Physica 94A (1978) 297-320 © North-Holland Publishing Co.

STATISTICAL APPROACH TO THE
KINETICS OF NONUNIFORM FLUIDS

JESUS BIEL
Departamento de Termologia, Universidad Auténoma de Barcelona, Bellaterra, Spain

and

JOAQUIN MARRO*

Departamento de Fisica Tedrica, Universidad de Barcelona, Barcelona-28, Spain

Received 15 June 1978

We present a new formalism in Fourier space for the study of spatially nonuniform fluids in
nonequilibrium states which generalizes previous work on uniform fluids. Starting from the
Liouville equation we obtain a hierarchy of equations for the reduced distribution functions
which gives their rate of change at any given order of the system mean density as a sum of a finite
number of terms. Using a finite-ranged repulsive interaction potential we derive, as a first
application of the formalism, the Boltzmann integrodifferential equation for an infinite system
which is initially in a “weakly” inhomogeneous state. This is accomplished introducing an initial
statistical assumption, namely initial molecular chaos; this condition is seen to hold during the
time evolution described by the resulting kinetic equation.

1. Introduction

The statistical analysis of fluid dynamics away from equilibrium has pointed
out during the last decade or so some outstanding features of present-day
kinetic theory, mainly the “long-time tail” effects and the divergences in the
nonequilibrium virial expansions?) which have attracted much attention
leading to a better understanding of the subject. The attention has also been
concentrated on a more general behavior of fluids through the analysis of
soluble models®) and computer experiments®), and on semiphenomenological
theories®); the comparison between these approaches seems to indicate that
kinetic theory is in good shape. It lasts however a fundamental interest in
general microscopic formalisms allowing the study of some basic problems of
theory>*®). In this spirit we present in this paper the generalization to
spatially inhomogeneous (or nonuniform) fluids of previous work®'') which
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was restricted to uniform systems and hence prevented of most interesting
applications. We also deal here with the concrete problem of a controllable
derivation of the familiar integrodifferential Boltzmann equation from the
Liouville equation. This is expected to shed some light on the conditions of
validity of Boltzmann’s equation and on the connection between a reversible
microscopic description and an irreversible macroscopic model, i.e., on the
precise way in which irreversibility is introduced in the formalism.

The formalism we develop here is concerned with the time evolution of the
reduced distribution functions f,(R, p";t) where p" denotes the set of
momenta and R, the position of the center of mass of a subsystem of n
particles. By means of an appropriate projection of the BBGKY hierarchy')
for the rate of change of the functions F,(g", p"; t) we obtain a new hierarchy
for the functions f,(R,, p"; t) which presents the same formal structure as the
one previously obtained®) and investigated®'") in connection with spatially
homogeneous systems. In the form suitable for the applications in this paper,
the rate of change of f,(R,,p";t) is thus expressed as a sum of two types of
terms besides the characteristic streaming term: terms which at finite times
are of the order of the mean system (number-) density, D, and which also
involve the initial conditions F,(q", p";0), and a term which at finite times is
of the order of the square of the mean density. Iterating this equation one is
led to familiar non-equilibrium virial expansions; we can write the resulting
equations, however, as a sum of a finite number of terms (for any order in the
density) as an exact consequence of the Liouville equation in the ther-
modynamic limit for a system with a finite-ranged repulsive interparticle
potential.

The formalism accounts for the systems nonuniformity through the depen-
dence of f,(R,, p"; t) on R,. Thus, one may deal with the Fourier components
fa(k,p™; t) where the wave vector k plays the role of an “inhomogeneity
parameter”’. In the case k =0 we recover the functions f,(p";t) relevant in
the analysis of uniform systems. The formalism trivially reduces then to the
one previously considered”'®) which allowed a controllable derivation of
kinetic equations. For k ““small” the formalism can be applied to the much
more interesting spatially inhomogeneous systems where the distances over
which the system changes significantly are large compared to the range of the
interparticle potential.

In this paper we apply the equations corresponding to the latter case to the
investigation of a controllable derivation of Boltzmann’s integrodifferential
equation. As is well known, the Boltzmann equation constitutes a great step
towards understanding the temporal evolution of infinite systems but its
original derivation involves uncontrolled approximations and raises serious
conceptual problems. The familiar BBGKY approach, on the other hand, fails
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to derive that equation in a consistent way, and the alternative statistical
approaches developed by several authors present similar difficulties. The
situation is especially discouraging in the case of nonuniform systems where
one encounters extremely difficult problems related to the existence and
uniqueness of the nonlinear inhomogeneous Boltzmann equation®). Accord-
ingly, given that this equation is known to be valid as an empirical formula,
and given that there is no proof of it being completely correct, the interest of
new derivations allowing the analysis of its validity is clear. In particular,
beyond the zeroth-order approximation corresponding to homogeneous
systems>**1%), of primary interest is the situation in which (a) the system is
initially “weakly” inhomogeneous and (b) there is initially a condition of
“molecular chaos”. Under these conditions, we show that the terms of the
hierarchy for f,(R,, p"; t) which for finite times are of the order of the mean
density, D, together with the streaming term, give rise to Boltzmann’s equa-
tion in the limit of low mean density and for times longer than the collision
time. The term containing the initial conditions vanishes in this limit.

