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Abstract

For singular perturbation problems, the renormalization group (RG) method of
Chen, Goldenfeld, and Oono [Phys. Rev. E. 49:4502-4511,1994] has been shown to
be an effective general approach for deriving reduced or amplitude equations that
govern the long time dynamics of the system. It has been applied to a variety of prob-
lems traditionally analyzed using disparate methods, including the method of multiple
scales, boundary layer theory, the WKBJ method, the Poincaré-Lindstedt method, the
method of averaging, and others. In this work, we examine the mathematical basis of
this RG method. We analyze a simplified algorithm for the method and show that its
crucial step is a near-identity change of coordinates equivalent to that of normal form
theory. This is done in the context of two classes of singularly perturbed differential
equations which depend on a small parameter €. For systems with autonomous per-
turbations, we extend the RG method up to second order and show it is equivalent to
the classical Poincaré-Birkhoff normal form up to and including terms of O(e?). This
analysis may be generalized to higher order. For systems with nonautonomous pertur-
bations, the RG method is equivalent to a time-asymptotic normal form theory which
we also present here. Finally, we establish how well the solution to the RG equations
approximate the solution of the original equations on timescales of O(1/e).

PACS numbers: 05.10.Cc, 05.45.-a, 02.30.Hq
Keywords: renormalization group method, normal form theory, singular perturbations,
multiscale systems, secularities, asymptotic analysis, near-identity coordinate changes.

1 Introduction

The renormalization group (RG) method of Chen, Goldenfeld, and Oono [4, 5] offers a uni-
fied, formal approach to deriving asymptotic expansions for the solutions of a wide variety
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of singularly-perturbed ordinary differential equations (ODEs). It is motivated by renor-
malization group methods used in solid state physics, quantum field theory, and other areas
of physics, see for example [8], and it has been applied to derive reduced approximating
equations of ordinary and partial differential equations in problems with boundary layers,
with fast and slow time scales, with and without turning points, and numerous others. It of-
fers a versatile alternative to classical perturbation methods, such as the Poincaré-Lindstedt
method [20, 28], the method of matched asymptotic expansions [12, 15, 19, 33|, the method of
multiple time scales [12, 15, 23, 33], the method of averaging [3, 35|, and the WKBJ method
[29] which were each developed with a view towards a specific type of problem. In numerous
examples the results obtained using the RG method are shown to agree [4, 5, 24, 31, 42] with
those obtained from classical methods. Moreover, it apparently automatically introduces —
where needed — the appropriate gauge functions, such as fractional powers of € and logarith-
mic terms in €, in the expansions, avoiding the need for the user to ‘see’ that they should be
used.

We pose the following questions: What makes the RG method work, and why is it
so effective? On what basis might the method be justified rigorously? How is it related
to other perturbation methods? Finally, is it algorithmizable at second-order and even at
higher orders? This paper answers these questions in the context of two classes of ordinary
differential equations. We consider weakly nonlinear, autonomous ODEs of the form

¥ = Az +ef(x), (1.1)
as well as weakly nonlinear, nonautonomous ODEs of the form
' = Ax + ef (2, 1), (1.2)

where x € C", 0 < € < 1, A is a constant, diagonal n X n matrix, with purely imaginary
eigenvalues, and f is smooth. Many of the problems listed above are of these types or can be
recast in this form. (It is clear how to extend all of this to diagonalizable A.) We are most
interested in the problems described by (1.1) and (1.2) for which the perturbation term is
singular, since it is in these problems that resonances and secular terms arise.

We simplify the CGO-RG method into three essential steps that capture the mathe-
matical nature of the method. Let V' be any suitable space of vector fields that admit a
naive perturbation expansion, for example those in equations (1.1) and (1.2), and let S be
the space of asymptotic expansions that formally satisfy such equations. We assume that
these expansions are truncated at a finite order and note that they may not be (and in
general are not) asymptotically valid for all time due to secular terms. We will show that
the RG procedure can be algorithmized and consists of three steps: The first step, RGy, can
be understood as a map between the space of vector fields V' and the space of truncated
asymptotic expansions S. The map is defined by taking a naive perturbation series, plug-
ging it into the differential equation, and solving order by order. Step RG, maps S to S and
consists of a coordinate transformation defined on the resulting asymptotic series in which
all bounded, time-independent terms in the original naive expansion are absorbed into the
initial condition. This coordinate change is near-identity on timescales of O(1/¢). The last
step, RGs, maps S back to V' and is frequently referred to as the RG condition. In practice,
the RG condition involves setting the derivative of the asymptotic series obtained in RG,



with respect to the initial time ¢ equal to zero. These three steps produce reduced forms of
the initial equations which are typically easier to solve. This formulation of the RG method
is equivalent to that originally proposed in [4, 5].

In contrast to the RG method, normal form (NF) theory consists of applying a near-
identity change of coordinates directly to the vector field to obtain reduced equations from
which the nonresonant terms have been removed. We show that the relationship between
the RG method and NF theory is summarized in the following diagram:

s B2, g
RGlT JRGS (1.3)
v v,

where NF denotes the change of coordinates central to the NF method. This view of the
RG method reveals that the essential reductive step is the change of coordinates, RGy. This
change of coordinates is near-identity and is applied to the initial conditions in the asymptotic
expansions. It removes nonresonant terms from the asymptotic expansion, and it is the the
analog of the coordinate change involving the dependent variables that is done in NF theory
to remove nonresonant terms from the vector field. The final step RGz serves to take the
result from S to V' and it can be interpreted as an invariance condition as in [38].

One of the main advantages of the CGO-RG method over NF theory is that typically
the secular terms can be identified by simple inspection of the naive asymptotic series.
Furthermore, the RG method applies to a wide variety of singular perturbation problems,
including some for which NF theory has not yet been developed. This versatility stems in
part from the fact that the near-identity coordinate change in step RGs is quite general and
its form does not need to be known in advance.

In this paper, we first apply the RG method to autonomous differential equations (1.1),
and show that it is equivalent to the classical Poincaré-Birkhoff normal form theory, see
among others [1, 2, 6, 11, 27, 30]. The reduced equations they generate are equivalent, as
in diagram (1.3). Moreover, the near-identity coordinate changes in steps NF and RG, are
the same, up to translation between the spaces in which they are defined. We carry out
the calculations explicitly up to and including O(e?) (the procedure may be generalized to
higher order). Finally, the Rayleigh oscillator is used as an example to illustrate the general
results for systems (1.1).

