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Abstract. We theoretically describe how weak signals may be efficiently
transmitted throughout more than one frequency range in noisy excitable media
by a sort of stochastic multiresonance. This helps us to reinterpret recent
experiments in neuroscience and to suggest that many other systems in nature
might be able to exhibit several resonances. In fact, the observed behavior
happens in our model as a result of competition between (i) changes in the
transmitted signals as if the units were varying their activation threshold, and
(i1) adaptive noise realized in the model as rapid activity-dependent fluctuations
of the connection intensities. These two conditions are indeed known to
characterize heterogeneously networked systems of excitable units, e.g. sets of
neurons and synapses in the brain. Our results may find application also in the
design of detector devices.

Some systems occurring in nature are known to efficiently process weak signals in noisy
environments. A novel mechanism that explains such an ability is known as stochastic resonance
(SR). This is associated with the occurrence of a peak or bell-shaped dependence in the
transfer of information through an excitable system as a noise source is conveniently tuned.
More specifically, low or slow noise impedes the detection of a relatively weak signal, but
as the noise rises, the system eventually gives a response that is correlated with the signal,
which shows as a peak in information transfer. The signal is again obscured at higher noise
levels. This has been reported to occur in different settings, including electronic circuits, ring
lasers, crayfish mechanoreceptors, ion channels, sensory neurons, hippocampus, brain stem and
cortical areas [1]-[4]. An intriguing issue raised is whether a given system may filter with
gain in different noise regimes, which would have technological application. After the first
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proposal of stochastic multiresonance (SMR) [5], the existence of two or more resonant peaks
has been predicted for single-mode lasers [6], surface phenomena [7], biological diversity [8]
and intracellular calcium oscillations in hepatocytes [9, 10], and it has also been described
in somewhat more abstract settings [11]-[16]. Although there is as yet no definite claim of
experimental evidence of SMR, two recent sets of experimental data [17, 18] admit such an
interpretation.

Here we demonstrate that a single resonant mechanism may indeed help in transmitting
signals throughout different noise frequencies. More specifically, we use an explicit
mathematical model—based on independent familiar empirical descriptions for both neuron
units and their synaptic links—to reveal the existence of a double resonance in an experiment
concerning the human tactile blink reflex [ 18]. Our model behavior is also consistent with recent
reports on the transfer of information with different frequencies in the hippocampus [19]. On the
other hand, the model here allows one to modify the separation between the two peaks by one
order of magnitude or more, and it may admit generalization to show more than two resonances,
which makes the ‘device’ very versatile.

Our main result suggests looking for SMR in nature as part of a needed effort to better
understand how the details of excitable systems influence transmission. Previous studies of
SR and SMR in nonlinear settings most often involved a source of controlled, additive noise
getting rid of correlations. The case of an intrinsic, therefore uncontrolled, noise resulting from
inherent activity in the medium is even more interesting and likely to occur in nature. In a
cortical region, for instance, a given neuron may receive, in addition to the (weak) signal of
interest, uncorrelated i.e. just noisy signals from other neurons at frequencies that vary in time
during the normal operation of the system. Following previous efforts [20, 21], we consequently
investigated the possibility of correlating SMR with the fact that both the main signal and the
noise transmit through dynamic connections, e.g. synapses, whose weights change with time
and therefore constantly modulate transmission. We found in this way that short-term activity-
dependent ‘fatigue plasticity’—such as synaptic depression and facilitation that is known to
modify the neural response causing complex behavior [22]-[26]—may indeed produce SMR in
a model of neural media in agreement with recent observations. The setting in this paper, which
may be seen as an application of a general study within a biological context [21], is intended
both to serve as a simple illustration of our point and to make contact with a specific experiment.
However, it is sensible to anticipate that the main outcome here may hold rather generally in
excitable systems, given that these seem to share all the relevant features in our model [27, 28].