The persistence of conditions (a) and (b) during the kinetic evolution of the
system is also investigated. This is intimately related with two interesting
questions which are proved in this paper, namely the factorization at any time
of the n-body reduced distribution functions in terms of one-body reduced
distribution functions and the existence of the corresponding kinetic equation
as a consequence of the Liouville equation. Concerning the latter, we can see
that the relative importance of spatial correlations at a given time, ¢ >0, is
measured in a sense by the relative magnitude of the term of order D* (at
finite times), i.e. the “‘remainder” term in our hierarchy, which is presented in
a closed form. This question, which was already analysed in connection with
the homogeneous case, was translated there into the more transparent one of
the existence of a proper limit for a well-defined function when the relative
distance of two particles tends to infinity®). The problem can be formulated in
similar terms in the case of inhomogeneous systems. We mention that an
alternative procedure in the investigation of kinetic equations, in particular a
proof of the existence of the Boltzmann equation for homogeneous systems
which avoids the above restriction, was given elsewhere')); this, however, was
restricted to a limited class of potential functions.

Section 2 contains the general formalism in phase space while section 3 is
devoted to the analysis of the integral kernels appearing in the time evolution
equations. In section 4 we translate the formalism to Fourier space. Section 5
contains the analysis of initial conditions; in particular, we introduce the
condition of initial weak inhomogeneity in order to state the relevant equa-
tions for the applications in this paper. We also show in section S that, as a
consequence of the initial finite range of the correlations in the infinite
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system, the functions f,,(k,p";O) factorize into a product of n one-body
distribution functions, and the term in our equations containing information
about the initial state vanishes in the limit of low density. The latter result is
necessary in order to prove the existence of a kinetic equation. It is also
proved in section 5 that the relevant collision operator for weakly in-
homogeneous systems essentially reduces to the relevant one in the case of
homogeneous systems. In section 6 we obtain from our formalism some
previously derived results®'’) for comparison and completeness: in particular
we derive the Boltzmann equation for homogeneous systems. Section 7
contains a derivation of the familiar nonlinear Boltzmann equation for non-
uniform systems; we also prove the persistence in time of the factorization of
the reduced distribution functions in a certain familiar sense (molecular chaos).
The problem of the existence and correctness of Boltzmann’s equation can be
formulated in simple terms; the conditions for its derivation are analysed in
section 8.

2. General time evolution of reduced distribution functions: expansions with a
finite number of terms

Let us consider a classical conservative system of N identical point-
particles of mass m confined in a bounded region 2 of volume V. The state of
the system at any time t can be specified by the N-body distribution function
or Gibbs ensemble density un(g", p~:t) which we choose normalized to
unity. Here g~ =(q,...,qn) and p~ = (p.,..., pn) denote respectively the
coordinates and conjugate momenta of the N particles or, alternatively, the
representative point in the associated phase space. Relevant information
about Kinetics is also contained in the n-body reduced distribution functions
F.(q",p";t),n=1,2,..., defined by

F.(q"p";t)=V" ” dg™V ™" dpN " un(q, pNi 1), 2.1

(N-n) _ (N—-n) _

where dgq dq,. ...dgny and dp dp.....dpn. Integrations with
respect to the particle coordinates are restricted to the region £2; integrations
with respect to the momenta are extended to all possible values. We now
introduce

RF%E% re=q-q. (=1....n-1, (2.22)
=1

P.=>p, 7V=@—p)n"" (U=1,....n-1), (2.2b)
i=1
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which correspond respectively to the position of the center of mass, the
relative positions, and the corresponding momenta; all of them refer to the
subsystem of n particles. Denoting r'=(r, ..., r®" "), the change of
variables (2.2a) transforms the reduced distribution functions F,(q",p";t)
into F,[q"(R., r"™"), p"; t] which we may write as F,(R,, r"', p"; t). Next we
define a new set of n-body reduced distribution functions f,(R,, p"; t) through
the relations

fo(Ryy p™s 1) = V0D f drt Fu(Ry, 1™, p"s 1)

= v [dqrs (3 g~ R Fula”.p%: )
=1
= A.F,(q" p"; 1), (2.3)
with & the Dirac delta function. The last equality in eq. (2.3) defines the
idempotent operator 4,(A4%2= 4,). We also introduce the operator I', such that
A, + I, = 1. The evolution with time of the functions f,(R,, p";t), which no
longer depend on the relative coordinates, is the main subject of the present
paper.
The Gibbs ensemble density satisfies the Liouville equation,
dun = —iLypn, 2.4)

where 9, = 4/dt and Ly denotes the Liouvillian associated with the set of N
particles. To be specific, we consider the Hamiltonian function

N N
Hy(@", p™) =2 (il2m)+ 2, 3 e, (2.5)
i= ==

where ¢; = ¢(|ry|) stands for the finite-range repulsive interaction which is
assumed to act between particles j and [; ry = q; — q. Thus, the Liouvillian L,

associated with any set of n =2,3,..., N particles assumes the explicit form
L,=~i E} (pim)-V;+i E)lZ Viou - 9 (2.6)
i= j>i=

where we have used the notation V; = 3/dq;, 8; = d/dp; — /dp,; also 8; = a/ap;,
¥, = 3/9R, will be used.

By integrating eq. (2.4), discarding surface integrals at infinity in phase
space and using (2.1) one obtains the set of coupled equations [BBGKY
hierarchy'?)]

