THE PHYSICS OF FLUIDS VOLUME 2,

NUMBER 1

JANUARY-FEBRUARY, 1959

On the Partition Function of a One-Dimensional Gas¥

Mark Kac
Department of Mathematics, Cornell University, Ithaca, New York
(Received October 24, 1958)

A method is presented for calculating the grand-partition function of a one-dimensional gas with
the potential V(z) = + o for0 <z < dand V(z) = —ae "2 forz > 6.

1

HE paucity of exact calculations of partition
functions makes it desirable to search for cases
in which such calculations can be performed.
In this note we shall show how to calculate the
grand-partition function of a one-dimensional gas
with the potential V(z) given by the formula

Viz) = {+°°’

—a exp (—v2),

0<z<s,
x > 6.

(1.1

The crucial feature of the potential responsible
for the success of the calculation is that exp
(— # |t]) is the correlation function of a stationary,
Gausstan, Markoffian process (the Ornstein-Uhlen-
beck process).

Let

Q _ 1 f {_L
n!‘nzfo . PUTRT

> v~ til)} dt, -+ dt, (2.1
and set o
Y(@) = {1’ o} <, 2.2)
0, |z| > s.

We can write now

&_l 3 fL {& "‘Yili—’il}
nl  n! /; 0 P kT 1s§5ne
[T =t — tDldn - di

1<i<ign
or, setting
a/kT = B, (2.3)

%— = exp(—%@> j;L v -/; exp {_'g iil e—‘ytt,‘—til}
I 0=t —tDlde ---dta. (2.9

1€i<ign
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Since the integrand in (2.4) is symmetric in the
variables t;, - -+ , t, we have

h= e (-9)

0< 1<t "+ <ty<L

IT [t — w(t; — tDIdty -+ dt..

15i<isn

(2.5)

Now, for0 < t, < ---
IT = e~ Dl

1Si<i<n

< t, we have

- -van-w e

and

exp {g ‘};1 e—-rltf-h'l}

= E(exp {B%[X(tl) + - + X(tn)]})7

where X (?) is a stationary Gaussian process whose
covariance is

3.2)

E{XOX(t+ D} =exp(—v[). 33

It is well known that a stationary Gaussian
process with covariance (3.3) is Markoffian, i.e.,

E(exp {BX(t) + -+ + X))

=f_m...f_mexp (B, + -+ + 2}

o

'W<x1)P($1 I Xo; by — t1) T P(xn—l I Ty ln

— t,_) dzy -+ dr,, (3.4)

where

W) = (—2%)—; exp (—“’5) (3.5)
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and
exp{__(hy_—_xe"lX}
2 2(1 — 6—21t) .
P ;t = . 3.6
(x l y ) [21‘_(1 _ 6~27l)]% ( )
Finally,
4= e (-7)
f ...fexp (B 4 -+ + )W)
. f e f ﬁP(T,] ! Tiv1s tj+1 - tl)
0Lt 1< s+ <tn<L =t
(= Yt — ) dty - dbydey - dr,. (3.7)

4

Upon introducing Laplace transforms we get

i exp (—sL) Q.(L) dL = lz exp _ns
0 n! s 2

[m
J —»

[ et + - 4 2

n~—]

W) [] px; | 2,20 duy - - - dx, (.1
i=1

Pz |y =fm exp (—st)P(x | y; D[1 — ¢(1)] dt
’ (4.2)

zf: exp (—st)P(x | y; t) dt.

Now let

GL;7) = 3 2D

= a!

(4.3)

be the grand-partition function.
We have

fm exp (—sL)G(L; 2) dL

-+ B[ (9]

.f_:...j:exp (B a, + ---

n—1
“W(x,) IjIl p.(z; I Tj1) dxy -

+ )}

dc,, (4.4)

and it is convenient to introduce the symmetric

kernel
yB*)
p( > ) 4.5)

28"\ W(@p.(z | )
) W)Wy =

K.(z,y) = exp (7
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In the next section we prove that this kernel is

of the Hilbert-Schmidt type and that consequently
it has eigenvalue and eigenfunctions.

In terms of this kernel the multiple integral in
(4.4) can be written as

[ [ ey

-exp (%)K.s(x,, ) K (5, 23) <+ K,(x0ey, 7.)

[[W(z)]* exp (“ﬁ) dz, - - da,

- S| [ el

i=1
2
)dx:l ,

ol

where the ¢,’s and \,s are the eigenvalues and
normalized eigenfunctions of the integral equation

(4.6)

[ Ko ay =@, @)

It goes without saying that the y’s (like the \’s)
depend on s.
It may be pointed out that it is well known that

W@Px | y; t)

_ i exp (—2°/2)H(z) exp (—y’/2)H, ()
e~ 2wk!

