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Foreword

The opalescence of a fluid near its critical point has been a matter of curiosity for
more than 100 years. However, the organisation of a fluid as it wavers between a
liquid and a vapour was only understood 40 years ago – thanks to a profound insight
by Leo Kadanoff in what was a major cultural achievement.

We also know of other “self-similar” systems: fractals (structures resulting from
quite simple geometrical constructions) and turbulent flows (which we still struggle
to control). But the case of critical points has become the key example: difficult
but accessible to reasoning and all embracing enough to manifest widely varying
families of behaviours.

The techniques of calculation (the “renormalisation group”) are given in many
works and brought together in the fine book by Toulouse and Pfeuty. But a book
giving the panorama was needed: this is it. It starts with liquids and gases but it
also shows the multiple scales that we meet in Brownian motion, flexible polymers
or percolation clusters. Furthermore, the book is bold enough to address questions
that are still open: cuprate superconductors, turbulence, etc. The most controversial
question, which appears in the final chapter, is that of “self-organised criticality”.
For some this is a whole new world, and for others a world of mere words. But in any
case, this book gives an accessible picture of example cases in which uncertainties
still remain. And more generally it invites the reader to think. A good plan for young
people curious about science.

Paris Pierre-Gilles de Gennes
August 2003
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Preface

The physical description of our environment consists of relating various essential
quantities by laws of nature, quantities identified by observation, experiment and
a posteriori verification. One common difficulty is to relate the properties of a
system observed at a particular scale to those at a larger or smaller scale. In general,
we separate the scales by averaging the values at the smaller scales and treating
as constant the values varying on larger scales. Such descriptions are not always
valid, for example in situations where multiple physical scales play a role. Here
we describe new approaches specially adapted to such situations, taking changes
of states of matter as the first problems we tackle. Today we know of a wide
variety of critical systems in nature. The aim of this book is to unearth the common
characteristics of these phenomena. The central concept of coherence length (or
time) enables us to characterise critical phenomena by the size (or duration) of
fluctuations. The first examples treated are spatial critical phenomena, with their
associated divergence of the coherence length, second-order phase transitions, and
percolation transition. After that we describe temporal critical phenomena, or even
spatiotemporal, with their associated appearance of chaos.

The new challenge is that the description of these phenomena without char-
acteristic length/time scales should be global, affecting all scales simultaneously,
and should strive to understand their mutual organisation. More precisely the
way in which different length/time scales are coupled to each other becomes
determinate. The key concepts of scale invariance and universality are introduced.
The emergence of these ideas was a turning point in modern physics and has
revolutionised the study of certain physical phenomena. Analyses of characteristics
at one particular scale has given way to investigations of mechanisms of coupling
between different scales. One essential tool, renormalisation, enables this analysis;
it establishes the scaling laws, demonstrates the universal physical behaviour
within a Universality class and the insensitivity to microscopic details. Universality
emerges as a crucial property in which it legitimises the use of basic models. A
model reduced to just the essential elements is enough to describe the common
characteristics of all the systems of a universality class. Examples considered in this
book include the famous Ising model, percolation, logistic maps, etc.
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Fig. 1 Analogy, proposed by Pierre Curie as a conclusion of his PhD thesis (1895), between
the density of a fluid (left) and the magnetization of a material (right), both as a function of
temperature, and respectively as a function of pressure and magnetic field (for further details, see
text)

To conclude this introduction, it is fitting to give tribute to Pierre Curie, who
had this remarkable intuition during his work for his Ph.D. thesis in 1895, writing:
“There are analogies between the function f .I; H; T / D 0 related to a magnetic
object (Fig. 1 right) and the function f .D; p; T / D 0 related to a fluid (Fig. 1 left).
The intensity of magnetization I corresponds to the density D, the intensity of the
magnetic field H corresponds to the pressure p and the absolute temperature T

plays the same role in both cases. [...]. The way in which the magnetization varies
as a function of temperature close to the transition temperature, the magnetic field
remaining constant, is reminiscent of the way in which the density of a fluid varies as
a function of temperature near the critical temperature (while the pressure remains
constant). The analogy extends to the curves I D '.T / that we have obtained
and the curves D D '.T / corresponding to critical pressures. The left hand figure
below, established with the experimental data from M. Amagat on carbonic acid and
the right hand figure below, established with my experiments on iron, shows the idea
of this analogy.”

Paris Annick Lesne
August 2011 Michel Laguës
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Chapter 1
Changes of States of Matter

1.1 Introduction

It is a fact of life in our daily experience and was a real enigma for a century – pure
matter dramatically changes at extremely precise temperatures. In the nineteenth
century, pioneering scientists, from Gay-Lussac to Van der Waals, carried out
meticulous measurements of the fluid state, paving the way for microscopic
descriptions which underlie our natural sciences today. The study of properties of
gases at low density enabled the introduction of absolute temperature as a measure
of the kinetic energy of molecules. The striking generality of thermal behaviour
and mechanical properties of gases with vastly varying chemical properties was
thereby elucidated. Thermodynamics and its microscopic interpretations was born
on the wave of this success. However the pioneers of fluid observations also tackled
liquid–vapour transformations and discovered another elegant generality which was
far from evident a priori: In a dilute gas, molecules are almost isolated and therefore
one thinks their chemical properties are unimportant, but what about in a liquid
where the molecules are in constant interaction?

At the dawn of the twentieth century, the study of magnetic transformations
expanded the field of changes of states studied. There are also other situations where
we observe a sharp change in the microscopic structure of a material; metal alloys,
binary mixtures of fluids, superfluidity in helium and many others. The experimental
observations beg questions such as: why do these transformations occur at such
a precise temperature? And what is this origin of the surprising similarity of
such changes, seemingly independent of the nature of the physical properties that
transform? It was necessary to wait until the 1970s for a satisfactory answer to these
questions to be proposed. But above all, why do these changes occur?

A naive reading of the second law of thermodynamics might suggest that all
physical systems must evolve towards maximum disorder if the observer is patient
enough. However, this argument is only valid for an isolated system. In the more

A. Lesne and M. Laguës, Scale Invariance, DOI 10.1007/978-3-642-15123-1 1,
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2 1 Changes of States of Matter

usual case in which the system exchanges energy with its environment, the second
law of thermodynamics can be framed by the following two simple rules:

• At high temperature, the system evolves towards a highly disordered state of
equilibrium, as if the system was isolated.

• At low temperature, on the other hand, the system tends to self organise to reduce
its internal energy.

The challenge of studying changes of state, discussed in Chaps. 1 and 3, is to
determine accurately what temperature draws the line between the two regimes and
under what conditions the transition occurs.

Entropy, internal energy and transitions
The increase in entropy predicted by the second law of thermodynamics pro-
vides a criterion for the evolution of isolated systems towards thermodynamic
equilibrium: the system evolves to a state of higher microscopic disorder.
Valid only for isolated systems, this criterion of evolution should be modified
if the system considered can exchange energy with its environment (the usual
situation). At constant temperature for example, a closed system evolves to a
state with free energy F D U � TS , which is minimal at equilibrium.

At “high” temperature, the entropic term �TS dominates and the system
evolves towards a state with higher entropy. On the other hand at “low” temp-
erature, the internal energyU dominates, implying an evolution of the system
towards an equilibrium state at which the internal energy is a minimum. At
the transition temperature the entropic and energetic terms are of the same
order of magnitude.

Molecules or electrons can decrease their energy by organising themselves in
regular configurations. These configurations are established in regions of temper-
ature sufficiently low that thermal agitation no longer dominates. In this way, in
magnets (or ferromagnetic materials), a macroscopic magnetisation spontaneously
appears below a temperature called the Curie temperature, which is the effect
of an identical orientation of the magnetic spin at each atomic site. In the same
way, when one cools a gas it liquefies or solidifies. Even though disorder reigns
in the liquid state, there appears a density order in the sense that the molecules
spontaneously confine themselves to denser regions. It is worth mentioning other
physical situations where matter changes state as the temperature is lowered, in
ferromagnets, liquid crystals, superconductors, superfluids, etc. As for the detailed
organisation of the ordered state at equilibrium, for an entire century physicists were
unable to calculate correctly what thermodynamics predicted near a change of state.
To understand the reasons for their perseverance in solving this problem, we must
emphasize the elegance with which the experimental studies showed a universality
of behaviours called critical in the immediate vicinity of a change of state. To give an
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idea of the extreme precision of these measurements consider the result of William
Thompson (Lord Kelvin) who, in the nineteenth century, established the variation
of the melting point of ice as a function of applied pressure as �0:00812ıC for one
atmosphere!

The study of critical phenomena initiated by Cagnard de Latour in 1822
experienced a big boost with the work of Andrews from 1867 onwards. In 1869
he observed a spectacular opalescence near the critical point of carbon dioxide.

Critical opalescence is one of the only situations where the microscopic disorder
bursts into our field of view: when heating a closed tube containing a fluid at the
critical density, the meniscus separating the gas and the liquid phases thickens,
becomes cloudy and diffuse until it disappears. On cooling the meniscus reappears
in an even more spectacular way in the midst of an opalescent cloud.1

Andrews correctly interpreted this opalescence as an effect of giant fluctuations
in the density of the fluid, a sign of the wavering of the material between the
liquid and gas states. These giant fluctuations are observed in all transitions that are
called second order. The theories proposed at the beginning of the twentieth century
by Einstein, Ornstein and Zernike and then Landau quantified Andrew’s intuition.
The predictions of these theories apply very well to certain physical situations, for
example ferroelectric transitions or superconductor–insulator transitions; however,
there are significant differences from that observed near the transition for most other
changes of state. This is particularly so for the case of liquid–vapour transitions and
magnetic transitions. The most surprising, and most annoying, is the universality
shown by the obvious similarities between critical behaviours of these considerably
different physical systems, which entirely escaped theoretical descriptions for a
hundred years.

The first two types of changes of state to be studied in detail, corresponding
a priori to very different physical situations, which will form the bulk of this
introductory chapter are:

• The ferromagnetism–paramagnetism transition in a crystalline solid
• The liquid–vapour transition in a disordered fluid

The reversible disappearance of the magnetisation of iron above 770 ıC has
been known since the Renaissance, but Pierre Curie was the first to study the
variations of magnetism with temperature, during his PhD thesis work in 1895.
His name is also associated with the critical temperature of the ferromagnetic–
paramagnetic transition, as well as the law of variation of paramagnetism with
temperature. Several physicists are well known for proposing descriptions of this
transition during the first half of the twentieth century.2 Initially the question was to
describe the way in which magnetisation varies as a function of temperature and the

1The interested reader should find some pictures and film clips on the internet e.g.: http://www.
youtube.com/watch?v=2xyiqPgZVyw&feature=related.
2Léon Brillouin, Paul Ehrenfest, Ernest Ising, Lev Landau, Paul Langevin, Louis Néel, Kammer-
ling Onnes, Lars Onsager, Pierre Weiss to cite just a few (in alphabetical order).
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applied magnetic field and then these studies gave rise to the more general theory of
phase transitions. An initial description of the liquid–vapour transition was proposed
by Van der Waals in 1873, also during his PhD thesis work. This description, which
is the subject of Sect. 1.4.4, satisfactorily describes the change of state liquid–vapour
globally but does not correctly describe the critical region. This is also the case for
the description proposed in 1907 by Weiss for the appearance of magnetisation in a
magnetic material, which uses the same type of approximation called mean field. It
leads to the same behaviour and the same discrepancies in the critical region.

In this critical region where the temperature is near to the transition temperature,
the mechanisms controlling the state of the system are complex. The fact that the
material is disordered at high temperature and ordered at low temperature does not
imply that the change of state should happen at a precise temperature: it could just
as well be spread out over a large range of temperatures as is the case for complex
mixtures or very small systems. Van der Waals’ and Weiss’ descriptions do predict
a transition at a precise temperature, but what would happen in the case of an exact
solution? This question remained unanswered until 1944 when the physicist Lars
Onsager solved a 2D model of the ferromagnetic–paramagnetic transition without
approximations. The results show a sharp transition for a system of infinite size
(thermodynamic limit). However the mystery was far from being resolved since
these exact results were in disagreement with experiment and with the mean field
predictions: the plot thickened. Despite countless attempts, a century elapsed after
the work of Van der Waals before a theory capable of significantly improving his
descriptions and finally accounting for the universality seen in all the experiments.
The power of this new “scaling” then enabled applications to very diverse fields.

1.2 Symmetry-Breaking Changes of State

Before introducing Van der Waals’ and Weiss’ descriptions let us specify the idea
of an order changed during a transition. The order we are interested in in phase
transitions lowers the internal energy, however as we have seen for the liquid–vapour
transformation, it does not necessarily lead to a regular, crystalline organisation of
the material. We need to find a more general definition.

In 1937 the Russian physicist Landau proposed a concept which allows us to
unify the treatments of phase transitions. For each transition we define an order
parameter, a physical quantity which is zero at temperatures above the critical
temperature Tc , and then progressively increases as we lower the temperature below
Tc up to a maximum value at zero temperature. The order can be measured by
a scalar – for example the density variation in a fluid – or by a vector such as
magnetisation. In general there are several different forms or orientations that can
be established. For our two example cases:

• There are several possible directions for the magnetisation.
• The fluid can choose the gaseous or liquid state
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Fig. 1.1 The general characteristic of second order phase transitions is the appearance of a new
type of order below a critical temperature Tc . We measure the establishment of this order by
an order parameter which can in general take several different values. In the diagram above,
corresponding to the example of magnetisation in a solid measured along a crystal axis, the order
parameter can take two opposite values

The system orders by aligning along one of these orientations, or in one
of these states. In the phase diagram (order parameter versus temperature) the
transition corresponds to two paths that a system can take as the temperature is
lowered below Tc (Fig. 1.1), corresponding to the respective changes of symmetry.
Isotropic and homogeneous above the critical temperature, at low temperature in
a given macroscopic region, the material locally bifurcates towards a magnetic
orientation or a preferred density. This is called “bifurcation”. In the absence of
external excitation (in this case the applied magnetic field or gravity), the equations
and boundary conditions that determine the system cannot predict which branch
is chosen at a given point in space and a given moment in time. Spontaneous
symmetry breaking occurs, which violates the principle established by Curie, in
which the physical behaviour resulting from certain equations obeys the symmetry
of these equations and the boundary conditions. According to Landau’s proposal,
the amount of order in a state is measured by this deviation from the initial
symmetry.

In the case of ferromagnetic–paramagnetic and liquid–vapour transitions, this
order parameter is respectively:

• The magnetisation (as the difference from the high temperature state of zero
magnetisation).

• The difference in density between the liquid and the gas (as the deviation from
the undifferentiated state of supercritical fluid).

This characterisation of a phase transition by the change in symmetry of the
system under the effect of temperature is very general.

Following the terminology introduced by Ehrenfest, phase transitions can be
first or second order. In a first order transition, macroscopic regions of completely
different properties appear at the transition temperature, for example, ice and liquid
in the case of the melting of water. From one region to another the microscopic
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Fig. 1.2 The liquid–vapour transition is first order (dashed arrow) if the fluid density is other
than the critical density i.e. at all points apart from C. In this case, as we lower the temperature to
the coexistence curve (point L) gas bubbles appear of a very different density (point G) to that of
the fluid initially. If the fluid density is at the critical density the transition is second order. At the
critical point C, microscopic regions of liquid and gas form, initially at equal density and therefore
they differentiate continuously when the temperature decreases

configuration changes in a discrete manner. At the macroscopic scale, this translates
into a discontinuity in certain first derivatives of the thermodynamic potentials, and
notably by the existence of a latent heat.

On the other hand, during second order phase transitions the first derivatives
of thermodynamic potentials are continuous, whereas certain second derivatives
diverge. No discontinuous change is observed at the microscopic scale, just a
divergence in the size of characteristic fluctuations.

As we approach the critical temperature, extended regions of order multiply,
interwoven within equally extended regions of disorder. The difference between
first and second order transitions is amply illustrated by the phase diagram of a fluid
(density versus temperature) (Fig. 1.2). We lower the temperature of a hypercritical
fluid by keeping the volume fixed, in other words keeping the average density
constant. If the fluid density is different from the critical density the liquid–vapour
transition is first order (dashed arrow). On the other hand, if the fluid density is
equal to the critical density, the transition is second order. In the following we are
only interested in second order transitions.

1.3 Observations

1.3.1 Bifurcations and Divergences at the Liquid–Vapour
Critical Point

In our environment, more often than not matter consists of mixtures and complex
structures; although sometimes natural cycles drive certain substances to pure forms.
Evaporation, condensation and soil filtration purify the water on which our lives
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depend. Water is the principal pure substance in which we see transformations in
our daily lives, in particular its changes of state. In contrast to the vast majority
of solids, ice contracts (by 7%) on melting. This has spectacular consequences, for
example icebergs float and rocks break on freezing. Without this peculiarity, the
Earth would not have had the same prospect: ice sheets would not float or play their
role as effective thermal insulation, the thermal equilibrium of the planet would be
profoundly different and life would not have appeared, or at least not as we know it.
This anomaly of water comes from the strong electrostatic interactions between the
molecules known as hydrogen bonds. Ordinary ice chooses a diamond-like structure
that is not very dense, which makes the best use of these hydrogen bond interactions
to lower its energy, that is to say increase the stability of the structure. In liquid water
the hydrogen bonds also play an important role but the disorder results in a more
compact structure.

Figure 1.3 represents, by isotherms, the pressure as a function of the density
of water. The point C is the critical point .pc D 22 bars, �c D 0:323 kg=m3, Tc D
647K D 374ıC/. As we change the temperature of a closed vessel containing water,
the liquid–vapour transformation occurs at a fixed average density, with a given
latent heat. If the average density of water in the container is different from �c , the
latent heat is nonzero, whereas the liquid and vapour each are at the same density
during the whole transformation: only the proportions of the two phases changes.
The transformation we are used to at the boiling temperature 100 ıC at atmospheric
pressure is first order. In contrast however, if the average density is at the critical
value the densities of the two phases are strictly equal at the critical point. As the
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Fig. 1.3 Isotherms of water in the phase diagram pressure p as a function of density � (after [1])
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Fig. 1.4 Latent heat of the
liquid–vapour phase
transition of water as a
function of the transition
temperature (after [1])
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transition temperature increases, the latent heat of the liquid–vapour transformation
gradually decreases, vanishing completely at Tc (Fig. 1.4).

The latent heat of water behaves qualitatively in the same way as the magnetisa-
tion of iron as a function of temperature. As the temperature is lowered, both show
a similar symmetry breaking appearing at Tc . In practice, we choose the difference
in density �� (Fig. 1.3) between the vapour phase (point A) and liquid phase
(point B) as the order parameter of the transformation. Beneath the coexistence
curve (dashed line), defined by these points, the corresponding homogeneous states
are inaccessible for water in thermal equilibrium.

At the critical temperature the isotherm has a horizontal plateau at the critical
density: the compressibility �c at the critical density diverges (see the example of
xenon in Fig. 1.5):

�c.T / D 1

�c

@�

@p

ˇ
ˇ
ˇ
ˇ
�c

: (1.1)

1.3.2 Critical Exponents

When the temperature is near to the critical temperature, we observe that most of
physical quantities involved show a power law behaviour .T � Tc/x where the
quantity x is called the critical exponent (Fig. 1.5). We will see later that such a
behaviour is the signature of precise physical mechanisms. We will use a reduced

temperature t D T � Tc
Tc

to describe critical behaviours in a general way (Table 1.1).

The exponent associated with the order parameter is conventionally denoted ˇ. Its
experimental value is about 0:32 for the liquid–vapour transition and 0:37 for the
ferromagnetic–paramagnetic transition. The divergence of the compressibility �c
and of the magnetic susceptibility � is characterised by the critical exponent � . The
value of � is in the neighbourhood of 1:24 for the liquid–vapour transition for water
(see Fig. 1.5 or � D 1:21 for xenon), and 1:33 for the ferromagnetic–paramagnetic
transition of nickel. The exponent ˛ conventionally characterises the divergence of
specific heat, the exponent ı the variation of the order parameter as a function of
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Table 1.1 Definition of critical exponents

Exponent Physical property Expression

˛ Specific heat C � t�˛

ˇ Order parameter f .T / m � tˇ

� Compressibility, susceptibility, etc � � t� �

ı Order parameter at Tc ; f .h/ or f . p/ m.Tc; h/ � h1=ı

� Correlation function G.Tc; r/ � r� .d � 2C �/

� Coherence length 	 � t��

gravity or magnetic field h at T D Tc , the exponent � the spatial dependence of
correlations (see later) and the exponent � the divergence of the coherence length
	. We introduce these last two physical quantities in Sect. 1.6, in the context of the
mean field approximation.

The values of these exponents are surprisingly robust to changes in the physical
system. Not only are they the same for the liquid–vapour transformation for all fluids
(Fig. 1.19), but we find them in apparently very different situations. In the following
paragraph we present two examples of transitions in binary fluid mixtures and metal
alloys where the same values for the exponents are observed.
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The correlation function G.r/ of a quantity f .x/ is a statistical measure
particularly useful in the analysis of the spatial structure of a system. It is defined as
the spatial average h� � � i over all the pairs of points .r0; r0C r/ of the product of the
deviations from the average of the function f .x/ at r and at 0:

G.r/ D h.f .r/� hf .r/i/ .f .0/ � hf .0/i/i D hf .r/f .0/i � hf .r/i hf .0/i (1.2)

The correlation function can be normalised to 1, i.e., G.r D 0/ D 1, by dividing
the previous expression by

˝
f .0/2

˛ � hf .0/i2. If the system under consideration
is isotropic, the function G.r/ depends only on the modulus r and not on the
direction r. “Normally”, that is to say far from a critical point, the function G.r/
shows an exponential dependence on r:

G.r/ � e�r=	 ;

where 	 defines the characteristic length or the correlation length of the system.
More generally we use the term coherence length 	 to characterise the scale
of spatial variations of the order parameter in the given physical system. The
correlation length is one of the formal evaluations of the coherence length. The
power law dependence of the function G.r/; G.r/ � r� .d � 2C �/, is the typical
signature of a critical behaviour and reflects the divergence of the correlation
length 	.