Second, we apply the RG method to nonautonomous differential equations, (1.2), to
generate reduced equations. We also develop a NF theory for systems (1.2) based on certain
Krylov-Bogoliubov-Mitropolsky averages, and we show that the RG method and this NF
theory are equivalent. Moreover, as in the case of autonomous equations, the near-identity
coordinate changes are the same, again up to translation between the spaces in which they
are defined. The Mathieu equation is used to illustrate the general results for nonautonomous
systems, (1.2).

Third, since the RG method can be understood now as a near identity change of coordi-
nates equivalent to the NF method, we can show using standard methods that the solutions
of the reduced first (resp. second) order equations are are O(e) (resp. O(e?)) close to those
of the original equation on timescales of O(1/¢) for the vector field defined in (1.1). We also
establish similar closeness estimates for the nonautonomous system in (1.2).
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For autonomous equations (1.1), the connection between the RG method and the NF
theory was established to first order in [42]. Ziane also studies systems with autonomous
perturbations in which the matrix A has some eigenvalues with negative real parts, and sug-
gests that RG is equivalent to a resummation technique. Our work extends the results of [42]
in a number of directions. In particular, we show that the RG and NF methods are equiva-
lent to second-order, and higher-order, and we further extend the RG analysis and establish
the equivalence with NF theory for systems (1.2) with nonautonomous perturbations.

Independently and concurrently to [4, 5], Woodruff in [38, 39] developed a method that
shares many similar features to the CGO-RG method. It was introduced to treat WKBJ
type problems, as well as weakly-perturbed systems in which the linear part is slowly-varying
with matrix A(et). One of the essential results in [38, 39] is to develop a discrete invariance
condition, which states the precise circumstances in which two naive asymptotic expansions
(centered at different, nearby initial times) represent the same solution. In turn, this discrete
invariance condition leads naturally to a continuous, or infinitesimal, invariance condition
in the limit that the initial times approach each other. It is this infinitesimal invariance
condition that is analogous to the RG condition, and Woodruff’s method yields the same
types of results as the CGO-RG method.

Fundamental analysis of the CGO-RG method has also been presented in [24, 25, 26]
for vector systems subject to small-amplitude, time-periodic perturbations and for weakly
nonlinear autonomous perturbations of planar oscillators. In these works, a simplified version
of the CGO-RG method is presented. A central new feature is a multiple-time scale ansatz
in which a slow time 7 = €t is explicitly introduced and in which the initial data is replaced
by a slowly varying amplitude. This work has been recently generalized in [32], with an
emphasis on the relationship to the methods of averaging and multiple time scales.

There are several additional articles in which the RG method has been applied and in
which the RG condition has been analyzed, and we give a partial listing here. These works
include [7, 16, 17|, in which RG was applied to derive reduced equations for evolution on
attracting slow manifolds in perturbed ODEs. Also, in [7, 16, 17], the RG condition RG3
has been interpreted as an envelope equation in the sense of classical differential geometry,
namely RGj yields the envelope of the family of curves representing naive approximations.
In [34], the RG method is investigated, with special emphasis on the distinctions between
the Wilson RG approach and the Gell-Mann and Low formulation, and examples are given
for which the RG method fails due to slow modulation of the perturbation term. A number
of examples are also studied in [31], and a proto-RG method is introduced that simplifies
the sometimes-cumbersome task of finding naive perturbation expansions.

Another relevant article is [37] where the energy preserving and dissipation preserving
properties of RG are studied. It is shown that for dissipative problems where the eigenvalues
of the matrix A all have negative real part, the renormalized equations are also dissipative.
Moreover, it is shown that the size of the attracting ball depends in a nontrivial manner on
the order of truncation as well as on e.

In the context of Hamiltonian systems subject to small-amplitude Hamiltonian pertur-
bations, it has been shown [40, 41] that the CGO-RG method yields results equivalent to
those obtained by canonical Hamiltonian perturbation theory, up to and including O(e?).

Finally, for completeness, we note that RG has also been applied to derive reduced or
amplitude equations for certain nonlinear partial differential equations, see [5, 4, 9, 10, 18, 22].
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The manuscript is organized as follows: in section 2 we review the renormalization group
method of Chen, Goldenfeld and Oono [4, 5|, which we will refer to as CGO-RG for the
remainder of the paper. In section 3, we introduce a simplified version of the CGO-RG
procedure and apply it to equation (1.1) to derive asymptotic expansions of solutions up to
and including O(e) and show the equivalence to NF theory in this context. We also comment
on the mathematical meaning of the RG condition. In section 4, we extend the analysis of the
RG method applied to equations of the form (1.1) to second order. In section 5, we give an
example in the form of Rayleigh’s equation to illustrate the RG method up to and including
O(e?). In section 6, we turn our attention to equations with nonautonomous perturbations
of the form (1.2) and apply the RG procedure to first order. In section 7, we develop a NF
theory for equations of the form (1.2) and show that the RG method is equivalent to the
NF theory in this context, as well. In section 8, we use Mathieu’s equation to illustrate the
RG method for nonautonomous equations (1.2) and its equivalence to normal form theory.
Finally, in section 9 we state a theorem about how well solutions of the reduced equations
derived by RG and NF theory approximate solutions of the original systems (1.1) and (1.2).

2 The CGO-RG Method

In this section, we describe the CGO-RG method and review how it is implemented on
autonomous initial value problems of the form

T = Az +ef(x), (2.1)
2(To) = w(Tp),

where f(z) = ZM. Caix%e;, o is a multi-index, ¢ runs from 1 to n, e; is the standard
Euclidean basis vector, € < 1, the sum is finite, and T denotes the initial time. We further
assume that € C and that the matrix A is diagonal. The goal is to derive asymptotic
expansions of solutions of this differential equation on time scales of O(1/¢). The CGO-RG
method consists of the following five steps:

1. Derive a naive perturbation expansion for the solution of the given differential equation.

2. Make a preparatory change of variables to remove all instances of the initial condition.
An exception is made for secular terms in which a factor of Ty exists explicitly.