0,F, = —iL,F, — i(N - ”)V_]«gn,nHFnH, 2.7

for the reduced distribution functions F,(q",p"; t). Here

gn,n+] = izl fdpnﬂ f dlln+1 Vj<Pj,n+| . 3,'. 2.8)
i=
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We now apply to the hierarchy (2.7) the projection operators A, and I,
defined through eq. (2.3); the resulting equations respectively reduce in the
thermodynamic limit (N -, V >, N/V = D finite constant; this limit will
hereafter be denoted T-lim) to the two coupled sets of equations

0fn = —ALofn = iD T-im A, L s h s (2.9

dhy = —i(Ly — L)y = iLohy —iD T-lim T s thnsys (2.10)
where

ho(q". p" )= T, F(q". p" t)= Fu(q". p": 1) — [n(R,, p"  1). (2.11)

Here use has been made of the properties

T-lim Au&Lunsifasy =0, T-lim 4,L,F, = L.f. (2.12)
with

L,=—inm)'P,-V,, (2.13)
and

ZLonitfas1 =0. (2.14)

Properties (2.12) are a direct consequence of the finite range of the considered
interaction potential; (2.14) holds whenever the sets of n particles are
sufficiently far (i.e., at a distance larger than the range of the interparticle
forces) from the boundaries of the region 2. The formal solution of eq. (2.10)
obtained by Laplace transforms is

h,(t) = exp(—itL,)h,(0)—1 f dr exp(—irL,)
4}

X {(Ly = L)falt = 1)+ D T-lim I8 s hoii(t — 1)} (2.15)

Using the same iterative procedure in Laplace space which we used in ref. 10,
one finally obtains

3tfn(t) + ll:nfn(t)

i

> {f T[a‘r nnt (T)]f"+ (t T) n.n+m(t)hn+m(0)
m=1 m 1(
0

+1 f dr Kn.n+m(7)£n+mfn+m(t - 7)}

[}

m

: !
= 3 D[ 410K saenWfpent + )
= 0



KINETICS OF NONUNIFORM FLUIDS 303
t
+ Knen(hen®) +1 [ 47 K o) Lnvnfasntt =)
0

—ip™! f A7 K et w1 Lsimstsh st = 1), (2.16)
0

where we write

Kn,n+m(t) = (_i)m T-lim Angn,nﬂ

t
m—1
X {k[[l [ f dry exp(—inLy Ol n ik nrknrirt exp(iTkLn+k+l)]}

Thk-1

X exp(—1tL,im)- 2.17)

The product denoted by II', which is by definition equal to 1 for m =1, is
ordered from left to right according to increasing values of the index k; also
70 = 0.

Eq. (2.16) for the time evolution of the reduced distribution functions
fa(R,, p"; t) will later appear to have a more useful structure than the BBGKY
hierarchy. Indeed, while the first expression in (2.16) is equivalent to the usual
virial expansions, the second expression in (2.16) presents the advantage of
being expressable for a given value of [ as a sum of a finite number of terms.
An equation for the n-body momentum distribution function with a structure
formally similar to (2.16) allowed an interesting treatment of spatially uniform
fluids®""). Of particular interest is the case ! = 1 in eq. (2.16) or, alternatively,
the equation which follows upon substitution of an expression of the form
(2.15) for h,.,(t) into the last term of eq. (2.9):

3fn(t) = =iL,fu(t)

'
— D T-lim f dr A p v exp(—iTL, ) (Lys — £n+l)fn+l(t -7)
0

t
— D’T-lim f dr 8, L mer eXD(—itLe ) FarLrssmeshm ol — 7)
0

—iD T-lim 4,2 n+1 exp(—itL,)h,.1(0). (2.18)
If we write

Jn,n+l,n+2(t) = iKn,n+l(t)rn+1$n+l,n+29 (2.19)
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eq. (2.18) can be expressed as

atfn(Rn; t) = _iLnfn(Rn; t) +iD f dr Kn,nH(T)(LnH - £n+l)fn+l(Rn+l; - T)
0

t
_p? f 1T mmstmssdM st = 1)+ DK st en(©). (2.20)

0

Here we have explicitly indicated the dependence of the functions f, on the
center-of-mass coordinates and on time, and omitted the dependence on other
variables for simplicity in the notation. Eq. (2.20) gives the time evolution of
the reduced distribution functions f,(R,, p™;t) in terms of f,.1(Rusi. p"*'1 ),
hos @2, p" % ) = hyioRpszs 13, p™*% 1) and certain information about the
initial state which is contained in h,..(0).

3. Formal properties of integral kernels

Before proceeding further in the analysis of the explicit temporal evolution,
let us establish certain formal properties of the operator K, ,.(t) in eq. (2.20).
According to (2.17), (2.8) and (2.3)

Kn.nH(t) = Kn,n+l(Rm P"l t) = '—i T'llm Angn.nﬂ eXP(_ithH)
= Tim Vo [ dp,., [dam 5(LS g~ k)
j=1
x 21 Vi@ ins1 * 9; €xp(—itLa.)). 3.1

We first note that the canonical transformation defined by (2.2) is inverted by
the relations

n—1
. =R,—n"' IE‘ rd, g =rV+q, (3.2a)

n—1
— -1 H(n—13 -1 i
Po=n""P— 0" gt Y gD
I=1

p= "l 4 p, 20
with j=1,..., n~ 1. For simplicity we shall write hereafter
P,=(nm)'P,. (3.2¢0)
Using (3.2), the n-body Hamiltonian function (2.5) can be separated
p?
Ha(q" p™) =5+ H(w™") + H(ri ™), (3.3)
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with 727 '= (&P, ..., 7" ). Accordingly, the corresponding Liouvillian can
be written as a sum,

L,=L,+L,, (3.4)

of a part which only depends on the center-of-mass variables, L, as defined in
(2.13), and another part which only depends on the relative variables,

X oH’, 0 aH ,, d
Z(ar"’ ) Ry ar‘,,i’)' 3.5)

Given that I, commutes with L,,, one may also write
exp(—itL,) = exp(—itL,,) exp(—itL,). (3.6)

Now, using the canonical transformation (2.2) we write the operator K, ,..(¢)
in the form

Kpei(t) = T-lim V=00 ] dpuet | f dR,.. dris,

><8(R,l+l+ Y 2 )
X K per(ries, moon; £) exp(—itLosy), (3.7)

where K ., only depends on the relative variables.

