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For a one-dimensional fluid model where the pair interaction potential between the molecules
consists of a hard core and an exponential attraction, Kac has shown that the partition function
can be determined exactly in the thermodynamic limit. In Sec. IT this calculation is reviewed and
further discussed. In Sec. III, we show that in the so-called van der Waals limit when the range
of the attractive force goes to infinity while its strength becomes proportionally weaker, a phase
transition appears which is described exactly by the van der Waals equation plus the Maxwell equal-
area rule. In Sec. IV the approach to the van der Waals limit is discussed by an appropriate perturba-
tion method applied to the basic integral equation. The perturbation parameter is the ratio of the
size of the hard core to the range of the attractive force. It is seen that the phase transition persists
in any order of the perturbation. The two-phase equilibrium is characterized by the fact that in this
range of density, the maximum eigenvalue of the integral equation is doubly degenerate and that
the corresponding two eigenfunctions do not overlap. In Sec. V we comment on the relevance of our

results for the three-dimensional problem.

I. INTRODUCTION

N this series of papers we intend to present a

new discussion of the old theory of van der
Waals' of the continuity of the gaseous and liquid
states of matter. It is well known that the great
merit of this theory lies in the fact that it gave the
first qualitative kinetic interpretation of condensa-
tion phenomena and of the existence of a critical
point. On the other hand, it has proved very diffi-
cult to make the theory more rigorous and as a
result the modern theory” of the equation of state
of a nonideal gas, has followed more the idea of
Kamerlingh Onnes to represent all properties of the
gas as power series in the density—the so-called
virial expansion. In this way one can take succes-
sively into account the interaction of the molecules
in pairs, triples, quadruples, etc., and one can derive
precise expressions for the successive deviations from
the ideal gas laws in terms of the intermolecular
potential. Many attempts,” thus far unsuccessful

1J. D. van der Waals, Dissertation Leiden, 1873. This
was expanded in the book: Die Kontinuitit des gasformigen
und flussigen Zustandes (Johann A. Barth, Leipzig, Germany,
1899), 2 volumes. Compare also the monograph by J. P.
g%%en, Die Zustandsgleichung (Vieweg, Braunschweig,

2 Due mainly to J. E. Mayer. A summary is given in the
book by J. E. Mayer and M. G. Mayer, Statistical Mechanics
(John Wiley & Somns, Inc., New York, 1940), Chaps. 13
and 14. For a recent account see the monograph by G. E.
Uhlenbeck and G. W. Ford in Studies in Statistical Mechanics
(North-Holland Publishing Company, Amsterdam, 1962),
Vol. 1, Part B.

3 These also go back to J. E. Mayer; (see reference 2,
Chap. 14). For a more recent discussion, see K. Ikeda,
Progr. of Theoret. Phys. (Kyoto) 19, 653 (1958), and 26,
173 (1961). Much of the motivation came from the analogy
with the Bose—Einstein condensation, which was pointed out
by B. Kahn and G. E. Uhlenbeck [Physica 5, 399 (1938)].
However, we now believe that this analogy is superficial
and that there is no real connection between the Bose—Einstein
condensation and ordinary condensation phenomena.
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have been made to construct a rigorous theory of con-
densation phenomena from such expansions. In fact
we believe that such a construction is very difficult,
if not impossible,* and it therefore seems worth-
while to try to reformulate in a more rigorous way,
the basic ideas of van der Waals. v

We have attempted to do this starting always
from a one-dimensional gas model, first proposed by
M. Kag,® for which all calculations can be carried
out exactly. The model consists of N particles moving
on a line of length L and interacting in pairs through
a potential ¢(z) which consists of a hard core of
length 6 and an exponential attraction (see Fig. 1.)
For this model it is possible to give an exact discus-
sion of the partition function in the thermodynamic
limit L — o N — o, 1 = L/N finite. As shown
already by Kac, the problem in this limit can be
reduced to the discussion of a linear integral equa-
tion with a positive definite, Hilbert-Schmidt kernel
of which the maximum eigenvalue determines the

¢ The difficulties become especially clear in the formulation
of the condensation problem according to C. N. Yang and
T. D. Lee, Phys. Rev. 87, 404 (1952). Compare also the
discussion by G. E. Uhlenbeck and G. W. Ford in Chapter 3
of the book Lectures in Statistical Mechanics (Proceedings
of the Summer Seminar, Boulder, Colorado, 1960, published
by the American Mathematical Society, Providence, Rhode
Island, 1963.)

8 M. Kac, Phys. Fluids 2, 8 (1959).
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thermodynamic potential (Gibbs free energy) of the
system. These results will be recapitulated in Sec. II.

For finite v, that is for a finite range of the at-
tractive force, the system does not show a phase
transition in agreement with all previously known
results’ for one-dimensional systems. However, if
one sets a = ayy, and then lets y — 0, (i.e., for a weak
but very long-range force) so that the integral

‘/; dx ¢nttr.(x)

is finite (we will call this the van der Waals limit),
a phase transition appears which is described exactly
by the van der Waals equation

p=kT/1— 8 — /P, ey

together with the well known Maxwell rule.” This
will be shown in detail in Sec. III.

In Sec. IV, all the eigenfunctions and eigenvalues
of the Kac integral equation are found in this limit
by a perturbation procedure with v4 as the expansion
parameter. The phase transition appears as a double
degeneracy of the maximum eigenvalue, and the
phase transition persists when the perturbation cal-
culation is carried further to any finite power of .
One should also note that this entire development
breaks down near the critical point. For the critical
region, a separate discussion is required which will
be given in Part III of this series of papers.

In the last section, we will comment on the
relevance of our results for the three-dimensional
problem, and on the relation to the usual derivation
of the van der Waals equation.