The bifurcation that accompanies the critical point is also observed for other
properties, for example dynamic properties.

Figure 1.6 illustrates the bifurcation for two dynamic properties, the coefficient
of molecular self-diffusion and the relaxation time of nuclear magnetic resonance,
that can be observed in ethane for which the critical point, .Tc D 32:32ıC, �c D
0:207 kg=m3/, is easily accessible.
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Fig. 1.6 Liquid–vapour transformation of ethane. Variation of coefficient of self-diffusion (left)
and nuclear magnetic resonance relaxation time T1 (right) near the critical temperature (after [4])
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1.3.2.1 Binary Liquids and Metal Alloys

The same type of observation can be made at the critical point of mixtures of binary
liquids or metal alloys: bifurcations and divergences from which we can measure
the corresponding critical exponents. When their composition is equal to the critical
composition, we observe a phase separation below the critical temperature.

Figure 1.7 shows the variations of the turbidity (cloudiness) of a cyclohexane-
phenylamine mixture at the critical point. Some especially accurate measurements
have been made on this system, allowing a detailed characterisation of its critical
behaviour. In the case of binary fluids, it is also possible to observe bifurcations and
divergences of transport properties (Figs. 1.8 and 1.9).

Fig. 1.7 Critical opalescence
measured by the divergence
of the turbidity (cloudiness)
of the fluid – the inverse of
the absorption depth of
light – near the demixing
critical point of a
cyclohexane-phenylamine
mixture at the critical
concentration (after
Calmettes et al. [2])
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Fig. 1.8 Bifurcation of
thermal conductivity of a
binary mixture observed
during demixing (after [4])
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Fig. 1.9 Bifurcation of the speed of sound (phenylamine/hexane mixture) and divergence of
sound absorption (triethyamine/water mixture) (after [4])

1.3.2.2 Magnetic and Superconducting Order in a Solid

The changes of state discussed in the preceding paragraphs are induced by changes
in the positions of atoms or molecules in space. The configuration of electrons
in a solid can also change at low temperature while the position of atomic nuclei
remain practically unchanged. There are also “changes of states of matter” in which
electrical or optical properties are radically changed. There exists various types of
electronic order in a solid. We illustrate here the two main ones: magnetic order
and superconducting order. The superconductor–insulator phase transition is briefly
introduced in Chap. 7. For the time being keep in mind that it is the condensation of
pairs of electrons in a state of lower energy than if they remained single. In almost
all known materials superconductivity and magnetic order are mutually exclusive
(Figs. 1.10 and 1.11). However we know of materials containing electrons belonging
to independent energy bands, where one family leads to superconductivity whilst
another is responsible for magnetic properties. The few cases where it is suspected
that the same electrons can give rise to the two properties simultaneously are highly
controversial.

Fifteen or so elements are ferromagnetic in the solid state whilst supercon-
ductivity is observed in around 50 elements, more than half the stable elements.
The Curie temperatures related to the ferromagnetic–paramagnetic transition are
in excess of 1,000K (1,390 K for cobalt), whereas the critical temperatures for
superconductivity do not reach 10K (9:25K for niobium). For the elements, the
characteristic energies of magnetism are therefore more than a hundred times greater
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Fig. 1.11 Curie temperature (left hand scale) and superconducting critical temperature (right
hand scale) of the principal ferromagnetic (squares) and superconducting (circles) elements for
the fourth, fifth and sixth periods of the periodic table. The shading of the circles corresponds to
the superconductivity observation conditions: grey circles for bulk material, white circles for under
pressure measurements and dark grey circles for thin films

than that of superconductivity, even though the latter is only three times more
frequently chosen by the electron cloud at low temperature. The difference is due
to the particular sensitivity of magnetism to the perfect regularity of the crystal
lattice. It is striking that certain metal alloys such as tungsten-molybdenum become
superconducting only when they are disordered at the atomic scale (Fig. 1.12):
Magnetism is no longer a significant energetic advantage in a disordered material,
unlike superconductivity. These two families of transitions are sensitive to physical
conditions such as pressure.
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Fig. 1.12 Superconductivity
of metal alloys as a function
of the number of electrons in
the outer shell (valence
electrons). Dashed line:
crystalline alloys; continuous
line: disordered alloys in the
form of metallic
glasses/amorphous metals
(after [3] Concise
encyclopedia of magnetic &
superconducting materials)

Fig. 1.13 Phase diagram
of helium-4 (after [8])
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1.3.3 Superfluid Helium

Of all elements, helium has the most unique properties. At atmospheric pressure,
it does not solidify whatever the temperature, and at zero temperature it solidifies
only above 25 atmospheres (Fig. 1.13). This peculiarity is due to the fact that
helium atoms interact with each other only very weakly, like all the noble gases.
Furthermore, being the lightest of the noble gases, the “zero point” atomic fluctu-
ations predicted by quantum mechanics are sufficiently large that the solid state is
unstable at absolute zero temperature.

However, the essential characteristic of the helium-4 isotope is that, below
2:17K, it has two liquid phases, a normal liquid phase and a superfluid phase in
which the viscosity is zero. The other stable isotope 3He of helium also has a
superfluid phase but at a temperature of below 2.7 milikelvins, a thousand times
lower than the superfluid phase transition of 4He. These two phase transitions
correspond to different physical mechanisms, although they are both related to
superconductivity (see Chap. 7).

Why are we so interested in physics that, while certainly rich, concerns only
a single element? One major reason is that we now have a considerable body of
extremely accurate experimental results on the superfluid phase transition, collected
since the 1930s owing to the ability to perfectly purify the gas using powerful
cryogenics techniques. Helium itself is the base of all cryostats. Another reason
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lies in the quantum nature of the superfluid phase transition: the order parameter is
a complex wavefunction. Superfluidity and superconductivity are the best physical
examples of the XY model where the order parameter is a quantity with two real
components. Traditionally, situations where the number n of components of the
order parameter is 1 or 3 are respectively called the Ising model (n D 1) (see
Sect. 1.4.2) and the Heisenberg model (n D 3).

1.4 Models

1.4.1 The Ideal Gas Model

Phase transitions are due to microscopic interactions between spins for magnetism
or between molecules for the liquid–vapour transition. It is very difficult to take
these interactions into account in a rigorous manner, particularly because they are
not additive (their effect does not double if the size of the system is doubled). It is
useful to briefly review the properties of the ideal gas model in which we totally
neglect interactions between molecules. Since ancient times, gas – Geist (spirit),
the name proposed by Van Helmont in the seventeenth century – has represented the
ideal state of matter. From their studies of the gaseous state, the physicists of the
nineteenth century deduced a simple and efficient model of an ideal gas. This
model however supposes the molecules simultaneously possess two contradictory
properties:

• The molecules interact rarely, in the sense that their interaction energy is
negligible compared to their kinetic energy.

• The molecules interact often such that the ideal gas is at equilibrium at each
instant in time.

By means of this conceptual leap, the ideal gas model represents the basis of all of
thermodynamics. The ideal gas model equation of state is written pv D kT where
v is the average volume occupied by each molecule, p the pressure, T the absolute
temperature and k the Boltzmann constant. Based on this empirical law, Gay-
Lussac, in 1802, proposed the existence of an absolute zero of temperature, absolute
zero �273:15 ıC the value of which was found very accurately by Lord Kelvin half
a century later. For most properties of real gases and dilute solutions this simplified
description is sufficiently accurate. Let us now consider the paramagnetic properties
of a magnet following Curie’s law, which neglects all interactions between the spins.
The average magnetisation M is related to the applied magnetic field H and the
temperature T by the relation:

M D C

T
H: (1.3)

This relation can be made to resemble that of the equation of state for an ideal gas
if we express the volume occupied by a molecule in the ideal gas equation of state
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as a function of the molecular density n D 1=v:

n D 1

kT
p: (1.4)

In both cases the intensive variable, M and n respectively (proportional to the
external applied field – the pressure p for the gas and the magnetic field H for
the magnet), is inversely proportional to the temperature. As we show below, this
proportionality is due to the fact that the models neglect all interactions between
the gas molecules or magnetic spins. The form of these laws expresses the average
thermal properties calculated for a single particle and then multiplied by the number
of particles. For example, in the case of a system of N spins, 
j D ˙
, the
average magnetisation per spin is obtained from the definition of the average of
a thermodynamic variable:

m D < M >

N
D 1

N

X

i

Mie
�Ei =kT

X

i

e�Ei =kT ; (1.5)

where Ei is the total energy of the set of spins f
j g in the configuration i . By
showing these spins explicitly we obtain:

m D 1

N

X

f
j g

hX

j


j

i

e

P

j

jH=kT

X

f
j g
e

P

j

j H=kT

(1.6)

The calculation is very simple in this case since we neglect all interactions between
the spins. In fact m is therefore simply the average value of the magnetisation of an
isolated spin:

m D 
e
H=kT � 
e�
H=kT

e
H=kT C e�
H=kT D 
 tanh.
H=kT / (1.7)

If the excitation energy 
H remains small compared to the thermal energy kT (the
most common situation), to first order in 
H=kT , the response M of N spins is
proportional to the cause:

M D N
 
H
kT

(1.8)

This response for weak excitation energies Eex D 
H is shown in the following
general form:
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Response D Maximum response � Eex
kT

(1.9)

For ideal gases, where the volume occupied by one molecule is vm, we find the law
n D p=kT :

n D 1

vm

pvm
kT

(1.10)

Another example of an application of this law (1.9) concerns the osmotic pressure
which causes biological cells to swell proportionally to the concentration of salt they
contain. The relationship between the salt concentration and the pressure is exactly
the same as that of an ideal gas as long as the concentration is not too high. Another
example is that of entropic elasticity L of a long polymer chain to which we apply a
traction force F . If we suppose that the N monomers (links in the chain) of length
a are independent (without interactions) we can simply evaluate the relationship
between L and F :

L D NaFa
kT

(1.11)

This leads to an elasticity L D C

T
F of entropic origin, where the stiffness is

proportional to the temperature. A surprising result of this is that under a constant
force a polymeric material, for example rubber, contracts on heating. This can be
verified experimentally. You can do this yourself by touching your lips with a
stretched rubber band and feeling it contract as your lips warm it. However, contrary
to the case of gases, the above model is insufficient to quantitatively describe the
elasticity of polymers for which the interactions between monomers cannot be
neglected. We discuss this question of excluded volume of polymers later in Chap. 6.

1.4.2 Magnetism and the Ising Model

To go further, i.e. to try to take into consideration interactions between particles or
spins, we need to construct and solve candidate models and discuss their relevance
in representing reality. Traditionally physicists made their initial modelling attempts
within the field of magnetism and most of the models used today came from
magnetism.

Ferromagnetism, a magnetisation in the absence of external excitation, has many
applications: significantly it is thanks to ferromagnetism that we can store vast
quantities of information on our “hard disks”. But the reason for the special place
of magnetism in modelling changes of state is that they are simple microscopically,
much simpler than fluids for example. They are simple because atomic spins are
considered fixed and regularly spaced. The model of an ideal magnet that we
have presented above predicts no spontaneous magnetisation: with each spin being
independent of its neighbour, nothing can cause a spin to orient in one direction
rather than another in the absence of an applied magnetic field. It is necessary to
model interactions in order to be more realistic.
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Fig. 1.14 The magnetisation of a material is the sum of the magnetisations due to the electron
spins of each atom. Quantum physics states that value of spin magnetisation along a given direction
can take only a few very precise values. In the simplest case, that of a spin 1=2 system, there are
just two opposite values that can be observed. Ising proposed a simple model where each spin is
placed on a regular lattice, represented here by a draughtboard, and can take the values C1 (black)
or �1 (white). The same model can be applied to metal alloys and binary fluids

The Ising model, proposed by Lenz in 1920 and solved in one dimension by
Ising in 1925, is the simplest model of interactions one can imagine. Despite that,
it enables the rigorous description of magnetisation in solids and magnetic phase
transitions in the critical region, as well as a great many changes of state in systems
which have nothing to do with magnetism.

The magnet in Fig. 1.14 is at low temperature: the set of spins is globally
orientated but thermal excitation orients a few spins in the opposite direction to
the majority. Ising described the simplest case of a regular lattice of spins of spin
1=2, where the projection of the magnetisation of a spin in a given direction in space
can take one of only two opposite values. We choose units such that the measurable
values are C1 and �1. With this model we can represent, in a simple way, the state
of a magnet containing a very large number of spins, for example with the aid of
draughtboard in which the squares are black if the spins are in the stateC1 and white
if they are in the state �1 (Fig. 1.14). In this form the Ising model can be applied
to the study of binary metal alloys consisting of two sorts of atoms, black or white.
Named “lattice gas”, this model also leads to useful conclusions when applied to
the liquid–vapour phase transition: a square represents a point in space, black if it is
occupied by a molecule, white if it is empty.

In ferromagnets there is an attraction between two neighbouring spins if they
are of the same orientation: the Ising model assumes that their energy is therefore
lowered by the value J (Fig. 1.15). In antiferromagnets, neighbouring spins repel
each other if they have the same orientation (in the Ising model this means the
value of J is negative). The quantity J can be calculated from a quantum mechanical
description of the material. Iron, cobalt, nickel and many other metals (Figs. 1.10
and 1.11) are examples of ferromagnetic metals which produce a spontaneous
magnetisation below their critical temperature.

Let us see how two spins behave as we change the temperature if they are isolated
from the rest of the universe. At very low temperature, thermal energy does not
play a role and the two spin system is in one of the lowest energy states where
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Fig. 1.15 The four possible
scenarios of a set of two spins
with ferromagnetic
interaction according to the
Ising model: the spins lower
their energy when they are in
the same direction, and
increase their energy if they
are in opposite directions

Attraction Repulsion

– J

– J

J
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the magnetisation is maximum, that is a state in which both spins are in the same
direction. In contrast, at very high temperature the thermal energy dominates and all
states have the same occupation probability. We obtain the general expression for the
average magnetisation per spin mF by applying (1.5). However, we are interested
in the modulus m of the magnetisation and not the direction the system chooses at
random at equilibrium; m can be evaluated by taking the average of the absolute
value of the magnetisation for each state:

m D 1

N

X

f
j g

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

j


j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

e
J=kT
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j 
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X
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j g
e
J=kT

P

j;k


j 
k
: (1.12)

In the case of two spins of value C1 or �1, the magnetisation takes its maximum
value of 1 for the two states with both spins aligned (both up or both down) and
0 for the two states with spins in opposite directions. Summing over the four
configurations drawn in Fig. 1.15, we obtain:

m D 1

2
� 2 � 2x
2x C 2x�1 D

1

1C x�2 (1.13)

where x D eJ=kT is the Boltzmann factor corresponding to two neighbouring spins
of the same orientation. The magnetisation m is equal to 1=2 at high temperature
.x D 1/. This result is surprising because we expected zero spontaneous magnetisa-
tion at high temperature. It is due to the fact that we took the average of the modulus
of magnetisation over an extremely small system size: there are not enough spins for
the magnetisation to tend to zero at high temperature. To check this, we can perform
the same calculation for a slightly bigger micro-magnet – a system of 4 spins.

Figure 1.16 represents the 16 possible states for such a 4 spin micro-magnet.
At low temperature, the magnetisation is maximal and the magnet occupies one
of two states where all the spins are aligned. This example illustrates an essential
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Microscopic states of a magnet containing 4 spins
(for an applied magnetic field H = 0)

Magnetisation EnergySpins
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1
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4

2

0

– 2

– 4

– 4J

0

0

0

– 4J

Energy

+ 4J

Fig. 1.16 A system of 4 spins can be found in 24 D 16 distinct microscopic states if each spin
can be either in state C1 (black) or �1 (white). Here these states are arranged in five families in
decreasing order of magnetisation: when all the spins are in the C1 state the magnetisation takes
its maximum value of 4. If 1, 2, 3 or 4 spins are in the �1 state, the magnetisation is 2, 0 �2 or
�4 respectively. If we count the the interaction energies according to Fig. 1.15, we identify three
families: First: the 2 states with all the spins aligned where the energy takes its minimum value of
�4J; middle: 12 states where the energy is zero because there are an equal number of attractive and
repulsive interactions; right: 2 states where the energy takes the maximum value of 4J in which the
spins C1 and �1 are alternating leading to all repulsive interactions

difference taking into account the interactions makes: since the resultant energy of
these interactions is not additive the usual tools of thermodynamics do not work
(the energy due to interactions grows faster than the size of the system). At high
temperature, thermal agitation gives an equal chance to each state. Weighting each
state by the absolute value of its corresponding magnetisation, we calculate the
average of the absolute value of the magnetisation m relative to the maximum
magnetisation (D4) in the same way as for two spins. We therefore obtain:

m D 1

4
� 4 � x

4 C 2 � 8x0 C 4 � x4
2x4 C 12x0 C 2x�4 D x4 C 2

x4 C 6C x�4 (1.14)

Figure 1.17 shows the comparison of the magnetic phase transition as a function
of temperature for the micro-magnets of 2 and 4 spins. The transition occurs
gradually over the range of temperature T such that kT is of the order of the
interaction energy J. Here the transition is spread out over temperature from 1
to 10 in units of J=k, but the observed changes of state in real systems occur at
very precise temperatures. This sharpness of the transition comes from the large
number of spins involved. Before the 1970s, the only rigorous calculation was that
of the Ising model on a two dimensional square lattice (by Lars Onsager in 1944).
Figure 1.17 shows that in this 2D Ising model the transition occurs over a very
narrow temperature window compared to the case of micro-magnets. We will return
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Fig. 1.17 The magnetisation
of two micro-magnets of 2
and 4 spins shows a gradual
transition with varying
temperature. The
magnetisation of the Ising
model in two dimensions
(calculated exactly by
Onsager) on the contrary
shows a very clean sharp
transition
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to this exact solution, which, after having fascinated mathematicians by its formal
complexity, threw the physics community into turmoil. Before that, we introduce the
“classical” description of phase transitions in the framework of the approximation
called mean field.

1.4.3 A Minimal Phase Transition Model

Two ingredients are indispensable in all models of order–disorder transitions:

• The existence of interactions between the particles
• A maximum value of the order parameter

This second point is as intuitive in magnets (all the spins aligned) as in gases (all
the molecules “touch each other” when the liquid state is reached). This idea was
clearly expressed in 1683 by Bernoulli who was opposed to the Boyle-Mariotte law,
according to which the volume of a gas can be reduced to zero by a very large
pressure. Its density would therefore be infinite, remarked Bernoulli. He showed
that, on the contrary, the density saturates at the value it has in the liquid state,
which is practically incompressible. If we use these two properties, what is the most
economical idea which predicts the appearance of a transition within a large system
of particles?

Response =A x [Force + a (Response)]

Physical
system

Force Response
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The idea of mean field is to improve the model of linear response in a minimal
manner to take into account the interactions: we assume that part of the force applied
on the system (the magnetic field or the pressure) comes from the system itself.

This feedback force, exerted on each particle by the set of all other particles, is
the mean field.

For a gas this idea rests on the fact that the higher the fluid density the more the
interactions contribute to an attractive force between the molecules: the effects of
the density (response) must be added to the effects of the external pressure. In the
same way for a magnet, the effects of the average magnetisation of the neighbouring
spins must be added to the applied magnetic field. Rewriting the linear response in
this way is in general no longer linear! A completely new property appears: even
in the absence of an external field, a self-maintained response can exist. For this to
occur, all that is needed is that the weight of the feedback a creates a mean field of
sufficient intensity. Let us see the results this method gives for gases and then for
magnets.

1.4.4 Van der Waals Fluid

In 1873, Johannes Van der Waals proposed the first application of this idea to gases:
he started from Gay-Lussac’s law and added to the pressure an internal pressure as
a “mean field”. He assumed that this internal pressure depends on the density:

n D 1

kT
fp C a.n/g: (1.15)

This relation shows that the fluid density n can remain high even if the pressure
is very low: a condensed state exists at low temperature whatever the pressure. In
this case, the internal pressure replaces the external applied pressure. In practice,
Van der Waals chose an internal pressure proportional to the density squared
a.n/ D a � n2. His reasoning for this is that the internal pressure is proportional to
the number of molecules per unit volume n, multiplied by the influence of all the
neighbouring molecules on each molecules. This influence being also proportional
to the density n, we find Van der Waals’ result. In order for the model to lead to a
phase transition, it needs to be made more realistic by introducing a maximum limit
to the density 1=b. Van der Waals’ equation of state is known in the equivalent form,
to first order:

. p C a=v2/.v � b/ D kT (1.16)

where v D 1=n is the average volume occupied by one molecule. This equation of
state correctly describes the liquid–vapour phase transitions, apart from close to the
critical point as we will see later. The equation predicts the existence of a critical
point, where the corresponding isotherm has a point of inflection of zero slope, for
the following values:
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Fig. 1.18 The isotherms
predicted by Van der Waals’
equation in the
neighbourhood of the critical
temperature t D T�Tc
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Van der Waals found that by scaling the parameters by their respective critical
values, curves from different substances collapse onto a general curve. If we use the
reduced parameters, � , �,  , corresponding respectively to p, v, T relative to their
critical values, we obtain a universal equation of state (Fig. 1.18):

.� C 3=�2/.3� � 1/ D 8 (1.18)

Most real gases obey a universal behaviour (known as the law of corresponding
states, according to which their equation of state in reduced parameters in universal)
very well. Figure 1.19 shows the coexistence curves of eight different gases, plotted
in reduced coordinates .1=�; /. These curves are remarkably superimposed.
However the “universal” coexistence curve obtained from Van der Waals equation
(1.18) does not fit the experimental data at all.