The operator (3.7) was already analyzed in ref. 9 in connection with
uniform systems; we shall write K%,.,(¢t) for that operator. It was shown®)
that K9%,.,(t) can be written, due to the finite range of the interaction
potential, as a sum

Koo = 2 KU'"“)A("—l), (3.8)

j=1

where each term contains the two-body operator

K(j'“ = T-lim V_l j dp( jdql qul V,-go,;, . 6,» exp[—itL(j'l)], (39)
with

L= —i[m™p; - V; +pi - V) =~ Vigi + 33), (3.10)
the corresponding Liouvillian operator. The notation

A(,,_l) = V—(n_”f st f dql . e dq]'_l dq,'H e dq,,, (311)

is used in (3.8).
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We shall prove (see section 5) that the operator K, ., defined in eq. (3.7)
essentially reduces, in the limit of weakly inhomogeneous systems, to K5, ...
1.e. to the relevant operator in the analysis of uniform systems. Given the
relation (3.8), it follows that K ,,,, can be essentially written in this limit as a
sum of operators which only involve pairs of particles (j, n + 1). Thus the
interaction between the set of n particles and particle n + 1, as well as the
complete dynamics of the set of n+ 1 particles, can be reduced under these
conditions to a two-body problem. Accordingly, we only have to consider
binary collisions among the particles in the system as long as we are
concerned with the first order in the mean density.

One also notes the property

K"(0)G(p;, p) =0, (3.12)

as an immediate consequence of definition (3.9); here G(p;, p;) denotes an
arbitrary function of the momenta of particles j and [. Property (3.12) at t =0
will be needed later. Otherwise, we shall be mainly concerned with the
asymptotic behavior of the operator K%(t) for large times (see section 7);
this fact further simplifies our dynamical problem. Indeed, one has®) for large
times (in fact, for times larger than the duration of a collision)

lim KU'”(t)G(P,’, p)= K%“”G(p,-, p). (3.13)
t—oc

with K" the corresponding Boltzmann collision operator’®):
K§"G(p;, p) = fdp: ” dx dy 2m~'lp; ~ pl[G(pT.p) ~ G(pp)).  (3.14)

where pY denotes the momentum of particle j before the collision, and x, y
refer to the relative coordinate in a reference frame for which the positive z
axis points in the direction (p; — p;). In short, the initial (n + 1)-body problem
may be ignored here: only the values of the momenta of particles j and |
before and after a collision happen to be relevant quantities in this case.

4. Time evolution of Fourier components

n—1

We now consider the Fourier expansion of F,(R,, ri ', p": t) with respect
to the coordinate of the center of mass:

FoRo 11, p™: 1) = V@)™ f dk exp(k - R)E,(k, i~ p": 1), 4.1)

where the corresponding Fourier components are given by

Euk i pmity= V! f dR, exp(—ik - R)F,(R,. ¥~ p": 1). 4.2)
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Note that for k =0 we have F,(0,r:™',p"; t)= F,(r"", p"; t) which are the
appropriate distribution functions for the analysis of spatially uniform fluids.
We also introduce according to (4.2) the Fourier components

full p™s 0= V™ [ dR, exp(=ik - RS, (R 9”5 1)

= v [dq" exp(<in k- 3 4 )Futa”, p"s ), @3
=1

where the second equality follows from (2.3); fn(O, p"; t)y=f,(p"; t) coincides

with the n-body momentum distribution function. From (2.11), (4.2) and (4.3)
we have ‘

ha(k, ri~', p"s t) = Eu(k, ra™, p™ 1) — fulk, p™5 ). (4.4)

The term affected by a factor D? in eq. (2.20) happens to give no contribu-

tion to the main result in this paper. This term will be analysed in sections 6

and 8 and we shall omit it for the moment in our equations. Thus, the Fourier

transform of eq. (2.20) and the use of (4.1), the inverse transformation to (4.3)
for f, and f,.,, and the relation between h,., and h,.,, leads to the expression

afuk; t) = ~i(nm)™'P, - kf,(k; t)

t
~iD f dr f Ak’ KWLt — L 0 fonr(K's £ — 1)
0

+D [ aK Kl oK 0. @.5)
Here we have written
Krinnt) =Kok, k', p™; t)

=(Q2n)” f dR, exp(—ik * R,)K s,n+i(t) exp(ik’ * Ry.1) (4.6)

and used the result (3.4), i.e. that L,,,— L,,; = L,.,; has no dependence on
R, ... Using expression (3.7) and the identity

§(x)=(Q2w)3 f dke7*°*, 4.7
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one has