II. THE KAC INTEGRAL EQUATION

The partition function for our one-dimensional
gas 1is given by

1 1 L L
FA—”fO j; dt, - - diy

X exp [—ﬁ 2 et — t,-l)]

i<j

11 L
L[

6 That there is no phase transition for a one-dimensional
system with only nearest-neighbor interaction, was shown
first by F. Gursey, Proc. Cambridge Phil. Soc. 46, 182 (1950).
This was generalized (with the same result) to the case
where each molecule interacts with a finite number of neighbors
by L. Van Hove, Physica 16, 137 (1950). Compare also the
discussion given by A. Munster in his book Statistische
Thermodynamik (Springer-Verlag, Berlin, Germany, 1956),
Secs. 7.7 and 8.8, where one also finds further references.

7 Also called the equal-area rule. See Maxwell, Collected
Works, Dover reprint, Vol. II, p. 425.
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Xexpl 2 e I S(It = 4D, @
<j <7
with A® = A?/2amkT, v = a/kT, and where the
stepfunction S(z) is defined by

S) = {O for |z < &

1 for |z] > é.

Since the integrand is symmetric in ¢, &, --- ty,
and because the hard cores impose a linear order of
the molecules in L, one can write (2) in the form

-3Ny
Z(L,T,N) = eAN ff dt, - diy
0<t1<te e ' <tN<L
v N N ) . N-1
X exp [5 2 Ze"]H Sty = 1. 3

Also the attractive part of the integrand can:be
ordered by making use of the identity

exp [% > exp (= [t — t,-l)]

1,9=1

+co
=f”'fdx1 < day

X exp Az, + 22 + -+ + 2w)]

N
W () H P(x; | 241, tisn —

L1 ti); (4)
where
W) = (2—,{); exp [—127],
P |y, t) = [{2x(1 — ")} )

X exp [—(y — ze”"")/2(1 ~— ¢*"")].

The motivation and the proof of the identity (4)
follows from the observation that exp (—v |t; — t;])
is the covariance of a one-dimensional, Gaussian
Markoff process (the so-called O-U process), but
of course one can also prove (4) directly. By sub-
stituting (4) into (3) and by making a Laplace
transformation in L, the integrals over the ¢; can
be separated in pairs since clearly

f 2L, T, N) dL
0

is of the form

w0 L L
f dLe™" f dt, f dt,
0 0 ta1
N-1

L L
X f dtz + - f diy H Fi(tisn — 8;)
ta tN—2

i=1
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= f dtl‘/. dtz A ‘[ dtN
0 t1 tN =1
© N-1
X f AL T Pt — £ ©6)
tn f=1
Setting
h = 7,
t2=71+1'2, ,tzv= 7'1+T2+ +7'1v,
L=rn+mn+ -+ 1w+ 7y,
one easily shows that (6) becomes
3 ,-1f dr ¢~ F (1),

so that by putting in the appropriate form for the
F;(2), one obtains (suppressing the temperature T
from now on)

fo " dLe M Z(L, N)

—Nv/2
e

=Le
A

X exp @ + -+ + 22)]W(z) II pu; | 250) ()

with

il = [ drePely . ©

The ordering of the z; in successive pairs suggests
the introduction of the kernel

%iﬁw e /26 + 9] ©

and the corresponding Kac integral equation

K.(z,y) =

+

dy K, (z, Y)¥@) = M(2).

(10)

It is easy to see that K,(z, y) is symmetric and in
addition one can show (for the proof, see Kac®):

(a) K.,(z, y) is positive definite, which means that

J[ K@, 9@ as ay

is always positive, whenever y(z) is not identically 0;
(b) K,(z, y) is a Hilbert-Schmidt kernel, which
means that

ff Kix,y)dedy < .

From these facts, one can conclude that Eq. (10)

KAC, UHLENBECK, AND HEMMER

has a discrete set of positive eigenvalues \;(s) starting
from a maximum eigenvalue A(s) and converging
to zero as ¢ — o, that the corresponding eigen-
functions ¢.(z, s) form a complete orthonormal
set, and that the kernel K,(z, y) can be expanded
in the convergent series

K.z, 9) = 2 MO, 9¥:(, 9)-
Writing Eq. (7) in the form

(11)

fo " dLe I, V)

—iN' 1
= I f f dz, -+ dzy exp I:liz' (z, + xN):I

X [W(xl)W(xN)]} IZ;VII K,(x,', xi«-l);

and using Eq. (11), one can integrate over z,,
T3 -+ - Zx-1 and obtain

[ aerraa, v - _NN; i N4 (12)
with
4, = f o v, W@ (13)

If one now forms the grand partition function

G(L,2) = 2 Z(L, N)(49)", (19)
N=1
it follows from Eq. (12), that
@ —3» 2
—sL _ ze A,'
[ aerew,s =¥ v 1

provided z < €!"/A,(s). It is clear therefore that the
abscissa of convergence of the Laplace transform
of G(L, 2) is that value of s, for which

z = &/ s). (16)
Since on the other hand this absecissa is also
llm ln G(L,z), (17

L—ocn

which has the thermodynamic meaning of p/kT,
it follows that the relation between 2z and the pres-
sure of the gas is given by

Mo(p/ET) = €' /2. (18)

Furthermore, since the thermodynamic meaning of
z is the fugacity, which is related to the chemical
potential (Gibbs free energy per particle) u(p, T) by
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VAN DER WAALS THEORY. I.

p = kT In (Az), (19
the equation of state follows from
L= @u/dp)r = —N(9)/Ns), s = p/kT, (20)

where the prime denotes differentiation after s.