1.4.5 Weiss Magnet

In 1906, Pierre Weiss, after a decade of experiments on magnets, proposed
modifying the Curie law in the way in which Van der Waals had modified the Gay-
Lussac law:

M D C

T
fH C a.M/g (1.19)

Weiss chose the “mean field” a.M/, also called the molecular field, to be
simply proportional to the magnetisation M . This Weiss law describes very well
the magnetic transitions, observed notably by Pierre Curie, apart from close to the
critical point. Weiss’ predictions surprised physicists. In the 15 years that followed,
the measurements of magnetisation at low temperature by Kammerling Onnes, the
amplification of crackling noise due to the reversal of magnetic domains discovered
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Fig. 1.19 The region of liquid–vapour coexistence is limited by the vapour saturation curve on
the temperature/density graph. This is drawn here for different substances in such a way that their
critical points are superimposed (after Guggenheim [5]). The curves lie very close to each other.
Numerical study of this universal saturation curve leads to “Guggenheim’s empirical law” with
exponent 1=3 (continuous line connecting the experimental points). The saturation curve deduced
from Van der Waals’ law which uses the mean field approximation is presented for comparison. Its
exponent of 1=2 does not correspond to experiment

by Backhausen and the direct observations of magnetic domains by Bitter showed
Weiss to be absolutely right.

By using the mean field and a more precise relationship betweenM and H than
that of Curie, proposed by Langevin, Weiss was able to calculate the spontaneous
magnetisation as a function of temperature in the mean field approximation.

More quantitatively, taking (1.7) for an isolated spin, this is rewritten using
Weiss’ hypothesis that spins are on a lattice where each spin has q neighbours with
whom it interacts with an energy J:

m D tanh.qJm=kT / (1.20)

We introduce the reduced coupling constant K D J=kT . The above equation
can be written as m D tanh.4Km/ for a square lattice and leads to the reduced
magnetisation shown in Fig. 1.20. To first order with respect to the temperature
difference from the critical temperature t D T�Tc

Tc
, the value of m is:

m � p3 � .�t/1=2

Figure 1.20 compares the variation of this magnetisation to that calculated exactly
by Onsager for a magnet in two dimensions. Despite its simplicity the mean field
approximation reproduces well the essential characteristics of a change of state:
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Fig. 1.20 Magnetisation calculated by Weiss using the idea of mean field (short dashed curve and
long-short dashed curve to first order near the transition). The magnetisation of an Ising magnet
in two dimensions calculated by Onsager in 1944 (continuous curve). For comparison the thermal
behaviour of an Ising system of two spins (longdash-dot line) and four spins (dashed line). The
parameter K is the reduced coupling constant K D J=kT and q the number of first neighbours

• Maximum magnetisation at low temperature
• Zero magnetisation at high temperature
• Transition at a very precise critical temperature

Good Agreement at low Temperature

In addition, at low temperature there is excellent agreement with experiments as
soon as the reduced coupling constant K D J=kT departs significantly from the
critical valueKc D J=kTc : under these conditions the majority of spins are aligned.
To reverse the direction of a spin in this perfect alignment on a square lattice, four
interactions need to be changed from �J to CJ at a total energetic cost of 8J .
To first order, the reduced magnetisation can be expressed using the Boltzmann
factor as:

m D 1 � 2e�8K (1.21)

Figure 1.21 shows that the mean field approximation and the exact solution for
the 2D Ising model coincide with that given by (1.21) as soon asK is greater than or
equal to 1. However we observe that the description is not correct around the critical
(Curie) temperature: neither the temperature itself nor the form of the variation are
faithfully reproduced.

We have briefly explored with Johannes Van der Waals and Pierre Weiss, the
idea that the effect of interactions between particles can sum up to give a “mean
field”, which applies in an identical way to each particle. Finally, this method gives
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Fig. 1.21 Variation from the
maximum magnetisation:
mean field compared to the
exact solution to the Ising
model in two dimensions. As
soon as the coupling
K D J=kT is of order
greater than 1, the mean field
approximation gives excellent
agreement with the
magnetisation calculated
exactly for the 2D Ising
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excellent results far from the critical point but poor results near the critical point. For
almost a century physicists were faced with the challenge of finding a better tool.

1.4.6 Universality of the “Mean Field” Approach

No doubt Van der Waals and Weiss were not aware at this point that their approaches
were so similar in principle. More importantly they did not suspect that the majority
of attempts to extend their work, in fact all attempts until the 1970s, would lead
to the same critical behaviour and therefore the same exponents. This is what we
will later define as one and the same universality class. The universality of critical
behaviour which follows from the mean field type approach, and its inadequacy in
describing real phase transitions, comes from the following fact: the correlations
are assumed to be short ranged. In Sect. 1.6 we introduce this concept of correlation
which measures the way in which the values of the order parameter at two different
points in the system are related. In practice, whether the range of correlations (called
the coherence length) is taken to be zero or finite does not change the critical
behaviour obtained. In fact the range of correlations diverges at the critical point
and there always exists a region near Tc where the correlation range is longer
than we assumed. In this region, the critical region, mean field approaches do not
correctly describe the exponents. The physicist Ginzburg proposed a criterion to
quantitatively evaluate the size of the critical region. We present this in Sect. 1.1.6.

Exponent ˛ ˇ � ı � �

Value predicted by mean field 0 1=2 1 3 0 1=2
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Table 1.2 Value of critical exponents predicted by the 2D Ising model and mean field

Exponent Physical property 2D Ising model exponent Mean field exponent

˛ Specific heat 0 0

ˇ Order parameter f .T / 1=8 1=2

� Susceptibility/Compressibility 7=4 1

ı Order parameter at Tc 15 3

f .h/ or f .p/
� Correlation function 1=4 0

� Coherence length 1 1=2

In certain physical systems, the critical region is so small that we cannot
observe it. This is the case for phase transitions in superconducting elements,
ferromagnets, liquid crystals etc., for which the exponents predicted by the mean
field approximation correspond well to the measured values.

1.4.7 2D Ising Model

In 1944 an article appeared in volume 65 of Physical Review (p. 117) by Lars
Onsager making an essential step in the description of phase transitions: the exact
solution of the Ising model in two dimensions. A skillful and complex formal piece
of work granted a rigorous description of the critical behaviour of all the physical
quantities for this model situation (Table 1.2).

The critical exponents calculated for the 2D Ising model are different from those
predicted by the mean field approximation (Table 1.2). These results constituted a
challenge for physicists. Many labs attempted the extremely precise measurements
needed to distinguish between these approaches. In parallel various numerical
approaches or formalisms also aimed to evaluate critical exponents. By the end of
the 1960s a considerable quantity of very accurate results could be compared to the
predictions, but without great success.

1.5 Universality of Critical Behaviour

Over a quarter of a century, the measurement of critical behaviours became a
discipline in its own right, with its own specialists, schools and conferences. These
numerous works established that the observed critical behaviours were characterised
by a universality, that is to say possessed reproducible critical exponents, often the
same ones for very different physical situations.

1.5.1 Extremely Precise Measurements

Table 1.3 collects together representative results from some of the most precise
experiments, corresponding to families of diverse transitions. These three families
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Table 1.3 Observed critical exponents for three different families of transitions, compared to
values predicted by the 2D Ising model and the mean field model. n.p/ is the density difference
between the liquid and gas or the density of superfluid helium as a function of the pressure

n Dnumber of
order parameter
components

Models Experiments

1 any 1 2 3

Exponent Physical 2D Ising Mean field Liquid–vapour Superfluid Ferromagnetic

property model exponent transition helium transition

exponent (iron)

˛ Specific 0 0 0:113˙ 0:005 �0:014˙ 0:016 �0:03˙ 0:12

heat

ˇ Order 1=8 1=2 0:322˙ 0:002 0:34˙ 0:01 0:37˙ 0:01

parameter m.T /

� Susceptibility/ 7=4 1 1:239˙ 0:002 1:33˙ 0:03 1:33˙ 0:15

Compressibility

ı Order 15 3 4:85˙ 0:03 3:95˙ 0:15 4:3˙ 0:1

parameter at TC
m.h/ or n.p/

� Correlation 1=4 0 0:017˙ 0:015 0:021˙ 0:05 0:07˙ 0:04

function

� Coherence 1 1=2 0:625˙ 0:006 0:672˙ 0:001 0:69˙ 0:02

length

are classified by numbern of components to the order parameter, a number which, as
we will see, plays an important role in the classification of families of transitions:

• n D 1 for the liquid–vapour phase transition. The order parameter is the density
difference between the two phases and therefore a scalar. The order parameter is
also a scalar for other families of transitions which have been well studied: binary
fluids and metal alloys (Sect. 1.3.3). Within the precision of these experimental
values the critical exponents of these three families overlap. The corresponding
models are called Ising models.

• n D 2 for all “quantum” phase transitions where the order parameter is a complex
wavefunction – superfluidity, superconductivity, but also for all the classical
cases where there are just two degrees of freedom which is the case for example
for nematic liquid crystals. The corresponding models are called XY-models.

• n D 3 for ferromagnetic–paramagnetic or ferroelectric transitions in an isotropic
medium. The corresponding models are called Heisenberg models.

The experimental results can be classified in two categories (Fig. 1.22). In the
first, we find for example superconductivity of metals, order–disorder transitions
in liquid crystals and ferroelectric–paramagnetic transitions. For these transitions,
the mean field type description leads to observed values for the critical exponents.
In the other case, the critical exponents are not well described by either of the
two models. The Ginzburg criterion, presented in Sect. 1.6, explained the difference
between these two categories: for the first the “critical” region of temperature around
the transition is too small to be experimentally observed (for example, less than
millikelvin).
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Fig. 1.22 Critical exponents ˇ and �: experimental results obtained for seven difference families
of transitions, compared to values predicted by the mean field and 2D Ising models

When this critical region is accessible to measurement, which is the case in the
second category of transitions, the critical exponents that we measure have values
that we can account for today using the idea of scale invariance of the critical state.
This idea will be the common thread in the approaches described in this book.

1.5.2 Inadequacy of Models and Universality of Exponents

We introduce and develop further the concept of scale invariance. It is useful
to expand on its origin and effectiveness. The essential formal difficulty which
descriptions of the critical state run into is the divergence of the characteristic
length over which correlations are exerted, which we call the coherence length 	.
An initial quantitative discussion of this point is presented in Sect. 1.6. One way to
interpret this divergence is to say that at the critical point:

nothing important is modified in the physics of the critical
state if we change the scale of observation.

For example, as we decrease the magnification of an imaginary microscope, as
soon as we no longer see the microscopic details, the image of the physical
system remains statistically the same. This property of scale invariance of the
critical state was highlighted and used in the 1960s by Kadanoff who had
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(exponent of the coherence length)

Ising 3D

XY 3D

Heisenberg 3D

Superfluid He4

Ferromagnet Fe

0.40

0.38

0.36

0.34

0.32

0.30

0.28
0.60 0.68 0.70

Binary mixture
Liquid / Vapour

Fig. 1.23 Critical exponents measured for four families of transitions, compared to values
predicted by the three corresponding models that take into account the scale invariance of the
critical state

the intuition that this would be the key to an effective description of critical
phenomena. In fact in 1970 several physicists, notably Wilson, proposed a series of
methods called “renormalisation group” which enabled the calculation of critical
behaviours drawing out the physical consequences of scale invariance. One of
these consequences is that critical behaviours do not greatly depend on microscopic
physical details that are “averaged out” at large scales. However they depend
strongly on the geometric characteristics of the system – the spatial dimension and
the number n of components of the order parameter.

Zooming in on Fig. 1.22 and adding on the predictions given by the renormal-
isation group for transitions in three dimensional space gives Fig. 1.23. The three
models shown, Ising (nD 1), XY (nD 2) and Heisenberg (nD 3) predict exponents
in excellent agreement with experiment.

1.6 Limits of the Mean Field Approximation

1.6.1 Landau–Ginzburg Theory

In 1937, Lev Landau proposed a general description of “mean field” type approaches
[7]. Magnetic transitions are described in terms of a local free energy f .r/, which
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is expressed as a function of the order parameter (magnetisation), the conjugate
field h.r/ and the temperature T . The local free energy f integrated over the whole
volume gives the total free energyF , the minimum of which leads to the equilibrium
values ofm.r/ and h.r/ for the applied boundary conditions. This simple framework
qualitatively accounts for the two observed characteristic types of transition for
magnetism and many other phase transitions:

• If T < Tc , the order parameter spontaneously takes a finite value in the absence
of an external magnetic field h. As we apply such an external excitation and
gradually reverse its direction the value of the order parameter (for example
the magnetisation) switches in a discontinuous manner, abruptly changing
orientation. This is a “first order phase transition”.

• As T increases and tends to Tc , we observe that the jump in order parameter
produced by inverting the field decreases to the point where it vanishes at
TDTc . The behaviour as a function of h and T becomes continuous but contains
singularities. In the terminology established by Paul and Tatiana Ehrenfest, this
is a “second order transformation” at what we call today a “critical point”.

The expression for the free energy is obtained by analysing the symmetry
properties of the system around the transition point. The first terms in the expansion
around T D Tc are directly determined by the symmetries obeyed by the system
transformations. The free energy must be invariant to transformations of the
symmetry group of the system studied. We show here the simplest case of a scalar
order parameter (so the sign of the order parameter below Tc can be positive or
negative). In this case the function f is even with respect to m if h D 0:

f .m; h D 0; T / D f .�m; h D 0; T / (1.22)

Considering just the two simplest terms respecting this symmetry and an “elastic”
term j rm j2 opposing spatial variations in m, we obtain:

f .m; h; T / Deam2 C b

2
m4 C c jrmj2 � hm (1.23)

where the coefficients ea, b and c can depend on temperature a priori. The first
two terms of equation (1.23) were initially proposed by Landau by assuming the
free energy f can be written as a Taylor series expanded around the critical point.
This hypothesis does not take into account the fact that the transition point is itself
a singular point in the thermodynamic potential. However, the powerfulness and
generality of Landau’s approach is due to the analysis of the symmetry of the
physical system considered. Landau’s hypothesis is that only ea varies with T .
Furthermoreea changes sign at Tc and causes the transition by introducing a negative
term in f (in the absence of a magnetic field this is the only negative term):

ea D a t D aT � Tc
Tc

(1.24)
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We can calculate the local field h as a function of magnetisation m from the
expression (1.23) for the free energy at equilibrium (i.e. when f is a minimum). To
first order in m this is in agreement with the Curie–Weiss model (see Sect. 1.4.5):

h D 2 a t m and � D @m

@h
D 1

2a t
which diverges at Tc: (1.25)

1.6.1.1 Homogeneous Solution of Landau’s Theory in Zero External Field

When the system is homogeneous and the external field is zero, the equilibrium
condition leads to a minimum free energy f0 and magnetisationm0:

f0.m; h D 0; T / D atm2
0 C

b

2
m4
0 (1.26)

in one of the following three states:

• m0 D 0 and f0 D 0 for t > 0 .T > Tc/ (1.27)

• m0 D ˙
q

� at
b

and f0 D � a
2t2

2b
for t < 0 .T < Tc/

It is worth noting that for t < 0 the state m D 0 is in equilibrium but is unstable
since f D 0 corresponds to a maximum (Fig. 1.24).

We can also calculate the specific heatC D �T @2F
@T 2

at zero field in this model:

• For t > 0 .T > Tc/ C D 0
(1.28)

• For t < 0 .T < Tc/ C D T a2

bT 2c
.
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Fig. 1.24 Solutions to Landau’s theory in the absence of external field for a homogeneous system
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Fig. 1.25 Left: Jump in specific heat observed during the superconducting phase transition of
tantalum for several values of magnetic field (at 3,000 Gauss superconductivity is no longer
observed). Right: Divergence (logarithmic) of the specific heat observed during the helium
superfluid phase transition (after [6])

The specific heat does not diverge – its critical exponent ˛ is equal to zero in the
mean field approximation – but it does have an abrupt jump �C D a2

bTc
at the

transition point. This jump is well observed in certain phase transitions where the
mean field approximation describes the physical system well.

Figure 1.25 compares two physical situations from the same transition family
(that we will define later as a universality class) where the order parameter is a
complex wavefunction: superconductivity and superfluidity. As we will see at the
end of this chapter, the difference between these two systems is in terms of the size
of the critical region. For superconductivity of tantalum, as for all superconducting
elements, the critical region is so small we cannot observe it. Therefore the mean
field approach applies very well and we see a jump in specific heat at the critical
temperature. However for helium superfluidity, the critical region is extended and
we therefore see the critical behaviour predicted by a more rigorous description: a
logarithmic divergence in the specific heat which varies as log jt j.

1.6.1.2 The Effect of an External Field

The two equilibrium states predicted at low temperature are equivalent if the field h
is zero. Assuming the system is homogeneous, the slightest magnetic field applied
will tilt the whole system in the direction of the applied excitation, following a first
order phase transition. We can then calculate the field h and susceptibility � taking
into account the first two terms of the expansion. At equilibrium:
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h D 2atm0 C 2bm3
0 and � D @m

@h
D 1

2at C 6bm2
0

• For h D 0 and t > 0 .T > Tc/ we obtain � D 1

2at (1.29)

• For h D 0 and t < 0 .T < Tc/ we obtain � D � 1

4at
.

In the mean-field approximation, the susceptibility � varies as t�1. In general the
exponent describing the divergence of the susceptibility is called � .

In practice, even at low temperature, the system is not homogeneous at equilib-
rium due to its finite size. In general the structure is in macroscopic regions, called
domains, where the order parameter changes its magnitude or direction to minimise
the surface effects. Landau’s formalism is particularly powerful for studying these
macroscopic spatial variations (macroscopic in the sense of at a larger scale than the
range of interactions).

1.6.2 Spatial Variation of the Order Parameter

Using the general expression for the free energy (1.23), we calculate the spatial
variations of h andm in the presence of a point perturbation at r D 0 of:

ıh.r/ D h0ı.r/ and m D m0 C ım.r/ (1.30)

wherem0 is the equilibrium state in absence of external magnetic excitation and ım
is the small variation resulting from the perturbation ıh. To calculate ım, we use
the fact that F D R fd3r is a minimum at equilibrium:

Z

d3rf .m; h; T / D
Z

d3r

�

atm2 C b

2
m4 � hm

�

C
Z

d3rcjrm2j D minimum

(1.31)
Keeping only the terms linear in ım and using integration by parts for the second
integral, we obtain the variation of F which is zero when F is minimum:

Z

d3rımŒ2atmC 2bm3 � h� cr2m� D 0 (1.32)

This calculus of variations leads to the minimum of F with respect to ım as for
normal differential calculus. A simple solution is that f is itself minimum at each
point:

ıf

ım
D �2atmC 2bm3 � h� cr2m� D 0 (1.33)
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For h D 0, this equation is true for m0, for which the gradient is zero. Therefore
decomposingm gives the equation to first order in ım:

r2ım� 2
c
.at C 3bm2

0/ım D �
h

c
(1.34)

Depending on the temperature this equation takes two related forms at equilibrium:

t > 0 .T > Tc/ m0 D 0 gives r2ım� 2at
c
ım D � h0

c
ı.r/

t < 0 .T < Tc/ m0 D ˙
r� at

b
gives r2ımC 4at

c
ım D � h0

c
ı.r/ .1:35/

The solution to this equation in spherical coordinates in infinite space (i.e. without
boundary effects) in d dimensions leads to:

ım D h0

4�c

e�r=	

rd�2 (1.36)

where 	 takes the two values 	C or 	� depending on the temperature:

• for t > 0 .T > Tc/ 	C D
p

c
2at
D p2	0t�1=2

(1.37)
• for t < 0 .T < Tc/ 	� D

p
c

� 4at
D 	0jt j�1=2

where 	0 D
p

c
4a

is the coherence length, i.e. the range of correlations (see following
paragraph), extrapolated to zero temperature.

We note that if the initial perturbation in the field is more complex we can
calculate the response of the system from (1.36) by convolution with the expression
for the perturbation. We call this response to a point perturbation the Green’s
function of the problem.

Correlation Function and Coherence Length

The function ım.r/ given by (1.36) can be expressed as the product of h0=kT and
the correlation function G.r/ ofm.r/ (see Sect. 3.2):

G.r/ D hm.r/m.0/i � hm.r/ihm.0/i (1.38)

If we decompose the HamiltonianH as H D H0 �
R
dd rh.r/m.r/, the average of

m is written:
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hm.r/i D T r
˚

m.r/
�

exp
��H0=kT C 1=kT

R

dd rh.r/m.r/
���

T r
�

exp
��H0=kT C 1=kT

R

ddrh.r/m.r/
�� (1.39)

Differentiating this expression with respect to h gives:

ım.r/ D h0=kT Œhm.r/m.0/i � hm.r/ihm.0/i� (1.40)

The expression for ım (1.36) therefore leads to the correlation function:

G.r/ D 1

4�c

e�r=	

rd�2 (1.41)

The physical significance of the coherence length 	 is that it is the range of
correlations of the order parameter in the system. Beyond a distance r D 	 between
two points the functionG.r/ is negligible, in other words the points do not influence
each other – their physical states can be considered independent of each other.
Equation (1.37) show that in the mean field approximation 	 � t�1=2. In general
the exponent describing the divergence of the coherence length close to the critical
point is called � i.e. 	 � t�� .

