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Abstract-We study the structure functions S(k. t) obtained from computer simulations of the time 
evolution of a segregating binary alloy following quenching into the miscibility gap. They are shown to 
have a simple scaling behavior, S(k, t) z Kw3(t) F(k/K(t)). The shape of the function F(x) depends some- 
what on the part of the coexistence region into which the quench is made. Comparison with some recent 
experiments on quenched altoys is quite satisfactory. The time evolution of ICw3{t) appears to be linear 
for late times, consistent with the Lifshitz-Slyozov theory. 

R&II&--Nous Ctudions les fonctions de structure S(k. I) obtenues a partir de simulations sur ordinateur 
de I’evolution en fonction du temps dun alliage binaire prtsentant une segregation, apris une trempe 
dans la lacune de miscibiliti. Qn montre qu’elles virifient une loi d’ichclle simple 
S(k. t) _ XV3(r)F(k/K(r)). La forme de la fonction F(x) depend un peu de la partie du domaine diphase 
dam lequef on fait Ia trempe. La comparaison avec quelques experiences recentes sur dies a&ages 
trempes est assez satisfaisante. L’tvolution de KA3(t) en fonction du temps est lineaire aprts un certain 
temps. en accord avec la thiorie de Lifshitz et Slyozov. 

ZusammenfaMung-Es werden die Strukturfunktionen S(k. t) untersucht, die mit Rechnersimulation des 
Segregationsverlaufes in einer in die Mischungshicke abgeschreckten bin&en Legierung erghahen 
wurde. Diese Funktionen weisen ein einfaches magstabliches Verhalten auf: S(k, t) z K-.‘(t) F(klK(t)). 
Der Verlauf der Funktion F(x) wird em wenig von dem Koexistenzgebiet ab, in welches abgeschreckt. 
Ein Vergleich mit neueren Experimenten ist rufriedenstellend. Der zeithche Veriauf von Kw3(t) scheint 
fur grof3e Zeiten linear zu sein, welches mit der Theorie von Lifshitz-Slyozov iibereinstimmt. 

1. INTRODUCTION 

The process of segregation which occurs in many 
alloys, e.g. Al-Zn, following quenching from the melt 
into the miscibility gap determines various properties 
of the alloy and is. therefore, of Rreat importance. The 
theoretical analysis of this process, variously de- 
scribed as nucleation, spinodal decomposition, coar- 
sening and Ostwatd ripening, is based mainly on the 
classical works of Cahn and Hiliiard [I] and of Lif- 
shitz and Slyozov [2]. The former work, as formu- 
lated by Cook [33, describes the evolution of structure 
function S(k. t) while the latter considers the gram dis- 
tribution n(l, t); here t is the time since quenching, li is 
a reciprocal wave vector, and 1 is a grain size. This 
division corresponds directly to the two principal ex- 
perimental methods of study: x-ray (or neutron) scat- 
tering for S(li, r) and elsctron microscopy for n(l, t). 

* Supported in part by AFOSR Grant 78-3522 and by 
DOE Contract DE-ACO2-76ER03077. 

t Permanent address: Dept. of Mathematics and 
Physics. Rutgers University. Busch Campus, New Bruns- 
wick. NJ 08903. U.S.A. 

Those classic works have been the subject of con- 
siderable study, criticism, extension, etc., in recent 
years; see e.g. the work of Langer [4], Binder [SJ, 
Furukawa [6]. and others. These studies have made 
use of computer simulations of this process in simple 
model systems carried out by the authors and 
others [7]. A particularly striking feature of these 
computer experiments, observed by us recently, is the 
scaling behavior of the structure function, 
+@. t) z [K(t)]-3 F(k/K(r)). A preliminary report of 
this work, for two quenches to low temperatures and 
low values of the fractional concentration of the 
minority component, was presented in Ref. [S]. Such 
scaling was also suggested indep~dently on theoreti- 
cal grounds by various authors [5,6-J and discussed in 
some detail by Furukawa [93. 

In this note we refine and extend the scaling analy- 
sis of Ref. [S] to some new computer simulations as 
well as to all of our previous ones, including those at 
the center of the miscibility gap. We find that rn aIf 
cases there is a scaling behavior after some initial 
transient time: the scaling improves with the progress 
of the evolution. We also find that there is a small but 

297 



298 LEBOWITZ et al.: SCALING OF STRUCTURE FUNCTION IN ALLOYS 

apparently real and systematic dependence of the 
scaling function F(x) on the location of the quenched 
state inside the miscibility gap: F(x) becomes more 
peaked as we move away from the coexistence line. 
The behavior of the characteristic wave number K(t) 
with time seems more difficult to pin down with pre- 
cision. Using an asymptotic power law dependence 
for K(t), i.e. writing K(t) _ t-’ for all (after the very 
early transients) times, the value of the exponent a 
appears to change from a = 0.2 near the center of the 
gap to a 1 0.33 at low concentrations of one com- 
ponent. On the other hand for late times when scaling 
holds, we obtain a good fit with Km3(t) - A + Bt 
(See Fig. 15 and Table 3) as expected on the basis of 
the Lifshitz-Slyozov theory. Our guess is that the lat- 
ter is indeed the right description of the phenomena 
for ‘late times’. 

The available experimental data (known to us) on 
real alloys is consistent with scaling behavior [lo, 111. 
Scaling was also found to hold in quenches of binary 
liquids [ 121. The phenomenon therefore appears to be 
quite general. More precise experiments are however 
needed to establish conclusively this scaling behavior 
and clarify its features. 