The following statements can be proved con-
cerning the maximum eigenvalue Ay(s) and the eigen-
value spectrum \;(s) (see Appendix 1):

(a) All eigenvalues are monotonically decreasing
functions of s and approach zero for s — .

(b) The maximum eigenvalue Ao(s) goes to in-
finity for s — 0. For no value of s can it be degenerate,
and it is an analytic function of s for all real s > 0.
Finally there is the inequality

NS — No(OA(s) < 0, 21

which implies that A}’ (s) is always positive.

(c) All other eigenvalues are finite for s = 0.

It seems very likely that the curves A;(s), ¢ > 0
will also not cross each other, in which case the
spectrum as a function of s may look as shown in
Fig. 2.

One can conclude that for any value of z there is
an unique value s fulfilling Eq. (16), and from
Eqgs. (20) and (21) it then follows that ! is a mono-
tonically decreasing and analytic function of s =
p/kT for all positive values of s. There is therefore
no phase transition. Note that the theory gives
directly [see Egs. (18) and (19)], the Gibbs free
energy as a function of the pressure, and that there-
fore one obtains the specific volume [ as a function
of the pressure instead of the pressure as a function
of ] as in the Mayer theory. The connection with the
virial expansion of the equation of state is therefore
quite complicated. One can show that the maxi-
mum eigenvalue A\(s) can be expanded in the form

Mols) = e’(s7 + ap + s + a8 + -+ ). (22)

The coefficients a; can be calculated successively
and they are related to the Mayer cluster integrals
b;. One finds

ao = bz; a = ba - bg; (23)

and so on. For the proof we refer again to Appendix I.
From Egs. (22) and (23) one can then verify that
the equation of state (20) is, for small pressures,
simply the inversion of the usual virial expansion

pUKT = 1 + B/L+ C/B+ -+,

with B = —b,, C = —2b; + 4b;, etc. We have been
unable to find a simple “graphological’’ characteriza-
tion of the coefficients a;.
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Fic. 2. Eigenvalue
sprectrum as a func-
tion of s.
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III. THE VAN DER WAALS LIMIT

We will now study what happens to the maximum
eigenvalue A\(s), if one puts @ = ayy and then goes
to the limit v — 0. To do this, we investigate the
moments »_; A%(s) of the distribution of the eigen-
values A;(s). One has

[of s am

X Ka(xl’ x2)Ka(x2; xS)

[ f s,

X exp [— )@ + 2, -+ + )]
% f...fdﬁ e dn,
3

X exp [—s(m+ -+ 7)) ﬁ P; |z, 1),

2N =

st K,(x,” xl)

where », = ao/kT and z,., = z,. The integrals over
the z; can be carried out and one can then investi-
gate the limit ¥ — 0. Some of the details are given
in Appendix II. The result is the following theorem.
Fory —5 0,

(29)
x (ex0 @1 [ dr exp [=or = 3 + we])
One now can reason heuristically as follows. Call

&, » = e @'l [ dr

X exp [-sr — 3E + 71°)7];  (25)

then since (24) holds for all n, one can expect that
for any reasonable function g(x),
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fstn)
®
F1aG. 3. The function
fn) in the two-phase
\ region.
o 1N
fmax :
E fmin

n

. 1 + o
limy ¥ g0 = 5 [[ dednglie, 0l @0
Take now for g(x) the step function

1 for a<z<p
ga) =
0 otherwise ,

and let N,(a, 8) be the number of eigenvalues be-
tween a and B; then one concludes from Eq. (26)
that

. 1
lim yN (e, 6) = 5

X [Area in (¢, n) plane for which « < f(¢, 9) < 8].
(27)

Suppose that f(£, 1) has an absolute maximum w(s),
then it is clear that for ¥ — 0, @ must be a limit
point for the series of eigenvalues, because in any
interval between w — e and w there must be in the
limit ¥ — 0, an infinite number of eigenvalues be-
cause the area (w — ¢ < f(§, 7)) < w is finite.
It seems therefore reasonable to expect that for
¥ — 0, w(s) is the maximum eigenvalue, or in other
words that

lim )‘0(8; 'Y) = w(s) = ma'))( f(g) 77) = max F(ﬂ)y (28)
70 (€13 m
with
F(n) = 10, »)
= exp [— (s + 7)) — In (s + ) + 220,

since the maximum of f(§, #) will always occur
forf = 0.

w(s)

Fi1g. 4. The maxi-
mum eigenvalue, in
the van der Waals
limit, for a tem-
perature below the
critical,

KAC, UHLENBECK, AND HEMMER

Fic. 5. Isotherm
corresponding to
Fig. 4.

Note that our argument from Eq. (27) does not
really prove Eq. (28), since (27) does not exclude
that a few discrete eigenvalues remain above w(s)
fory — 0. However, Eq. (28) is correct and the argu-
ment can be made completely rigorous. This is not
done, because in the next section, the detailed
investigation of the approach to the limit y — 0
implies a rigorous proof of Eq. (28).

To discuss Eq. (28) further, first note that the
maximum will occur for that value 5(s) for which

foln) = 8 + 1/(s + 3] = @)}, (29)
Since df,/dn = 0 implies
s+ 17 = (1/201 = (1 — 89, (30

one must distinguish two cases.

(a) 86 > 1; f,(n) is then a monotonically in-
creasing function of », so that (29) has always one
solution #(s) corresponding to an unique maximum
for F(5). The equation of state follows from

= —'(8)/w(s) = +35
+ [1/6 + 37 @) = +@)i/nls),  (31)

using (29). Putting s = p/kT and 5(s) = (2v)}/i
in Eq. (29), one obtains the van der Waals equation

p=kT/(l — 8 — a/P.