Klplt) = T-lim@am) V-0 f dpret f f R, drls,
x f dR, f dk” exp(~ik - R,)
X exp{—ik" c(Rysy +[n(n+ D! 21 rgh - R,.)}

X K nii(Trers maats t) exXplik’ - (Rov1 — Prai)}, (4.8)

where we have also applied the general property
CXD{_tP;:H ' vn+1}'¢(Rn+l) = ¢(Rn+l - P:H]t). (49)

The operator K, ,,(t) can also be expressed as follows,
Knpei(t) = T-lim v=*7Y f dpn+, f dri. 8(k— k")
X exp{—ik <[nn+ D] ,§=:. rd., —ik' - P',,Ht}
X Konsi(Faets Thsns 1), (4.10)

as a consequence of delta function properties. The use of this expression in
eq. (4.5) leads to

afu(k; t) = —iP,- kf,(k; 1)

t
—iD Tlim VoY f dr f dp,., f drt,,
0

x exp{—ik . ([n(n +DI' D rY, +P:,+,~r)}
i=1
X Knstl(Por, 70415 TV pnaifpri(ks t — 1) + D T-lim V-
X [ dpans [ drtexpf=ik - (tn0n+ 157 3, r+ Pt )}
=1

X Knsr(Fier, masrs DA gai(k; 0). (4.11)

This equation gives the rate of change of the Fourier components, f,(k, p"; 1),
of the reduced distribution functions f,(R,, p";t) in terms of f,,“(k, Pt
and the functions A,.(k, ru+ts Pos1, mhe1; 0) which refer to the initial state of
the system. No approximation has been introduced up to here. Eq. (4.11) has
been derived from the Liouville equation in the thermodynamic limit assum-
ing a finite-ranged interaction potential. We have restricted ourselves,
however, to the first order (at finite times) in the number density D in order to
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focus attention to the applications in the following sections. In any case, it is
to be noted that eq. (2.16) can be easily submitted to the same trans-
formations; this would lead to time evolution equations with a general interest
in the theory of fluids.

5. Nonuniform systems; initial conditions

In this paper we are mainly concerned with spatially nonuniform systems
which initially present ‘“‘weak’ inhomogeneities; let us first characterize these
systems. A homogeneous system would present the property of translational
invariance of the n-body distribution functions:

F.(q,...,qnp";0)=F,(q1t+a,...,q.+a,p";0),

with a an arbitrary vector in {2. Accordingly, the functions F,(R,, r*”', p"; 0)
will not depend on R, and we have k=0 in f,(k, p";0) for a homogeneous
system. Thus, a “weakly”’ inhomogeneous initial state can be roughly charac-
terized by a *“‘soft”” dependence of F,(0) on R,, i.e. “small” derivatives with
respect to R,. Indeed, for such a state one expects the difference between F,
at two points to be small even in the case that the points are separated by a
macroscopic distance. Then we can associate a characteristic length, A, to the
gradient V,F,(0) such that L/A = L|¥,F,(0)|, with L a macroscopic length, is
small. From eq. (4.1) it follows that for a weakly inhomogeneous system the
magnitude of the vector k at ¢t =0 is small, and of the order of 1/A.
We can introduce now a new wave vector scale defined by

k = Dx. 5.1

This can be seen as an initial property of our system which is made up by
particles not influenced by external forces; indeed, one can relate the charac-
teristic length A in these cases to the free distance between particles. Eq.
(4.11) shows that relation (5.1) will persist during the subsequent evolution.
The utility of change (5.1) shows up in the limit of low mean density and large
time,

D—-0, t—-x, Dt=s finite, (5.2)

which shall be introduced later in our equations. For the moment we note that
using (5.1) the term exp{—i[Dx/n(n + 1)] - Z; r%,} in eq. (4.11), where the range
of the relative coordinates rY.; is limited by the finite range of the inter-
particle potential contained in the operator K, ,., [compare eqgs. (3.7) and
(3.1)], reduces to unity in the limit (5.2). If we drop this term, still considering
the original time scale, eq. (4.11) can be written with the change (5.1), using
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the same notation for A, and f,, in the form
t

6,fn = —1DP;, - Kf,,(x, t)—iD T-lim V7" J’dT fdp,m IJ- dR,.;dr;.,
0

X Kot (Phays T 7) €Xp(—itLs)

X Lyt €Xp{=iDrc - Pl m}fpnslac; t = 7)

+ D T-lim v f dpns f f ARyt drfy Kot Pty ot 1)

X exp(—itLy1) exp{—iDr * Py it} husi(xc; 0). (5.3)

The actual form of the last two terms in eq. (5.3) is obtained after introducing
V™' [ dR,., exp(—itL,.,) which only acts as a factor given that the dependence
on R,., was already removed. Using the canonical change of the variables
(3.2) we obtain [cf. egs. (3.1) and (3.7)]

t
af(sc; t) =—iDP'y - ief, (s, t) — iD T-lim V™" Idffdpmqu"“
0

X !an Vi@in+1 * 0; exp(~itLys )Ly

x exp{—iDx * P} 7}furi(se; t — 7)

+DT-limV™ jdp,,“ f dg™"! ,2::1 Vi@ins1* 9; €xp(—itLy.1)

x exp{—1Dx * Pt h (i 0), (5.4)

where the operator L,,, contained {see eq. (3.4)] in L,,, appearing in the
second term of the right-hand side of eq. (5.3), which acted on a function
independent of R,.;, has been omitted. Simplifying the notation, one may
write eq. (5.4) in the form

dfulse, p™; t) = ~iDP}, - kf (s, p"; 1)
t
+D I dT[aTK(I)I,II+l(T)] CXP{—iDK * P;l+IT}fn+l(K’ P"H; t—1)
0

+ DK3,,.1(t) exp{—iDsc + Plysrt} hner(, rini, p™*'5 0),
(5.5

where the operator K% ,.,(t) was defined and analysed in section 3. This
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equation can be finally written:
6f,.(x, p"; t)=—iDP} - kf.(x, p"; )

t
+DY [ f dr(3,K%"*(7)) exp{—iDk * P,.17}
=1
0
X furi(se, p™*'5 t = )+ K9 (1) exp{~iDsc - Pt}
X A(n—l)’;n-#l(", revp™h 0)], ' (5.6)

where use has been made of property (3.8).