Fig. 1. Temperature-density section of the phase diagram 
corresponding to the infinite three dimensional binary 
alloy (or king) model. The coexistence curve (full line) is 
drawn according to a low-temperature series expansion 
and a 5/16 law near T, 1 4JjO.88686 k, (Ref. [143). The 
broken lines are classical (mean-field theory) ‘spinodals’, 
supposed boundary between metastable and unstable 
states, according to different assumptions about the local 
free energy density (Refs [I] and [lS]). We analyse in this 
paper data corresponding to the quench of our (finite) 
model system from an infinite temperature state to the 
phase points Ph j = 1-7. The phase points PI-PI are char- 
acterized by T = 8Ji3kB : 0.59 T, and p = 0.05, 0.075, 
0.10, 0.20 and 0.50 respectively, while Pe and P, (both 
at p = 0.50) correspond to the temperatures T = 451 
1.137 k, z 0.78 T, and T = 4J/k, z 0.89 T, respectively. 
P* is at the coexistence curve at T z 0.78 T, (and 

2. DESCRIPTION OF MODEL p = 0.0613). 

The model system we study has been described 
before in detail [7]. At each site of a simple cubic 
lattice of N = L’ sites (L = 30 or L = 50, in our 
simulations) there is assumed to be either an A atom 
or a B atom; the occupation variable of the ith site, 
q(ri), takes on the values + 1( - 1) when there is an 
A(B) atom at the lattice position rl. (The system is 
isomorphic to a lattice gas where each site can be 
either occupied or empty and to a ferromagnetic Ising 
spin system where rl(ri) = f 1 corresponds to ‘up and 
down’ values of the spin variable). In the initial state a 
specified number, pN, of randomly chosen sites are 
occupied by A atoms and the rest by B atoms. This 
corresponds to an infinite temperature state with uni- 
form composition and no correlation between atoms 
at different positions. The relative concentration of A 
atoms is P”(Tj+l)/z O<p<l. where 
ij = N- ‘Z:,#,, t) is the average ‘magnetization’ in the 
lattice (fraction of A atoms less the fraction of B 

atoms), which is constant in time. The evolution pro- 
ceeds by choosing, at a rate o/3, a pair of nearest 
neighbor sites, i, j. in the lattice. If the sites are occu- 
pied by different kinds of atoms there is a probability 

The sum in equation (2) goes over all nearest-neigh- 
bor pairs of sites and J is positive so that the system 
will segregate below a critical temperature T,. We use 
periodic (toroidal) boundary conditions for identify- 
ing nearest neighbors. 

Pij = exp(-j?AUii)[l + exp(-pALr,j)]-’ (1) 

that they will be interchanged (Kawasaki dy- 
namics C131). Here B = l/ksT, kB is Boltzmann’s con- 
stant and AU,, is the change in the energy of the 
system caused by the interchange. 

For our model system the energy is assumed to be 
given by 

The phase diagram of our model A-B alloy is 
presented in Figure I. For temperatures T z Tc the 
system is uniform on a macroscopic scale at all values 
of p. For T c T, there is a range of concentrations p, 
inside the coexistence curve, for which the equilibrium 
state of the system is one of coexistence of two 
phases: one A-rich, p = p, and one A-poor p = pv: 
2p,-1=1 - 2 pv = mo, the spontaneous magnetiz- 
ation in spin language. The value of T, is known very 
accurately for this system, 4Jjk,T, 5 0.88686, as is the 
whole coexistence curve[14]. The phase diagram is 
shown in Fig. 1. While the figure corresponds strictly 
to a macroscopic, formally infinite, system we expect 
that our system is sufficiently large for the quantities 
investigated to behave (for the times considered) in a 
manner qualitatively similar to their behavior in a 
macroscopic system. The absence of systematic differ- 
ences between the L = 30 and L = 50 simulations 
appears to confirm this expectation. 

2.1 Simulations 

U = -J r q(Ci)q(rjb J > 0. (2) 

The dots in Fig. 1, labeled l-7, represent, at each 
density, the temperature(s) inside the miscibility gap 
to which our model alloy was quenched from an in- 
itially random configuration (infinite temperature). 
They are: for PI-P5. T 2 0.59 7, and fractional con- 
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centration of A-atoms p = 0.05, 0.075, 0.10, 0.20 and 
0.50 respectively. At this temperature the value of p at 
the coexistence line is pV 2 0.015, mo 2 0.97. The 
points P6 and P, are at p = 0.5 and T z 0.78 T, and 
T = 0.89 T, respectively. At 0.78 T,, pv z 0.0613, 
m. z 0.877, while at 0.89 T,, pv 2 0.1246, m. z 0.75. 

The evolution of the system following quenching 
was observed up to a time r which varied between 
about 103a-’ and 104a-’ (see Table 1). a-i is the 
average time interval between two attempts at ex- 
changing a specific site and is taken as our time unit. 
To make some comparison with experiment we need 
at least a rough idea of how to compare time scales. 
We do this by noting that in our model the diffusion 
coefficient of a single A atom in a crystal of B atoms 
is given by D = a/6 since the probability that a given 
bond will be tried in time dt is (l/3) a dt and if tried 
the probability of an exchange is l/2. We therefore 
think of our time unit at temperature T as compar- 
able to ao2/6Do( T) where a0 is the lattice spacing and 
Do(T) is the diffusion constant of a real alloy at tem- 
perature T in the limit of zero concentration of A 
atoms. The lattice spacing a,, is our unit of length. 
The relevant parameters for the Al-Zn alloys are esti- 
mated [21] to be a0 1 3 A. Tc 1 350°C and 

Do z 10-i* cm*/s at T = 0.59 TV According to this 
rough estimate. the physical time interval in our 
studies at PI to P, is many hours. This is however 
only an order of magnitude computation since de- 
fects, vacancies and other imperfections built in dur- 
ing quenching may greatly speed up the time in a real 
alloy. 