1.6.2.1 Limits of the Mean Field Approximation and the Ginzburg Criterion

As we have seen, the mean field approach does not in general correctly describe
the critical behaviour. We now know the reason for this is that it neglects the
microscopic local correlations. The macroscopic term c jrmj2 in the free energy
assumes m.r/ is continuous. This term corresponds to perfect correlations in a
volume “small in terms of the scale of variations in m” but “large compared to the
atomic scale”. This corresponds well to the initial idea of the mean field calculated
from the mean m of all the spins in the system, i.e. the idea of perfect correlation
over an infinite range (see (1.19)). On the other hand, if we assume c D 0, we find
	 D 0 i.e. zero ranged correlations in (1.35). There is no middle ground in the mean
field model!

In 1960, Ginzburg had the idea of quantitatively evaluating the effect of these
correlations to find a criteron for the validity of mean field results:

The mean field approach is valid if the mean amplitude of thermal
fluctuations hım.t/i at temperature t is less thanm0.

A Critical Dimension

Several simple arguments allow us to evaluate this limit of validity for the mean
field approach. For example we can evaluate the free energy related to the order of
the system in a “coherence volume” 	d , and if this is greater than kT at the critical
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point we can say the mean field model is valid:

ˇ
ˇf0	

d
ˇ
ˇ > kTc (1.42)

In other words we can neglect the effect of fluctuations inside a coherence volume
within which the idea is that the order is “rigid”. A coherence volume therefore
corresponds to a single degree of freedom where the thermal energy is of order kT .
For t < 0, the values of f0,�C and 	� calculated in the previous paragraph lead to:

a2t2

2b

	
c

4a jt j

d=2

> kTc

or equivalently:

jt j2�d=2 > 2k

	d0 �C
(1.43)

Since the absolute value of t is much less than 1 in the critical region, one direct
consequence is that this inequality is always valid if the exponent of t is negative.
In other words if the number of dimensions d is above a threshold known as the
critical dimension dc D 4. This conclusion, which can be justified more rigorously,
is of great significance. Landau’s theory, constructed without particular reference to
the spatial dimension of the physical system, contains its own limits of applicability:

The mean field description gives the correct critical behaviour for all
systems of spatial dimension greater or equal to 4.

Ginzburg thereby gave the first sound argument explaining the influence of spatial
dimension on phase transitions. In particular this argument could explain the
conspicuous, yet hard to accept, differences between the exponents measured
experimentally in 3D systems and the 2D Ising model predictions solved exactly
by Onsager. Ginzburg’s criterion rendered the situation in 1960 particularly
frustrating – our own world of three dimensions was the only one for which there
was no theoretical predictions!

A Quantitatively Predicted Critical Region

For spatial dimensions less than 4, (1.43) gives a value for the size of the critical

region j tG j D
ˇ
ˇ
ˇ
ˇ

TG � Tc
Tc

ˇ
ˇ
ˇ
ˇ
:

jtG j D 1

a

	
2dC1bkTc
cd=2


 2
4�d

D
	

2k

	d0 �C


 2
4�d

(1.44)
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Within the critical region j t j < j tG j, the mean field description is not valid. This
region can also be defined by the Ginzburg length 	G such that the mean field is not
valid for correlation lengths 	 > 	G because the inequality (1.40) does not hold. The
Ginzburg length 	G is therefore given by:

	G D 	0
	
	d0 �C

2k


 1
4�d

(1.45)

The free energy of condensation in the ordered state in a volume 	dG can be evaluated
by kTc at a distance jtG j from the critical temperature. When the correlation range
	 is less than 	G , the fluctuations in the order are negligible and the mean field
description is valid. Since�C is known experimentally, we can deduce a numerical
value for the size of the critical region tG and the corresponding limit to the
coherence length 	G for each transition (Fig. 1.26).

Fig. 1.26 The boundary
between the critical region
and the region where the
mean field approximation is
valid is predicted by
Ginzburg’s criterion. The
values of critical exponents
chosen here correspond to
ferromagnetism
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A More Rigorous Calculation Using the Amplitude of Fluctuations

Equation (1.42) is based on a crude evaluation of the effect of fluctuations. The
Ginzburg criterion can be established in a more rigorous way by calculating the
mean squared amplitude of fluctuations h.ım/2icoh over a coherence volume 	d :

hım2icoh D 1

.	d /2

Z

	d
ddxddx0ım.x/ım.x0/ (1.46)

or alternatively by taking into account the definition of the correlation functionG.r/
and translational invariance:

hım2icoh D 1

	d

Z

	d
dd rG.r/ (1.47)

The Ginzburg criterion therefore is written as:

hım2icoh < m2
0 (1.48)

As an exercise the reader may check, by using the expression for G.r/ given
in (1.41), that this leads to the results obtained in the previous paragraph, up to
a numerical constant. However, this numerical coefficient can be substantial and
significantly change value of (1.45). In three dimensions a rigorous calculation
gives:

jtG j3D D
1

32�2
:
k2

	60�C
2

(1.49)

Note the high value of the numerical factor correcting the result of the previous
paragraph: the above calculation leads to a critical region about a thousand times
smaller than that based on the inequality (1.40).

A Few Examples

Depending on the physical system, the size of the critical region tG can be very
different:

• Ferromagnetism: For iron, for example, 	0 extrapolated to T D 0 from the
measurement of neutron diffusion is 2Å and the jump in specific heat �C is
3 � 107 erg=cm3=K, giving tG of the order of 0:01. Given that Tc is higher than
1,000 K, the critical region of a few tens of kelvins is easily observed over several
orders of magnitude of the relative change in temperature t .

• Liquid crystalline order: The smectic A – smectic S transition can be studied in
the same way: 	0 extrapolated to T D 0 is 20Å and the jump in specific heat�C
is 106 erg=cm3=K, giving tG of the order of 10�5. Since the critical temperature
is of the order of 300K, the critical region is of the order of a millikelvin. In this
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case, the transition is well described by the mean field approximation within the
normal experimental range.

• Metal superconductors: In the case of superconducting elements, the coherence
length is long: at T D 0 it is of order a micron and the jump in specific heat
a few 104 erg=cm3=K. This long coherence length leads to a critical region tG
of the order of 10�15, clearly impossible to observe. In metal superconductors,
the mean field approach is perfectly valid (see Fig. 1.25). One word of caution,
this is not true of high temperature superconductors (cuprates) which are two
dimensional and therefore the coherence length is of order 15Å – in this case the
critical region can reach tens of kelvins.
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Chapter 2
Fractal Geometry

In the previous chapter we introduced the concept of scaling invariance in the
context of phase transitions. This invariance manifests itself in a directly observable
way by the appearance of spatial structures without characteristic length scales, for
example density fluctuations in a critical fluid or clusters of up-spins at T D Tc .
Throughout this book we will meet many other scale invariant objects, which are
self-similar in that blown-up detail is indistinguishable from the object observed
as a whole. Examples include, among others, trajectories of particles performing
Brownian motion, conformations of linear polymers, snowflakes, sparks, fractures,
rough surfaces, percolation clusters, lungs, geographical drainage basins, blood
vessels, neurons, bacterial colonies and strange attractors. We will see that the
presence of self-similar structures, christened fractals by Mandelbrot [7, 8] is the
spatial signature of critical phenomena, reflecting the divergence of the correlation
length and accompanied by scaling laws for different system observables. But before
we study the physical mechanisms underlying these structures, in this chapter we
will look at their geometry and show that their quantitative description requires
radically new concepts – that of fractal geometry.

2.1 Fractal Dimensions

2.1.1 Fractal Structures

Mathematicians have known of scale invariant objects (see Fig. 2.1) for a long time,
but at first they considered them as oddities without any interest other than forming
counter examples. Examples “invented” at the beginning of last century include
continuous curves which are nowhere differentiable (Hilbert curve, Koch curve) and
uncountable sets of measure-zero (Cantor set, Sierpinski gasket). At the time it was
not the self-similarity of these structures that was highlighted but their mathematical
consequences such as their non differentiability. It was the emergence of the concept

A. Lesne and M. Laguës, Scale Invariance, DOI 10.1007/978-3-642-15123-1 2,
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a

b

c

d

Fig. 2.1 Some famous mathematical fractals: (a) Cantor set [1], is an uncountable but null
measure set; its fractal dimension is df D log 2= log 3 < 1. (b) Hilbert curve [5], is a space-
filling curve; its fractal dimension is df D 2; (c) Koch curve [6], is continuous everywhere but
differentiable nowhere; its fractal dimension is df D log 4= log 3 > 1; (d) Sierpinski gasket
(also known as Sierpinski triangle or sieve) [10], is a set in which each point is a branch point
(where the edges of two triangles meet); its fractal dimension is df D log 3= log 2 < 2. The figure
shows the algorithm generator on the left and the resulting construction after three iterations on the
right. The reader can imagine extrapolating the resulting diagram obtained ad infinitum
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and the experimental realisation of scale invariance in physics that transformed this
initial oversight into active interest and generated numerous works in mathematics
as well as in physics. This resulted in a new geometry – fractal geometry. With the
benefit of hindsight we can now see that the roots of fractal geometry are found
in Perrin’s work on Brownian motion (which we will go into in Chap. 4), in the
work of the British biologist D’Arcy Thompson On growth and form [2], and in a
more sporadic manner in the work of various mathematicians (Hausdorff, Hilbert,
Minkowski, Bouligand). The credit goes to Mandelbrot, author of the foundational
work The fractal geometry of Nature [8], for having shown the reality, universality
and applicability of fractal geometry.

The mathematical structures shown in Fig. 2.1 are used today to define the
essential concepts of fractal geometry, which we apply (in a restricted and statistical
sense) to some natural structures, in the following. The construction algorithms of
these mathematical structures show their self-similarity, for example, expanding the
Cantor set (Fig. 2.1a) by a factor of 3 gives a structure that is exactly the same as
joining two copies of the initial Cantor set. A uniform expansion of the Sierpinski
gasket (Fig. 2.1d) by a factor of 2 contains 3 copies of the initial gasket. The number
n.k/ of copies contained in the structure expanded by a factor k can be written

n.k/ D kdf (2.1)

which is one way of introducing the fractal dimension df . df D d for a
d -dimensional Euclidean structure and we find df D log 2= log 3 < 1 for the
Cantor set and df D log 3= log 2 < 2 for the Sierpinski gasket. However this
definition of fractal dimension is not so useful since it relies too much on the
exact self-similarity character of the fractal under consideration, constructed by a
deterministic algorithm iterated an infinite number of times. We will prefer a more
operative approach.

2.1.2 Fractal Dimensions

Fractal structures deviate from Euclidean geometry because they are self-similar:
a magnified detail is similar to the whole structure. In particular, fractal structures
have details at all length scales. As a consequence, measurements we make depend
on the scale at which we observe. A typical example is the coast of Britain [9], whose
length varies with the scale of survey chosen, even diverging if we look at the scale
of the tiniest rock crevices. The reader may check this by measuring the length of
the coast from maps of different scales, from a world atlas to an Ordnance Survey
map and noting that the latter gives the longest length (in km).1 Incidentally, this

1We are, of course, talking about lengths in km, obtained by multiplying the length of the
representative line on the map by the scale of the map.
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property is also observed, in a more rigorous way, for the Koch curve of Fig. 2.1c.
These examples show that the concept of length no longer makes sense for a fractal
curve. Therefore we need to find another, more objective, indicator to quantitatively
characterise fractal curves. Self-similarity enables us to define such an index; the
real number df (in general non-integer), called the fractal dimension, describing
the way in which the value of the measurement varies with the resolution a of the
measuring apparatus: L.a/ � a1�df . It is therefore the link between the values
L.a/ andL.ka/, obtained with different resolutions a and ka, that gives an intrinsic
characteristic of the curve, the fractal dimension df , through the relationship:

L.ka/ D k1�df L.a/ (resolution a/: (2.2)

For an Euclidean (“rectifiable” in technical wording) curve we find df D 1. For
df > 1, we have a convoluted curve of infinite length in the limit where a !
0 (infinite resolution); the classic example being the Koch curve (Fig. 2.1c). For
df <1, we have a lacunary (from the Latin word lacuna meaning gap) set of zero
length in the limit where a! 0; the classic example being the Cantor set (Fig. 2.1a).

The length measured depends, not only on the resolution a, but also on the spatial
extension l of the section of the curve considered, i.e. L D L.a; l/. The self-
similarity of the curve can be expressed as L.ka; kl/ D kL.a; l/, for all k > 0,
and it follows that L.a; l/ � a1�df ldf . The length of the fractal curve is multiplied
by kdf if we multiply the linear extension by k, keeping the resolution fixed:

L.kl/ � kdf L.l/ (linear extension l/: (2.3)

So the fractal dimension describes the way in which our perceptions of the object
at different scales of observation are linked; by considering the whole object at all
scales, we can extract objective information (the value of df ) from our subjective
perceptions. We will next take the definitions and relationships above, which are
restricted to fractal curves, and extend them to more general fractal objects.

2.1.3 Self-Similarity (or Scale Invariance) of Fractal Structures

Above we saw that a description of a spatial structure involves two subjective
parameters that define the level of observation and measurement: the linear size
l of the observed region (observation field) and the resolution a. a is actually the
minimum scale, taken as a unit of measurement: if the structure is a curve, we use a
segmentation (surveying) method in which we represent the curve by a broken line
made up of segments of length a; if on the other hand the structure extends over a
2D plain or 3D space, we use a tiling (box counting) method in which we cover the
surface or hypersurface with boxes (squares or cubes) of side a. If the structure is
fractal all the observables describing it depend on l and a. We will use:
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• The number N.a; l/ of “volume” elements ad necessary to cover the structure.2

• The mass M.a; l/ given byM.a; l/ D adN.a; l/.
• The density �.a; l/ D l�dM.a; l/ if the structure is immersed in an Euclidean

space of dimension d .

For an Euclidean object of dimension d , we have

M.a; l/ � ld .independent of a/ (2.4)

N.a; l/ �
�
l

a

�d

(2.5)

�.a; l/ � constant: (2.6)

On the other hand, for a fractal of fractal dimension df , we have the less trivial
relationships:

M.a; l/ � ldf ad�df (2.7)

N.a; l/ � ldf a�df (2.8)

�.a; l/ �
�a

l

�d�df
: (2.9)

One critical point which should be explicitly underlined is that a fractal dimension
is only well defined if the structure is self-similar, written (for all k, a, l) as

self-similarity: N.ka; kl/ � N.a; l/: (2.10)

In other words, we cannot distinguish the structure observed in a region of size kl
with resolution ka from the magnification by a factor k of the structure observed
in a region of size l with a resolution a. This self-similarity, or scale invariance,
ensures that the fractal dimension does not depend on the scale of observation. This
is because the dimension df depends a priori on a:

N.a; kl/ � kdf .a/ N.a; l/: (2.11)

However, using the self-similarity property, we can also write:

N.a; kl/ � N
�a

k
; l
�

D kdf .a=k/N
�
a

k
;
l

k

�

� kdf .a=k/N.a; l/: (2.12)

2The dimension d of elements used in the covering (rods, tiles, boxes, hypercubes, etc) can be
chosen in several ways: a fractal curve could be covered with rods (d D 1) or tiles (d D 2); it can
be shown that both procedures lead to the same fractal dimension.
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Self-similarity therefore ensures that df .a/ D df .a=k/. These formal manipula-
tions are somewhat superfluous for the mathematical fractals in Fig. 2.1, however
verifying self-similarity is indispensable in characterising the fractal nature of
structures observed in the real world. We will see this in the next section which
presents how the concept of fractal dimension can be used in practice.

2.2 Fractal Structures in the Natural World

2.2.1 Statistical and Limiting Properties of Fractals

The simplest method to determine the fractal dimension of an experimental structure
is the box counting method that we used in the previous section to define df .
However as soon as we leave the ideal world of mathematical fractals, self-similarity
and fractal dimensions will be defined in a statistical sense. The useful quantity will
actually be the average hN.a; l/i of the different numbersN.a; l; O/ obtained as we
vary the origin of the box in the tiling. Using the scaling law hN.a; l/i � .l=a/df ,
rewritten as loghN i � df .log l � log a/, gives the fractal dimension df . It is not
sufficient that the experimental data sufficiently accurately and reliably produces
a linear section of significant length on a log-log plot3 of N as a function of l
(i.e. a linear section of the curve, as in the sequence of points, representing logN as
a function of log l). It is also necessary to check that the slope of this linear section,
that is df , does not depend on the resolution a of the observation. In a similar way,
if we work with the log-log plot of N as a function of a, we have to check that the
slope �df does not change if we change the observation field l . It is also necessary
to observe a linear region over several decades for it to make sense to talk about a
fractal dimension.

In addition, for a real fractal structure, a linear section of the log-log graph l 7!
N.a; l/ with a slope independent of a (or a slope independent of l on the log-log
graph of a 7! N.a; l/) is only seen in a certain range of scales for l and a. Let
us consider the example of a porous rock. Although a porous rock has pores of
various sizes, “at all length scales”, these sizes are actually restricted between a
lower bound, am, and an upper bound, aM . If we observe the rock with a resolution
a < am, we see the compact microscopic structure which is 3D Euclidean. If we
observe the rock very roughly with a resolution a > aM , we see a homogeneous
rock, also three dimensional, in which the presence of pores manifests itself only in
the low value of the average density. The log-log plot of N.a/ will therefore show
two discontinuities in the slope (crossovers between regimes), passing from a slope
of �3 for very fine resolutions a < am to a slope of �df (which is shallower)

3In general we use logarithms to the base 10, but the slope is independent of the choice of base for
the logarithm.
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Fig. 2.2 Example (fictitious
data) of determining the
fractal dimension of a porous
rock (see text)

Slope : – 3

Slope : – 3

Slope : – df

log a

log N(a)

Slope : 2

= = 1.58...

log M(r)

log 2 log r 

log 3
log 2

Slope : df

Fig. 2.3 Example of an artificial fractal of what is typically observed for a real fractal: above a
certain scale the fractal becomes Euclidean again

during the region where the rock is fractal, returning to a slope of �3 for coarse
resolutions a > aM (Fig. 2.2). Such crossovers are the general rule when using real
experimental data (see also Fig. 2.3).

Correlation function
Another observation directly related to the fractal dimension is the spatial
correlation function of the structure, which we have already introduced in
Sect. 1.3.2. This point needs to be expanded on with more details in several
respects: it is an effective way in practice to access the fractal dimension of
the structure and the correlation functions reflect the critical character of the
fractal structure.

For a tiling of d dimensional space by boxes of side a, for each site r 2
.aZ/d we define a local observable n.r/ taking the value 1 or 0 depending on
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whether or not the box touches the structure. The correlation function is then
given by4:

C.r/ D hn.r/n.0/i � hn.0/i
2

hn.0/2i � hn.0/i2 ; (2.13)

where the average is calculated as a spatial average over all pairs .r0; r C r0/
where r0 belongs to the structure.5 We generally superimpose averages
over different box countings (tilings), obtained by varying the origin O .
Dividing by the variance of n.0/ normalises the correlation function to one:
C.r D 0/D 1. The function C.r/ is therefore the conditional probability that
the site r C r0 belongs to the structure given that the site r0 is found on the
structure. If the structure is isotropic, as we will assume below, C.r/ depends
only on the modulus r and not on the direction of r .

This statistical quantity is particularly useful in analysing real structures,
fractal or not. For example, it is systematically calculated and studied in
the physics of fluids; we have also encountered it in the analysis of spin
systems (Chap. 1) and we will come across it again to quantitatively describe
percolation clusters (Chap. 5).

The r dependence of C.r/, for large r , reveals whether the structure has a
fractal character or not. The “normal” dependence of C.r/ is exponential:

C.r/ � e�r=� ; (2.14)

where � is the characteristic length (correlation length). For a fractal structure
on the other hand we have:

C.r/ � 1

rd�df
: (2.15)

This replacement of an exponential dependence by a power law
dependence is a typical signature of critical behaviour. It reflects the
divergence of the correlation length �.

4There are two notations for correlation functions, C and G, with C being more common in
geometric contexts (quantitative descriptions of spatial structures) and dynamic contexts (temporal
correlation functions).
5This way of calculating the correlation implicitly assumes that the structure is statistically
invariant on translation. In practice, we can vary r0 in a sample size l , large enough to be
representative but small enough to avoid meeting the edges of the structure. We can then study
the l dependence of the result (finite size effects); in practice, Cl .r/ � C1.r/ as long as r � l .
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In fact the very definition of the correlation function shows that it will depend
on the scale a of tiling, which we indicate with the notation C.a; r/. The self-
similarity of the structure is expressed by the equation C.ka; kr/ D C.a; r/,
from which we deduce the scaling law:

C.a; r/ �
�a

r

�d�df
: (2.16)

This scaling behaviour is analogous to that followed by the average density
�.a; r/ of a sample of size r . Up to numerical constants,

�.a; r/ � 1

r3

Z r

0

C.a; r 0/.r 0/2dr 0 (2.17)

which implies that the scaling laws describing the behaviour of C.a; r/ and
�.a; r/ are identical.

2.2.2 The Origin of Fractal Structures

We can only understand the abundance of these scale-free structures by considering
the mechanisms that led to their formation. For example, a fractal structure is
often the one that best reconciles the microscopic organisation laws (molecular
or cellular interactions, thermal fluctuations, diffusion etc.) and the macroscopic
constraints (such as the boundary conditions, material flow etc.); fractal growth and
hydrodynamic turbulent flow being the classic examples.