3. Introduce an arbitrary time 7 in between t and Tj.
4. Renormalize the solution to remove those terms involving (7 — Tj).

5. Apply the RG condition
dx

dr
to the renormalized solution, since the solution of the differential equation should be
independent of the arbitrary parameter 7.

=0 (2.2)

T=t



One begins by supposing a naive perturbation expansion for the solution to (2.1),

x(t) = xo(t) + ex1(t) + ao(t) + - - - (2.3)

and by substituting this expansion into the differential equation (2.1). Equating like powers
of €, one obtains the following sequence of differential equations:

Zifo = AZL‘Q
Ty = Az + f(xo)
Ty = Axo+ Dy f(xo)z1, (2.4)

etc. For the time being, we are only interested in the solutions up to first order. The solutions
are

zo(t) = eATy(Ty)
t
ri(t) = eA(t_TO)/ e~ A=) £ (AT (Ty)) ds.

To

A (0= 3 CusnlTe+ 2 AT 1) w(Ty)es |

Q Z_O Oé ’L#O a7Z

where A, ; = ZZ:1 apAr — A;. Thus, the naive expansion to first order is

z(t) = A1) L (Ty) + e(t — Tp) Z Coiw(Ty)%e; + € Z A Aa,i(t—TO) — 1) w(Ty) e
Aa i_O a 7,7£0 az

Notice that those terms with A,; = 0 in the naive expansion are secular terms that, due to
their unbounded nature, cause the asymptotic property of (2.3) to be lost on timescales of
O(1/€). The CGO-RG procedure was created to treat such terms.

With the naive solution in hand, one now proceeds to make a preparatory change of
variables. This change of variables is aimed at absorbing all instances of the initial condition
into our integration constant. The exception occurs within the secularity (t — Tp). For these
terms, one does not absorb the initial condition into an integration constant. Explicitly, this
change of variables is

v(Ty) = e Pw(Ty) —e H AO” ehei®o (e MMow(T))" e + O().
Aa,i70

After some calculations, the expansion becomes

z(t To)+e(t—Tp) et Ca,iv(Ti e; +eett Ol Nty (T e, +O 2.5
(t) = e™o(Tp) +e(t—Ty) [Z;O (To)* ;0/\ v(Tp)* (€%). (2.5)

Next, one introduces an arbitrary time 7 into the secular term between t and Tj,
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x(t To)+e(t—T+17—Ty)eM Coiv(Tp)e; +ee™ Dt haity)(T0)e; 4+ O
(t) = e™o(Tp) +¢( AQZZ_O (To)* ;()A v(To)* (€%).

The idea is to absorb those terms with (7 — Tp) that are secular into the integration con-
stant v(7p). To do this, one renormalizes the constant of integration by introducing a new
integration constant depending on 7. Explicitly,

V(r)=v(Ty) +e(r = Tp) Y Coiv(Tp)"e; + O(e%).
Aw,i=0

The renormalized expansion is now

2(t) = MV (1) +e(t — m)et D CoiV (7)€ + ee™ Z A°“ MtV (1)%; 4+ O(€2). (2.6)

Aa,i:(] a z7£0 ot

Finally, one applies the RG condition. In particular, one differentiates the renormalized
expansion with respect to 7,

da’; Atdv At At d «
= - Z CoiV(T)%; +€(t —T)e Z Ca,i%V(T) Ci
Ag,i=0 Aq ;=0
At 20 AM ehait TV(T)%,-+(9(€2),

and then evaluates this derivative at 7 = ¢ which removes the third term in the right of the
above equation. Then the resulting expression is set equal to zero to yield

dx Atdv oAt At Cai oot d a 2y
o Z Co,iV(T)%; + €e Z A dTV(T) e+ O(e”) =

T=t Aq,i=0 az?ﬁo

Finally, multiplying by e~4! and noting that % = O(e), one absorbs the final term into

O(€?) and hence obtains,

ﬂ =€ Z C’mVaei + 0(62). (27)

dr
Aa,iZO

This is precisely the first order amplitude equation of (2.1), and it governs the solutions, free
of secularities, at this order on time scales up to and including O(1/e).

3 A Simplified RG Method

In this section, we introduce a simplified version of the procedure discussed in section 2. The
purpose of this simplification is to highlight the mathematical underpinnings of the CGO-RG
method. The focus of the remainder of the paper will be the application and analysis of this
method.



We make the following observations concerning the CGO-RG method of section 2. First,
we note that equations (2.5) and (2.6) are equivalent, except with T replaced with 7 and
v(Ty) replaced with V(7). Thus, effectively in steps 2-4 of the CGO-RG method the given
initial time and initial condition, Ty and w(7}), are replaced by an arbitrary initial time 7
and integration constant V'(7), respectively.

The second observation concerns the RG condition (2.2). We note that evaluation of the
derivative in the RG condition (2.2) at 7 = t is unnecessary to obtaining the final equation,
since 22 = O(e) in (2.7). In this case, evaluation at 7 = ¢ serves to rename the independent
variable in the final equation (2.7).

Based upon these observations, we condense the CGO-RG method into the following
three steps:

1. Derive a naive perturbation expansion for the solution of the given differential equation
with an arbitrary initial time ¢; and initial condition w(%p).

2. Renormalize the initial condition by absorbing those terms in the naive expansion that
are time independent and bounded into w(ty).

3. Apply the RG condition
dx
— =0. 3.1
7 (3.1)
We henceforth refer to this procedure as the RG method. Note that the three steps corre-
spond to steps RGy, RG,, and RG3 in the commutative diagram discussed in the introduction.
The main result of this section is that the RG method yields the NF equations for (2.1)
up to and including O(e). We show this below in section 3.1. Later in section 3.2, we discuss
the role that the RG condition (3.1) plays in the RG procedure.