Consider a networked system in which the units, say neurons, receive: (i) a weak
signal from other brain areas and/or from the senses or whatever external terminals and, in
addition to this, (ii) uncorrelated, noisy signals from other units. The latter signals will be
portrayed by means of action potentials (AP)—from the many presynaptic neurons to the
postsynaptic neuron—e.g., APs whose rates follow a Poisson distribution with mean f. Besides
the stochasticity that this implies, we shall imagine the neurons to be connected by dynamic,
activity-dependent links. To be specific, we shall adopt the model of dynamic synapses in [29].
That is, we shall capture the required stochastic nature of any synaptic link, say i, by assuming
that it is composed of an arbitrary number, M;, of functional contacts, each releasing its
transmitter content with probability # when an AP signal from other units arrives. Furthermore,
to implement excitability (and, more important here, a kind of threshold fickleness), the contact
is assumed to become inactive afterwards for a time interval 7; this is a random variable
with exponential distribution p,(t) of mean 7., at time . Therefore, each activation event,

New Journal of Physics 13 (2011) 053014 (http://www.njp.org/)


http://www.njp.org/

3 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

i.e. the arrival of an AP at i at time ¢;, generates a (postsynaptic) signal, /;(¢), which evolves
according to

M;
dhi@) L) +ZJ“ X0 8(t —1;). W

dr Tin )

Here, J;, is the modification in the signal produced by the AP in contact ¢ after the release
event; and x; ,(#) =1 if the contact is activated, which occurs with probability u[1 — p,(7)],
and O otherwise. The time constant 7, is a measure of the transmission duration (of the
order of milliseconds for a known type of fast postsynaptic receptors). For N units, the total
postsynaptic signal is Iy (t) = ZZN:1 I;(t). We also assume, as in [29], that both the number
and the strength of functional contacts that a presynaptic unit i establishes, namely, M; and
Ji.o vary with i according to Gaussian distributions of mean and standard deviation (M, A )
and (J, A;), respectively. To compare with a specific experiment, we assume M = 50+£0.1
contacts, J =0.3£0.1mV, u=0.5, 7j, = 1 ms and T, = 500ms.? Just for simplicity*, we
consider a weak, low-frequency sinusoidal signal S(¢) = dscos(2m f;¢) which is transmitted
to the (postsynaptic) unit to monitor the corresponding response and the conditions in which
resonance occurs. With this aim, we then compute the generated voltage, V (¢), assuming a
generic dynamics of the form

i FV, Iy, S 2
& = F V. Iy, 9, 2)

where the function F is to be determined.
Once the links are determined, specifying F means adopting a model for each unit.
A familiar choice is the integrate-and-fire (IF) model in which F is linear with V [33].
This assumption of a fixed firing threshold is a poor description for most purposes (see
also for instance [34]), however. Instead, one could assume a networked stochastic set of
(postsynaptic) units—e.g. a convenient adaptation of the network model in [27, 28]—but for the
sake of simplicity we shall restrict ourselves to the FitzHugh—Nagumo (FHN) model [35]. The
excitability is then implemented assuming that the thresholds for neuron shoots constantly adapt
to the input current, which is realistic for neuron media [36]. Summing up, the unit dynamics is

dv (1) S(1)
—— =V V@) —alll-VOI=-WE)+—, (3)
edr €T
where S (t) = S(t) + pIy(2) is the input, with p being a resistance that transforms the current I
into a voltage. W (¢), which stands for a (slow recovery) variable accounting for the refractory
time of the unit, satisfies

dW (1)
dr

For comparison with the experiment of interest, we shall take a = 0.001, b = 3.5 ms~!, c=
I ms~! and € = 1000 ms~', which causes the (dimensionless) voltage V (t) = 1 to correspond

=bV(t)—cW(t). “4)

3 In practice, M varies widely, namely, M € [5, 50] depending on the neuron type and functionality; see, for
instance [30, 31]. Well within the reported physiological range are also our values for the link strength J [32] and
for u and T [22].