2.2 Structure function 

The quantity of primary interest in our obser- 
vations was S(k, r), the structure function at time t 
following quenching. S(k, r) is the Fourier transform 
of the spatial correlation function G(r, t): 

S(k, t) = N-’ 
(I 

; exp(ik*r,)[q(rj. t) - fl ’ 
I) 

= xexp(ik*r)G(r. t), (3) 
, 

G(r, 0 = N-i 1 ([V(ri, 0 - ii3 Crlh + r, f) - VI>, 
I 

(4) 

where r and r, run over the N lattice sites and 
k = (2nlL)rc H = 0, f 1,. . . , f L/2, (a = 1,2,3), spe- 
cifies the first Brillouin zone. The ( ) represents an 
ensemble average which could in principle be imple- 
mented on the computer by making many indepen- 
dent runs. In practice we used between one and eight 
independent runs and relied on the spatial averaging 
given in equation (4) as well as on some ‘time averag- 
ing’ for obtaining reliable data; see end of section. 

S(k, f) is periodic in each component with period 
2?r/L; S(k = 0, t) = 0 and 

N-l x S(k, t) = (1 - $). 
k 

(5) 

The above statements hold exactly for any ‘run’. We 
expect also, that apart from small-fluctuations, each 
run started at t = 0 with a random configuration will 
have 

S(k, 0) z ( 1 - $), k # 0 (6) 

and that S(k, t) will have cubical symmetry for t > 0. 
In order to reduce our data to a manageable level 

as well as to compare with experiments on polycrys- 
talline materials we define an average structure func- 
tion depending only on the wave number k r.Zqq’L, 
p = O,l, , . , .‘3 L/2, 

where 

S(k. t) = 1 S(k, t)/$ 1 
tkl WI 

(7) 

c 
Ikl 

is the sum over all values of k in the first octant, 
k, 2 0, a = 1.2,3, such that 

(27tlL)(P - l/2) < lkl Q (21r/L)(p + l/2). (8) 

Note that the average defined in equation (7) is not 
exactly a spherical average since the points on the 
boundary and in the interior of the first octant of the 
Brillouin zone are given equal weights. Thus if n(k) is 
the actual number of points in the first Brillouin zone 
contained in the full spherical shell specified in (8), 
then n(k) is less than 8 n+(k); 

is 1, 6, 13, 19, 39, 55, 72, 91, 114, 169, 178, 210, 253, 
306, 346,. . . in successive shells. Using the sum rule 
equation (5) we should have 

(1 - fj’)N-’ ‘&(k)S(k,r) x 1. 
k=O 

(9) 

Any deviations from this sum rule in our actual runs, 
using n,(k). should be due primarily to fluctuations in 
S(k, t) for any run among the different octants of the 
Brillouin zone and only secondarily to our choice of 
spherical averaging. Both of these effects become neg- 
ligible for large N and we expect them to make only a 
small difference in our simulations, since all our 
results involve some averaging. 

Typically, the ‘sphericallized’ structure function 
S(k, r) and the other quantities of interest (such as 
cluster properties, etc; see later on) were computed 
during the simulation after every 50,000 actual 
exchanges (more frequently during the initial regime). 
Then, to obtain a smoother behavior with time. and 
extract the essential features, 20 different consecutive 
values in time were averaged leaving us with a few 
values (between 10 and 25) at different times from 
which our graphs and tables were computed. The 
data corresponding to our simulations at P4-P,. 
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where the N = 27,000 lattice was used. comes (in ad- 
dition) from an average over eight independent runs, 
i.e. eight evolutions starting with independent. initial 
random configurations. The data at PI-P3 (and at the 
other phase points mentioned in the text but not in- 
cluded in Fig. 1) comes from one evolution on the 
N = 125,000 lattice. 

3. DISCUSSION OF RESULTS 

In our simulations we were able to monitor S(k, I) 
for 10 shells. p = 1.. . , 10. for the I_. = 30 lattice used 
at points P4 to P7 and for 14 shells in the L= 50 
lattice used for PI to P,. 

Figure 2 shows plots of S(k, t)/(J - ij’) vs k at dif- 
ferent times for quenches to the point P,. These plots 
are qualitatively similar to those obtained at other 
points Pi. At t = 0. the system is completely dis- 

1828 
3145 
4549 
6072 
7711 

120 9465 
12309 

40 

QO 

000 065 I 30 

k 

Fig. 2. Development with ume of S(k, r) E S(k, r)/(l-ij2) vs I, 
(in units of ~0’. tiO being the lattice spacing) at different 
times in the case of a quench of the model system with 
N = 125.ooO sites to the phase point Pt. Note that. in this 
case. we only have s(k. r) at fourteen different values of k. 
I, = 2~~~50. ii = 1-14. which have been connected by 
straight lines. Increasing values of the time, in units of z- ‘< 
the average time internal between two attempts at ex- 
changing a specific site. correspond to the different graphs 
from the bottom of the picture to the top. The graphs at 
different values of the time tend to form a common enve- 
lope for li > k,,,, the location of the maximum intensity 
(which is shifting with time towards smaller values of k). 
This is in contrast with the cross-avers characterizing the 
tail k > !i,,, of the S(k.0 vs k curves in the case of 
quenches to P4 (Fig. 2. Ref. 7c) and to P5 (Fig. 2, Ref. [7aJ). 