Before extracting any more consequences from eq. (5.6) let us consider in
Fourier formalism the initial factorization of the reduced distribution
functions.

We may assume that all correlations in the infinite system (i.e. in the T-limit
in our formulation) are finite ranged at time ¢t = 0. In particular, we can write
the functions F,(0) in the form

F.(q",p";0)= ,1'[1 F(q;, pi; O[1+ g.(q", p"; 0)], (5.7)

which defines the correlation functions g,(q", p*; 0), where
g.(q@",p";0)=0, if |ry|=¢ for all pairs (j, 1), (5.8)

here £ is a characteristic length of the order of the (finite) range of the
interparticle forces. Applying the transformation (4.3) to (5.7) we have

fulk,p";0)= V" f dq” jl:[leXD(—ik - qin)F\(q;, p;; O)[1+ g.(q", p"; 0)].
3.9

We note that the second term in the right hand side of this expression
vanishes in the T-limit in view of property (5.8); thus, using (4.3) for n =1,
(5.9) reduces to

fulk,p™; 0) = ﬂ F\(kIn, p;; 0). (5.10)

That is, as a consequence of the assumption (5.8) for the initial state, the
Fourier components f, referring to the infinite system are factorized at ¢ = 0.

Another interesting question which can be analysed at this stage concerns
the influence of initial conditions on the time evolution of the system; this is
relevant in order to obtain a true kinetic equation. The explicit character of
the present formalism allows us to prove that the last term on the right-hand
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side of eq. (5.6), the one which contains the contribution from initial condi-
tions, vanishes in the limit (5.2) when (5.8) is assumed. To this end we first
note the relation

. o
ApyFua(e, re, p" 5 0)

= V(@m) D f dR, .1 exp(—ik * Ryv)
X f dk; I dkn+1ﬁ1(k,-, pi: O)Fl(kn+l, Prs1; 0)

X H f dk, fdr‘,.’ll exp(ik; - q)Fi(k;, qi; 0) expli(k; - g + Kns1 * qus1)}

1#j

X[1+ gua(g@™", p""5 0)], (5.11)

which follows from definition (5.7) when one applies the transformation (4.2)
and the operator (3.11), and uses expression (4.1) for n = 1. We shall assume,
in addition to (5.8), that the correlation functions g, ,(0) have no dependence
on R,.,, and that the integrations to which they are subject in (5.11) do not
modify their fundamental character, mainly (5.8). Then, using delta function
properties, we have after some manipulations

lim A(,,_l)ﬁn+l("9 r:+l9 pn+l; 0)

{'j,rﬂ-ll“’m

= lim VQm)>[] Fiwl(n +1),p;0)
l'j,n+l|"°° ":}

x f dk; Fy(k;; p;; 0)F,(2/(n + 1) — k;, p;; 0)
x exp{ir;n.1 - [kj — «/(n + D]} (5.12)

Now we recall’) (see section 3) that one of the main effects of the operator
KY%"*"(¢) in the limit (5.2) is the introduction of the limit |r;,.)| >« into the
functions to which it is applied. Realizing that the latter limit has no effect on
f:.(k, p";0) and that we have A(,._.)f,,(O) = f:,(O), it follows from (4.4) and (5.12)
that

n+l

lim  Ag-yha(x, 0) = ﬂ Fi(xe/(n +1);0) = f,(s;0) =0, (5.13)

Irinsil>®

where use has been made of the result (5.10).
Now we come back to eq. (5.6) and redefine the time scale through the
transformation of variables

s=Dt, o=Dr (5.14)
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Using (5.14) in eq. (5.6) one has

3, p"; 5)= —iP} - .fo(c, p"; 5) + Y, {K"‘"“’(s/D)
j=1
x expl—ise * Ply151fusi(se, p™*'; 0)— f do K%"*Y(g/ D)
0

X 8, (expl—ik * Py furise, p™ s s — cr))}
+ K9*O(s/ D) exp{—ik * P115}A uyins1(s¢, P, p™*'; 0),

(5.15)

where we have also performed a partial integration and used property (3.12).
Introducing the limit D—0 in eq. (5.15) [or introducing the limit (5.2) in egs.
(5.6) or (2.20); both procedures are equivalent given (5.14)] we have

afulae, p"; 8) = —iP} - kf,(se, p™; 5) + 2, KE"™OF,11(0e, p™*'5 5), (5.16)
j=1

after using the asymptotic properties (3.13) and (5.13). The inverse Fourier
transform of this equation can be written as

dfa(R, p"; 5) = 21 [=m~'p; - Vifa(Re, p"; 5) + KE* fuii(Re, p™*; 9)),
5.17)

since V,f,(R,) = nVf.(R,) when R, =n"'3%,g;

Let us summarize here the conditions which have been introduced at
different stages during the preceding derivation:

(i) The thermodynamic limit in the usual sense; it is necessary in order to
obtain useful kinetic equations. We have implicitly assumed that the functions
involved in our development present nice properties under this and the
following conditions.