3.1 RG yields the Normal Form equation up to and including O(e)

In this section, we apply the simplified 3-step RG method to the system given in (2.1). As
in the CGO-RG method, the first step is to derive a naive perturbation expansion of the
solution to the differential equation. In this case, however, we will solve the initial value
problem for an arbitrary initial time, to, and initial condition w(ty). We find,

C. .
z(t) = eA)w(tg)+e(t—tg)e 10 C.,w(ty) e;+eetlt—t0) —t (Rait=t0) 1) p(ty)%e;.
(1) (to) +elt—to) Z sw(to) 2A< ) w(to)
(3.2)
Next, we renormalize the solution to isolate the resonant terms. The object to be renor-
malized is w(ty), which is replaced by an integration constant

w(te) = W(to) + Y _ ar(te, W(to))e, (3.3)

where a; is an n-dimensional vector. We are free to choose a;, : R x C" — C™ as we please
provided that the resulting series is an asymptotic series (see remark 1). Thus, with the
choice



Cai o
a =Y W (o) e, (3.4)

Aa,i#0 a,t

we push the autonomous part of the non-resonant term in (3.2) to higher order. This leaves
us with the first order renormalized expansion

t) = eMTOW et —to)e ) N O Wl ey Coy a0 o, (3.5

z(t)=e +e(t—to)e e;+ee s i (3.5)
Aa i=0 aﬁéO

For ease of notation we are writing W for W (ty).

We now apply the RG condition (3.1) to produce an evolution equation for W (ty). Dif-
ferentiating (3.5) with respect to ty, we find

dx A aw
_ (t—to) A(t—to) _ cpAlt—t0) T %e.
_dto — Ae OW +e 0 i €e 0 g Coi W%,
Aa,iZO
we qw)
o - (t—to) _ A(t—to) .
e(t — to) Aet Y CoiWei+ €t —to)e > CMZ% WO dt,
AQ 1—0 a'L—O
Cai . .
—  eAeAlt) E —Aa’ieA“”(t_tO)Wo‘ei — eeAli=t0) E Ca,ieA‘”(t_tO)Wo‘ei
a,i?ﬁo ’ Aa’i;’éo
Cl.i we dw )
A(t—to) }: i Aa,i(t_t())§ : A SN
e An 20 a,z’e j WO dtg “

dw _
) dty
AW . Therefore, we may substitute A; W) for d‘gfj) Also, we observe that the matrix A in
the fourth and sixth terms may be pulled inside the sum to obtain Ae; = \;e;. Thus,

aw

Setting this quantity equal to zero and clearing the exponentials, we find to O(1)

— = AW Co,iW; — €(t —to) Cai( i
dt + € QZZ_O e; — €( 0) QZZ_O Za] “e;
+ € Z al(AazﬂL)\—Za] )W“emt(’)( ),
Aa.i#0 a,z
which simplifies to
dW

—:AW—|—€ Caiwa€i+(9€2,
7 2. Ca )

since the sum is over terms for which A,; = 0 in the third term, and since the fourth term
vanishes by the definition of A, ;.
Therefore, to first order the RG equation is

dw
o Awte S Caee, 3.6
i, 2. Ca (36)

W(T,) = inverse of (3.3).
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The RG equation (3.6) is precisely the NF equation of (2.1) up to and including O(e), see
(A.4) in appendix A. Furthermore, the change of coordinates executed in (3.3) is related to
the change of variables performed in NF theory. Recall from (3.3) and (3.4) that the change
of coordinates in RG is

Cai o
w(te) = W(to) +€ > W (o) e
Aa,i7£0 o,

Comparing this with the NF change of coordinates given in (A.3),

we see that the two changes of coordinates have exactly the same form. The only difference
is that the RG method makes the change of variables on the initial condition, whereas
in NF theory it is made on the dependent variables of the original equation. Hence, we
have demonstrated the main point of this section: that the RG method and NF theory are
equivalent.

For completeness, we refer the reader to section 9 where a precise theorem is stated about
how well solutions of the RG equation, equivalently the normal form equation, approximate
solutions of the original differential equation.

Remark 1. We renormalize w(ty) in (3.3) to leading order as W (to) and not e "W (to) as
was done in section 2. This difference is not of great importance as our approach produces
the NF equations while the CGO-RG approach produces the amplitude equations. We make
the choice not to absorb the exponential e=* because we prefer to think of RG as an operator
that fizes the linear part of the vector field. Of course, in some applications, see for example
section 8, the amplitude equations are preferable.

3.2 The RG Condition

In this section, we discuss the RG condition (3.1) and its role in the RG method. Our

interpretation of the RG condition is similar to that of [39] and [7] among others, but our

interpretation of its role in the RG method differs. We will discuss the impact of the RG

condition on both solutions of differential equations and their asymptotic approximations.
Consider for a moment the following ODE

dx
pri F(z), (3.7)

where © € R™ and F is globally Lipschitz. Let w(tg) : R — R™ be an arbitrary function.
We denote the solution of (3.7) by z(t,to, w(ty)), where the solution is evaluated at time ¢,
with initial time ¢, and initial condition w(ty). We are interested in the conditions on w(-)
so that the solution is invariant. In other words, we are interested in when two solutions of
(3.7) are equal,

x(t7t0>w(t0)) = x(t7t6aw(t6))> (38)

where ¢y and t; are two different initial times.
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The unsurprising answer, due to existence and uniqueness, is that the solutions are equal
if and only if w(ty) and w(t) lie on the same solution curve, or equivalently, if the evolution
of w(ty) is given by (3.7). Note that the right hand side of (3.8) does not depend on t.
This suggests that — for solutions of (3.7) — the invariance condition is equivalent to the RG

condition Ccl% = (0. To show this, we write the solution in integral form as
t
x(t, to, w(to)) = w(to) +/ F(x(s,to, w(ty))) ds. (3.9)
to
Applying the RG condition, we find
der  dw t dx
= — = — — F(x(to, to, w(ty))) +/ DF(x(s,tg,w(ty))) - =—(s,to, w(ty)) ds.
dto dto to dt(]

Since 4 = () for all s, we obtain

dto
dw B
dty

recovering the original ODE, (3.7). Thus, applying the RG condition to a family of solution
curves parameterized by their initial data simply recovers the ODE which generates the
family.

What we have just seen is that if we are given a solution curve, then the RG condition
gives back the corresponding differential equation. In the RG method, the situation is
slightly different as we deal with asymptotic approximations of solution curves and not
the curves themselves. As a result, we are confronted with two technical problems. First,
these approximations are truncated at a finite order and therefore do not exactly solve any
ODE as they are only flows up to the order of truncation. Second, in general, these naive
approximations will contain secular terms that limit the domain of validity to bounded time
intervals.