2.98 

1 I 

0.65 I30 

k 

Fig. 3. Same as Fig. 2 in the case of a quench to PC, 
T = 0.78 7,. p = pdT) = 0.0613, i.e. on the coexistence line 
at the same temperature as Pg. A comparison with Fig. 2 
shows up how the model system differentiates P* from P,. 
say. (Note that the ordinate scale differs by two orders of 
magnitude). Here increasing values of the time. in units of 
r-l. correspond to increasing values of the number label- 

ing the different graphs. ’ 

ordered and S(k, O)/(l-$f 4 1 independent of k; see 
equation (61. The system is then quenched to some 
low temperature inside the coexistence curve. Ther- 
mal processes lead to the migration of A and B atoms, 
proceeding (in our model) via nearest neighbor 
exchanges given by the transition probability equa- 
tion (I), which now drive the system towards equilib- 
rium corresponding to segregation into A-rich and 
B-rich regions. As these regions grow in size, S(k, t) 
develops a peak at k = k,,,(t) E n/K(t) where R(t) 
represents some characteristic length in the system at 
time r following the quench. This length will grow in 
time as the single phase regions grow to macroscopic 
sizes so that k,,,lt)- 0 as r -+ x in a macroscopic 
system. (In the computer simuiations we obviousty 
have R(r) < &.) For contrast we also show, in Fig. 3, 
the qualitatively very different behavior of S(k. tJ when 
the system is quenched to the point P*. p = 0.0613. 
T ~0.78 7”. at the coexistence curve. 

One striking difference between the different 
quenches is the time, in units of CL-‘, it takes the 
system to achieve a certain amount of segregation, as 
reflected in the deveiopm’ent of S(k, I). A crude but 
simple quantitative measure of this is obtained by 
considering the quantity 

p(t) ss [(1 - q’)N]-’ ; n(k)S(k, t) 
k=O 

(10) 
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Fig. 4. The quantity p(t) defined in equation (10) is plotted 
here vs time (note that the horizontal axis is labeled in 
units of lOOa-‘) in the cast of the quenches to P,, j = l-7. 
The corresponding value of j identifies each line which is 
also identified by different symbols. Below each symbol the 
values of the corresponding percentage of A-atoms and of 
the ratio T/T, respectively. are also shown. Note that the 
sums defined in equations (IO), (14) and (19) actually go 
from k = 2x/L to k = x‘ z 0.55x; we have precisely .X = 
&r/15 for L = 30 (so that the sum includes 8 different 

values) and X = 14r(/25 for L = SO (14 different values). 

where .X is some cut-off, less or equal to the largest 
value of & studied in our s~u~ations which was 2x/3 
for L = 30 and 14n/25 for L = 50. At t = 0, p(O) is just 
equal to the fraction of points of the first Brillouin 
zone which are contained in I kl < X. Choosing 
I‘ 1 0.5%~ in both cases (dropping the last two shells 
for L = 30) this corresponds to p(O) z 0.1. As t in- 
creases and the weight of S shifts toward smaller 
values of k, Pftf increases by the ‘amount’ of 5% t) 
which has moved into the ‘observation’ zone defined 
by the cut-off x‘. Fig. 4 shows p(t) vs t for different 
quenches. Comparisons of the graphs for points PI to 
Ps shows that the speed of the segregation increases, 
in units of attempted exchanges, with the distance of 
the quench from the coexistence line. The same is true 
for the-points PJ to P,. This accounts, in the main, for 
the widely different time Iengths to which we ran our 
simulations (see Table 1). It is clear that close enough 
to the coexistence line at T 1: 0.6 T, the relaxation 
time would become so long that the system would 
appear, for ail practical purposes, to be in a meta- 
stable state while close to T, the system will be in the 
region of critical slowing down. In either case the 
segregation would not be visible in our simulations. 

It should be noted that the relaxation time in- 
cr&.ses rapidly as one approaches the coexistence line. 

There is no evidence. however, in our simulations 
of any ~~pf change in the behavior on crossing any 
of the theoretical spit&al lines indicated in Fig. 1. 
There are some differences however in the way in 
which S(k, t) evolves with time in different parts of the 
coexistence region. This can be seen in Figs 5 and 6 

Tim trio> 

Fig. 5. Tlte normalized structure functions ~(k, t) E 
S(k, t)/(l-ii’) is plotted here vs time in the case of the 

quenches to Ph j = l-5 (T 3 0.6 T,), for k = n/S. 

where WC plot S(k, Ml - ij2) vs I for quenches to 
different Pj’s at T I 0.6 T, for k = n/5 and k = 2x15. 
It is seen there that for quenches deep in the coexis- 
tence region S(k, t) decreases strongly after reaching 
its maximum value while near the coexistence line it 
remains approximately constant for the times ob- 
served. This behavior is also true for other values of 
k > k,,, and results in ‘cross-avers’ at large k seen in 
Sfk, r) vs k curves, for P4 in Fig. 2(a) of Ref. [7c] and 
for PLT in Fig. 2 of Ref. [7aJ but not in Fig. 2 here. 
Such cross-overs have been conjectured [4] to be the 
hallmark qf quenches inside the spinodal curve and 
our simulations give some evidence of this. The evi- 
dence is however not entirely conclusive since the dif- 
ferences may be due to not waiting ‘long enough’ near 
the coexistence line and the scatter is relatively large 
(see e.g. Figs 3-4 in Ref. [Sa] corresponding to the 
quenches to P6-P7). 

3.2 Scaling behavior of S(k, t) 

An inspection of Fig. 2 shows clearly that the wide 

44 

un 
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Tim* ti 101 

Fig. 6. Same as Fig. 5 for k 1 2x/5. 
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spacings of possibie k values coupled with fluctu- 
ations, both due to the small size of our model sys- 
tem, make detailed comparisons between the S(k, t) 
obtained from our simulations and the smooth struc- 
ture functions seen in experiments[l@-121 or 
obtained from theory [F63 very difficult. The latter 
always deal with macroscopic size systems which cor- 
responds in our model to N -* x, k becoming a con- 
tinuous variable and S(k t) a continuous function of k. 
Let .Y’(k, rf be the limit of S(k, t) as N -+ 5. It is this 
smooth function about which we would like to obtain 
info~ation from our computer simulations. Hence it 
is essential that we look for quantitative features in 
our computed S(k, r) which will go over smoothly to 
the macroscopic .Y(k. r). 