- €xp (‘k')/t)’

where H, is the kth Hermite polynomial.
It thus follows that

K, ) = exp| P40 |

) i\ exp (=2’ /) H(x) exp (—y*/HH.(y)
k=0 (2m)k!

-f: exp (—s?) exp (—kyt) dt, 4.8

and it follows, in particular, that K, is positive-
definite.

5

We now prove that K,(x, y) is a Hilbert-Schmidt
kernel provided § > 0. We must prove that

f f K@,y dedy < = (5.0)

We have
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Kz, 9) = K.(ay)K.(y, z)
= exp {8z + Y lp.x | Yp.ly | @)

= exp {B(z + )} f: f: Pl | y; )Py | z; &)

xp {—S(tl + tz)} dtl dt2,
and consequently

f Kz, ) dz dy
= ‘/; j; exp {—s(t, + t,)} di, di,

/_: fP(x [ y; )Py | z; t2)

-exp {B(z + y)} de dy.

" Now

f f Pl |y; )Py | ;1) exp {8z + v)} dw dy

- /.

W@P | y; t) WPy | z; t,)
WWHE  [WaoW]

-exp {Bz + »)} dz dy,

and hence by Schwarz’s inequality

f_: f_i P(x|y; t)P(y | z; t,) exp {8z + )} de dy

<([.].
(N

An elementary caleulation yields

WP y; 1) exp 8+ ) do dy)

4
—W(}/-)P’(w ly; &) exp {BHx + y)} dz dy) .

TG e
./‘_q,wa( )P(xly, t) dx dy

14"
exp '8(1 - e""')

(1 — e

and (5.1) follows almost immediately.

6
Let \,(s) be the largest eigenvalue. Then for
exp (8/2)
0<z< =10 (6.1)

it follows [by substituting (4.6) into (4.4)] that

f: exp (—sL)G(L;z) dL = z exp (—B/2)

3 {fw P (%)[W(x)]*¢f(x) dx}2
; 1 — Az exp (—8/2) )

and in particular the Laplace integral on the left-
hand side of (6.2) converges.

On the other hand, it follows easily that, if

_ exp (8/2)
z = YORE (6.3)

the Laplace integral diverges.

In the next section we prove that \,(s) is a de-
creasing function of s and

(6.2)

lim A (8) = =, lim A,(s) = 0.
80 8o
It follows from this that (6.3) has a solution for
every z > 0 and, moreover, that the solution is the
abscissa of convergence of the Laplace transform.
On the other hand, Yang and Lee' have shown
that

6.4)

li
ey

exists and consequently x(2) is clearly the abscissa
of convergence. Thus

log G(L;2) = x@ (6.5)

exp (8/2)
z 2

Mx@) = (6.6)

which, in principle, determines x(z) and hence the
equation of state. As is well known,

p/kT = x(2),

P = zx,(z)y
where p is the pressure and p the density.

(6.7)
(6.8

7
'We now prove the properties of \,(s) which have

been used in Sec. 6.
" Recall that

K., 1) = exp{ @ + y)}(W(”)

W(y)

.f: exp (—~s)P(z | y; 0 dt

can be written in the form (4.8) whence it follows
that if 8, > s, and ¢ ¢ L? (— =, ), then

10, N. Yang and T. D. Lee, Phys. Rev. 57, 404 (1952).
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f_: f_: K, (z, Ye(@)ely) dz dy

= f: f_: K,.(, ye(®)e(y) dv dy.

Hence by the Weyl-Courant lemma
Ai(s) < Ai(s2) (7.1)

fory=1,2, ..

Next from considerations of Sec. 5 it follows that

[ [ K yad-o,

and consequently

lim

g— 0

lim A\, (s) = 0.

s

(7.2)

There remains to prove that

(7.3)

lim A\ (8) = .
8—0

We do this by noting that

./:: _/:, e K (x, Y)e(y) dx dy
f_: f_: ¢’(z) dx dy

o) = exp ()W,

M) >

and taking

An easy calculation yields

Ai9) = exp (8/2)

[ exp (st oxp (8 exp (~v} dt; ()
hence (7.3) follows at once.
It should be pointed out that

exp (8/2) [ e (—st) exp (8 exp (—v0)} di

corresponds to the ‘‘nearest-neighbor” approxi-
mation. An extension to an arbitrary (but finite)
number of neighbors was given by van Hove.?

8

Certain general conclusions can be drawn from
the preceding discussion.