(b) 86 < 1; f,(n) has then a maximum and a
minimum (see Fig. 3), and one easily verifies that
for s = 1/83, fmia = fux = (2)(38)} and that
for decreasing s, f..;, and f... increase monotonically;
fmin Temains finite, while f,.., goes to infinity for s — 0.

If now (2v5)! < fuia, then again there is only one
solution of Eq. (29) corresponding to an unique maxi-
mum of F (). This is also the case if (2vp)} > fou..
However if foin < (200)} < fuae, then Eq. (29) has
three roots, the outer two corresponding to local
maxima of F(n) and the inner one to a local mini-
mum. One must now decide which of the two maxima
is the absolute maximum. Clearly if one varies »,
at fixed s, or if one varies s (keeping 8s8 < 1) at
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VAN DER WAALS THEORY. I.

fixed »,, there must be a value 5(»,) for which the two
maxima are equal. It is at this value that w(s)
changes its analytic behavior abruptly, since 5(s)
will suddently jump from the branch @ to the
branch @) of the f,(n) curve (see Fig. 3). In fact it
is easy to show that for s = 5, «w(s) has a discon-
tinuity in slope, and since | = —w'(s)/w(s) this
corresponds to an isotherm with a horizontal piece
(see Figs. 4 and 5). Furthermore, since (31) remains
valid, both the liquid and the vapor part are still
described by the van der Waals equation. Finally,
the equality of the maxima of F(y) for s = § or
of the two values of w(s) means the equality of the
Gibbs free energy of the two phases for s = §
which in turn is equivalent to the Maxwell rule.

The critical point is determined by 8s.6 = 1
and (20)} = faia(s:) = fum(s) = ($)(38)} and
this leads to the well-known formula

v. = 38; P. = a/278; kT, = 8ay/278. (32)
IV. THE EIGENFUNCTIONS AND EIGENVALUES
FOR SMALL v

Clearly the reason that, for small v, the eigen-
values \,(s, v) of the Kac equation crowd together
near the value w(s), must be related to the fact that
fory — 0, P(z | y, t) approaches the Dirac é function
8(z — y). However if one assumes that for y — 0,
the eigenfunctions ¥,(z, s, v) would remain centered
around z = 0, as in the usual eigenvalue problems,
then it follows from Eq. (10) that for vy — 0, the
eigenvalues would cluster around e™**/s which is the
maximum eigenvalue for the gas of hard rods. This
contradiction can only be removed if, for v — 0,
the eigenfunctions are centered farther and farther
away from the origin. This in fact is the clue for
constructing a consistent successive-approximation
method for the eigenfunctions and eigenvalues if
v is small.

In the basic integral equation (10), substitute

z=a +22M, y=v¢ +12Mm, (33

where 7 = 7(s) is the value of n for which the func-
tion F(n, s) defined by (28) has an absolute maxi-
mum. Think first of the one-phase region, so that
n(s) is unique. Let

') = ¥l + 1@/
then Eq. (10) can be written in the form

exp 0! [ dy' [ ds I:LKE;:;TP(:C’ 1y, )

2 b
X exp [—sT - %tanh (1'21) + @ +9) ——(”‘g)

(34)

221
- 3(%) tanh (7?)(” + y')]h(y') = M. (35

Clearly now fory — 0, P(z' | ¥/, 7) — 8@ — ¥)
if h(z") is centered around 2’ = 0, the eigenvalues
will approach

exp [n(2v0)}] f: dr exp [—sr - -’7%7] = w(s),

as expected. One may say that by the substitution
(33) one has ‘“tamed” the integral equation for a
perturbation expansion of the form

A=ow@{l+sPy+uPy+ -,
h@') = K@) +vr @) + P @)+ -

Since the algebra is involved, we simply indicate
how this is done. In the left-hand side of Eq. (35), set

Y =2+ (1~ T

and develop the whole integrand in powers of v*.
The integrals over ¢ are Gaussian integrals and the
integrals over r can all be expressed in terms of
w(s) and its derivatives. Up to order 4}, and except
for a common factor w(s), the left-hand side of (35)
becomes

W) IR (@) + h@)(G — 3o + 3o (= 8)/P)]
+ B0 — O /U hE)L — bl — 8)/P)
— Wh@) — K@) — 2h'@)],

(36)

where (31) has been used to express n(s) in terms
of I. If one now introduces the expansions (36) on
both sides of Eq. (35) and equates equal powers of
~}, one obtains, in zeroth approximation,

where we have set
B =1 — 2~ 8%1l, 1z =2/B)},
@) = HO@).

(38)

This is the equation for the Weber functions and
hence one concludes that

ua’ =3[l — 2n + DB,
H, (@ = N.D.(9,

(39)

where N, is the normalization factor (B/2xl)t(n!)%.
Note that the quantity B is related to the com-
pressibility of the gas, since, from the van der Waals
equation,

B = [—F(l — &)/kT)(6p/d])r. (40)
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w(s);—*—N8,7)
(exact); -<-=-=--
(s, v) to order v3;
——— Xs, 7) to

order (yd)2.

In the one-phase region dp/dl is always negative,
and therefore B can be taken positive. The maximum
eigenvalue corresponds therefore to n = 0, and is
given up to first order by

A8, 7) = w@)[1 + (1 — B)]. (41)

This proves the statement in Sec. III, that the
maximum eigenvalue is w(s) in the van der Waals
limit.

In first approximation one obtains

IHY it — o dH
B oty — im0l A
=91
+ 20 (g =~ 1)
— ”g(l — 8l — 39 2HO. (42)

6l5/2Bﬁ/2

It can be easily verified that the right-hand side is
orthogonal to H!®, so that (42) has an unique
solution. For the explicit form of the solution and
also for the second approximation, which will be
needed in Part II of this series of papers, we refer
to Appendix III.