We can conclude that understanding the phenomena generated by scale-free
structures – in practice structures with a large number of spatial or temporal
scales – requires a global, dynamic and multiscale approach. We must therefore
focus our studies on the relationships between different levels of organisation. More
generally, what are the trade-offs between different external constraints, internal
physicochemical laws and interactions between different parts of the system that
need to be determined to obtain the necessarily global picture of the organisation
and mechanism of the system?

2.3 Conclusion

We cannot measure a scale invariant object with normal Euclidean geometry. To
measure such objects a new quantity had to be conceived which went beyond
the subjective nature of observation at a given scale. The fractal dimension, an
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exponent describing how measurements made at different scales are related, fulfilled
this requirement. The relationship M.l/ � ldf , defining this fractal dimension
df (where M.l/ is the mass of a section of the object of linear extension l), is
an example of a scaling law. It shows that the only intrinsic characteristic is the
exponent, which is df here. For this to have any sense in practice, the object must be
effectively self-similar over a range of scales, in other words df remains unchanged
if we simultaneously change the resolution of the image and the linear extension l
by the same factor. It is worth noting that study of fractal geometry has two related
avenues with significantly different philosophies:

• The first focuses on establishing rigorous mathematical results for properties
of ideal fractals. This work led to introducing different definitions of the
fractal dimension, showing relationships between them and proving links with
other properties of the structures under consideration, in particular topological
properties [3].

• The second, which interests us more, concerns the application of these formal
concepts to structures in nature; the physical properties they manifest and
information about the mechanisms which generated them that we can extract by
means of these concepts [4]. The field of study therefore goes from algorithms
to test self-similarity and evaluate fractal dimensions to investigating distortions
that result in various physical and physicochemical phenomena when they are
produced on or in fractal structures (for example liquid–vapour phase transitions,
chemical reactions in porous media, diffusion in a fractal medium, exchanges
across a fractal interface, etc).

Fractal structures, characterised by a scaling law defining their fractal dimen-
sion df , are inseparable from the phenomena that we will encounter throughout
this book. These structures are the direct observable signature of scale invariance
and correlation length divergence. They strongly suggest considering the system as
critical and analysing it as such by abandoning a detailed description of its behaviour
at a given scale and favouring a study of the link between behaviours observed
at different scales. Self-similarity therefore provides tools and technical arguments
replacing those applicable when there is a separation of scales (mean field, effective
parameters etc).

This chapter has also prepared us to discover scale invariance more generally,
far beyond the purely geometric concept associated with fractal structures. Scale
invariance can be a property not only of geometric objects but also of physical
processes such as dynamical behaviours, growth phenomena or various phase
transitions. The fundamental idea is the same: the relevant quantities will be the
exponents involved in the scaling laws expressing quantitatively the scale invariance
of the phenomena considered.
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Chapter 3
Universality as a Consequence of Scale
Invariance

In the introductory chapter (Chap. 1) we showed several examples of critical
behaviours near second order phase transitions. Let us remind ourselves of the key
observations.

• When the temperature is near the critical temperature, most physical
quantities obey a power law .T � Tc/x, where x is called a critical exponent.
In this chapter we will see that this sort of behaviour is the signature of the scale
invariance of the system close to the critical point.

• Critical exponents are often not simple rational numbers, as precise mea-
surements have shown. For example we have seen that the exponent ˇ associated
with the order parameter is 0:32 for the liquid–vapour transition and 0:36 for
the ferromagnetic–paramagnetic transition of nickel; the critical exponent �
associated with the divergence of the compressibility �c is 1:24 for the water
liquid–vapour transition and 1:33when it is associated with the divergence of the
magnetic susceptibility � of nickel.

• Critical exponent values are surprisingly robust with respect to changes of
physical system. Not only are they the same for the liquid–vapour transformation
of all fluids, but we find them in seemingly very different systems (demixing of
binary fluids, order–disorder transitions in metal alloys, etc.)

Physicists suspected that these critical properties were linked to the divergence of
the spatial extent of the thermal fluctuations (which is also the range of correlations
of the order parameter, the coherence length), and eventually renormalisation
approaches strikingly confirmed it. The difficulty was clearly identified: how can we
rigorously take account of correlations at the critical temperature, due to interactions
propagating from one point to another, and leading to correlations of diverging size?

The mean field approximation that we introduced at the end of Chap. 1 enables
us to predict all the critical properties neglecting the effect of these correlations.
Remember the Ginzburg criterion for the validity of the mean field description
based on the powerful idea of the critical region:

A. Lesne and M. Laguës, Scale Invariance, DOI 10.1007/978-3-642-15123-1 3,
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Exact calculations on a finite block are always doomed to failure in
a small region around the critical point, the critical region, where the
correlations have a range larger than the size of the block.

In practice there are two cases:

• For certain physical systems (metal superconductors, ferromagnets, liquid crys-
tals, etc.), the critical region is so small that it is not observable experimentally.
In this case, the critical behaviour obtained by the mean field approximation is
remarkably well reproduced in experiments.

• For the numerous systems in which the critical region is experimentally observ-
able, the critical behaviour is radically different from that predicted by the mean
field approximation.

Physicists did not know which was the right track to tackle the problem: in the
end it turned out to be a formal calculation analysis of these unorthodox physical
mechanisms.

In Chap. 2 we introduced fractals, objects that show scale invariance, either
strictly such as the Sierpinski gasket, or statistically such as for an infinite length
random walk trajectory (see Chap. 4 on diffusion). The physicist Leo Kadanoff was
the first to suggest, in the 1960s, that the scale invariance of physical systems at the
critical point determines all the other singular properties [14]. In a few years this
idea paved the way for the pioneering methods of the renormalisation group.

3.1 Introduction

Let’s return to the example of a ferromagnetic system at different temperatures. At
zero temperature all the spins are aligned. Figure 3.1 illustrates the situation at low
temperature (much lower than Tc): almost all the spins are aligned apart from one
or two oriented in the opposite direction grouped in little islands. The right hand
side of Fig. 3.1 represents a magnet at high temperature (much higher than Tc):
there is complete disorder, like in a system without interactions, because thermal
agitation dominates. On average there are as many spins in each orientation, isolated
or grouped in little islands. In both cases the characteristic size of the islands (that
is the fluctuations in magnetisation), measured by the coherence length �, is small.

Figure 3.2 shows an example of the state of spins near the critical temperature
of the ferromagnetic–paramagnetic transition (in the absence of external magnetic
excitation). For temperatures greater than or equal to the critical temperature (in
this case Curie temperature), the average magnetisation is zero. There are highly
branched islands of all sizes. While the external magnetic field is zero, there is no
preferred orientation: it is possible to change the positive and negative orientations
of the spins without changing the appearance of the system. In practice, as soon as
the temperature is detectably below the critical temperature the magnet randomly
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Low temperature High temperature

Fig. 3.1 Far from the critical temperature, the arrangement of spins does not show very extended
structures. At low temperature (left) the majority of spins are aligned in a precise direction with
only a few little islands in the opposite direction. At high temperature (right), there is maximal
disorder and the average size of islands of aligned spins is very small

Near the critical temperature

Fig. 3.2 Near the critical temperature, the spins arrange themselves on islands of varying sizes.
Some islands are very big and branched

chooses an orientation (positive or negative) for the average magnetisation: the
order breaks the symmetry imposed from outside the spin system. However the
spatial structure of the fluctuations in the neighbourhood of the critical temperature
is profoundly different from that which we observe at low and high temperature.
Let’s now look at what happens when we increase the scale of observation by
zooming out.
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3.1.1 Zoom Out and Decimation

As we increase the size of the observation field, decreasing the image resolution
(zoom out), we distinguish fewer and fewer little islands. At low temperature these
disappear completely above a certain observation field size and the magnet appears
perfectly aligned. Everything happens as if increasing the scale of observation
amounts to decreasing the temperature. The same procedure at high temperature
leads to a zero average magnetisation with a completely random redistribution of
orientations. Everything happens here as if decreasing the magnification amounts to
increasing the disorder, in other words increasing the temperature. In both cases
increasing the scale of observation amounts to moving away from the critical
temperature.

What does this procedure produce if we are exactly at the critical point? At
the critical temperature there are islands of various sizes but also very extended
structures which remain whatever the increase in length scale at which we observe:
we call this scale invariance.

Kadanoff [14] introduced a tool designed to quantify the effects of such a change
in scale, a model transformation which he called decimation. He suggested that by
iterating this transformation to its limit, one should be able to describe the physical
properties of critical systems by revealing their scale invariance.

The etymology of the word decimation in Roman legions was a collective
punishment consisting of grouping soldiers in packs of ten and executing one man
in ten! Here in the context of renormalisation it is also used to mean grouping in
packs. Figure 3.3 shows a decimation of spins in blocks of 4, which illustrates a
magnification of observation scale by a factor of 2. At each block in the decimated
network we place a super-spin in place of the original block of 4. We use a rule

Fig. 3.3 To represent the effect of changing the scale of magnification of the microscope, Leo
Kadanoff suggested grouping spins by blocks and replacing the block by a “super-spin”. Then we
repeat this procedure ad infinitum. There are different methods to attribute the orientation of the
super-spin as a function of the orientations of the spins in the block (see text)
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to unambiguously choose the orientation of super-spins even when the spins in the
initial block are not all aligned in the same direction. When the number of spins
in a block is odd, we use the simple intuitive rule of the majority: the super-spin
is oriented in the direction of the majority of spins contained in the block. When
the number of spins in a block is even, we need a rule to deal with the case when
half the spins are oriented in one direction and half in the opposite direction. For
these blocks we choose a super-spin orientation randomly for each configuration
respecting the symmetries of the block and notably ensuring an equal number of
positive and negative super-spins in total for these cases.

Figure 3.4 illustrates the effects of this transformation iterated on a system of
236,000 spins for three different initial temperatures: 1:22Tc, Tc and 0:99Tc . We
clearly see the scale invariance at Tc , the size of clusters being limited only by the
size of the system. For the other initial temperatures each iteration corresponds well
to moving further away from the critical temperature.

At the critical temperature, we can, in principle, carry out an infinite number of
decimations on an infinitely large system without changing the statistical properties
of the system. This has an interesting consequence:

At the critical temperature and in its immediate vicinity the microscopic details
of the interactions between spins are not important;

a fact which connects well to the universality observed in critical behaviours.
However, the method introduced by Leo Kadanoff is not sufficient to calculate the
laws governing these behaviours.

It was only in 1971 that Kenneth Wilson achieved this by proposing a generalisa-
tion of this work: renormalisation methods [30, 33]. The success was considerable:
these methods rapidly led to numerous results and Wilson obtained the Nobel prize
in physics in 1982. The idea is to use Kadanoff’s decimation not to transform
the values that characterise the physical state of the model system, but to transform
the form of the model itself (see the following paragraphs). At the critical point the
transformation should leave the model invariant in its entirety, with all its equations
and all the states accessible to the system. In formulating the conditions of this
invariance, we obtain the form of model suitable for the critical system. It is also
possible to classify models with regard to the physical systems they describe and
then compare these predictions to numerous observations made since Van der Waals
of hundreds of different systems and changes of state. The agreement between
experiments and predictions obtained by renormalisation is remarkable (see for
example Fig. 1.23).

The main result is that:

the critical behaviour does not depend on the physical detais of the order
that establishes itself at low temperature: it depends only on the number n of
components of the order parameter and the dimension of space d .
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Renormalisation enables the classification of changes of state in universality
classes .n; d/ within which the critical behaviour is the same for all physical
systems. Renormalisation rigorously confirms the conclusion obtained by Ginzburg
(Sect. 1.3): the use of the mean field approximation – the results of which are
completely independent of n and d – leads to the exact critical behaviour if the
dimension of space d is equal to or greater than 4. In our space of three dimensions,
this approximation is inaccurate, but it is even less suitable for two dimensions
where thermal fluctuations have considerable weight. In one dimensional space the
difference is even more blatant because the exact calculation does not predict a
change of state: the system rests without long range order all the way to absolute
zero temperature.

3.2 Scaling Relations, Invariance and the Scaling Hypothesis

Before describing and applying renormalisation methods to a few examples, we
return to the idea of scale invariance and its consequences for the form of the
free energy of a system close to the critical point. We temporarily abandon the
microscopic description and will be interested in average macroscopic properties.
We have already seen that experimental observations of phase transitions show
that critical behaviours follow power laws such as m � tˇ . In terms of models,
the mean field approximation presented in Sect. 1.3 also leads to power laws but
nothing implies a priori that this should also be the case for a rigorous description.
The justification for the existence of power laws comes from a general approach in

 �������������������������������������������������������������������
Fig. 3.4 The transformation of blocks of spins applied to a network of spins several times makes
the behaviour of the system appear at larger and larger length scales. A computer was used to
treat an initial network of 236,000 spins; black squares representing up spins and white squares
representing down spins. Three initial values for the temperature were taken: above the Curie
temperature Tc , at Tc itself and below Tc . The first step is to divide the initial network into blocks
of 3 � 3 spins. Then each block is replaced by a single spin with orientation determined by the
majority rule. A network of blocks of spins of the first generation is thereby obtained, of which
just a section is shown for reasons of readability. The procedure is restarted this time dividing the
network of blocks of spins of the first generation. The second generation network thereby obtained
serves as the starting point for the following transformation, and so on. There are few enough spins
in the third generation network that we can draw the whole network and the fourth generation
contains only 36 spins, each one representing more than 6,000 spins in the initial network. In
the first step, the variations over length scales smaller than three mesh sizes were eliminated (by
applying the majority rule). In the second step, variations between three and nine mesh sizes were
eliminated; in the third step between nine and 27 mesh sizes, etc. When the temperature is above
Tc , the spins appear more and more randomly distributed and short range variations disappear.
When the temperature is less than Tc , the spins appear to have more and more a preferred uniform
orientation, variations that remain being short ranged. When the initial temperature is exactly equal
to Tc , large scale variations remain at every step. We say that at the Curie temperature the system is
at a fixed point because each transformation of blocks of spins conserves the large scale structure
of the lattice (after [33])
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physics called scaling which justifies the establishment of general scaling laws for
systems with many degrees of freedom.

3.2.1 A Unifying Concept

Scaling laws are a new type of statistical law on the same level as the law of large
numbers and the central limit theorem. As such they go far beyond the scope of
physics and can be found in other domains such as finance, traffic control and
biology. They apply to global, macroscopic properties of systems containing a
large number of elementary microscopic units. To obey a classical description these
units:

• Must be statistically independent or weakly correlated, that is characterised by a
finite coherence length �

• Must not fluctuate too much: the variance � of their elementary observables must
be finite so that the law of large numbers and the central limit theorem apply.

Scaling laws do appear when one of these conditions is not satisfied (infinite � or �)
provided that the nature of the elementary constituents and the regularity of their
organisation let us predict self-similarity properties. We will illustrate this aspect
during the course of this book and with a more detailed example in the next chapter
(Chap. 4) on normal and abnormal diffusion.

The existence of scaling laws is very useful: it allows us, by a simple change in
scale, to deduce the behaviour of a system of arbitrary size from that of a system
of a given size. We can therefore describe the behaviour of a large system from that
of a small system, analysed rigorously or simulated numerically. A typical example
is that of polymers, which show scaling behaviours at all temperatures and not just
near a critical temperature (see Sect. 6.3.4). The scale invariance of hydrodynamic
equations allows us to reproduce the behaviour of a huge oil tanker by using a
miniature boat a few meters long navigating in a liquid that is much more viscous
than water. This enables pilots to practice navigation with the sensations they will
encounter when manoeuvring a real oil tanker (see Sect. 9.5.1).

Even though such power laws had been introduced in fluid mechanics by
Kolmogorov since 1941, they were not accepted as a description suited to critical
behaviours until the 1960s, during which an intense activity was dedicated to their
justification. Various authors established relationships between the critical expo-
nents, inequalities from thermodynamic stability considerations and then equalities
traditionally called critical scaling relations. Each of these relations was another
argument in favour of the universality of critical behaviours. It was clear by the end
of the 1960s that all the critical exponents could be deduced from two of them. In
the following we will describe one of these approaches: Widom scaling.
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3.2.2 Widom Scaling

Widom’s basic idea [29] was to characterise the generic properties of the singular
part f of the free energy1 per unit volume, in the vicinity of the critical point.
This function should depend on t , the relative distance from the critical point
temperature, and on the external field h. The different physical quantities, specific
heat C , order parameterm and susceptibility � are derived from f .t; h/:

C D
�
@2f

@t2

�

h

m D
�
@f

@h

�

t

� D
�
@2f

@h2

�

t

: (3.1)

Widom’s reasoning starts from the idea that if these three quantities show a
critical behaviour in a power law, then f must itself have a form of power law.
He supposed therefore that f has the form:

f .h; j t j/ D j t j2�˛ g.h j t j��/ (3.2)

which applies whatever the sign of t with potentially different values of g. For zero
field h, this form ensures that C D g.0/t�˛ with the usual meaning of the exponent
˛ (see Table 1.1). Similarly, the two other quantities lead to the expression for the
critical exponents ˇ and � :

ˇ D 2 � ˛ �� and � D �2C ˛ C 2�: (3.3)

Eliminating �, gives the Rushbrooke scaling relation, perfectly verified by mea-
sured exponents but also by the mean field exponents2:

˛ C 2ˇ C � D 2: (3.4)

3.2.2.1 Dependence on the Field

The exponent ı, defined by m�h1=ı at t D 0, was introduced by taking hjt j��Dx
in the expression (3.1) form, using (3.2):

m D j t j2�˛�� g.x/ D
�
h

x

� 2�˛��
�

g.x/: (3.5)

1Even if we call it f and not g, the quantity we are interested in here is strictly speaking the Gibbs
free energy, which we could call the free enthalpy in so far as it depends on the intensive magnetic
variable h and not on the corresponding extensive variable, the magnetisation m.
2For simplicity, the term mean field exponents refers to the exponents calculated within the
framework of the mean field approximation.
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By fixing for example x D 1, we obtain the value ı D �=.2� ˛ ��/. Eliminating
� leads to a new relation, Griffith’s scaling relation:

˛ C ˇı C ˇ D 2: (3.6)

3.2.2.2 Coherence Length

One way to evaluate the singular part f of the free energy is to express it to
order kT per degree of freedom. We can show that here one degree of freedom
corresponds to each coherence volume element �d , where d is the spatial dimension.
This result can be understood by considering that the coherence length is the
smallest distance over which the order parameter could change: everything occurs
as if the space was divided up into cells of volume �d within which the order
parameter is constant. The value of the free energy is therefore:

f � k T ��d � kT j t j�d� (3.7)

which, by comparison with the form of f given by Widom (3.2), leads to a new
relation:

˛ C d� D 2: (3.8)

This scaling relation, called the Josephson scaling relation, is also called the
hyperscaling relation because it is the only one to explicitly involve the spatial
dimension d . We note that for mean field exponents ˛ D 0 and � D 1=2

this relation is only satisfied for the critical dimension d D 4 below which the
mean field description is not valid (see the Ginzburg criterion at the end of Chap.
1). Another relation, the Fisher scaling relation, can be obtained by studying the
dimensional relationships linking the spatial correlation function, characterised by
the exponent 	, to the susceptibility and the coherence length, characterised by the
exponents � and �:

	C �=� D 2: (3.9)

3.2.2.3 Excellent Agreement with Experiments

In order to compare their validity, we have presented the four scaling relations
above in a normalised form, in which the right hand side is 2. Table 3.1 shows
the experimental measurements of the exponents [2] for six different families
of changes of state. It also shows the degree of validity of the above scaling
relations. The table shows the value of the left hand side of the scaling relations
calculated using the experimental values of the exponents. Taking into account
the experimental error bars on the measurements of the exponents, the observed
agreement is remarkable. The experimental confirmation of these scaling relations
implies that the Widom-type formal approach is grounded. But how can we
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Table 3.1 Verification of scaling relations with experimental measurements for critical exponents
for a few families

Xe Binary mixture Alloy 4He Fe Ni

n number of
components to the 1 1 1 2 3 3

order parameter
˛ 0 0:113 0:05 �0:014 �0:03 0:04

ˇ 0:35 0:322 0:305 0:34 0:37 0:358

� 1:3 1:239 1:25 1:33 1:33 1:33

ı 4:2 4:85 3:95 4:3 4:29

	 0:1 0:017 0:08 0:021 0:07 0:041

� 0:57 0:625 0:65 0:672 0:69 0:64

Rushbrooke
˛C 2ˇ C � D 2 2.00 1.99 1.91 1.99 2.04 2.09
Griffith
˛C ˇıC ˇ D 2 1.82 2.00 1.67 1.93 1.93
Fisher
	C �=� D 2 2.38 2.00 2.00 2.00 1.99 2.12
Josephson
˛C � d D 2 1.71 1.99 2.00 2.00 2.04 1.96

justify the physical meaning of the relation postulated by Widom? What physical
mechanism could lead to such a simple form for the singular part f of the free
energy at the critical point? Kadanoff proposes a simple response to this question:
the divergence of the coherence length.