4 This choice does not affect our conclusions. In fact, the same behavior results in figure 1 when using Poissonian
signals as in the experiment of interest [18].
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Figure 1. The function C (as defined in the text but scaled, arbitrary units so
that it measures relative variations of the relevant correlation), according to the
experimental data in [18] (full squares with their error bars) and our prediction
(solid line). The empty symbols represent the response when the signal S(z),
instead of the sinusoidal (therefore time correlated) one producing the solid line,
consists of a train of (uncorrelated) Poissonian pulses that, as the main signal,
also endure the model synaptic dynamics; the only noticeable change is that
the response is more noisy in this case due to extra randomness. The dashed
line corresponds to the interpretation of these data given in [18]. (The parameter
values used in these plots are well within the corresponding physiological range;
for details see footnote 5 and the main text.)

to 100mV and the time variable to be within the ms range. We further assume a membrane
resistance p =0.1 G @2mV and a time constant 7,, = 10ms both within the physiological
range [37].

The degree of correlation between the input signal and the output V (¢) is defined as

to+T
C=(SHv@)) = —/ S(t)v(r)dr. 5)
T J,
Here, v(?) is the instantaneous firing rate of the postsynaptic unit, that is, the average number
of APs generated at time ¢ as a consequence of input S. (In practice, the average is over a
set of different postsynaptic AP trains generated under the same experimental conditions.) The
function C(f) that follows from this is shown as a solid line in figure 1.°

> Experimental data points in the figure have been transformed using (6) with fy=1Hz, a = 1.8 Hz/dB,
Ap="73dB and o4 = 9dB. This choice does not affect essentially our findings, however. For example, using a
different linear relationship at low and high f (as in [18]) produces data that are well within the indicated error
bars. On the other hand, the Poissonian-distributed pulses used for the empty circles are of amplitude § = 0.4 and
mean frequency f; =3 Hz and we checked in a temporal window of Ar = 10ms after each pulse for a neuron
response to it, in order to maintain the closest similarity possible with the experiment in [18].
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As stated above, previous studies illustrated SR as a peak of C when one varies the level of
a noise that is apropos injected in the system. In our excitable model system, however, it is the
synaptic current /y(#)—and not an external noise—that directly affects dynamics. Tuning the
level of noise now means increasing the frequency f of the uncorrelated AP that are responsible
for the generation of I (¢). The noise embedded in the AP trains does not directly affect the unit,
and this has a strong consequence on the shape of C. That is, SMR is then a consequence of
the interplay between short-term (synaptic) plasticity and threshold variability associated with
dynamics (2).

To be more specific, let us write the total signal as Iy = Iy +o;, where Iy > 0. In the IF
model (fixed threshold), Iy tends to reduce the voltage needed for the generation of an AP, so
that the excitability of the neuron increases with I ~. In the FHN model, however, the main effect
of Iy is to move the stationary solution of system (3) and (4) (and the V nullcline) towards more
positive values, so that both the resting voltage value and the voltage threshold become more
positive. Then, for the range of Iy values of interest here, the neuron excitability depends more
on the fluctuation o; than on Iy. On the other hand, for dynamic synapses, o; = o;(f) has a
non-monotonic dependence on f—it first increases from 0, reaches a maximum, say f*, and
then decreases with increasing f to zero again. As a result, if the level of fluctuations at f* is
such that the unit is above threshold, there will be two frequency values for which—according
to familiar arguments [1]— fluctuations may eventually overcome the potential barrier between
silent and firing states, which results in two resonant peaks.

The model here allows one to understand, even semi-quantitatively, the recent data of
Yasuda et al [18] showing how short-term synaptic depression causes SR in human tactile blink
reflex. These authors monitored an input—output correlation function between tactile signal and
blink reflexes associated with postsynaptic responses of neurons in the caudal pontine reticular
nucleus (PnC) of the brainstem [38]. In addition to the (weak) tactile signal, these neurons
received uncorrelated auditory inputs that are viewed as a noise background. Yasuda et al then
concluded that, for realistic short-term depression parameters, the postsynaptic neuron acts as
an error-free detector. That is, the value of the input—output correlation function is maintained
at optimal high values for a wide range of background noisy rates.