Let us now consider the two-phase region.

It is clear that in this case the argument must be
revised, since the n(s) in the shift (33) is no longer
unique. In fact, since F(», s) has now two equal
maxima, there are fwo values of 7(s) corresponding
to the volumes I, and I, of the saturated vapor
and liquid phase (see Fig. 5). For each of these two

F1G. 7.
The van der Waals
isotherm (y = 0);
— — — The exact
isotherm;
The isotherm to
order 8.

KAC, UHLENBECK, AND HEMMER

values one can make the shift (33), and repeat the
the argument. Clearly in both cases one will get
the same zeroth-order eigenvalue w(s), but one will
get another eigenfunction, since the quantity I/B
will be different at [, and ;. One must say therefore
that for I, < I < [, i.e. in the two-phase region,
the maximum eigenvalue in the van der Waals
limit is doubly degenerate, and in lowest order, the
eigenfunction will have the form [since D,(z) =
exp (—12°)),

Yolz, 8) = al(%lll)i exp [_f_li <x - ml:%:l%)z]
valg) oo ~F (- o2])] o

where m.(5) = (2w)/L and 72,(3) = (2w)Y/L.

The question now arises as to the appropriate
linear combination corresponding to a specific length
Il = &l + &, (where &, £ are the mole fractions
of the vapor and liquid phase), so that & + & = 1
We show that the answer is given by

E=d & =ad. (44)

To prove this, note first that for small v, the two
Gaussian functions in (43) do not overlap. Hence from
the normalization of ¥/(z, 3), one obtains o? + o2 = 1.
Furthermore, for any finite v, it follows from the
Kac equation that

M, 1) = [[ drdy K.z, )

X 'po(xJ 8, 7)#’0(3/; S, 7);

N ) = —Mlo, i = [[ o dy

(45)

x ‘/’o(x: 8, 7) ¢0(y; 8, 'Y)

[since the differentiation of the eigenfunctions after
8 gives zero because the normalization of y,(z, s, v)
implies

f 'l/o(x’ S, 'Y) % Kbo(z: 8, 7) dx = O]

Now take s = 3, and let v — 0. Since for each of the
two functions in Eq. (43) one has an equation like
(45) with the same s and the same \o(s) = w(s),
but with [ successively I, and I, and since one can
again neglect the overlap of the two functions, it
follows from Eq. (45) that fory — 0,

1=4dl + ozl
which proves Eq. (44).
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We conclude this section with the following two
remarks.

(a) It is clear that the entire development breaks
down near the critical point because at that point,
B — 0 and I, =¢ I,. The overlap of the two eigen-
functions in the two-phase region can therefore no
longer be neglected. In the critical region, one has
to “tame” the integral equation in a different way,
which will be explained in the third part of this
series.

(b) It follows from Eq. (41) that up to first order
in v, Ao(s, v) still shows a discontinuity in slope,
and one can be convinced that the discontinuity
remains if the perturbation calculation is continued
up to any finite order in . For finite v, (s, v) is
an analytic function of s for s > 0. This means that
for small v, the successive-approximation method
which we have developed, approximates the analytic
function A,(s, v) by a series of functions which have
a discontinuity in slope in the region of s, where the
slope of \o(s, v) varies very quickly (see Fig. 6).
This implies that the phase transition persists up
to any finite order in «, although the equation of
state is then of course different from the van der
Waals equation. In fact it is not difficult to show
from Eq. (41), that, up to first order in+, the equa-
tion of state in the one-phase region is given by

K e v fim 1 __ﬂ_:.ﬁ]}
l2+2{kT B[kT 7 .

The saturated vapor pressure and the densities of
the saturated vapor and liquid also change ac-
cordingly. One finds

_Q

@(Bl — B,

~/

— n(®
paat - put + 'Y 2 ll —_ lg

2
L= 1"+ 2 (0~ 3)2(11—;‘)

X [ L, =1 B\l VT
with ¢ = 1, 2.

V. CONCLUDING REMARKS

To judge the relevance of our results for the three-
dimensional case, let us first recall the usual deriva-
tion® of the van der Waals equation from the parti-
tion function. One can argue as follows: If the range

8 This derivation goes back to L. S. Ornstein, Dissertation
Leiden 1908. Van der Waals himself, and then later also
Lorentz [Collected Papers (Martinus Nyhoff, The Hague,
Netherlands, 1935), Vol. 6, p. 40], started from the virial
theorem of Clausius. We will come back to this in Part II
in this series of papers.
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of the attractive force is very large so that there
are many molecules in the action sphere of each
molecule, then the potential energy of the attractive
forces should for almost all configurations of the
molecules, be equal to the average value

iater = -CN2/2V: (46)

where
¢ =~ drounl0.

Equation (46) follows because on the average, the
potential energy of one molecule will be proportional
to the number density N/V and is in fact equal to
—CN/V. The factor two in (46) is of course needed
because each molecule interacts with all other
molecules. For long-range attractive forces it seems
reasonable therefore to approximate the partition
function by

11

2 N1 %P [CN?/2kT V]

Z(V,T,N) =

Xf ...fdrl -de'NHS('ri _ril); (47)
v v i<q

where S(r) is the same step function as used in
Sec. II. Now if V is very large compared to the total
proper volume Nv,, v, = 3wry of the molecules,
then clearly the integral approaches V*, while if
V is of the same order as Nv, the integral will become
strongly zero about as (V — Nwv,)". Approximation
of the integral by the “interpolation” formula
(V' — b)" with b =¢ Nv,, then leads immediately to
the van der Waals equation

( + a/V)(V — b) = RT,
with a = 1CN>.