3.2.3 Divergence of � and the Scaling Hypothesis

Let us return to the simple question: why do phase transitions show critical
behaviour as power laws such as m � tˇ when there is nothing a priori to indicate
that they should? A physical argument in favour of such a type of critical behaviour
follows from an essential hypothesis called the scaling hypothesis.3 Among the
many ways in which it has been formulated, according to Kadanoff it can be
expressed in the following way:

3Scaling methods have become a standard tool for physicists today. The word scaling evokes a
structure of nature and particular relations, but most of all a universal approach and type of analysis.
It refers to an observation as much as to an action, with the idea that the this active approach molds
the observation process.
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The critical behaviour of a physical property P.t/ essentially originates from
the dependence of the coherence length on temperature, which diverges at the
critical temperature with a power law �.t/ D �0t�� :

P.t/ � ˘.�.t//: (3.10)

The function ˘ does not explicitly depend on the temperature but only on the
coherence length. In this section, we assume the power law for the divergence of
the coherence length is given. We will see, in the section on renormalisation flow,
that we can obtain its form rigorously. Kadanoff proposed this hypothesis, which
we will come back to later, in the 1960s, and he was the principal craftsman of its
application. If we take into account this hypothesis, transformations of the scale
of a critical system naturally lead to power law behaviours. The question is the
following: when we study a system after having subjected it to a change in length
scale x ! bx, what is the temperature difference t 0 such that:

Rb ŒP.t/
 D P.t 0/ or alternatively ˘.b�.t// D ˘.�.t 0// ‹

where Rb ŒP.t/
 is P.t/ transformed by the change of scale. By assuming �.t/ D
�0t
�� , as we observe experimentally, this approach leads to power laws of the type:

˘.�/ � ˘0�
z and therefore P.t/ D P0tx: (3.11)

Unlike Widom’s approach, which postulated these power laws, we now have
these relations derived from a concrete physical hypothesis. The phenomenological
hypothesis of scaling behaviour in the vicinity of the critical point will be proved by
the renormalisation method. We now present the step proposed by Kadanoff which
would lead to renormalisation when Wilson, and many others, added an additional
conceptual step.

3.2.4 Scaling Relations Revisited with Decimation

Let us introduce the decimation operationD of an Ising network such as that drawn
in Fig. 3.3: the spins in the initial network, of lattice spacing a, are grouped in blocks
of size La containing n D Ld spins (in Fig. 3.3 L D 2, d D 2, n D 4). The
number of degrees of freedom is reduced by a factor n in the new network of super-
spins. The crucial step is to reduce the 2n states accessible to each super-spin to
two states C1 or �1 as for each spin in the starting network. The quantities t and
h are assumed to be transformed to t 0 and h0 by the decimation. Kadanoff made the
following hypothesis:

h0 D hLx and t 0 D tLy: (3.12)
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The transformation of the free energy per unit volume from f to f 0 during
decimation can be deduced by seeing that the volume occupied by one spin in the
network changes from ad to .La/d and noting that the physical value of the free
energy per spin should not change. This gives:

f .t; h/ D L�d f 0.tLy; hLx/: (3.13)

As for the coherence length, it transforms as:

�.t; h/ D L� 0.tLy; hLx/: (3.14)

the thermal dependence of which we can identify with the divergence of the
coherence length, �.t/ D �0t�� .

At the critical point, scale invariance imposes that this transformation corre-
sponds to a fixed point where f D f 0 and � D � 0. In addition these relationships
must apply for all L. For example, we can choose L D j t j�1=y in a way that the
first argument is either C1 or �1 according to the sign of t . By putting h D 0 we
obtain;

f .t; 0/ D j t jd=y f .˙1;0/ and �.t; 0/ D j t j�1=y �.˙1;0/: (3.15)

By identifying the exponentd=y as 2�˛ (3.2) and 1=y as � (3.7) and eliminating y,
we recover the Josephson relation called hyperscaling:

d� D 2� ˛: (3.16)

It is easy to also recover the Rushbrook and Griffith scaling relations by directly
calculating m and � (3.1). The derivation of the fourth relation, that of Fisher, is
interesting because it directly involves the physical significance of decimation. Let
us recall the definition of the exponent 	 linked to the dependence of the correlation
functionG on the field h D 0 given by G.Tc; r/ � r�.d�2C	/.

In general, the correlation function G.r; t; h/ can be expressed as:

G.r; t; h/ D @2f

@h.r/@h.0/
(3.17)

which leads to:
G.r; t; h/ D L�2dL2xG0.r=L; tLy; hLx/: (3.18)

By choosing L D r , t D 0 and h D 0, and by expressing x using the exponent �

characterising the susceptibility � �
�
@2f

@h2

�

t
, we obtain the relation � D .2 � 	/�

which is the Fisher scaling relation.
Formally the approaches of Widom and of Kadanoff are very close but the latter

is based on a physical argument, the scaling hypothesis. Here the scaling relations
are the signature of the divergence of the coherence length. We have defined six
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exponents which are related by four scaling relations: all the critical singularities
can therefore be deduced from two exponents, but how can we calculate the value
of these two exponents? Let us come back to the microscopical description for this
next step.

3.2.4.1 Kadanoff’s Scheme

Kadanoff and other physicists used the decimation process in trying to calculate the
transformed coupling constants K 0 D D.K/ in the search for a fixed point. The
coupling constants are the parameters in the Hamiltonian characterising the energy
of the system. We have shown an example in Chap. 1 for the Ising model. The
Hamiltonian in this case is characterised by the coupling constant K D J=kT ,
where J is the interaction energy between the nearest neighbouring spins. The idea
was to transform the coupling constants using the following three steps:

1. Group the spins into super-spins using one decimation step D into blocks of bd

spins, thereby obtaining a “super-lattice” of lattice spacing D.a/ D ba.
2. Change the scale of the super-lattice by a factor 1=b in order to recover the lattice

spacing of the initial lattice a0 D D.a/=b D a with a shorter coherence length
� 0 D �=b.

3. Transform the coupling constantsK to K 0 D D.K/.
As we iterate these three steps (together making a transformation we call R) we
expect the following limits as a function of the initial temperature:

• T > Tc , i.e. K < Kc , for which we expect that the transformation entails a
decrease in K , K 0 < K , and that therefore the coupling constant tends towards
the limit K�1 D 0, that is T �1 D 1. This “high temperature” fixed point is stable
since the transformation drives the system to it, and corresponds to the predicted
total disorder for zero coupling, that is to say non interacting spins at zero external
field.

• T < Tc , i.e.K > Kc , for which we expect the transformation leads to an increase
in K , K 0 > K , and that the coupling constant tends towards the limit K�2 D 1,
that is T �2 D 0. This “low temperature” fixed point is also stable. It corresponds
to perfect order.

• T D Tc , i.e. K D Kc , for which, since the system is scale invariant, we expect
that the transformation will not changeK , K 0 D K D Kc , and that therefore the
coupling constant remains equal to the critical valueK� D Kc , that is T � D Tc .
This fixed point corresponds to the critical point and is unstable because the
smallest fluctuation in temperature leads to one of the two previous cases.

All the physics of renormalisation was already in this procedure. However for
this approach to succeed in a systematic way it was missing a crucial idea: without
exception, it is not just the parameters of a model that should be transformed, but
the form of the model itself. Having laid down the phenomenological basis of
this approach, let us return to the microscopic models which are required for its
implementation.
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3.3 Transitions and Model Hamiltonians

Historically microscopic models of the ferromagnetic–paramagnetic phase transi-
tion have served as the basis for most phase transition studies. Here we will also
use this system to introduce renormalisation methods. The results obtained will
then be applied to a wide variety of physical systems. The approach used is the
usual one in statistical physics consisting of calculating the values of macroscopic
physical observables (magnetisation m, susceptibility �, etc.) at equilibrium from
the HamiltonianH which characterises the energy of the system.

The first step is to construct the partition functionZ and the Gibbs free energy f :

Z D
X

fSig
e�H=kT f D � kT log.Z/

from which we can deduce the average values of the quantities we are interested
in. In this way Hamiltonians completely characterise the physical models they
correspond to. We will show the forms of the most commonly used Hamiltonians,
along with the names they are known by, below.

3.3.1 Number of Components of the Order Parameter

The spins Si are vectors of n components with constant modulus (an assumption
that is often chosen but can be changed). It is necessary to distinguish between the
number of components n and the dimension d of space.

• If we are talking about spins in the physical sense, in most general case, the
number of components is n D 3. The corresponding models are characterised by
Hamiltonians called Heisenberg Hamiltonians.

• When the number of components is n D 2, the current name is XY -model.
• The case n D 1 is associated with Ising models.

Do not forget however that we will use the ferromagnetic–paramagnetic transition
as an example to describe changes of state in a general manner. Therefore n and d
will be considered as parameters that a priori could take any value. We will see
for example in Chap. 6 that the case n D 0 provides a fruitful analogy with folding
polymer chains. The fictitious situation in which n D 1, called the spherical model,
is also useful as a reference.

3.3.2 The Interactions

The general form of the Hamiltonian that takes into account interactions between
two spins Si and Sj is written:
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H D �
nX

˛D1

X

i

X

j

J˛ij S˛iS j̨ � h
X

i

Szi ; (3.19)

where ˛ is one of the n components of the spins and h is the magnetic field oriented
in the z direction. The coupling constant J˛ij simplifies in the following cases:

• If the system is isotropic the coupling constant is independent of ˛.
• If the system is invariant under translation:

Jij D J.ri � rj / D J.rij /:
• And finally if the interactions are only present when Si and Sj are nearest

neighbour spins, there remains only one coupling parameter J (only one reduced
coupling constantK D J=kT ).

With these three hypotheses the Hamiltonian is written:

H D �J
nX

˛D1

X

<ij>

S˛iS j̨ � h
X

i

Szi ; (3.20)

where< ij > refers to the set of pairs of nearest neighbour spins Si and Sj . We will
return at the end of the chapter to the relevance of this third hypothesis. In the light
of the previous paragraphs, the reader will realise that interactions between second
(or third) nearest neighbours are effects remaining localised at the microscopic scale
which do not seriously affect the scale invariance of a system at the critical point.
We will show later that renormalisation methods provide the means to discuss this
point quantitatively.

3.3.3 The Ising Model

We introduced the simplest model, the Ising model, in Chap. 1. Proposed in 1920 by
Lenz, the Ising model assumes, as well as the hypotheses in the previous paragraph,
that spins can only be in one of two opposite orientations. We use reduced physical
quantities such that the spins take the values �i D ˙1. In the following we will
mainly use the Ising Hamiltonian:

H D �J
X

<ij>

�i�j � h
X

i

�i : (3.21)

3.4 1D and 2D Solutions of the Ising Model

The Ising model problem can be posed as: can statistical physics predict an order–
disorder transition in a system described by the Hamiltonian in (3.21)?
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The problem was solved by Ernst Ising in 1925 for the case of a one dimensional
chain of spins. We had to wait for another twenty years and an exceptional feat of
mathematics by Onsager [1944] for a solution of the Ising model in two dimensions.
Today we know of no exact analytical solution for dimensions 3 or above.

3.4.1 Transfer Matrices

In this paragraph we present the solution of the Ising model problem in one
dimension, based on the method of transfer matrices. The same idea leads to a
solution to the 2D problem that is simpler than Onsager’s solution [26].

The Hamiltonian and the partition function for a 1D Ising chain are written:

H D �J
X

i

�i �iC1 � h
2

X

i

.�i C �iC1/ D
X

i

Hi ;

Z D
X

f�1D˙1;
�2D˙1;:::g

e�H=kT : (3.22)

where we have written the field term in a form symmetric in i and i C 1. We will
see that it is useful to construct the matrix T in which the elements are the possible
values of Zi D exp.�Hi=kT / relative to the pair of spins .�i ; �iC1/:

�iC1 D 1 �iC1 D �1
�i D 1 T11 D e.JCh/=kT T1;�1 D e�J=kT

�i D �1 T
�1;1 D e�J=kT T

�1;�1 D e.J�h/=kT

We now associate a vector �i D .�Ci ; � �i / with the spin �i such that

�i D .1;0/ if �i D 1 and �i D .0;1/ if �i D �1:

The quantity < ��jT j��C1 > corresponds to the observable for Zi :

< ��jT j��C1 > D �Ci �CiC1e.JCh/=kT C �Ci ��iC1e�J=kT C ��i �CiC1e�J=kT

C��i ��iC1e.J�h/=kT : (3.23)

in which one, and only one, of the four terms in the expression is non zero. Assuming
periodic boundary conditions .�NC1 D �1/, (3.23) implies the expression for Z:
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Z D
X

f�1D˙1;
�2D˙1;:::g

Y

i

Zi

D
X

f�1D˙1;
�2D˙1;:::g

< �1jT j�2 > < �2jT j�3 > < �3jT j�4 > : : : < �N jT j�1 > :

(3.24)

In this way we can identify Z with the trace of T to the power N :

Z D T r ˚T N� D �N1 C �N2 ; (3.25)

where �1 and �2 are the eigenvalues of T , which can be calculated in the classical
manner:

�˙ D eJ=kT cosh

�
h

kT

�

˙
s

e2J=kT sinh2
�
h

kT

�

C e�2J=kT : (3.26)

At the thermodynamic limit N ! 1, only the largest positive eigenvalue �1 D
�C counts, for which the modulus is the largest:

Z � �N1 : (3.27)

Everything happens as if the system was made up of non interacting particles, for
which the partition function would beZ1 D �1. The transfer matrix method reduces
the calculation of a chain of N interacting spins to one in terms of properties of a
single fictitious particle. In the same way in two dimensions, this method reduces
the calculation to a problem in one dimension.

3.4.2 Properties of the 1D Ising Model

From the expression for Z, (3.27), we directly obtain the free energy

G D �kT logZ D �NkT log�1;

and all the physical quantities characterising the system. The form of �1 (3.26),
which has no singularities at finite temperature, confirms the observation of no phase
transition for the 1D Ising model. The magnetisation is

m D � 1
N

@G

@h
D kT

�1

@�1

@h
D sinh

�
h
kT

�

q

sinh2
�
h
kT

�C e�4J=kT
(3.28)
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and the susceptibility is

� D @m

@h
D 1

kT

e�4J=kT cosh
�
h
kT

�

�

sinh2
�
h
kT

�C e�4J=kT
�3=2

: (3.29)

Therefore, in zero magnetic field h D 0 we obtain

m D 0 and � D 1

kT
e2J=kT ; (3.30)

in other words the susceptibility diverges at T D 0, even if the spontaneous mag-
netisation remains strictly zero. Note that this divergence, which is often considered
as being a “zero temperature phase transition”, is an exponential divergence and
not a power law. From this point of view this “transition” is very unusual: it is
not dominated by the scale invariance of the system but by the individual thermal
excitations. We can also calculate the specific heat C D @2G

@T 2
, which shows a

maximum at a temperature slightly lower than J=k. Figure 3.5 depicts G, � and
C as a function of reduced temperature (in units of J=k/ compared to their values
in the mean field approximation.
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Fig. 3.5 Left: Reduced free energy G=NJ of the 1D Ising model as a function of reduced
temperature in units of J=k (continuous line) compared to the value obtained in the mean field
approximation (dashed line), for h D 0, h D J=2, and h D J . Middle: Reduced susceptibility �J
of the 1D Ising model as a function of reduced temperature (continuous line) compared to the value
obtained in the mean field approximation (dashed line), for h D 0 and h D J=2. Right: Reduced
specific heat C=k of the 1D Ising model as a function of reduced temperature (continuous line)
compared to the value obtained in the mean field approximation (dashed line)
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Remarks

• The general form of f , obtained in the mean field approximation is qualitatively
good. Furthermore, it is even better if the applied field is non zero: the field h
appreciably reduces the effect of thermal fluctuations.

• The reader may be surprised to see that the free energy saturates at its minimum
value, NJ , for T less than about J=3k, while m D 0. This can seem
contradictory because, at low temperature, we would expect f D �mNJ .
However this result, f D �mNJ , is only exact for a homogeneous system:
here there is no long range order until zero temperature. Switches of the type
""""""""########, between regions orientated in opposite directions, are
more and more rare as we reduce the temperature, but the magnetisation remains
zero, oppositely orientated domains strictly compensating for each other. We will
return to the discussion of this point in paragraph 3.6.3.

• On the other hand there is a considerable difference in behaviour of the
susceptibility at zero magnetic field, since mean field predicts a transition at
Tc D 2J=k. At field h D J=2 the qualitative agreement is much better
even though the position of the maximum is clearly different from the rigorous
prediction.

• The behaviour of the specific heat C is interesting: it behaves as if there was a
“soft” transition around T D J=k. In reality, below this temperature, there exist
finite but large pieces of chain that are completely ordered.

3.4.3 Properties of the 2D Ising Model

The 2D Ising model corresponds to the only physical situation (characterised by
n D 1 and d D 2) which shows a real phase transition for which an exact solution
is known. Since it was solved initially [Onsager 1944] (a remarkable mathematical
achievement), the method of transfer matrices has lightened the mathematical
treatment of the model. Here we present just the essential results.

• An order–disorder transition is predicted in which the critical temperature, for
a square lattice, is Tc � 2:269185�J=k (solution to the equation sinh. 2J

kTc
/ D 1).

This temperature is well below the Tc D 4J=k predicted by the mean field
approximation (see Chap. 1, Fig. 1.20).

• Above the critical temperature Tc , the average magnetisation is zero, while
below it, it is:

m D
"

1 �
�

1 � tanh2
�
J
kT

��4

16 tanh4
�
J
kT

�

#1=8

(3.31)

which behaves as m � jt j1=8 in the vicinity of the critical point. The critical
exponent of the order parameter here is ˇ D 1=8, compared with 1=2 predicted
by the mean field approximation.
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• Similarly, the susceptibility at zero field behaves, in the vicinity of the critical
point, as:

� D j t j�7=4 ; (3.32)

where the exponent � D 7=4, compared to the value 1 predicted by mean field.

The exact solution of the 2D Ising model was a milestone. It established a
fundamental point: statistical physics is capable of predicting phase transitions by
rigorous calculation. However, the distance between these results and the mean field
results was troubling. Numerous labs tackled extremely precise measurements to
distinguish between these two approaches, but the measured exponents were most
often intermediate values with error bars clearly excluding both formal predictions
(see Chap. 1, Fig. 1.22). A quarter of a century later, the dilemma was finally
resolved.

3.5 Renormalisation

Renormalisation methods are used in all areas of physics and are necessary as soon
as one is interested in asymptotic properties of systems in which fluctuations exist
at all spatial and/or temporal scales. They give access to properties that are intrinsic,
universal and independent of the microscopic details of the system. Renormalisation
results, based on scale invariance, are insensitive to many simplifications and
shortcomings of a particular model. Renormalisation was not born in 1971 with the
solution of critical behaviour [31], but has a long history. After a brief presentation
of the semantics of the term “renormalisation” and the changes of meaning it has
known, we will present a few principles common to all renormalisation methods,
which transformed the very status of models, their relevance and use.

3.5.1 Brief History of the Concept

The concept of “renormalisation” was first used in the form of an adjective in the
context of hydrodynamics. During the 19th century, the renormalised mass of a
body moving in a fluid corresponded to its apparent mass, i.e. its inertial mass m
(appearing in the expression for its kinetic energy 1=2 mv2 and in its fundamental
equation of motion m dv=dt D resultant force), modified by the presence of the
fluid. The movement of the mass drags fluid along with it and thereby increases
its inertia. The renormalised mass mR takes into account a contribution due to the
displaced fluid:

1=2 mR v2 D 1=2 m v2 C kinetic energy of displaced fluid.
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More generally, by extension, a renormalised quantity signifies the apparent value
of this quantity obtained by adding to its intrinsic value contributions resulting from
interactions, external influences or degrees of freedom not appearing explicitly in
the description. For example, we distinguish the direct correlations between two
particles of a fluid from renormalised correlations reflecting implicit interactions
transmitted by the solvent.

3.5.1.1 The Original Renormalisation Group for Quantum Field Theories

Renormalisation in the new sense of regularisation appeared later in quantum
field theories, as a technique to integrate over all virtual quanta with very high
frequency !, or equivalently very high energy (a situation called UV catastrophe,
see box below) [6]. At the beginning of the 1950s, Feynman, Schwinger, Tomonaga
and Dyson, overcame this difficulty using the renormalisation technique. A
renormalisable theory is one in which the influence of phenomena can be taken
into account in an implicit way by replacing the initial parameters by effective
parameters, for modes with frequency ! lower than a cutoff value ˝ . We call
transformations R˝1;˝0 linking initial parameters to renormalised parameters in a
frequency range .˝0; ˝1/, renormalisation operators. The condition of coherence
of the operation is a generalised group law. When R˝1;˝0 depends only on
k D ˝0=˝1, we recover the usual group law Rk2Rk1 D Rk2k1 . This group
structure is of such great interest that we talk about the renormalisation group. This
structure primarily enables the renormalisation to be carried out using tools from
group theory (Lie algebras, representations etc.), already widely used to exploit the
existence of symmetry groups. But over and above this technical argument,

the symmetry groups of a physical system determine a large percentage of
its observables: the renormalisation group appears as a group of particular
symmetry and can often be used to translate the scale invariance properties
of a physical system under the action of renormalisation into quantitative
information.

Later, the renormalisation group was powerfully applied to statistical mechanics
due to its ability to treat phenomena in which a divergence of a correlation length
prevents microscopic degrees of freedom being replaced by average quantities
due to a separation of length scales. The renormalisation approach determines
the way fluctuations are organised at different scales and formulates scaling laws
resulting from this organisation. More recently, renormalisation has been used in
the context of dynamical systems to study the appearance of chaos. In this case
of dynamical systems, renormalisation applies to dependencies and invariances of
temporal scales.
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Spatial Limits of a Scaling Behaviour: UV and IR Catastrophes

• UV divergences. We say there is an ultraviolet catastrophe (or divergence) in a physical
system if there is an infinite number of possible processes at small scales (i.e. at high
frequencies q=!). The formal treatment of such a system requires the introduction
of a cutoff scale a allowing the regularisation of a model M.scales ! 0) by an
effective model M.a/. The expression “UV divergence” comes from quantum field
theory in problems of divergence at the high energy limit. The same issue is met when
constructing an ideal model of the point charge of an electron. These divergences appear
when we extend a theory that is valid only in a finite domain, to q D1 or ! D1. At
the “UV” end, descriptions of critical systems are naturally limited by the atomic scale.