In order to understand the long time behavior of 
F(k. r) we note that as t--, x we expect that 
Y(k. r) 4 9&(k), the equilibrium structure function of 
a macroscopic system fully segregated into two pure 
phases. This is given by 

where 8(k) is the sphericalized Dirac delta function at 
k = 0, h$(k; T) is the equilibrium structure function 
on the coexistence line (by the symmetry of our model 
system this is the same for both pure phases) and 
r&T) is the spontaneous magneti~~o~ m. = 1 - 
2p, = 2p, - 1 (equal to Q on the coexistence line). As 
already noted, the system, after quenching, will segre- 
gate locally into regions (often referred to as grains, 
clusters or droplets) of A-rich and B-rich phases and 
then will evolve further by the growth of these segre- 
gated regions (coarsening or Ostwald ripening). We 
might expect that after some initial time the structure 
function ‘within’ the segregated regions will be close 
to its equilibrium value .Y;(k; T). It seems therefore 
reasonable to consider the quantity 

y(k, I) = [.Y(k, t) - .!$(k(k; 7-)-j (m; - Fj’,- ‘, (12) 

which approaches 8(k) with time, as most relevant for 
the description of the coarsening process. This is basi- 
nally the subtraction of ‘background’ proposed in the 
third reference of Ref. [5]. 

We shall therefore consider in our analysis also the 
analogous quantity for our finite system 

Sl(k, t) s [S(k, t) - S&k; T)-j (m; - ij’)-’ (13) 

in the hope that it will more clearly reveal the essen- 
tial features of the coarsening process. The function 
S&k; T) was obtained for the three different tempera- 
tures T considered here, by quenching to points on 
the coexistence line and waiting for the system to 
reach equilibrium. At low temperatures there is in fact 
very little difference between S and Sr for small values 
of k after some initial times. (cf. Figs. 2 and 3; see also 
Table 2). The difference is therefore likely to be unim- 
portant also experimentally; but it appears to help 

Table 2 

0.591 0.01456 0.13 0.922 1.105 17.8 
0.780 0.06130 0.17 0.849 0.966 27.7 
0.887 0.012463 0.22 0.744 0.786 43.5 

Equilibrium values of the first and second moments of 
S,(k). and the quantity 

14Z,2d 
m z C S,(k) 

L=2nL. 

and p defined in equation (LO) corresponding to quenches 
to the coexistence curve at the temperatures of the simula- 
tions reported in this paper. 

with the proper normalization of our data at different 
points Pj- It also makes some difference for P7 where 
T = 0.89 T, and SJk; T) is not so negligible at the 
relevant k values; see table 2. 

A quantitative feature of S(k, t) we looked at in our 
simulations were the moments 

k”(t) = {k”) 

= 5 k”S,(k. r)i’ ; S,(k, r), n = 1,2 (14) 
k=O ,’ k=O 

where X c 0.55n as explained before (see caption for 
Fig. 4). These appeared to behave quite smoothly as 
functions of t. We found furthermore that (k2>~(k)z 
was essentially independent of t; see Table 1. This 
suggests that our Sl(k, t) with discrete argument k 
having spacings 2x/L might be related for late times 
to the macroscopic structure function ,4Pl(k, 1) via a 
smooth scaled function 9 such that 

S,(k, r) 2 .%(k, r) = bW?klK(r)) (15) 

where K(t) is some characteristic wave vector in the 
system and h(t) is a normalizing factor. Now if this is 
indeed the case, then using the fact that for large sys- 
tems the number of points in the Brillouin zone con- 
tained in a spherical shell of thickness Ak approaches 
4nk2Ak/(2n/L)3, we have from equations (9) and (12) 
that 

f 
k2 z”;rk, t) dk = b(t)K”(r) x29(x) dx 

B f 

= 2??2(m:, - rf2) (16) 

independent of t. The integration on the left side of 
equation (16) is over the first Brillouin zone and so 
the x integration is over a cube centered at the origin 
with sides of length 2x/K(r). For large t, K(t) -+ 0, and 
the integral in (16) can be taken over all space. Since 
S(x) can be expected to decay quite fast for large x 
very little error will be made even at quite early times 
if we set b(r) = 2n2K-3(m~ - e2) and normalize ;rz‘ so 
that 

r” x2 F(x) dx = 1. (1-o 
Jo 
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I.0 

0.7 

0.2! 

Fig 7. The scaling function F(x) in the case of ‘deep’ quenches: the triangles correspond to a quench to 
P, and they include times r 2 1500 I-‘. the asterisks to PJ and r 2 3SOe-t. and the circles to Pb and 
I 3 IOCOz-’ (see also caption for Fig. 8). The dashed line represents the shape of the function F at an 
earlier time when scaling does not yet hold: it was drawn connecting the discrete values of F(x: r) for 
r = 110 z- * in the case P,. The dotted line corresponds to a function F- t = et + z2 .? trying to fit the 

experimental data for I z= x,,,. the location of the maximum of Nx). 

To test this scaling hypothesis and find the smooth 
Y(x) from our simulations we d&r a function of two 
variables, .Y = k/k,(r) and r. by the relation 

F(x; 0 = 4 k:(rlS,[xk,(cL c] :! f k*S,(k, r) 
it-0 

(18) 

and then see whether for late times F(x; c) 2 F(x) a 
smooth function of x independent of t. The normal- 
ization (18) is chosen so that 

X,k 

x Ij6)'F(j6;1)6 = I 
j=l 

(19) 

independent of I for 6 = Zx/k,(r)L. This means that if 

scaling is really valid then for large N, when equation 
(19) approximates the corresponding integral, it will 
satisfy equation (17). (Note that equation (18) is 
defined slightly differently. using St rather than S and 
multiplying by L/n, than the corresponding function 
for P2 and P, in Ref. 183). 