This derivation has been criticized mainly for
two reasons:

1. A correct evaluation of the partition function
in the thermodynamic limit should always give a
stable isotherm for which dp/dv < 0. This has been
proved rigorously by Van Hove® for an inter-
molecular force of finite range and with a hard core.
Since there is an unstable part in the van der Waals
equation below the critical temperature, the equation
is in confliet with this theorem.

2. The approximation (V ~ b)" for the repulsive

(48)

* L. Van Hove, Physica 15, 951 (1949). Recently Dr. N. G.
van Kami)en has pointed out a gap in Van Hove’s argument,
Apparently the theorem can be proved even unggr less
restrictive conditions by a different method. See a recent .
paper by D. Ruelle, which will appear in the Helv. Phys.
Acta. (to be published).
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part of the partition function must be very rough.
Even if b is fixed so that the correct second virial
coefficient (which makes b = 4Nu,) is obtained, the
higher virial coefficients which can be computed
exactly, do not agree with the van der Waals’ values.

Let us now return to our one-dimensional system.
Note that by the same reasoning as used above, one
would obtain

Z(L,T,N) =

Xf ---fdtl
L L 1<q

- dty I 8(1t: =

since C becomes 2a,, with the factor two because of
the two sides of the attractive force —aqy exp [— [t]].
The great difference between Eqs. (47) and (49)
is that the integral in Eq. (49) can be carried out
exactly because of the linear order which the hard
cores impose. The result is (L — N§)". For a gas
of hard rods of length §, the equation of state as
noted by Tonks' has precisely the van der Waals
form

p = kT/(1 — 8). (50)

The second objection against the van der Waals
equation disappears in one dimension, and it is
therefore no wonder that for our model in the van
der Waals limit, Eq. (48) with b = N3, a = a,N*
is obtained exactly. The only question which re-
mains is the conflict of the form (49) for Z with
the Van Hove theorem. From the point of view of
the development in Secs. IT and I11, it is clear that
this conflict is due to the fact that in the derivation
given above, the thermodynamic and the van der
Waals limits have been coupled together, while they
should be taken separately and in the proper order.
Since we go first to the thermodynamic limit for a
finite range of the attractive force, and then allow the
range to go to infinity, we do not conflict with the
Van Hove theorem, and we always obtain the stable
isotherm'). It seems to us therefore, that the first
objection against the van der Waals equation is
not as serious as we have been led to believe.

To summarize this discussion, we conclude with
the following statements.

(a) It seems a good idea, following the example of
van der Waals, to try to separate the effects of the
repulsive and the attractive forces on the equation

10 I, Tonks, Phys. Rev. 50, 955 (1936).

1 For our model, the Van Hove theorem is expressed by
the inequality (21) for the maximum eigenvalue Ao(s, 7),
which holds for any value of . The isotherm is monotonically
decreasing for any v, and therefore also in the limit v = 0,
ap/ol < 0.
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of state, and to develop all thermodynamic functions
in the ratio

_ raﬁge of repulsive force (51)

range of attractive force

One expects that for p << 1 one will get a van der
Waals-like equation of state which would lead to
the condensation phenomena and the existence of a
critical point. The thermodynamic equilibrium con-
ditions will follow automatically by going first to
the thermodynamie limit.

(b) Only in one dimension does one obtain in the
limit p — 0, exacily the van der Waals equation of
state for hard-core repulsion. This should be inde-
pendent of the precise form of the attractive force.

- We have been able to confirm this by generalizing

the Kac model to the case where the attractive force
is of the form

Pares(®) = — Zl oy exp [—vyo.x]. (52)
The calculation of the partition function can be
reduced as in Sec. IT to an integral equation in m
variables and the behavior of the maximum eigen-
value in the limit v — O may be considered in the
same way as in Sec. III: the same equation (28) is
obtained, except that 2w, is replaced by

1 < 2 r°
_TZ o = IC—T-_/; Caser(T) dz.

Thus, again the van der Waals equation is obtained
and the van der Waals a is again proportional to
the area of the attractive potential.

(c) In three dimensions, the equation of state of
a gas of hard spheres is certainly not p = kT(v — b),
although qualitatively the behavior may be similar.
Even for very long-range attractive forces one can
only hope to get a van der Waals-like equation of
state. In a sense, the problem of the gas of hard
spheres becomes the central problem. Whether such
a gas would show a phase transition for densities
near close packing (the so-called Kirkwood transi-
tion), is a famous open question. We believe that
there are strong indications for the existence of such
a transition and that this transition might be an
idealization (or caricature!) of the fluid-solid transi-
tion. Clearly, in one dimension [see Eq. (50)], such
a transition does not exist, and we believe therefore
that even with long-range forces, to enforce co-
operation, one phase transition at most can occur
in one dimension.

Finally, we would like to mention two questions

(53)
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which we have so far been unable to answer in a
satisfactory way.