The first problem is readily addressed by observing that if we substitute a naive pertur-
bation series into (3.7) and asymptotically expand the right hand side, we are left with a
recursive sequence of differential equations to solve. Therefore, up to any finite order (i.e.
the order of truncation), we can apply the same analysis as we did above and reproduce the
sequence of differential equations up to the order of truncation.

Secondly, if the naive approximation contains secular terms then the approximation is
only valid locally, i.e. there exists a C' > 0 such that the approximation is valid for [t—to| < C.
Hence, the RG condition is only applied locally as well.

The RG procedure makes good use of the above simple observation in the following
manner. Consider an arbitrary change of coordinates,

w = (W),

F(x(to, to, w(to))) = F(w(to)),

where W : R — R" and ¢ : R® — R" is a diffeomorphism. The physical interpretation
given to ¢ is that it is the relationship between the initial condition w(y) and an integration
constant W (ty). Using again the integral form of the solution (3.9) we find,

£(t) = oW (ty)) + / Fla(s, to, (W (t0)))) ds.

to

11



Applying the RG condition again, we find

0= 5 = (D)5~ Flatto o, / D (a(s.to, SV (1)) (5o 6V () ds.
This reduces to AW
= (Do) F(o(W))

Thus, the RG procedure produces an evolution equation for the integration constant W (tg).
Moreover, if the same change of coordinates is applied to the original dependent variables,
ie.

z = ¢(X),
then we find that X satisfies the same differential equation as W (ty),
dX
o = (D9) F(6(X))

The principal advantage to using asymptotic expansions is that in many cases we can
write them down in closed-form provided that the leading order problem is solvable. In
turn, this makes selection of a change of coordinates like ¢ straightforward because we only
have to collect instances of the initial condition into an integration constant. This change of
coordinates can be applied also in the original vector field, but without solving for the naive
approximation we may not be able to guess the form of this transformation a priori. It is in
this sense that RGy may be viewed as the essential reductive step of the RG method.

Remark 2. At first glance, the RG condition appears to be a needlessly complicated way
to produce a differential equation from the corresponding solution curve. A much more
straightforward method would be to simply differentiate the solution with respect to time.
However, in this case the solution curve x(t,tg,w(to)) is a function of three variables and
hence differentiation with respect to time produces an equation given strictly in terms of t, tg
and w(ty) without any explicit dependence on x. We must then invert the relationship between
x and t,ty and w(ty) to produce the differential equation. In general, such a computation
will not be trivial.

4 The RG method to Second Order

In this section, we extend the RG analysis of section 3.1 up to and including O(e?). We
begin by finding the naive approximation at second order. As shown in (2.4), the second
order differential equation is

To = Azxy + (D, f(x0))x1. (4.1)

The essential step is to obtain a computable expression for the second term on the right
hand side of (4.1). The matrix D, f is an n x n matrix whose (i, j)-th component is

pe
.CL’))Z'J' = Z Ca,iajm’
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Evaluating z at 2¢(t) = eAt*)w(ty), we find

Ny (t—to) W(t0)®
(D f xO ZCaza] o) (to)(J)

Next, multiplying the matrix D, f(x¢) by the vector x;(t), we obtain the vector

t
(D f $0 E E t— tO Ca zcﬁ]a] Aa,j+25)(t— to) ( 0) — ez’ (42)
a,i Ag ;=0 (to)
- o w(to)od-ﬁ
+ Caz (A J—i-)\ )(t—to) eAﬁ'J(t to) o 1 — ¢,
2. 2 Gy ( ) i)

Now that we have an expression for (D, f(xq))x1, we proceed to solve (4.1) with the aid
of an integrating factor to obtain

d
i
The impact of the exponential on the right hand side of the previous equation is to replace
eBai tX3)(t=t0) Ty ehailt=t0) in (D, f(20))z1, see (4.2). We now solve the differential equation,
noting that z5(tg) = 0 by assumption. For ease of integration, we split the two double
sums in (D, f(xg))x; into six double sums according to whether or not the arguments of the
exponentials vanish. Thus, the corresponding solution is

~AUT0) ) = e AN (D, f ()2

t
To(t) = A=t / I+ I+ TII 41V + V + VI) ds, (4.3)

to

to)*?
I = Z Z Ca ZCﬁjOéj%(S — to)ei,

Aa,i=0Ag ;=0

w(t (o—to
I = Z > CoiCs oy ((0))0)( — to)elei 7o),

a 1#0 Aﬁ ]_0

where

OB] W(to)* ™ (At hs)(5—to)
Mo Y Y G M e,

t
AaitAp j#0 Ay ;#0 w(to

_ CB,J w(to)*"
IV = Z Z Caz 7' (t0>(]) 6

Aa 1+Aﬁ J—O Aﬁ J;ﬁo

Z Z Cli G, Loy (to)a{rﬁ (eheilsto)ye,.
Agj 7 w(to)V)

Aai#0 Ag ;70

Cpy  wlte)™™
Z Z Coi ﬁ. (to)(J)

az—o AB #0 7

13



Upon integrating each of these terms, we obtain the following quantities,

t 2
w(to) 7 (t — to)
A:/Ids: Y > CuiCsjoy (E)m 20 e;

to Ag,i=0 A ;=0

- w(to)**” Nevsli=t0) o
B = /Hds Z Z Cp.jex T w(te)0 (8= to)emn il — ORI W A

a i#0 Aﬁ ]_0 Oc,Z

CB,J (to)aJrﬁ eMa,itAg ) (t—to) _ |
C= / Il ds = Z Z Caz 7 w(ty)W) Aas + g e;

Aq,itAg ;70 Ag ;70 B3
D:/tIVds: > M c ot (tO)W(t—t)e-
to "Ry w(te) v
Aq,i+Ag ;=0 Ag ;#0 ’
_ CMCBJ w(to)* P st
E_/t Z Z Ag, w(te) ) (et ) —1)e;
0 Aa,i7#0 Ag ;70 ‘“ J
t . wl(t a+p3
F:/VIds:—Z ZCM (E)m (t —to)e;
to az—OA #0 J ( 0)

The terms A through F comprise the coefficients on € in the naive expansion.