The values of F(x; t) z F(x) independent of f. 
obtained from our simuIations for large times are 
shown in Figs 7-9 for ‘deep’. ‘intermediate’ and ‘shal- 
low’ quenches. While these curves are all similar. the 
‘experimental’ scatter within each group is signifi- 



LEBOWITZ er 01.: SCALING OF STRUCTURE FUNCTION IN ALLOYS 305 

Fig. 8. The function F(x: r) defined in equation (18) is plotted here versus x = k/k,(r) in the case of the 
(‘intermediate’) quench to P,. Every symbol (0. 1. 2. 3.. .) in the graph corresponds to a different value 
of the time: the first one (zero) is for f 1 ZSO~K-‘, the time increasing up to I 1 7XlOa-’ which is 
represented by crosses. All the values of F(x; I) in that time interval seem to lie on a common curve at 
different values of x (see. however. Fig. 12). The dashed line was drawn connecting the values of F(x. I) at 

I = 228 z- ‘. The dotted line corresponds to a fit f-’ = zr + 0~~ x4 to the ‘tail’ x > x,,, of Rx). 

cantly smaller than between them. We believe there- 
fore that there is a real. albeit small, difference 
between the scaling function F(x) at different 
quenches. 

The change in the scaling function may perhaps be 
explained by the difference in the boundaries of the 
single phase regions changing from smooth to corru- 
gated as we get closer to the critical point. The simi- 
larity of F(x) near T, and near the coexistence curve 
for small p would appear to suggest some sort of 
‘spinodal line’ criticality. This is an intriguing ques- 
tion which is however very difficult to answer at 
present. 

Figures 7-9 also show the function F(x: I) at some 
earlier times as indicated. We have also included in 

AU 30 l--l 

those figures a fit of the form (01~ + a2x4)-’ to the 
‘tail’. x > x,,,. of the scaling function F(x) which 
seems to be suggested by Ref. [9]. While this is ag 
proximately the behavior of our data for x 2 xmur. the 
location of the maximum of F(x). the data clearly 
deviates from the xe4 behavior at larger x values. 
This is shown in Fig. 10 where we have plotted F‘-‘, 
x > x,,,, versus x4 in the case of the quench to P4. 
The graphs in Fig. 10 also show that F(x; r) has not 
yet reached the assymptotic function F(x) at large 
values of x in our simulations so this may be a part of 
the reason for the observed deviations from the x-* 
behavior. 

As already mentioned it is a difficult task to extract 
from our simulations precise and reliable information 
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Fig. 9. Same as Fig. 7 in the case of (‘shallow’) quenches to P, (triangles; all the data r > 68OOz-’ is 
included in this case), P2 (asterisks, t 3 4OOOa-‘) and P, (circles, r 2 IOOOa-‘1. The dashed line is for 

PI and t - 209a-‘. 

. 

0. x:’ 
Fig. 10. The inverse of the function F(x; r) defined in qua- 
tion (18) is plotted here, for x > x,,,, vs x4 in the case of 
the quench to P,. 
r - 1519a-*, 

The full ovals correspond to 
the empty ovals to I = 1926a-‘, the full 

circles to r = 2344~~~‘, and the empty circles to 
1 - 31460-I. The dashed straight line corresponds to the 
dotted line in Fig. 7. It is seen here that 
Qx; r) : F(x) - xs4 describes approximately our data at 
values of x 2 x,,, while at larger values of x, where scaling 
does not yet hold in our simulations. F(x: r) is time 

dependent. 

about the analytic form of the behavior of k,(t) for 
late times. This we have in common with real experi- 
ments-almost any assumed form with some adjust- 
able parameters, can be made to fit the data. The 
results of our analysis are summarized in Table 3 and 
in Fig. 15. See also discussion in next section about 
the growth of clusters. 

3.3 Qualitative properties of the cluster distribution 

We define a cluster in our model system as a group 
of A atoms linked together by nearest-neighbor 
bonds. This is expected to correspond approximately, 
at low concentrations of the minority component, to 
the grains observed by microscopy in real materials; 
it is the latter which the conventional nucleation 
theories have in mind and about which we would like 
to obtain information from our simulations [z 7f. 163. 
The computer was programmed to record period- 
ically the ‘sizes’ and ‘energies’ (i.e. the surface areas 
defined as the total number of A-B bonds incident on 

the cluster) of all the clusters in the current configur- 
ation. The size of a cluster, 1. is defined as the number 
of A atoms in the cluster. 

A qualitative description of the (early) time evolu- 
tion of the cluster distribution n(/, r), the total number 
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Table 3. 

Maximum k;j = A + Bt/103,r B to 
Phase duration l k, - t-’ 
point of run 0 A B to 

Pl 0.59 T, 50.’ 14,000 0.35 8.8 1.5 6800 

P2 
0.5<T, 7.5:; 10.200 0.23 1.5 1.5 4000 

P3 0.59 T, 
lOPA 

7300 0.21 3.6 1.5 2500 

p4 0.59 7, 

of% 

3900 0.19 2.3 1.7 1500 

p5 c 50:); 650 0.19 1.2 3.0 350 

P6 0.78 T, 
50% 

1700 0.23 1.4 3.9 1000 

p1 0.89 7” 
50” 