1. What is the relation of our theory with the
Yang-Lee theory of condensation? From the exist-
ence of a hard core, it follows that the grand partition
function G(L, z) must be a polynomial of degree
M = L/§ in z with positive coefficients. Setting

G(L,?) = exp [Ix(L,?)],

one can write

X(L,7) = ~ iln(1 —ﬁ)
2 L = z, 2
where the z; are the zero’s of G(L, z), none of which
can be on the positive real axis. One can interpret
x(L, 2) as the complex logarithmic potential of M
point charges of strength 1/L situated at the points
2;. In the limit I — o, the strength of the charges
becomes smaller and smaller while the number M
increases. Suppose now that in the limit L — o,
a number of the charges concentrate in a single
layer which crosses the positive real axis, say at z = z,.
The limit function

i(Z) = },1-1.2 X(L; Z),

which surely exists, will then for positive and real 2,
consist of two analytic pieces, one for z < 2, and
the other for z > 2z, At 2z, these two pieces will be
continuous but the first derivative will have a dis-
continuity. Since x(2) = p/kT one would therefore
obtain a curve as in Fig. 4 (with abscissa and ordi-
nates interchanged), and condensation would occur.
It is clear that something like this must happen for
our model in the van der Waals limit. It must be
that for finite v, the single layer will not cross the
positive real axis but leave a gap, say, of order 1.
For finite v, x(z) will then be analytic for all real
and positive z, but in the van der Waals limit when
the gap closes, condensation occurs. However, we
have been unable to substantiate this picture, be-
cause it is difficult to discuss the behavior of the
eigenvalues of the Kac equation for complex values
of s.

2. What is the relation of our theory with the
Ursell-Mayer theory? We have already mentioned
the problem of the ‘graphological” interpretation
of the coefficients a; in the expansion of A,(s) [see
Eq. (22)], but there are also other questions. For
instance it should be possible to introduce Mayer
f functions both for the repulsive and for the at-
tractive parts of the intermolecular potential, which
would lead to graphs with two types of lines. The
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question is then, which simplifications occur if the
attractive force is long range, and whether one can
learn from the one-dimensional model how to
characterize better the van der Waals-like equation
in three dimensions.

APPENDIX 1

For the proof of statement (a) see Kac (reference 5,
p. 11). There one also finds the proof that

M) > e fa dr exp [—st + 7], (A1)

and since for s = 0 the integral diverges, \(s) — =
for s — 0. Furthermore, since the right hand side
of (A.1) can be shown to correspond to the ‘“nearest-
neighbor” approximation, one should expect that
for small s (i.e. small pressure), As(s) becomes equal
to it, which implies that for s — 0, Ao(s) ~ €¥'/s,
and this will be confirmed later when we derive the
expansion (22).

The statement that N,(s) cannot be degenerate
for any value of s, follows from the fact that the
kernel K,(z, y) is positive for all z, y and for s > 0.
Since

f f de dy o@)K. (@, Ye(y)
f dzr ¢’ (x)

for any function ¢(x), and since the maximum is
reached when o(z) = ¥o(z), K.(z, y) > 0 implies
that ¥o(x) must have the same sign for all z, and we
may assume therefore ¥,(z) > 0. Furthermore, ,(z)
cannot be zero, unless for some particular value of
x, say %o, K.(%, y) = 0 in y, which is excluded by
K, > 0. Now suppose that for some value of s,
No(s) was degenerate and corresponded to the
two eigenfunctions ¥ (z) and ¢{(z). Taking

sV (z) > 0, one then can construct a linear combina-
tion () of ¥§ and ¥¢® which is orthogonal to ¢V,
and which fulfills the equation

Ao(s) >

(A.2)

f dz dy oK, (z, 1)e(y)

f dz ¢*(z)

Since ¥4 (x) cannot be zero, ¢(z), being orthogonal
to ¥s", must be both positive and negative over
some intervals, and this yields a contradiction. The
absence of a degeneracy of Aq(s) implies that A\,(s)
is an analytic function of s for all real s > 0. This
is because it is known that the eigenvalues \;(s)
are the zero’s in A of the Fredholm determinant

Ao(8) =

(A.3)
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D(z, ), which is an entire function of A, and is
analytic for all real s > 0. Therefore the A;(s) must
be analytic functions of s except at those values of
s where two or more eigenvalues cross.

Finally the inequality (21) is proved as follows:
With normalized eigenfunctions, one finds from

a0 = [[ do dy woe, 9Kz, 99y, 9,
that the quadratic form

Q) = No(9)2° + 2Ni(8)z + A/ (s)
= f : dx dy Yo(z, 8)¥o(y, s)

x [0, 4 22 4 T
+ ff do dy [%(x g St 9

+ ¥y, s) %((;_,'S_)]
From Eq. (9) for K,(z, y), it can be seen that the
variable s enters only through p,(z, y), and from
Eq. (8) it follows that the first term in Eq. (4) is
positive for all z. Also the second term in Eq. (4)
is positive, since by using

(A4)

K., v) = E MOz, Y1, 9),

and the fact that for any s the ¢,(z, s) form an
orthonormal set, it can be transformed into

2 [ do [——"%gg .8 ]

—2 S [T a e ey ],

n=1

and since A\,(s) < Mo(s) for n > 1, this is bigger

than
+ 9_'1{9)2 _ © <f+m %)2]
2)\0(8)[-/;00 dz ( P OE » dr ¢ 3/ I
which is zero because of Parseval’s relation applied
to the function dy,/ds. Hence Q(2) > 0 for all z,
which implies Eq. (21).
Statement (c), See. IT follows from the relation

N = f dz K,(z, )
0 —-wm

=fm dr e [—s-r+21+e—w:|
al—e"”xp 21— )

which shows that for s — 0, the sum of all the eigen-
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values goes to infinity as e'’/s, and since this is
also the behavior of A\,(s), all other eigenvalues must
be finite for s = 0.