(i) The system is spatially inhomogeneous, but the distances over which the
system properties change significantly at ¢ = 0 are large compared to the range
of the interparticle potential (see the beginning of this section).

(iii) The interparticle potential is repulsive and has a finite range in order
for the binary collision description to be meaningful. This weakens condition
(ii).

(iv) The number density of the system is low enough in the sense of the
limit (5.2); this limit also restricts the validity of the resulting equations to
times much longer than the collision time, as one would desire in order to
obtain irreversible equations').
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(v) The spatial correlations have a finite range in the initial state, at ¢t =0,
for the infinite system [see eq. (5.7)].

Note that eq. (5.17) is an exact consequence of the Liouville equation under
(i)-(v) provided there is no contribution of the term with D? in eq. (2.20)
under these conditions; the latter point is analysed in section 8.

6. Kinetic equations for initially uniform systems

In spite of the fact that the case of uniform fluids is not very interesting
from a strictly physical point of view, given that there is no change at all in
the macroscopic variables nor fluid dynamics without spatial variation, it is
instructive at this point to consider the consequences of the preceding
formalism in that simple case. As already stated, the functions f,,(k, p";t) for
k = 0 reduce to the familiar n-body momentum distribution functions f,(p”; t)
of interest in the theory of uniform fluids. Then eq. (5.16) reduces to the form

afa(s) = 2 K§™Vf,(s). 6.1)

We omit the details of the derivations in this section given that they are
essentially similar to the ones in refs. 9-10. Assuming initial factorization of
the n-body momentum distribution function, which is a direct consequence of
initially finite-ranged correlations in the infinite system [see eq. (5.10)], one
readily obtains the factorization at any time,

fa(p"; 5) = I'[fn(p,-; $)s (6.2)
i
and the Boltzmann equation for homogeneous systems
afp;i s) = KE§°f\(p;; $)f(prs 5). (6.3)

In order to complete this derivation, however, one has to prove that the
term with a factor D? in eq. (2.20),

R(D, 0)= D* [ 41 ) puurassmhniaa™™, p™%5 1= 1), (6.4)
[V

vanishes under the above conditions leading to (6.3). Once this is accom-
plished, one would have the interesting result that a low-density kinetic
equation referring to a system in an initially uniform state of finite-ranged
spatial correlations, is a direct consequence of the Liouville equation. Mazur
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and Biel’) have shown that this is the case provided the function

{(Fins1, P"HZ t)=iT-lim AL nr1ns2h n+2(qn+29 P"+2§ 1), 6.5)

n+l,

Pin+1 = g — qn+1, has a proper limit {.(p"*'; ) for |r;j,.i|—>, and that this is
equivalent to the (reasonable) assumption that a certain time average,

t

lim 1 MKW“%{anmn—ﬂ—TMmv*fmﬁﬂanmn—ﬂ}
0

(6.6)

vanishes. A different approach'’) to the analysis of (6.4), which avoids the
above restriction, is based on the direct estimation of the orders of magnitude
involved in R(D, t). In this way one readily shows that

R(D,t)=D? f dr N(t, 7). 6.7
0

Assuming that Vip;, - d;h,(q",p"; t) is well-behaved, one obtains an upper
bound A to the function N(t, r). Then R(D,t)< AD? which vanishes in the
limit (5.2).

We also note, although this paper will not deal with the corresponding
problem in nonuniform systems, that the preceding formalism leads cor-
rectly’®) to the Chon-Uhlenbeck triple collisions terms which contain the
dominant effects beyond the Boltzmann contribution').

7. The Boltzmann integrodifferential equation; persistence in time of the initial
molecular chaos

In this section we are directly concerned with a controllable derivation of
the conventional Boltzmann integrodifferential equation for nonuniform fluids
from the Liouville equation. To this end we note that the set of equations
(5.17) is to be solved subject to some initial condition on the reduced
distribution functions; one easily convinces oneself that condition (5.7), which
simply states finite-ranged correlations in the initial state, is not a sufficient
condition to obtain the traditional Boltzmann equation from eq. (5.17). Let us
assume initial molecular chaos in the sense

ﬂum%m=ﬂﬂmmwx (7.1)
L

where we note that F,(q) = f,(q). Condition (7.1) is analysed in section 8. The
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important point here is that once condition (7.1) is verified at s =0, it will be
verified at all times s:

Fu.(q;p";s)= H Fi(q, p;; 5). (7.2)
1

Indeed, the set of equations (5.17) has solutions of the form (7.2), where
Fi(q, p;; s) satisfies the equation

a;F\(q, pi; s)=—m'p; -V Fi(q, p;; s) + K¥"Fi(q, p;; s)Fi(q, pi; 5), (7.3)

given that eq. (5.17) becomes an identity for any n with (7.2) and (7.3). Thus,
the eqs. (5.17) with the initial conditions (7.1) are equivalent to eqgs. (7.2) and
(7.3). Writing explicitly the symbol K§” (see eq. (3.14)] we have

d;sFi(qi, py; $)+ m~'p, - ViFi(qy, p1; 5)

= f dp, ff dx dy 2m~'|p\ — pJFi(qy, pY; s)Fi(qy, p3; s)
— Fi(q1, p1; s)Fi(qu, p2; $)1, (7.4)

which corresponds to the conventional Boltzmann integrodifferential equation
if one neglects the difference in position of the two colliding molecules.