6600 0.25 3.5 3.9 1000 
,‘O 

Values of the adjustable parameters for two different fits to k, : first assuming a simple 
power law (here all the data except the very early one is included in the fit), and thm 
assuming a lineal behavior of ki 3 with time (using only data for t 2 ro). Here to is the 
approximate time at which we observed the onset of the dynamical scaling of the 
structure function according to equation (15). 
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of clusters of size I, has been reported elsewhere [7e] 
for the case T r 0.6 7,. For values of p very close to 
pD1 the corresponding saturated vapor density, n(L t) 
rapidly settles down to a stationary value character- 
istic of a metastable state. At p 1 0.05 - 0.075 the 
distribution of ‘small’ clusters still approaches rapidly 
a quasi-stationary distribution characteristic of meta- 
stable states, but there is now a measurable rate at 
which larger clusters develop (i.e., a finite nucleation 
rate). A detailed quantitative analysis of this behavior, 
at p = 0.075. using ideas from the Becker-Doring and 
Lifshitz-Slyozov nucleation theory is given in 
Refs. [7fJ and 1163. As the density (and the supersatu- 
ration) is increased further, p 2 0.1 at 0.6 To we ob- 

serve the early appearance of relatively large loose 
clusters (I > 50) coexisting with very small clusters of 
size one to ten or so. The number of A atoms and 
their relative distribution in the small clusters is close 
to what is observed in the A-poor (gas) phase equilib- 
rium state. The system then shows a slow process of 
aggregation of the larger clusters into still larger com- 
pact clusters which will finally lead to a fully segre- 
gated A-rich (liquid) phase [S, 163. When the density 
of A atoms in the model system is increased further, 
the system undergoes percolation, i.e. the appearance 
of ‘infinite’ size clusters. This happens in our model 
system (simple cubic lattice) at approximately [17] 
p = 0.31 for atoms placed entirely randomly on the 
lattice (i.e., T = a~), and was also observed [7a, 7c] at 
p4 - P,. To our knowledge this phenomena has not 
been investigated so far in real alloys. 

A detailed analysis of the cluster distribution n(l, t) 
at low densities will be reported elsewhere [16] on the 
basis of a kinetic theoretical model of the Becker- 
Dijring type. We shall only report here some gross 
features of n(l, t) as one varies p at T 1 0.6 T, namely 

on the time evolution of the cluster mean size de&red 
as 

l*(t) = ,s w, “/,S ~-W, 0, i = 1,2. (20) 
c c 

The cut-off IC is intended as a (somewhat arbitrary) 
separation between ‘small’ and large clusters. The 
second of these definitions (note that the notation 
differs from that for kI and k2 in equation (14)) gives 
more weight to large I and diminishes to some extent 
the relevance of the choice I,. We present in Fig. 11 a 
plot of l*(t) vs time for I, = 20 (similar results are 
obtained for 1, = 50) for quenches to PI-Pa. There is 
clearly a difficulty in analysing these data on the 
assumption of a simple power law [S] behavior with 
time as suggested by the Lifshitz-Slyozov theory [2]. 
This may however be due to the fluctuations in our 
single run. 

.60 L 
0 100 059 a 

7 5 0.59 
+A 

+ 5 0 059 f’ 

Fig. 11. The mean size l,(t), as defined in quation (20) with 
I, = 20, is plotted here vs time (in units of a-‘) for the 

cases PI (crosses), P2 (triangles) and P3 (circles). 
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We find that the ratio (12)/(1)2 = 12/11, which gives 
information about the shape of the cluster distribu- 
tion n(1, t), is far from constant even for late times- 
unlike the corresponding quantity (k2)/(&)2 
obtained from the structure function S,(k; t). More- 
over even when the cluster distribution of the system 
changes dramatically as a consequence of the percola- 
tion phenomena mentioned earlier we do not observe 
a clear evidence of this change on the behavior of 
S(k, f); e.g. the same scaling properties seem to hold 
for p < 0.1 and for p k 0.2. This is perhaps not so 
surprising since it is known that when the system 
undergoes percolation at high temperatures (T + T,) 
there is no corresponding change in the equilibrium 
structure function [7, 171. Thus it seems that attention 
must be paid not only to the size but also to the 
‘shapes’, composition and distribution of the clusters 
and other properties of the system. Note, however, 
that it is possible to make other definition of ‘clusters’ 
to avoid the trouble with the percolation of clus- 
ters [S]. 

We finally mention that the theoretical ideas about 
scaling with time of S(k, t) (section 2.2) are based on 
the assumption [S, 61 that for late times after quench- 
ing (to temperatures far enough from T,) the mean 
‘diameter’ R of the grains is much larger .than the 
(thermal) correlation length. Thus R is the only rele- 
vant length scale for fluctuations in these circum- 
stances and the structure function should be scaled 
accordingly. Moreover when p is small and the tem- 
perature is low one may assume nearly pure grains of 
the minority (A) phase so that R’(t) is approximately 
proportional to l,(t) and one is lead to the prediction 

k,(t) _ ClAOl- 1’3. This is confirmed by Fig. 12 where 
we have plotted k;‘(t) versus I,(r). 

3.4 Comparison with experiment 

3.4.1. Preliminary remarks. The model used in our 
computations certainly involves a great over-simplifi- 

a/ ,/’ A/ 

Fig. 12. Plot of k;$) [see equation (1431 vs I,(t) see equa- 
tion (21) in the case of quenches to PI (full circles), P2 
(stars), and P, (triangles). A part of the case corresponding 
to P4 (empty circles), where percolation effects were 
present, is also shown. The cut-off is I, = 20 for the data at 

PI-P3 and I, = 10 for Pa. 

cation of the behavior of real alloys where the pro- 
cesses we are interested in are greatly influenced by 
elastic distortions, grain boundaries, vacancies and 
other competing phenomena. The behavior of the 
model can thus only be compared with that of real 
materials in highly idealized conditions. Despite this, 
previous analysis have shown that our results are fre- 
quently very similar to experimental observa- 
tions [7d]. In order to make comparison with experi- 
ments, however, care must be paid to the relation 
between the units and other characteristics in our 
model and those corresponding to real alloys. For 
instance, as described before, the basic unit of time 
a-’ for the model evolution may correspond in real 
alloys to times which vary between very broad limits: 
e.g. from a- 1 _ 50 s at 0.6 T, to 10T4 s at 0.8 ‘I’, in the 
case of alluminum alloys. Thus our simulations at 
0.6T, can be compared with experimental obser- 
vations on real alloys (where the system relaxation is 
typically followed for some hours) while one has to be 
cautious at higher temperatures, say 0.8 T,. 