(a) The gas does not condense. This follows from
the fact that A, (s) is a monotonic function of s which
varies from 0 to « [see (7.1), (7.2), and (7.3)]
combined with the fact that the Fredholm determi-
nant of our integral equation is an analytic function
of s for Re s > 0.

2 L. van Hove, Physica 16, 137 ( 1950j.

A ONE-DIMENSIONAL GAS 11
(b) The equation of state in the p, p variables is
easily seen to be

_N/AT) _ 1
N@/RT) T b

but the “explicitness” of this formula is illusory
since A, is not really known as a function of s.
(¢) From (4.8) one sees that for small s

K., y) ~ 22=50

2 2
o (-7)

*exp [B%(I + y)] (21'_)% ’

and one can use this to calculate A\, (s) by a per-
turbation calculation.

In principle this would allow one to determine
the expansion

)\1(3) =%+ao+a13+a232+ et

By the basic relation

Mx@)] =

exp (8/2)
2 2

one sees that the a’s are related in a complicated

way to the familiar b,’s.

It thus follows that an attempt to determine the
equation of state by calculating the b,’s is in effect
equivalent to finding A,(s) by a perturbation tech-
nique.

9

It may be worthy of mention that a slight modi-
fication of the method described in the foregoing
permits one to calculate the partition function for a
one-dimensional Ising model in which the inter-
action decreases exponentially.

Let
Q=2 exp {‘—]— 2

i kT

exp (—v |j— il)#;ui},

15i<ign
9.1)
where the outer summation is over y,, - - - , ., each
¢ assuming values 41 and —1.
By setting
B8 = J/kT (9.2)
and noting that
Z exp (—y | § — i),
1<i<i<n
1< . y
=5 2 exp(=v|j—iDuw —%, (9.3
2 i,i=1 2
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we can write

Tewi 2

i,i=1

cosh (8'z,) (9.6)

f: "'_/:C(’Sh(ﬁ%x‘)

W(x)P(x, I Ta; 1) -

Pz, | z,; 1) dx, - -+ dz,.

exp (—v |j — i]).uiﬂj}' 9.4)

It now follows (as in Sec. 4) that

lim (Q.)'" = 2 exp (—B8/2)\,,

n—

Now
B < .
exp |5 2 exp (=v | j — Dpu

= E{exp I:B* 2} X(i)ui]}, (9.5)

where X () is the process defined in See. 3.
Thus

2" exp (—g—B)E{ﬁ cosh [ﬁX(i)}

9.7

where A, is the largest eigenvalue of the integral
equation

° sap WPk | y; 1)
[ teosh (812 W WP

leosh (B'1) Poly) dy = Ne(2). (9.8

Q.

Although this integral equation cannot be solved
2" ox (~n_ﬂ) explicitly it follows easily that the model will not
o P 2 exhibit a phase transition.
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Contribution to the Theory of Brownian Motion*

RoseErT W. ZwaNnzict
Department of Chemisiry, The Johns Hopkins University, Baltimore, Maryland
(Received October 3, 1958)

The classical theory of Brownian motion of a periodic system is generalized to include the case
where the period of the system is very short compared with times characteristic of its interaction
with the environment. The system is described in terms of action and phase variables, which are
constants of the motion in the absence of interactions. The probability density of the system, averaged
over a time which is very long compared with a period of the motion, and long enough to include
many interactions, is shown to be a solution of a Fokker-Planck equation in action-phase variables.
Conditions for this are that the interaction is sufficiently weak and that the environment remains
in thermal equilibrium. Explicit expressions for the friction coefficients are obtained. When the
probability density of the system is independent of its phase, its irreversible behavior can be de-
scribed as a random walk in action space. This is a reasonable classical analog to the quantum-
statistical description by means of the Pauli equation. The properties of a harmonic oscillator with
a special interaction are considered in detail; it is shown that the friction coefficients are proportional
to the spectral density of a fluctuating force associated with the interaction, evaluated at the fre-
quency of the oscillator.

INTRODUCTION

HIS work arose from curiosity about whether
or not there is a simple connection between
two different and widely used points of view in the
theory of relaxation processes. Some phenomena
(e.g., dielectric relaxation) have been treated in
* This research was supported by the Office of Naval
Research under Contract Nonr 248(10) with The Johns
Hopkins University.

t Present address, Free Radicals Research Section, Na-
tional Bureau of Standards, Washington 25, D. C.

the framework of the classical theory of Brownian
motion, and others (e.g., vibrational relaxation)
have been discussed using the Pauli equation of
quantum statistical mechanics. These two ap-
proaches appear to have different ranges of appli-
cation and wvalidity, but there ought to be some
underlying similarities.

Another, more practical reason than just curiosity
for looking for a connection between these
approaches is that it is often convenient and
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