A close inspection of the Yasuda et al data from the above perspective reveals some
significant discrepancies in the fit in that study at low noise rates. That is, while experiments for
low noise rates show a high input—output correlation level (see table 1 in [18]), the theory—
based on the oversimplified, linear IF neuron model with fixed firing threshold—that they
use to interpret and compare with their data does not predict SMR but predicts a very low
level of correlation at low frequency which is not supported by data (consequently, the authors
in [18] excluded their low-frequency data from their analysis). This is shown in figure 1. The
disagreement may be justified by accepting that, at such low rate and due to the high neuron
threshold in PnC area, the auditory noise is not enough to evoke a postsynaptic response
correlated to the signal. So the high level of the correlation observed can only be understood by
the effect of noise coming from other brain areas. Those authors did not study this additional
noise source, however, so that the question of whether other brain areas play a role here remains
unanswered. On the other hand, if such a noise is relevant, its effect should be a constant noise
added to the auditory noise. Therefore, it should induce a constant increment in the noise level,
which cannot explain two local maxima apparently observed in the experimental correlation
data (figure 1) at noise levels around 1 and 50 Hz, respectively.
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Figure 2. Schematic diagram showing how the form of the information transfer
depends on assumptions concerning the neuron units and the synaptic links. That
is, an IF model unit can produce only a single resonance, and the same is true
for FHN units and for IF units with varying activation threshold as long as the
connections are frozen. Nevertheless, these two model units can produce two
resonance peaks if the connections are dynamic, e.g. if they show short-time
fatigue plasticity that is known to occur in many networks in nature.

The drawing of data in the plot of figure 1, particularly those for small f undervalued
in [18], requires a comment (see footnote 5). That is, one needs to use a specific relationship
between the auditory noise and f. Let us assume [39] that the firing rate of neuron i in the
PnC area induced by an auditory input A is f; = fo+a@A®(A — A;), where fj is the level of
activity in the absence of any input, « is a constant, ®(x) is the step function and A; is the
minimum input needed to induce non-spontaneous activity in neuron i. The known variability
of the firing thresholds in most (e.g., PnC) neurons [38] suggests one to sample A; from a
Gaussian distribution with mean A, and variance o73. It then follows that the mean firing rate (in
Hz) induced in the PnC area by an auditory input A (in dB) is

f:f0+%{1+erf<A_A°)}. (6)
ﬁGA

This, which generalizes the linear relationship used in [18] within a restricted range, transforms
all levels of auditory noise (between 30 and 90dB in the experiment of interest) into the
frequency domain. For A > A, (6) reduces to a linear relation.

Summing up, our model system predicts two maxima, and not only one, in the transfer
of information during the specific situation that we show in figure 1. This, to be interpreted
as SMR phenomena, provides a priori a good description of the only sufficiently detailed
observation we know, namely, it fits all the data in [18], and it is also in qualitative agreement
with several predictions, as mentioned above, and with the global behavior reported in various
experiments [17, 19]. The minimum that is exhibited between the two peaks is to be associated
with noise-induced firings that are uncorrelated with the signal. The occurrence of an extra peak
at low frequency, which is also suggested by experimental data in [40], is most interesting,
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e.g., as a way of efficiently detecting incoming signals along two well-defined noise levels. This
seems to occur in nature and could also be implemented in man-made devices.

The number of peaks and the frequency range at which they are located can easily be
controlled in the model by tuning the parameter values, particularly those concerning synaptic
dynamics.

Finally, we remark on the model indication of two main ingredients of SMR. On the one
hand, the system is expected to have activity-dependent excitability. This may require short-
term variations of intensity links in a networked system, which is very common in practice [27].
On the other hand, the units in our model are able to adapt activation or firing thresholds to
the level of mean input. It is sensible to expect such adaptive thresholds [21, 41], and they
have been observed recently in actual cortical regions [42], for instance. A major conclusion
therefore is that SMR should be observed rather generally in neural media and in other excitable
systems. We summarize in figure 2 the conditions under which such an interesting phenomenon
may occur. Incidentally, it is also worth mentioning that the present work adds to previous
efforts to analyze the consequences in many branches of science of the interplay between the
nonlinearities, signal and forces, and environmental noise [43].
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