Next, we renormalize the naive expansion, which up to and including second order is
given by (3.2) and (4.3). The renormalization of the O(¢) terms follows exactly what was
done in section 3.1. However, this renormalization at first order introduces two terms at
second order that arise after expanding (W + ea;)® in (3.2). We will call these terms Ry
(resp. Ng) corresponding to the second order terms that come from expanding the first order
resonant (resp. nonresonant) terms. Performing this expansion, we find

W“*ﬁ
(W + eaq)” W“+GZ% & +O( 2).

Ag,j#0
Thus,
az Wa"‘ﬁ
Z Z —Cp ja,(t to)Wei
7-7
a 2—0 Aﬁ 3750
and o )
. ) e
Ny = Z Maj (eAa,i(t—tO) B 1) we.

Notice that Ry and Ny are the same as F and E up to O(e3) respectively, but with opposite
signs. Therefore, their difference is O(e?). Hence, the second order expansion, renormalized

14



up to an including O(e) but not yet to O(e?), is

o(t) = AW 4 et —to) Z CoiW ;i + € Z AM hailt=to) .
Aaz—o aﬁéO

+ €(aa+A+B+C+D)] +0(),

where terms A through D are all evaluated at w(ty) = W (to) + O(e).
Next, we choose as so as to absorb all the constant homogeneous terms at second order
into a single integration constant. We choose

az W(tO) ng W(to)a+ﬁ 1
Z Z CB?] ] ’l+ Z Z Caz ’ ] 62
Ao ,i7#0 Mg ;=0 a,z W( )(] Ao,itAg, ;70 Ag ;70 W( ) Aa,i + Aﬁvj
(4.4)

This leaves us with the second order renormalized expansion

[L’(t) —  QAlt—t0) W—I—E t—to Z C'a,WO‘emLe Z Aaz ehai(t—to) /e e
Aq,i=0 Aq,i70
WCH—,B (t _ t0)2
+ € Z Z CoiCp,505 a0 5 G
Aq,i=0Ag ;=0
a ; Wets e eha.i(t—to)
+ ¢ Z Z Al -Cg 50 W0 - (( t —to)eti tO)—iA —)e;
al#OAL;J:O Q,t

C Wt o(AaitAg ;) (t—to)
SRR SR ST R
WO A+ Agj

Ao 1+Aﬁ ﬂéO Ag J#O

o+f
+ & > ZCMCW W —(t—to)e; | - (4.5)

TGN
Ag,i+Ag ;=0 Ag ;70

The final step is to apply the RG condition (3.1). We make the following observation: if
one pulls the exponential eA(~*) into the sums and double sums in (4.5) one gets e*i(t=t)
and therefore to leading order

d N Wa-l—ﬁ . Wa—i—ﬁ . Wa—l—ﬁ dw(m)
il  pAi(t—to) — o \eNt—to) pNi(t—to) _
dto (O‘Je WO QN g€ D (am + = S G g
Weth
— Oéje t to (Aa i + Aﬁ,]) W(J) s

where we have used the fact that to leading order 4 W = AW. Applying the RG condition,
clearing exponentials, and recalling that the O(¢) terms were computed earlier, we find
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d AW
d_; = S AW e 3 Coe 2t —t) 3 CMZ%W > CoWPe,

az—o al—o A,B 3—0

C\(Z W
8T O S 5 0l S 5 Cuun gt

Aq,i70 ot Ap ;=0 Aa,i=0 Ag ;=0
W e eAQ’Z(t to)
T Z Z CoiCpi0% Gy W ((t — to)eteanlt=o) — T)ei

Ao, i#0 Ag ;=0

a ) W otf ] . .
+ ¢ Z Z N Csi (— gheilt=to) _ Aot — to)eAa'l(t_tO) + eA“’Z(t_tO))ei

(677
J
Aq 27’50 Agj—O a’z W(]

, W +6
Ao z+A,8 3750 A/B ﬂéO

N 62 Z Z CazAi W0 e(A&vi"'Aﬁ,j)(t—to)ei

Ao z+A,8 3750 A/B ﬂéO

S MDD

Aa,i+Ap ;=0 Ag ;70

Canceling five pairs of terms and setting the above expression equal to zero, we find that
the RG equation to second order is

d atf
% = AW +¢€ Z CoiW%,; + € Z Z C, Ai w o ei, (4.6)
0 Aa.i=0 Aa,i+Ap ;=0 Ag ;40
W(Ty) = inverse of (3.3).

This differential equation is equivalent to the NF equation for (2.1) which we review
in Appendix A. In particular, see equation (A.8). Therefore, we have shown that for the
autonomous vector field given by (2.1) the RG procedure produces equivalent results to NF
theory at second order. In addition, we recall that the second order coordinate change in
the RG procedure was given in (4.4). Likewise, the nonresonant terms at second order in
the NF procedure are given in (A.6) and (A.7) after removing the resonant terms (A.8). A
short calculation reveals that a coordinate change equivalent to (3.3) with (4.4) removes the
nonresonant terms at second order. We have therefore shown that the normal form and RG
equations are equivalent up to and including O(e?).

The RG equation (4.6) is an evolution equation for the integration constant W (t). The
solution of this evolution (or normal form) equation may then be used to obtain an approxi-
mation of the solution w(ty) of the original problem, (2.1), that is valid up to and including
O(e?). In particular, we plug W (ty) into (3.3) with a; and ay specified as in (3.4) and (4.4).
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5 Example

In this section, we illustrate the RG method of Sections 3-4 on the Rayleigh oscillator, given
by the following differential equation,

d*y dy 1 (dy 3
g — = _ (== ) 1
az Y 6{dt S(dt) (5.1)

One may convert (5.1) into a system of the form (1.1). This is done using the complex
coordinate z = x + 1y and its complex conjugate as new variables so that the linear part
of the new system is diagonal with eigenvalues —i and 2. We elect to, equivalently, work
directly with the second order scalar equation (5.1).

Substituting the naive expansion

Y =yo+ ey + Yo+
into the differential equation, we find at each order:
o) : Yo+ vo =0,
Ole):  Gi+y1="10 — %?Jg,
O dh+y2 = — Goin-
The solutions are

Yo(t) = Ae'10) 4 cc

) ) 1 _ ) ) )
yi(t) = LA%Z@—to) + AL = AD)(t = 1)) — 2—1A3e32<t—t0> +eec.