8. Discussion

We complete our derivation of the Boltzmann equation from microscopic
dynamics by analysing in this section: (a) the initial condition (7.1), and
(b) the contribution of the term with D? in eq. (2.20) to the kinetic evolution of
the system.

Concerning (b), it was argued in section 6 that the contribution which (for
finite times) is of order D? vanishes in the low density limit for initially
uniform systems®) where the distribution functions are invariant under trans-
lations. (Note that once this invariance is verified at t = 0, it will be retained
by the system under a translational invariant Hamiltonian). Let us show that
the proof outlined in section 6 can also be applied to the systems with initial
weak inhomogeneities in which we are interested here.

The third term on the right-hand side of eq. (2.18) which we omitted in the
subsequent discussion, can be essentially written as

[ 47 K sZsiwiahusatt = ) @.1)
0

Using the results in section 3 and introducing the transformations in sections
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4-7, in particular the wave vector scale (5.1) and the time scale (5.14), this is
transformed into a sum from j=1to j = n of terms

‘ fdo K%Y/ D)8 sr(k, Finsr, p™*'s s — 0), (8.2)
0

where
0p1(0, Tjns1, P"H; s—o)

= T'hm exp {-iK * P:l+1a'}r(j‘"+l)A(n-l)$n+l.n+2h‘n+2("’ r::;’ P"+2; s = 0')9
(8.3)

which would have appeared in eq. (5.15). Here we have used the previous
notation and I'*"*" = (1~ V? f{ dq; dq,.,). Thus we also have, as in the case
of initially uniform systems, terms of the form (8.2) with a function 8,., which
only depends on r=r;,_ at all times under a translational invariant Hamil-
tonian (2.5). We first note®) that one can write

lim f do K)o/ D)6, (k, 1, p™'; s — o)
b0 0

t

=5 lim% dr K" Y(1)0, (s, 1, p™*'5 t — 1), 8.4

00
0

in the time scale (7.1), i.e. that a proof showing that terms (8.2) vanish in the
limit D—>0 (s finite) is equivalent to showing the annihilation of the time
average (8.4). In order to state the problem in simpler terms, we now follow
step by step the proof in ref. 9 to realize that (8.2) vanishes if

Ililm Bpsi(sc, 7, p" ! s — ) = 0. 8.5)

One can also realize that the function (8.3) can be written as the difference
between a given function &,.,(r) and its space average,

Bner(r) = €pi(r) = T-lim V! f dr &ui(r), (8.6)
so that (8.5) is equivalent to the existence of the limit
|lilm Ll 1, p" ' s —0) = £Lp" s — o). (8.7

By comparison of expressions (8.6) and (8.3) one convinces oneself that, apart
from irrelevant factors, the functions &,.; in (8.7) are essentially a sum of
distribution functions h,.i(%, rii3; s — o) (see also section 5).
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This justifies our assumption neglecting the term (8.1) in the time evolution
equations. Accordingly, we have shown that the Boltzmann equation (7.3) is
an exact consequence of the Liouville equation under conditions (i)—(v),
enumerated in section 5, and initial molecular chaos in the sense of expression
(7.1). Furthermore, we have shown that (7.1) is conserved at all times {see eq.
(7.2)] during the kinetic evolution of the system when this is described in
terms of the time scale (5.14).

It is interesting to compare this derivation of the traditional Boltzmann
equation with the corresponding derivation in the case of initial spatially
uniform states (section 6). The relevant initial hypothesis for homogeneous
systems is (6.2) with s = 0; this is a consequence of (5.10) with k =0 which
in turn follows from the hypothesis of initial finite-ranged spatial correlations.
Thus, only conditions (1) and (iii)—-(v) in section 5, and initial spatial uniformity
are needed in that case. In the case of initially inhomogeneous systems one
also would like to proceed from similar (mild) conditions but we have seen
that, in addition to (i)—(v), one has to introduce the condition (7.1). This is not
surprising at all because the intuitive original derivation of the Boltzmann
equation involves certain uniformity assumptions'®®) much more restrictive
than our initial hypothesis (ii) and (v); thus our initial condition (7.1) somehow
contains those of the original Boltzmann assumptions which are really needed
in a derivation from the Liouville equation. In order to understand the
contents of (7.1) one may start with the more familiar formal expression of
the initial molecular chaos assumption:

F.(q" p";0)= ﬂ Fi(q;, p;; 0), (8.8)
1.

which follows from (5.7) when g.(q",p";0)=0, i.e. when all the relative
coordinates of the subset of n particles are larger than the correlation length
[which is supposed to have initially the same order of magnitude as the range
of the interparticle forces; see eq. (5.8)]. Expression (7.1) follows from (8.8)
when |q;—q| is smaller than A, the characteristic length for the system
inhogiogeneities (see section 5).

Finally, we mention that from condition (7.1) and the above considerations
it follows, given the definition (2.11), that h,(0) = 0, which is consistent with
property (5.13). (In the same way, it follows from our resuit (7.2) that
h.(s) = 0; this might seem to imply that the term (8.1) is identically zero but
we note that (7.2) was obtained assuming that (8.1) vanishes in the low density
limit).
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