• IR divergences. Infrared divergences (large scale limit) appear if there are divergent
behaviours at the macroscopic scale. This is the case for critical systems. IR divergences
are also linked to long range correlations: effects of fluctuations add constructively
instead of leading to an average of zero. Perturbation methods are ineffective in cases of
IR divergences and they can only be treated with renormalisation methods.

We now introduce a few general principles common to all renormalisation
methods, justifying their shared name.

3.5.2 Renormalisation Steps

Renormalisation operates on a model M, that is on a physical representation of a
real system S. We construct a model as a function of the phenomena we want to
study: in particular we fix the minimum scale a that is possible to detect, related
to the distance between particles or the resolution of the measurement apparatus.
This microscopic scale determines the sub-systems of S that will be considered
as elementary constituents. The model assumes they have no internal structure.
Their physical state (position, magnetisation etc.) is described by a small number
of quantities s. A microscopic state of S is described by a configuration fsig �
.s1; : : : ; sN / of N constituent elements. The ingredients of a model M are as
follows:

• The phase space E D f fsi g g of configurations.
• The macroscopic quantitiesA associated with the configurations fsig ! A.fsig/.
• A function .fsig/, which we call the structure rule (the backbone of the model).

At equilibrium, .fsig/ determines the statistical weight of the configuration fsi g
within the macroscopic properties. Out of equilibrium, .fsig/ determines the
evolution of the configuration fsig.  is for example the Hamiltonian of a system
in statistical mechanics, the law of motion for a dynamical system, or transition
probabilities for a stochastic process. The structure rule itself is written using a set
of parameters fKj g written in compact form as K .
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The forms of .fsig/ – the Hamiltonian, in the case of phase transitions which
interests us here – may be wanted in a functional ensemble ˚ D fg. The elements
of ˚ are, for example, constructed by adding different terms, each corresponding
to a parameter in the expression of the structure rule . This point is crucial:
it differentiates the method proposed by Kadanoff – renormalisation within a
given ensemble of parameters K – and that of the renormalisation group, which
corresponds to changing the form of the original Hamiltonian, within a general
functional ensemble ˚ .

The novel approach brought by the renormalisation method is to iterate a
renormalisation transformation consisting of the following steps:

1. Decimation
2. Change of scale of the system such that is superimposes on its starting structure
3. Transformation of parameters replacing them with effective parameters

and to study the action of this transformation in the space of models.
Let us return to the signification of these steps, which we briefly introduced in

Sect. 1.1.

3.5.2.1 Decimation

The term “decimation” (coarse-graining) designates a change in resolution a! ba

of the configuration fsi g, in other words a regrouping of constituent elements in
packets fsi g0 each containing bd original elements in a space of dimension d .
A rule Tb relates the configuration fsig0 of these packets to the initial configuration
fsi g0 D Tb.fsi g/. Two points of view are possible: either this operation reduces the
number N of degrees of freedom by a factor bd , or the size L of the observation
field is increased keeping N constant. Decimation is accompanied by a loss of
information at scales smaller than ba: the transformation Tb is chosen in a way
that preserves at least the information and properties we think play a crucial role at
large scales. This step is a subtle point in the renormalisation process and requires a
prior understanding of the studied phenomena. If the step is performed in conjugate
space (frequency and wavevector Fourier transformed space), decimation results in
a change˝ ! ˝=b in the cutoff value ˝ D 2�=a beyond which the renormalised
model no longer explicitly describes the system.

3.5.2.2 Change of Scale

The change of scale4 restores the effective minimum scale after spatial regrouping
during decimation. Distances in the decimated model are therefore reduced by the

4Note that more generally the study of changes of scale is also very useful in the case of spatio-
temporal phenomena, outside the context of decimation. Take for example a random walk in
discrete time (Sect. 4.3.3) obeying the law of diffusion: when we contract time by a factor b,
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factor b
x ! x=b:

3.5.2.3 Effective Parameters

The combined effect of the first two steps, decimation and change of scale, must
be compensated for by a transformation of the structure rule , so that we continue
to describe the same physical system. The new rule  0 D Rb./ must describe the
statistics or evolution of the new configuration Tb.fsig/. Rb , acting in the functional
space ˚ , is called the renormalisation operator. In the case of a parameterised
model K , we write K 0 D Rb.K/ paying a price for approximations, the relevance
of which we will discuss later. The renormalised parameters K 0 contain, in an
integrated manner, the effect of the microscopic details at scales smaller than ba.

3.5.2.4 Covariance and Invariance by Renormalisation

Coherence in these three steps is established by the fact that the transformed model
M0 D Rb.M/must describe the same physical reality. This property, the covariance,
ensures in particular that the initial model and the renormalised model conserve
the physical invariants of the problem. Covariance therefore expresses the essential
objective of renormalisation: to exploit the inalterability of the physical reality as we
change our manner of observing and describing it. As we have already highlighted,
a renormalisation group is nothing other than a particular symmetry group: like all
other symmetry operations it leaves the system studied invariant. A stronger concept
is that of invariance by renormalisation of a property A D Rb.A/. This expresses
the self-similarity of A: with respect to this property, the system observed at the
scale ba is identical to the image observed at scale a and expanded by a factor b. By
construction ofRb itself, the fixed points of renormalisation are therefore associated
with systems possessing an exact scale invariance for the property A.

3.5.3 Renormalisation Flow in a Space of Models

A renormalisation group can be described as a dynamical system (see Chap. 9),
that is to say the evolution in time of models in a space EM. On iterating the action

space must be contracted by a factor b˛ D b1=2 to obtain a statistically identical trajectory. This
change of scale factor is the only one for which we obtain a non trivial limit of the diffusion
coefficient D at b ! 1. In the case of anomalous diffusion, with “pathological” jump statistics
(Lévy flights) or diffusion on a fractal object, the required exponent ˛ is greater than 1=2 in the first
case (Lévy flights involve superdiffusion) and less than 1=2 in the case of a fractal space (where
the dead branches lead to subdiffusion).
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of the operator Rb starting from a model M0, we obtain a trajectory corresponding
to a succession of models showing the same thermodynamic properties as M0, in
particular with the same partition function. The set of these trajectories is called
renormalisation flow. To the user of the model, Rb.M0/ shows a correlation length
� 0 D �=b and Rb apparently reduces the critical character.

In the context of a parametrised model M.K/, we transfer the study of flow
induced by the transformation M! R.M/ to that of a flow induced in the parameter
space by a transformation K ! r.K/ with of course RŒM.K/
 D MŒr.K/
. The
critical parameter values are given by the fixed point r.K�/ D K�. Neglecting
nonlinear terms, we show thatDr.K�/ andDR.M�/ have the same eigenvalues, so
lead to the same critical exponents.

Space of models M.K/! R.M/ M.K�/ D R.M�/

m m m m
Parameter space K ! r.K/ K� D r.K�/

This is a good place to reiterate the essential step differentiating the search for
a fixed point in the space of a determined set of parameters (approach proposed
by Kadanoff but which does not work in general) from renormalisation, that is the
search for a fixed point in the space of models.

3.5.3.1 Fixed Points

Fixed points, obtained by expressing that a property A is invariant if its value is A�
such that A� D Rb.A

�/, play a crucial role in the analysis of renormalisation. By
definition, all models presenting the same fixed points show the same properties on
large scales. In addition:

• The characteristic scale �� (typically a correlation length or time) associated with
a fixed point has to obey �� D b �� and is therefore either zero or infinity. If
�� D 0, the fixed point is an ideal model in which there is no coupling between
the elementary constituents. If �� D 1, the fixed point corresponds to a model
of critical phenomena because it takes into account the scale invariance and the
divergence of �.

• The analysis ofRb in the region around a critical fixed point � (�� D 1) deter-
mines the scaling relations describing the corresponding critical phenomena. In
particular it is shown [9, 11, 17] that the critical exponents are simply linked to
eigenvalues of the renormalisation operator linearised in � .

• These results are robust and universal in the sense that they are identical for
all models in what we call the same universality class. At this stage of our
introduction to the renormalisation group, this property constitutes a definition
of a universality class. Later we will see that each of these universality classes
contains an infinite number of different models. Renormalisation results are
therefore not invalidated by potential ignorance or misconstruction of the system
at small scales. On the contrary, the renormalisation approach enables the



82 3 Universality as a Consequence of Scale Invariance

classification of the relevant and irrelevant aspects of a model, and thereby
the construction of the minimal model for each universality class. In this sense,
renormalisation methods overcome experimental limitations in certain physical
systems. In this way they mark a turning point in theoretical physics.

3.5.3.2 Models at Fixed Points

Models M� at fixed points obey M� D Rb.M
�/. They correspond to exactly scale

invariant systems, either trivial .�� D 0/, or critical .�� D 1/. The set of models
that converge to M� or diverge from M�, under the action of Rb , is a hypersurface
of EM, which we will call the universality class C.M�/. The basin of attraction of a
fixed point is the sub-space of models for which the renormalisation flow flows to a
fixed point. The universality class C.M�/ is a larger set which also contains all the
models flowing from the fixed point under the action of renormalisation.

Analysis of the neighbourhood of M� predicts the (asymptotic) critical properties
of all the models of C.M�/. A space tangent to C.M�/ at M� is generated by
the eigenvectors of the linearised transformation DRb.M

�/ (see Sect. 9.1.1). The
eigenvalues � with modulus j� j < 1 correspond to stable directions,5 such
that the transformation Rb results in M converging to M�, whereas in unstable
directions .j� j > 1/, Rb drives M away from M�. Situations where j� j D 1 are
called marginal. If the fixed point shows stable and unstable directions, it is called
hyperbolic (see Fig. 3.6). These are the physically interesting fixed points.

3.5.3.3 Power Law and Calculation of Critical Exponents

We distinguish two parts within C.M�/: the basin of attraction of M� (the hyper-
space V S generated by the stable directions) and the hyperspace V U generated by
the unstable directions. V S corresponds to phenomena with no consequences at
macroscopic scales, i.e. to classical systems, which are in other words “non critical”.
The critical properties we are interested in correspond to unstable directions,
themselves associated with relevant coupling parameters Ki . This is one possible
definition of the relevance of a parameter, which we will discuss below. Let us
suppose that there exists only one unstable direction, corresponding to the relevant
parameter K , along which R will perform an expansion. The essential idea is that
all the models MK of C.M�/ that project onto the space V U in an identical manner
are equivalent (denoted ,) because flow in the space V S does not change their
asymptotic behaviour. So we can express the linearisation ofR in the neighbourhood
of the fixed point as:

5A fixed point M� D .x�; y�; z�; : : :/ D f .x�; y�; z�; : : :/ is said to be stable in the direction
x, if f applied iteratively at point M D .x� C dx; y�; z�; : : :/ brings M to M� (dx being
infinitesimal).
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Fig. 3.6 (Left) Hyperbolic fixed point in the case of an essential coupling parameter K (right)
If x� is a hyperbolic fixed point of the transformation xnC1 D f .xn/ in space X , written x� D
f .x�/, there exists a unique pair (V S ,V U ) of stable and unstable manifolds, that are invariant
under f and tangent at x� to vector spaces ES and EU respectively (direct sum of X on x�).
Dotted curves show the appearance of discrete trajectories (after [33] )

R.MK/, Mr.K/, MK� C �1.MK �MK�/; (3.33)

where r.K/ is the renormalisation transformation of parameter K and �1 is the
positive eigenvalue associated with the unstable direction. Identifying the expansion
action of R along V U with the action of r along the directionK gives, to dominant
order:

r.K/ � K�C �1.K �K�/ where K� D r.K�/: (3.34)

If b is the change of scale factor, the behaviour of the coherence length in the
vicinity of the fixed point is written:

�
	

r.K/ �K�
 D � 	�1.K �K�/

 D �.K �K�/

b
: (3.35)

This is true only if �.K/ obeys a power law:

	

�1.K �K�/

�� � .K �K�/��

b
(3.36)

from which we derive the value of the exponent �:

� D log.b/

log.�1/
: (3.37)

The exponent � and the other exponents are calculated from the eigenvalues of
the renormalisation transformation linearised around the fixed point DRb.M

�/. If



84 3 Universality as a Consequence of Scale Invariance

we change the scale factor, the property of the renormalisation group gives rise
to �.b1b2/ D �.b1/�.b2/ for any eigenvalue, in particular the first. So b1b2 D
�.b1/

��.b2/
� D �.b1b2/� , showing that the value of the exponent � is independent

of the scale factor b. Furthermore, we show that the eigenvalues of DRb.M�/ are of
the form �j .b/ D b�j because of the group law.

Physical analysis, for example dimensional analysis, predicts how an observable
A transforms under the action of renormalisation:

A.Rb.M// � b˛A.M/: (3.38)

The same argument as above shows the existence of a scaling law

A.MK/ � .K �K�/x (3.39)

and renders the value of the exponent x:

x D ˛ log.b/

log.�1/
D ˛ �: (3.40)

If the observable is local, depending on the position r in real space, its renormalisa-
tion transformation is written:

A
�

Rb.MK/;
r

b

�

D b˛A.MK; r/: (3.41)

This is for example the case for the correlation function G.M; r/ whose general
expression:

G.M; r/ D e�r=�.M/

rd�2C	
(3.42)

is compatible with the scaling behaviour of � and A above: it obeys (3.41) when we
simultaneously transform r to r=b and � to �=b.

3.5.3.4 Universality Classes

The procedure of renormalisation we have just described shows the universality of
macroscopic properties of critical systems: all models within the same universality
class C.M�/, have the same asymptotic properties. Renormalisation enables the
classification of the ingredients of each model into two categories, irrelevant factors,
which contribute nothing to the critical behaviour, and relevant factors, which
determine the universality class. To make this classification, it is enough to examine
the renormalisation flow. The action of the transformation RK , represented in
the space of models by the renormalisation flow, leads to the determination of
whether or not a modification ıM of a model M has observable consequences on
its thermodynamic behaviour (large systems limit):
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• If the trajectories coming from M and M C ıM approach one another under the
action of RK , the perturbation ıM does not affect the macroscopic properties
predicted by the model M. In this case ıM is said to be irrelevant and it is futile
to take it into account if we are interested in the critical behaviour.

• If, on the contrary, the trajectories move away from each other, the perturbation
ıM is relevant: its influence is amplified and discernible in the macroscopic
characteristics. The perturbation is capable of changing the universality class
of M.

This argument shows that critical phenomena are associated with hyperbolic fixed
points of RK , unstable directions being associated with relevant control parameters.
Universality classes are associated with these hyperbolic fixed points, which are the
ideal representatives of the models in the universality class.

3.5.4 Remarks

3.5.4.1 Role of Choice of Transformation: M� changes but Exponents do not

The form of the renormalisation flow depends directly on the definition of the
renormalisation operator R. As a general rule, if we significantly change the
transformation R, we expect that it will change the position of the fixed point M�.
However in practice, the transformations most often used are connected by a
diffeomorphism such that R0 D fRf �1. The fixed point of R0 becomes f .M�/
but the critical exponents do not change, simply becauseDR.M�/ andDR0Œf .M�/

have the same eigenvalues. This argument reinforces the universal characteristic of
critical exponents.

3.5.4.2 Influence of Non Linearities in the Transformation

We could draw a parallel between the action of the transformation RK on the
family of models and its linearised action along the unstable manifold of the
renormalisation flow leading to the exact scaling laws. This parallel is however
only rigorous if we neglect the nonlinear terms in the action of the renormalisation.
This means the scaling laws only give the dominant dependence with respect to K .
The rigorous nonlinear analysis (very tricky) effectively shows that the nonlinear
terms do not destroy the scaling law deduced from the action of the linearised
renormalisation operator.6

6It was proved for the renormalisation describing the transition to chaos by doubling the period
(see Chap. 9) [Collet and Eckmann 1980].
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3.6 Phase Transitions Described by Renormalisation

3.6.1 Examples of Renormalisation

Since the 1970s many renormalisation methods have been developed, some in
direct space and others in Fourier space. Here we develop a first, simple, example
corresponding to the Ising model in two dimensions. We first show the calculation
for a triangular lattice, then for a square lattice.

3.6.1.1 Ising Model in 2D: Triangular Lattice

Although the concept of renormalisation can seem abstract, it is possible to illustrate
it with simple concrete examples. Figure 3.7 shows the first situation we will
describe in detail: six spins �i on a triangular lattice are regrouped in two blocks of
three spins. In this case, the decimation can be summarised in the following way:

• Six initial spins �i ! 2 super-spins �i.
• Change in spatial scale factor b D p3.
• Majority rule:

�i D C1 if
P

j2Block.i/ �j > 0

�i D � 1 if
P

j2Block.i/ �j < 0:

In the absence of an external field, the Ising Hamiltonian is written:

� H

kT
D K

X

<ij>

�i�j ; (3.43)

where < ij > means that �i and �j are nearest neighbours. The partition function is:

Z D
X

f�i g
e

K

X

<ij>

�i �j

: (3.44)

Fig. 3.7 A set of 6 spins,
regrouped in 2 triangular
blocks
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Recall that the reduced coupling constant K is linked to the coupling constant
J and the temperature by K D J=kT . First we need to state that the decimation
conserves the value of the partition function for the set of spins (Z0 D Z). In fact, by
this transformation all we are doing is arbitrarily changing the level of description of
a reality which itself remains the same (covariance). The partition functionZ0 of the
decimated system is particularly simple. It contains just two terms corresponding to
the 4 states accessible to the super-spins �1 f""; ##; "#; #"g. We can then
expressZ 0 as:

Z0 D Z0"" CZ0## CZ0"# CZ 0#" D 2eK
0 C 2e�K0

: (3.45)

The calculation of Z brings into play 26 D 64 states, 16 per state of the system of
super-spins �i . We can therefore decomposeZ into 4 contributions:

Z D Z"" CZ## CZ"# CZ#"; (3.46)

where the arrows in the indices refer to the state of �1 and �2. Table 3.2 shows the
16 configurations that lead to the state "" for �1 and �2, i.e. situations where only
one spin �i at most is flipped down in each block. The 16 configurations that lead to
the state ## for�1 and�2 are deduced directly by reversing the orientations of every
spin in the table: they lead to the same values in the Hamiltonian and contribute in
the same way to Z:

Z"" D Z## D e8K C 3e4K C 2e2K C 3e0K C 6e�2K C e�4K: (3.47)

Table 3.2 The 16 configurations of the system of spins that correspond to the state "" for �1
and �2

�1 �2 �3 �4 �5 �6 l1 l2 l3 l4 l5 l6 l7 l8 �H=kT
Order """ """ """ """ """ """ K K K K K K K K 8 K

# """ """ """ """ """ �K �K K K K K K K 4K

""" # """ """ """ """ �K K �K K K K K K 4K

1 spin """ """ """ """ """ # K K K K K K �K �K 4K

flip """ """ """ # """ """ K K K �K K �K �K K 2K

""" """ """ """ # """ K K K K �K �K K �K 2K

""" """ # """ """ """ K �K �K �K �K K K K 0K

# """ """ """ """ # �K �K K K K K �K �K 0K

""" # """ """ """ # �K K �K K K K �K �K 0K

2 spin # """ """ # """ """ �K �K K �K K �K �K K �2K
flips """ # """ # """ """ �K K �K �K K �K �K K �2K

""" """ # # """ """ K �K �K K �K �K �K K �2K
# """ """ """ # """ �K �K K K �K �K K �K �2K
""" # """ """ # """ �K K �K �K �K �K K �K �2K
""" """ # """ # """ K �K �K �K K �K K �K �2K
""" """ # """ """ # K �K �K �K �K K �K �K �4K
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We leave as an exercise for the reader to show in the same way that:

Z"# D Z#" D 2e4K C 2e3K C 4e0K C 6e�2K C 2e�4K: (3.48)

The covariance we would like to impose, that is the invariance of system prop-
erties under the effect of the transformation, requires Z0""DZ"" and Z0"#DZ"#.
But one difficulty is that we have two independent relationships relatingK and K 0.
These relationships are not identical: in Z0, the product of the two terms equals 1
(e2K

0�e�2K0 D 1), which is not true forZ""�Z"#. Here we touch on the difficulty
that Kadanoff’s approach ran into: the renormalisation of the coupling parameter
K seems to lead to a contradiction. We have indicated the general idea enabling
us to avoid such contradictions: transform the model and not just the value of the
parameters. Here one possibility is to add a term g, per spin, to the Hamiltonian.
Note that this term, equivalent to a chemical potential, has no reason to show
singular behaviour at the critical point:

� H

kT
D K

X

<ij>

�i�j CNg: (3.49)

Identifying each term gives:

eK
0C2g0 D Z1

2
D e6g

	

e8K C 3e4K C 2e2K C 3e0K C 6e�2K C e�4K



(3.50)

and

e�K0C2g0 D Z2

2
D e6g

	

2e4K C 2e3K C 4e0K C 6e�2K C 2e�4K



(3.51)

from which we get the value of K 0 (and g0):

K 0 D 1

2
log

�
e8K C 3e4K C 2e2K C 3C 6e�2K C e�4K

2e4K C 2e3K C 4C 6e�2K C 2e�4K

�

: (3.52)

In this way we have established the renormalisation relation of K . There are three
fixed points of which two are stable:

• The fixed point K D 0 corresponds to a coupling J D 0 or T D 1: the spins
are independent from each other and the disorder is total.

• The fixed point K D 1 correspond to an infinite coupling or T D 0: the spins
are aligned with perfect order.

• There exists another fixed point, which is hyperbolic and corresponds to the value
K� D 0:45146. It is this fixed point that corresponds the critical point.