To find the expansion (22) for \,(s), one must

make a perturbation calculation around s = 0 for
the eigenvalue problem
+®
[ K@ 09, 9 = Mgz, 9. (A5)

First we expand K,(z, y) in powers of s. To do this
we write K,(z, y) in the form

K,(z,9) = exp [z + y)]{ @)W

+§('s) f dr ([ngg:lP(zly, )

- W)}, 4.6
Now put
Mo(8) = (€"/9)a-y + aos + ays® + -+ ), A

Yol@,s) =¢7@ +s¢V@) + -

and let ¥’ (z) be normalized to one. Introducing
(6) and (7) into (5) and equating the terms pro-
portional to 1/s, one obtains

[~ wewer

X exp iz + YW OW) = e ¢ @e”. (A8)
One easily verifies that this has the solution
a=1; ¥O@ = (@) exp [~ + b2]. (A.9)

Notice that if we try to determine in the same way
the values of the other eigenvalues \,(s) at s = 0,
we would find in this approximation that a) = 0,
so that all A,(0) for n > 0 are degenerate, and to
find the actual values, we would have to solve an
infinite secular determinant. Only \o(s) becomes in-
finite for s — 0, and only for N\o(s) can we carry the
perturbation calculation further.

Equating in Eq. (5) the terms independent of s,
one finds

[ ay e e + i (~sov Wy

+ [ a2

X P |y, ) — W)y )

+ [W(:v)W(y)]*ll/“’(y)}

="V @ + ey @)]. (A.10)
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Multiply with ¢ (z) and integrate over z. Using
Eq. (9), the fact that ¢’ (z) is orthogonal to ¢ ' (z),
and the formula

[ dzay e W@ + IW@PGE |5, 9
~ e b1+ ],

which is a special case of Eq. (4), one obtains

G = —b+ f: dr {exp € — D). (A1)

The right-hand side can be written as

L-m im 5 ff dt, dt, {exp [IcT o(|t, — tzl)] - 1}

which is the definition of Mayer’s b,. One also easily
verifies from Eq. (10), that

vP @) = —(@ + )Y@
- re ( V’
+ e f_w dy ¥ () exp[g(x +y):|

x [ ar| T e 1y, 5 - wan.

We can go on in this way, but the calculation
soon becomes very lengthy. We have verified that
in next approximation, one obtains a, = b; — bZ,
where Mayer’s b, is defined by

—}E%Efffdtldtzdta

X [f12f13 + f12f23 + f13f23 + f12f13f23]

fu = o | ottt — 1D | -

The general expression for the a; in terms of the
Mayer b, is lacking. To obtain the correct equation
of state up to the fourth virial coefficient, @, should
be equal to b, — 3b,b; + 2b3, but we have not veri-
fied this.

with

APPENDIX II

To indicate the proof of Eq. (24), it will be suffi-
cient to consider the case n = 3. One has

Z A\ = fff dr, drp drg e 70T
' 3

x [[ f de, dz, des exp [— () (@ + 22 + 2]

X Pz, | 22, )P | 23, T2)P (25 | 24, 73),
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where P(z | y, 7) is given by Eq. (5). Introduce the
new variables

f= (T, — 2 ") — Py

£a = (13 — Te”"™)(A — e_z‘yh)_i

£ = (2 — 2 "1 — 6_27")_§y
with the Jacobian
6(61’52;53) — {1

— e—-'y(r.+rg+n)}
8(1'01, Tz 273)

X IT @ = exp [-2yr) 7}

i=1
The integral over the z; then becomes
{(21‘_)4}[1 . e—'y(n+r.+r;>]}—1

X ff}- d§, d; dbs exp [—3( + & + £)

> A.s.],

t=1

o)}
X exp [e—’i(r:+r-+f=) —
with

A, = (1 ~ e-ﬂn)i[e—ﬂn-nwua) F e 1],

and 74 = 7, 75 = 75

In this form it is convenient to go to the limit
v — 0. Since the A; approach 3(2yr;)}, the inte-
grand of the £; integral becomes mdependent of 'y,
and one obtains

limy 2\ =

¥—=0 i

H

X 1@, + 12 + )™ [ ff d d

2 )i,
R S N

il
To uncouple the 7, integrals, introduce the auxiliary
variable

1 2 3
n= A+ Tt 7S ZE:’T-')

i=1

and multiply (a) with
f dn 6< m + T2+ 73 .Z.;E'T')

-1
= 5 f_m dn f_m dv
X exp [w(

Tl+Tz+T3 ,‘V:,:ET')]
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using the Fourier representation of the & function.
Set v = w(r, + 72 + 73), and integrate first over
the ;. We then obtain

lun'yZ)\3——l—f dnf dw

¥—=0 i

X {‘/;m dr exp l:—-n(?vo)i + trqw — %wz]} .

Finally, setting w = § 4 ¢, one obtains Eq. (24)
for n = 3. The proof for arbitrary n follows the same
procedure.

APPENDIX III

The solution of Eq. (42) can be written in the form

H,’@) = N.[P.D..s(2) + Q.D..(2)
+ R.D,-.(2) + S.D.-s(2)],
where
Q=9+ DP+®w+ 1DV —-W,
R, = —9’P -’V + W,
S, = —nn — )(n — 2)P,
with

= w1 — 8)/UB}, W =, — §)*/2I'B}.

To obtain the equation for the next approxima-
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tion, the left-hand side of Eq. (35) must be ex-
panded to terms of order ¥*. Using the expansions
(36), and equating terms of order 4°, one obtains

d’H»

#(2)
n (0
dz2 Hn

2
+<"+%_ZZ)H'(*2) - B
il — 8P (4,
4B \3F T
n Al — 8)? LHP

Bt d*

B dH(I)
1 1) L n
X {ZZHn + Z dz }

O] Vg(l 5) (l2 — 205 — 5) 2
+ Hn (Z)[ 8l4B3

Y - B

R e

(1 — 9)*
1Bt

+

+ Y

12123 (150° — 360°5 + 3015° — 85°)

1 op _
+2B(2l 215 + &)
x{%+@+%%—0f+n+%%ﬂ

_wl= 9’0+ 5 dHO
B &

from which u!® and then H® can be determined
in the usual way.
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