricted
and go from one to infinity. One therefore obtains

> = 11

a=1 i3°**is k=1

uPu

l_ptk

which verifies Eq. (AS8).
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