3 2 ; 2 12 2 13 37
ya(t) = <A (1 - —AA — A—) + —A5> it~t0) _ 2 4 (1 AL A4 A A4 A) (t — to)e =)

32 6 192 8 2 6 6 3
A

+3 (1 —4AA+3AA%) (t — to)2e' 1) — %Ai” (1 —AA) (t — ty)e—to)

A3 3 A? . 1 .
1-— —AA — ) eBilt=to) _ _—_ A5p5ilt—to) .
32 ( 6 ) c 192 ¢ tec

Here we have chosen the homogeneous parts of the solutions to y; and y, so that the
solutions vanish at that initial time, i.e. yi(fto) = y2(tp) = 0. We next renormalize the
integration constant A, absorbing the homogeneous parts of the solution into it and creating
a new integration constant A = A(ty). We begin at first order by requiring

- 3
A= A—e% + eay + O(€%).

Applying this change of variables we are left with
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yo(t) = Ae't=1) e
1 . , ] .
yi(t) = —.A(l — AA)(t — to)ellt=t) — 2—714.»436&“_“) + c.c.

3 2 : 2 N2
yz(t) (?2 (1 — —AA _ i) + a2) ei(t—to) . %A (1 B AQA ) (t . to)ei(t—to)

F (1 SAAE BALR) (1 — 1)) -

f—6A3 (1= AA) (t — t)e¥i(t=t)

A 3 A%\ 1 . 1 .
1— _AA _ 3i(t—to) __ —A5 5i(t—to) __ _AS 3i(t—to) .
Y < 6 ) ‘ 1927 ¢ 1927 ¢ Tec

In turn, we select as so to remove the homogeneous terms at second order so that the
total renormalization transformation is

iA3 .A3 A?

A=A—ec— —€e—[1—-= - — O(e%).

A€24 632< A.A 5 + O(€”)

We now apply the RG condition, which isolates the resonant terms at second order to

leave the RG equation, correct to O(e?),
dA A ) ( 1 A2A2)

i 2A+6§(1—A.A)—6 §A 5

(5.2)

This equation is exactly the normal form of (5.1). If we let A = Ze™ and substitute into
(5.2) then we get the following system of amplitude and phase equations

dR € R?
de €2 R*

Since the fixed point R* = 2 of the truncated system (5.3) is hyperbolic, the untruncated
equation has a hyperbolic limit cycle which deviates at most by O(e?) from a circle of radius
2. Standard techniques show that (5.3) gives a valid approximation of the radial variable for
all time, however, equation (5.4) can only be expected to be valid on timescales of O(1/€?).

6 RG Applied to Nonautonomous Equations (1.2)

We now apply the RG methodology to nonautonomous systems (1.2), to which classical NF
theory does not apply. In section 7.1, we develop a normal form theory for the same vector
field and show that the two methods produce identical results to first order.

We revisit the problem posed in (1.2),
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io= Avte)  failt)z®e, (6.1)

tlte) = wits),

where x € C", A is an n X n constant diagonal matrix with purely imaginary eigenvalues,
e; is the i-th unit vector, and the sum is finite. Also, @ € N" is a multi-index so that
x® =z - 29, and we will assume that the f’s satisfy the KBM condition defined below
n (6.3).

Substituting a naive perturbation expansion again produces a sequence of differential
equations as in (2.4). The naive expansion to first order is therefore

z(t) = eM0(ty) + eeAt10) Z/ Rails=to) £ (s)w(to)e; ds. (6.2)

In the autonomous case, a term in the expansion was considered resonant if it grew like (t—tg).
We carry the same definition of resonance over to the nonautonomous case, formalized by
the notion of a KBMy-average. The KBM,-average of a function is defined as

1 t
f(A) T l%glﬁoo m/ et f(t)dt (6.3)

for A € C. A function f(t) is said to be KBM, if the KBM, average converges for all choices of
To. The notion of KBM vector fields was introduced in [3] and developed in [35], where KBM
was used. We follow [35] in calling this the Krylov-Bogolyubov-Mitropolskii average. We
will assume that all f,; in (6.1) are KBM Ao~ Given this definition, we consider a term f, ;
to be resonant if it has non-zero KBMy_ —average We can therefore split f,; into resonant
and nonresonant parts as

fow( ) = az(t>+ (L\l,iR(t)7

where

1 T
R __—Aa it (Aa 7,) __—Aa it : Aq it
(t) = e " i = e e lim ettt f () dt ) .
a,l( ) f <(T—T0)—>OO T _ TO /Tb f ) ( ) )
With this in mind, we split the O(e) term in the expansion (6.2) into two integrals based
upon whether the term f,; is resonant or not. Thus (6.2) becomes

a(t) = A=t < (to) + € Zf;g Rails=to)yy (1) ezd8+e/

(s)eA“”'(s_tO)w(to)o‘ei ds) :

to ai t
(6.4)
After integration the term involving fNR will contain terms that grow slower than (t —ty).
With this definition of non-resonance, we make the same renormalization as we did in the
autonomous case. Namely, we renormalize the initial conditions as in (3.3) to remove the
autonomous part of the nonresonant integral above, or the lower limit of integration. This

quantity can only be specified up to a constant, so we choose to split the integral at an

0 i
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arbitrary fixed time Ty and then absorb the resulting autonomous integral with the following
choice of a; at O(e),

To
N / D N (s)et T e ds. (6.5)
to a,i

Our choice of a; removes the lower bound of integration in the nonresonant part of (6.4) and
leaves the renormalized expansion as

x(t) = eAt=t0) 1]/ 4 geAlt=to) / Zfo'fl Aails=to) e, ds+eett—to) / ny'f Aails=to) 7. ds.

t To

0 a,i a,i

We now apply the RG condition, (3.1). Differentiating with respect to tq, we find

dx dW
- AA(t—to)W At—to) 7Y tto§: R t .d
dto € te d faz 0 6 S
— eAeAlt=t) E fsl ehoils=tolyac, ds
to a,i
Z Z we daw®)
A(t—t) R Aayi(s—t) ) )
e 0 to “os fa’i(S)e 0 - a]W(J') dty € ds