We note further that the typical resolution of 
X-ray cameras is in the range [21] of 10-1000 8, and 
that the inhomogeneities measured by experimenta- 
lists, e.g. the so-called ‘Guinier-Preston zones’, have 
typically linear dimensions in the range 15-200 A. 
Thus , assuming a0 = 3 A the smallest grains 
measured in typical experiments contain between 30 
and 150 atoms, and the largest ones about 3 x 10’ 
atoms. This may influence the comparison between 
experiments and simulations given the cut-off lc in 
equation (20) and given that the largest clusters ob- 
served in our simulations at PI-P3 contain typically 
no more than 800 A-atoms [23]. 

Other causes of differences between the behavior of 
our model and experimental observations can be 
found in the quenching rate which is finite in real 
experiments but infinite in our model system. We 
have checked that the quenching process seems to 
influence considerably the subsequent evolution. For 
instance we have been able to reproduce qualitatively 
the ‘untypical’ observations by Allen et al. [ 191. corre- 
sponding to room temperature aging of Al-Zn, 
p = 0.12, quenched into iced water (T r 0.44 T,) from 
T 2 0.93 T, by simulating a similar double quenching 
of our model system. The influence of the quenching 
process has also been reported in the case of some 
liquid mixtures [20]. 

3.4.2 Comparisons. We have analysed the data 
reported by Singhal, Herman and Kostorz [lo] corre- 
sponding to the Au-60 at.% Pt alloy, in particular 
their Fig. 3 coming from an experiment in which the 
sample was solutionized at around 1543 K and then 
quenched into iced brine; the aging at around 823 K 
was observed by neutron scattering during 900 s. The 
composition of the sample lies at the center of the 
miscibility gap, and T = 0.6 T, so that the experiment 
may be compared with our simulations at P5 and 
perhaps at P4. Moreover, those authors estimate [lo] 
the interdiffusion coefficient as being of order 
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Fig 13. We compare in this figure data from the computer 
simulation (empty symbols) with the experimental data in 
Fig. 3 from Ref. [lo] (full symbols) corresponding to 
Au-60 at.“,; Pt alloy quenched to 7 2 0.6 Tc The full circles 
are for t = 900 s and the stars for r = 360 s, both lying on 
the same curve except perhaps for x 2 1.8. The broken line 
1 is for t - 0 (the initial sample was already decomposed 
to some extent), and the broken line 2 is for I = 30s. in 
both cases scaling does not yet hold. The empty circles 
correspond to our simulation at Ps while the empty 
squares are for P, (see Fig 7). Only the vertical scale in 
Fig 7 needed to be changed in order to obtain the present 

fit. 

X 

Fig. 14. The data m Fig. 9 is compared with experimental 
data (Ref. [ll]) on an Al-150,0 Zn alloy quenched to 90‘C 
(solid line) and to 110°C (dashed line) (both T 1 0.6 7J 
The vertical and horizontal scales in Fig. 9 where changed 
IO obtain the present fit; a fairly good fit can also be 
obtained. however. by changing only the vertical scale in 

Fig. 9. 

0 xx 600 
t’* 

Fig. 15. This is a comparison of the fits reported in Table 
3: k;’ is plotted here versus r and vs r3’ in the case of 
quenches to P3 (empty circles and stara respectively) and 
to P, (full circles and circles with a star. respectively). The 
straight lines correspond to fits of the form rCTJ = A + Bt 

and kF3 = Crl’. as indicated. 

lo- l6 cm*/s at 823 K; choosing (arbitrarily) a,, = 3 A 
we have a-’ s 0.75 s so that the duration of our evo- 
lution at P, is equivalent to about 500s in terms of 
‘real’ time (and to about 3000 s at PJ. The scattering 
analysis gives a structure function with a shape quite 
similar to the one observed in our simulations, includ- 
ing the characteristic crossovers at that temperature 
and composition in the tail, k > k,,,. 

We have also computed the function F(x, I) defined 
in equation (18) taking as S,(k. f) the experimental 
data in Fig. 3 of Ref. [lo]. We find that the data 
satisfy the scaling hypothesis in the time range 
120 s c r ,< !NO s for all but very large x. say x > 1.8. 
see Fig. 13. Indeed the experimental function F(x) is 
quite similar to the corresponding one in the case of 
our simulations at P4 and Ps. In fact one can make 
the data from the actual and computer experiments 
lie on the same curve by only re-scaling the vertical 
axis, as seen in Fig. 13. Additional data taken from 
this experiment is given at the end of Table 1. The 
area under Y(k. r). for 0.03 c k ,< 0.2) A- I. is seen to 
grow with time as is found in our simulations. On the 
other hand the shifting of the location and increase in 
length of the peak of .Y’(k, r) is slower than in the case 
of our simulations. This might be due to the slow 
cooling process followed in Ref. [lo] (as compared to 
our instantaneous quenching): in fact those authors 
report that the sample decomposed to some extent 
during the quenching process: and we may note that 
their .Y’(k, r) at r = 0 is about twice as high for 
k : 0.1 A- ’ than for k 1 0.2 A- ’ (instead of being 
approximately constant). 

We have found a similar agreement between our 
scaling function F(x) at P, and P2, and the one 
reported by Guyot er al. [l l] corresponding to a 
sample of Al-l 5 at.“,; Zn quenched to T 2 0.6 T,: this 
is shown in Fig. 14. 

Finally, recent observations on binary fluid mix- 
tures C12.20.223 report a behavior which is also 
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qualitatively similar to the one shown by our model 
system (note, however, when making comparisons 
that the diffusion coefficient is much larger for fluids, 
10-4-10-6 cm2/s, than for alloys). 

In particular Chou and Goldburg [123 find a scal- 
ing behavior of Y(k, t) with a function F(x) which 
looks quite similar to our function. 
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