— eeltTt0) Z Aq ifii(s)eA“’i(s_tO)Waei ds

— eAeAlt=t) / far(s) Aails=tolyoe, ds
TOZ

[e 7%

we dw)
t to E NR a,i(s_to) P — = A
+ /TO fa , E : Q; W(j) dto €i ds

a,t 7
— eeltt0) § A Rails—to) Ty oe, ds
a,i i .
To a,i

Setting this expression equal to zero and clearing the exponentials, we find as in the
autonomous case that the terms on the second through fourth lines cancel by the definition
of Ay), because dW V) /dty = AW to leading order. Likewise, the terms in the last three
lines also sum to zero exactly. Therefore, we find the following nonautonomous RG equation,
truncated to O(e):

o AW + €Y fRi(t) W e (6.6)

a,l

In the next section we will derive NF equations to the system in (6.1) that are identical
to this equation. We will also prove in section 9 that solutions to this NF equation stay close
to solutions of the original equation thus justifying the RG method provided here. As a
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final point, we note that the vector field in (6.6) is non-autonomous and therefore somewhat
problematic to solve directly. However, by making the change of variables y = e W, we
reduce equation (6.6) to the autonomous equation

g=e)  fledye. (6.7)

Equation (6.7) is equivalent to the equation one obtains by first transforming (6.1) into
rotating coordinates and then averaging. In this example the amplitude equations are more
convenient than the NF equations for practical calculations.

7 Equivalence of RG theory to the NF theory — Nonau-
tonomous Perturbations

7.1 Non-autonomous Normal Form Theory

In this section, we develop a NF theory for nonautonomous systems (1.2) based on Krylov-
Bogoliubov-Mitropolsky averages. This nonautonomous NF theory is a natural extension of
Poincaré-Birkhoff NF theory (please see Appendix A for details). See also [36] for another
extension to nonautonomous systems.

We introduce a near-identity change of variables

r=y+eg(y,t), g:C"xR—C", (7.1)

with the goal of removing as many nonlinear terms as possible in (6.1). In the new variables,
(6.1) becomes

y=Ay+e <Ag(y, t) — Dg(y,t)Ay — 5

@(y, t) + Z fa,i(t)yaei> +O(e%). (7.2)

Let [Ay, g](y,t) = Dg(y,t)Ay — Ag(y, t). To remove the nonlinear terms at O(e) in (7.2),
we want to solve the PDE

—(y,t) + [Ay, gl(y,t) = Z fai(t)y“e;. (7.3)

This equation is linear in g, and thus it is sufficient to solve separately the equations

agoz,i
ot

Choosing gai(y,t) = ha,i(t)y“e;, we obtain the following ODE for h,, ;:

(ya t) + [Ay7 ga,i] (ya t) = fa,i<t>yaei-

hoe,i(t) + Aa,iha,i(t) = fa,i(t)a
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whose solution satisfying h(7,) = 0 is

t
hei(t) = e_A‘“'t/ eAa'”fw-(T) dr.

To
In contrast to the situation in Appendix A, here the change of coordinates (7.1) can be
formally defined for all f,; under consideration, including resonant terms. However, for 572-
the resulting solution causes eg to become O(1) for t = O(1/e) time scales. Thus, on these
time scales (7.1) no longer defines a near-identity change of coordinates, and the asymptotic
expansions undertaken to produce (7.2) are not valid. Accordingly, we choose h, ;(t) so that

ha,i(t) _I' Aa,iha,i(t) = NR(t)7

or
t
hei(t) = e_A“’it/ ehai” (L\'?(T) dr. (7.4)
To
Since the equation (7.3) for g is linear, it is clear that if we define

g(y7 t) = Z ha,i (t>ya€i7 (75>

then substituting (7.5) into (7.2) and truncating at O(e) leaves the first order NF equation
y=Ay+e Z fR Oy e;. (7.6)

%)

This is the same equation produced by the RG method, see (6.6).

7.2 The relationship between the RG method and NF Theory

For the nonautonomous vector fields (6.1) there is a clear connection between RG and
NF theory, just as there was in the autonomous case, as shown in sections 3 and 4. We have
shown in section 6 and section 7.1 that the two methods produce identical results. In this
subsection, we also highlight that the mechanics by which they produce these results are
equivalent by comparing the change of coordinates used in the two methods.

The RG procedure renormalizes arbitrary initial conditions. In the nonautonomous case,
this renormalization was given in (6.5) by

to
w(ty) = W(to) + 6/ Z xﬁ(s)eA“vi(s_tO)W(to)aei ds.
To

On the other hand, the NF transformation was given in (7.1),(7.4) and (7.5) by
t
T=y+ 6/ Z S’E{(T)eA“vi(T_t)yaei dr.
To ai

The only difference between the two transformations is that ¢y is replaced with ¢ in the
NF case. This difference corresponds to the fact that the RG method solves the backwards
problem by finding evolution equations for integration constants, while NF theory works in
forward time with the solution itself.
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8 Nonautonomous Example

In this section, we consider the Mathieu equation [15]. It is a second order nonautonomous
differential equation given by

d*y B
az + (a + 2¢(cost))y = 0. (8.1)
Here € is taken to be a small, positive parameter, and a is a real parameter. We are
interested in the stability of (8.1) as € and a vary. For small €, the (¢, a) plane is filled with
stable solutions except for tongues emanating from the points a = n?/4 for n a positive
integer. We focus on the case n = 1 and attempt to find an asymptotic expansion for the
boundary of the stability region above a = 1/4, i.e. we suppose a = 1/4 + ea; + €2as + . . .,
where we note that the use of a; in this expansion is traditional, and we do not expect them
to be confused with the coefficients a; in the near-identity coordinate change used in the RG
method.
We begin by letting y = /2 and transforming (8.1) into a system of first order nonau-

tonomous differential equations given by

T = —% — 4e(cost)y — 2a1y + O(€?)
x
) = —. 8.2
y 5 (8.2)
This system is better studied in complex notation, so we make the following invertible change
of coordinates

z=x+1y r=1(z+2)
<~

Z=x—1y yZ—%(z—E)

which diagonalizes the linear part of (8.2). This leaves us with the following equation (and
its complex conjugate) to study

i %z t e (2i(cost)(z 