Since we have taken into account only a finite part of the Ising network, we only
expect an approximate representation of the critical behaviour. However, this should
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still be an improvement with respect to the mean field results. We can check this by
calculating the exponent � as it is expressed in (3.37). The eigenvalue corresponding
to the renormalisation transformation r.K/ is simply the derivative of this function
at the fixed point r 0.K�/. The value of the exponent � is therefore:

� D log.b/

log.�1/
D 1=2 log3

log.r 0.K�//
: (3.53)

The value obtained here is � D 1:159, compared with the exact value � D 1

calculated by Onsager and the value � D 1=2 predicted by mean field.
Additionally, we establish the relation g0.K�/ D 5:60 g.K�/ which shows that

at the fixed point the chemical potential g is g� D 0. We say that this quantity is
irrelevant, meaning that taking it into account in the Hamiltonian, facilitating the
calculations, does not affect the fixed point.

3.6.1.2 Ising Model in 2D: Square Lattice

The same type of reasoning can be carried out on two blocks of a square lattice.
This time the 8 spins can organise in 256 possible configurations, which makes the
calculation long. Another difficulty could seem like a dilemma. Given the even
number of spins in each block, we cannot use the majority rule for the six cases
where the magnetisation is zero in each block: we have to randomly consider that
three cases correspond to � D 1, and the other three to � D �1. Using this rule, we
leave to the reader to establish in the same way as previously that the renormalisation
transformation of K can be expressed as:

K 0D1
2

log

�
e10KC6e6KC4e4KC14e2KC18C12e�2KC6e�4KC2e�6KCe�10K

e6K C 8e4K C 10e2K C 22C 13e�2K C 6e�4K C 4e�6K

�

:

(3.54)

Here the non trivial fixed point K� D 0:507874, leads to the value � D 1:114.
These two calculations therefore give similar values of the exponent. Their main
drawback is that they start with finite blocks that do not show the symmetry of the
lattice (triangular or square). A more sophisticated calculation [20] on a finite lattice
of 16 spins regrouped in blocks of 4 (Fig. 3.8) leads to exponent values extremely
close to the exact values calculated by Onsager.

Table 3.3 regroups the results obtained by our renormalisation example of the
Ising model. The value of the fixed point K� of the reduced coupling constant
K leads to values of the critical exponents which are universal and therefore

Fig. 3.8 Decimation into
blocks of 4 spins on a Ising
square lattice

μ1 μ2
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Table 3.3 Results obtained in the case of the 2D Ising model. The value of the reduced coupling
constant K� at the fixed point leads to the value of the critical temperature Tc (non universal)
which is compared to the value obtained in the mean field approximation Tc (MF) (MF for mean
field). K� also leads to the value of critical exponents (universal and therefore independent of the
lattice type). The example of the exponent � characterising the coherence length is presented above

Triangular lattice Square lattice

Mean This Exact Mean This Exact
field calculation value field calculation value

K� 1=6 0.45146 0.27465 1=4 0.507874 0.440687
kTc=J (MF)
(non universal) 6 2.709 3.64 4 2.0315 2.269185
� (universal) 1=2 1.159 1 1=2 1.114 1

independent of the lattice type. As an example we have taken the exponent � which
characterises the coherence length. Renormalisation, even at the simple level we
have applied it, noticeably approaches the exact value of this exponent. The value of
the reduced coupling constantK� also leads to the value of the critical temperature
Tc D J=kK�. Even though it is not universal (it depends in particular on the
nature of the lattice) this value enables us to evaluate the effect of fluctuations if
it is compared to the value obtained in the mean field approximation Tc (MF).
The noticeable lowering of the critical temperature seen shows that this simple
renormalisation calculation takes into account the effect of fluctuations.

3.6.2 Expansion in " D 4 � d

Here we very briefly present the famous approach developed (from 1972) by Wilson
and Fisher [9,10,32]. The idea is to generalise renormalisation freeing it from being
saddled with specific models. Let us remind ourselves of the accomplishments of
renormalisation as verified when applied to a particular model:

• Universality. Critical behaviour (and for example critical exponents) do not
depend on the microscopic details of the model. Note that the critical temperature
itself, directly determined by the value of K�, is not a universal quantity: it
depends on the position of the fixed point, which is itself sensitive to the details of
the model. On the other hand, we show that the properties of the neighbourhood
of the fixed point, characterised by the eigenvalues, are independent of the
position of the fixed point, within the same universality class.

• Critical exponents are universal quantities, which principally depend only on
two “relevant” geometric parameters, the dimension d of space and the number
n of components of the order parameter. Examples of “irrelevant” parameters are
the symmetry of the lattice and the nature of the interaction range introduced in
the model (on the condition that it decays reasonably fast with distance).
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• For d � 4 the Ginzburg criterion (Sect. 3.1.3) indicates that the mean field
exponents are valid. This is verified by renormalisation approaches.

Wilson and Fisher [32] use a very general model in which n and d are parameters
assumed to vary continuously. They then expand the value of the exponents as a
function of " D 4 � d where " is small. For " D 0, the exponents take the mean
field values which we presented in Chap. 1 (˛ D 0, ˇ D 1=2, � D 1, ı D 3, 	 D 0,
� D 1=2). The starting Hamiltonian chosen by Wilson is:

H D �
X

r;a

J.a/S.r/S.r C a/� h
X

r

S˛.r/; (3.55)

where the interaction energy J.a/ depends in general on the distance between the
spins. Spins S have n components, position r is located in space of dimension d and
h is the applied external magnetic field. This Hamiltonian will now undergo several
transformations in order to simplify the renormalisation. The main transformation
consists of switching to Fourier space allowing the sum over a to be replaced by
the product S.q/ S.�q/. Finally, the Hamiltonian can be written in the form of the
following expansion:

H D � 1
2

X

q

. pCq2/S.q/S.� q/�U
N

X

q1Cq2Cq3Cq4D0
ŒS.q1/S.q2/
 ŒS.q3/S.q4/


� W

N2

X

q1Cq2Cq3Cq4Cq5Cq6D0
ŒS.q1/S.q2/
 ŒS.q3/S.q4/
 ŒS.q5/S.q6/


� � � � C hN 1=2S˛.0/ (3.56)

where p, U ,W , etc. are the new coupling constants which depend on J , a, d and n.
If we take only the first terms, we obtain the model called “Gaussian” in which
the critical behaviour is characterised by mean field exponents. We can write the
renormalisation transformations of the coupling constants as a function of n and
" D 4 � d . To first order in " it is sufficient to take into account just the first two
terms: the corresponding model is usually called the S4 model. It establishes the
following expressions for the exponents to first order in ":

˛ D "
�

1=2� nC 2
nC 8

�

CO."/ ˇ D 1=2� 3"

2 .nC 8/ CO."/

� D 1C .nC 2/"
2 .nC 8/ CO."/ ı D 3C "CO."/:

(3.57)
The other two exponents 	 and � can be derived using the scaling relations (3.8)
and (3.9) (see Sect. 3.2.1). One may feel that a century of study of phase transitions
finally succeeded with these explicit expressions for the critical exponents. How-
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Table 3.4 Values of the exponents obtained by expansion in "D 4� d . To zero order, first order
and finally the best value obtained by summing all the contributions [34]

Exponent (3D Ising) ˛ ˇ � ı 	 �

Mean field values ." D 0/ 0 1=2 1 3 0 1=2

Value to first order in " 0.16666 0.3333 1.16666 4 0.0909 0.61111
Best value obtained 0.1070 0.3270 1.239 4.814 0.0375 0.6310
Experimental values
(liquid$ vapour) 0.113 0.322 1.239 4.85 0.017 0.625

ever, though the approach may be excellent, the first order results are not perfect
(see Table 3.4).

An aspect even more disappointing is that the expansion in " does not converge
[34] whatever the order! However, sophisticated techniques to sum over all terms
of the expansion leads to values in perfect agreement with experiments within
the measurement resolution (Table 3.4). Thanks to these summation techniques,
expansion in " has become the characteristic tool of the renormalisation group.
Using this tool the contours in .d; n/ space for each exponent can be traced, where
each point represents a universality class.

Figure 3.9 summarises the results traced in this way by Michael Fisher, for
situations which do not in general have a direct physical meaning. For example n
varies from �2 to infinity (spherical model)! In fact there is no particular formal
limit in this range of values for n. In four and higher dimensions the critical
behaviour is that of mean field, while in one dimension long range order is only
established at strictly zero temperature in a system of infinite size. Let us look at
Peierls’ powerful argument on this point.

3.6.3 In a 1D Space

A simple argument due to Peierls rigorously shows that in a one dimensional system
at finite temperature no long range order is allowed. Let us suppose that there exists
a single defect on a 1D Ising lattice, separating up spins " on the left from down
spins # on the right:

""""""""""""""""""################# :

The free energy of such a defect, which could be located at N � 1 positions, has the
simple value of:

fdefect D 2J � kT log.N � 1/;
where N is the number of spins. At the thermodynamic limit N ! 1, this free
energy is negative for all non zero temperatures. Therefore such defects are stable at
all temperatures and they are produced spontaneously so long range order is unstable
at all finite temperatures.
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Fig. 3.9 The variation of exponents ˇ and � taken from the expansion in " D 4 � d (traced
by Michael Fisher) as a function of the dimension d of space and number n of components of the
order parameter. Each point .d; n/ corresponds to a universality class. The coordinates are assumed
to vary continuously but only their integer values make sense physically. The variation of critical
exponents is represented as contours. At and above four dimensions, the mean field exponents are
valid (after [33])



94 3 Universality as a Consequence of Scale Invariance

One dimensional systems are however interesting in two important situations:

• When their size is finite or, which amounts to the same, if they have dilute defects
or disorder: a finite ranged order can “graft” itself to the extremities or defects
of the system. This local order could lead to a finite macroscopic order at finite
temperature. This can be expressed by saying that the effect of structural disorder
is relevant.

• When they are assembled in a higher dimensional space (2D, 3D, . . . ) and there
exists a coupling, even if very weak, between the one dimensional objects, as
we discuss in Sect. 3.7.1. This is the most common situation in practice because
strictly one dimensional systems do not exist.

3.6.4 And in a 2D Space?

Onsager’s exact result for the 2D Ising model is entirely confirmed by renormal-
isation results. It assures us that an order–disorder transition is observed at finite
temperature in 2D when n D 1, despite the large fluctuations which develop in two
dimensions. Peierls’ argument, presented above in Sect. 3.6.3, can be adapted to two
dimensions (Fig. 3.10).

The free energy of the defect is expressed as:

fdefect D 2JL� kTL log. p/;

Fig. 3.10 A line of defects
separating a 2D Ising network
into two parts of up spins ",
to the left, and down spins #,
to the right
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where L is the length of the line of defects measured in number of sites,7 and p
is the average number of choices of orientation of this line at each site. We do not
know the exact value of p, but due to the constraint that the line does not loop back
on itself, we know that the average value is between 2 and 3. We deduce that fdefect

changes sign at temperature Tc :

Tc D 2J

k log. p/
:

This leads to 1:82J=k < Tc < 2:88J=k compared to the exact (Onsager) value of
Tc D 2:2692J=k and that of mean field Tc D 4J=k. It is interesting to note how
much the stability of these simple defect lines explain the reduction in the critical
temperature compared to that predicted by mean field.

The same type of stability analysis of defects in two dimensional models with
n D 3 (Heisenberg), n D 4, n D 5 etc. shows that the critical temperature is zero
in these cases. What about the borderline case of the 2D XY model where d D 2

and n D 2? Actually a transition at finite temperature is observed. It does not have
characteristics of universality and corresponds to amazing physics. We present its
main characteristics in the following paragraph.

3.6.5 XY Model in 2D: The Kosterlitz–Thouless Transition

The argument of the previous paragraph is specific to the Ising model where spins
can only take two opposite values. In the case of a continuous variation, the types
of defects possible are far more diverse and their entropy can be high: this can
profoundly change the nature of the transition. The particular case of a planar array
of spins S D .Sx; Sy/ in two dimensions – the 2D XY model – illustrates this
effect. It was the object of intense debate in the early 1970s, before Kosterlitz and
Thouless proposed a famous description [15]. This transition is also often called the
“KT transition”.

There seemed to be a contradiction about this model. On one hand, Mermin
and Wagner established that all long range order is excluded in two dimensional
systems that possess a rotational symmetry, which is the case in the XY model
where the spins S can take any orientation in the plane. On the other hand, numerical
simulations clearly showed a very clean transition, but to a state without long range
order. Here we give a quick introduction. The XY model Hamiltonian in zero field
is written:

7Given that only one of these p choices progresses the line in each direction, the length L takes the
value pN 1=2 where N is the total number of spins. However, since L is a factor in the expression
of fdefect, its precise value does not play a role in the sign of fdefect.
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H D �JS2
X

<ij>

cos.�i � �j /; (3.58)

where �i is the orientation of spin i . This angle is a convenient order parameter.
Is it legitimate to assume that it varies slowly in space on the scale of neigh-
bouring spins? At very low temperature, certainly, and we will assume so initially.
A determination by renormalisation of the KT transition is presented in Sect. 8.6.2.

3.6.5.1 Slow Spatial Variation of the Order Parameter �

This approximation enables us to write, to first order in �i � �j :

H D �1
2
qNJS2 C 1

2
JS2

X

<ij>

.�i � �j /2 (3.59)

or, in a continuous approximation and assuming S D 1:

H D E0 C J

2ad�2

Z

dd r j r� j2 : (3.60)

This form of the Hamiltonian leads notably to excitations of the system which
are called “spin waves”, excitations in which the gradient of � is constant. From
this Hamiltonian all the thermodynamic properties can be calculated, notably the
correlation function G.r/. From the general form of the correlation function we
directly obtain:

G.r/ D hcos Œ�.r/ � �.0/
i ;
where the average is performed over the set of origins r D 0 in the system.
G.r/ tends towards a constant when r ! 1, if long range order exists. In

particular, at zero temperature, G.r/ D 1 for the perfectly ordered state. An
evaluation of the partition function and then of G.r/ to first order leads to:

G.r/ �
� r

a

��	.T /
(3.61)

in agreement with the definition of the exponent 	 in (3.42) for d D 2 at the critical
temperature for which � D 1. But here, the completely new result is that the
exponent 	.T / depends on the temperature:

	.T / D kT

2�J
: (3.62)

This result is radically different from what we have observed for universal phase
transitions, for which a power lawG.r/ � .r=a/�.d�2C	/ is observed strictly only at
the critical point (outside the critical point the dominant dependence is exponential).
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Everything happens as if the coherence length stayed infinite, as if the system
stayed in the critical state up to zero temperature.

Do not forget that to get to this result we have assumed that we are at very low
temperature so that the order parameter varies slowly in space. At high temperature
this hypothesis is wrong since there is total disorder. How does the transition
between the two regimes take place?

3.6.5.2 Vortices and Vortex-Antivortex Pairs

When we start with a perfectly ordered system, all phase transitions are the result of
local excitations produced by thermal agitation. In the case of an Ising model, these
excitations are the flipping of isolated spins. Kosterlitz and Thouless [15] identified
the excitations responsible in the case of the XY transition in two dimensions: they
are pairs of vortices. The simplest vortex of an order parameter is an arrangement
of spins which is rotationally invariant around a point M (see Fig. 3.11).

If we use polar coordinates .r; '/ centred on M for the position of spins, the order
parameter � is equal to ' up to a constant and it does not depend on r . Generally
� in a vortex can be a positive or negative integer multiple of ': � D q' C �0. We
will see below that the number q plays the role of an electric charge. From a few
atomic distances onwards, the energy of a vortex can be calculated by the continuous
approximation of (3.60). By neglecting the terms due to nearest neighbours of M
(their contribution could not be assessed by the hypothesis of continuous variation
of �), the energy of a vortex of unit charge in a system of size L is written:

Evortex D 2�J log

�
L

a

�

(3.63)

which diverges for a system of infinite size, a being, as usual, the distance between
spins. Since the entropy of a vortex is directly linked to the number of possible
positions for M (L2=a2 positions), the free energy is given by:

fvortex D 2.�J � kT / log

�
L

a

�

: (3.64)

Fig. 3.11 A vortex of unit
“charge” on a 2D XY lattice
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This defines a critical temperature Tc D �J=k below which no isolated vortices in
the system are stable. The energy of a dipole, a pair of vortices of charges q and �q
separated by r , is written:

EDip D 2�Jq � log
� r

a

�

: (3.65)

Since this energy is finite, while their entropy is large (varies as log.L=a/),
these dipoles are always present in a large system, even at low temperature. The
number of vortex pairs increases with temperature. At the critical temperature, the
average separation between pairs reaches the size of the system and disorder settles.
Kosterlitz showed that the coherence length, all the way long infinite below Tc ,
diverges for t D .T � Tc/=Tc > 0 as:

� � exp.1:5t�1=2/: (3.66)

This dependence on temperature, which has nothing to do with the power laws
observed for universal critical transitions, clearly illustrates the unusual nature of
the KT transition. Many other properties are special to this transition, such as the
thermal dependence of the exponents.

3.6.5.3 Experiments in 2D

During the 1970s, many teams attempted the challenge of experimentally observing
the KT transition [16]. The systems they considered were as diverse as they were
difficult to produce: liquid crystals, soap bubbles, adsorbed atomic layers, ultrathin
films of superfluid helium, two dimensional superconductors, two dimensional
gases of electrons, etc. Most of the attempts ran up against an apparently unsolvable
problem. To find a real XY system where the order parameter really has two
components, it is difficult to imagine and produce a system where the third
spatial dimension, the support or environment in general, does not perturb the two
dimensional nature of the system: adsorbed layers are perturbed by the substrate,
2D electron gases by the crystal lattice, etc.

However, observations of films of superfluid helium verified point by point the
predictions of the KT transition [3]. Similarly for superconducting films [8] and
for planar networks of Josephson junctions [12] show exponents depending on
temperature that also show a discontinuity at the critical temperature (see Chap. 7
on superconductivity). The case of melting of 2D crystals is less clear despite
the theoretical model proposed by Nelson and Halperin [22] KT behaviour was
observed in colloidal suspensions [19] whereas melting seems to be first order in
other observed situations. But effects of the support and the extremely long times
needed for systems to equilibrate considerably complicate experiments (as well as
numerical simulations). However it seems that this situation is not universal and
certain microscopic details have a relevant effect on the nature of the transition.
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We will see another example of the KT transition in the chapter on growth
mechanisms (Chap. 8) namely the roughening transition, in which a solid becomes
rough above a given temperature. This transition, predicted by theory, is well
confirmed by numerical simulations.

Among the numerous reviews of these experiments, we recommend those
published by Abraham [1], Saı̈to and Müller-Krumbar [28] and Nelson [21].

3.7 And in Real Situations

3.7.1 Crossover from One Universality Class to Another

Suppose we have two hyperbolic fixed points M�1 and M�2 in the same set of
parameterised models. There exists a limit separating the zone of validity of the
linear approximation around M�1 from the corresponding zone around M�2 . Within
these zones, the trajectory of a point M under the action of renormalisation is more
sensitive to the presence of the fixed point M�1 or M�2 respectively (see Fig. 3.12).

In practice, we could observe a crossover when we vary one of the parameters of
the Hamiltonian: beyond a given threshold the fixed points are suddenly changed.
An example of such a crossover results from the following Hamiltonian, cited by
Fisher, for a system of 3 component spins with an anisotropy characterised by ":

H.�; � 0/ D J.�1� 01 C �2� 02 C �3� 03/C "J.�2� 02 C �3� 03/: (3.67)

If " D 0, the critical exponents are those associated with the fixed point M�3
(Heisenberg spins with three components). However if " D �1, the critical
exponents are those associated with the fixed point M�1 (Ising spins with one
component). Finally if " D C1, the critical exponents are those associated with
the fixed point M�2 (XY spins with two components).

M2*M1*

Sensitivity
to M1*

Sensitivity
to M2*

Fig. 3.12 Line separating the zones of influence of two fixed points
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For which values of " are the changes of universality classes situated? It can be
shown that, for all nonzero values of the anisotropy " we exit the universality class
of 3 component Heisenberg spins:

• For " > 0, the universality class is the XY model (2 component spins).
• For " < 0, the universality class is the Ising model (1 component spins).

3.7.2 Establishment of Equilibrium and Dynamic
Critical Exponents

Up until now, we have assumed that our systems are at equilibrium and that we have
been taking an instantaneous microscopic snapshot averaged over all configurations
of the system. This assumption rests on the implicit assumption of ergodicity. In
practice, the system constantly evolves at the microscopic scale and its dynamic
behaviour is singular at the critical point. In fact, at the critical point, fluctuations in
the order parameter are of divergent spatial range, but they also evolve very slowly:
we can say that their temporal range diverges. The fast exponential relaxation
e�t=� of correlations far from the critical point, is replaced by a power law decay
t�� , � being a dynamic critical exponent and here t is the time. This can also
be expressed by the fact that the relaxation time �.T / diverges at Tc . We call
this phenomenon, which is characteristic of critical phenomena, critical slowing
down. Other exponents have been defined describing for example the temperature
dependence of the time taken to relax to equilibrium. Critical phenomena are then
characterised by a double singularity at .q ! 0; ! ! 0/. Like other critical
exponents, dynamic critical exponents are invariant within universality classes. They
can be determined with the help of a spatiotemporal extension of the renormalisation
methods used to calculate the spatial critical components [13, 18], see also Chap 8,
Sect 8.6.2.

3.7.3 Spinodal Decomposition

We may also wonder about the path that leads to order at low temperature when
we cool a system. For example, we can try to describe the evolution of a system,
initially at thermal equilibrium and at high temperature T0 � Tc and suddenly
quenched to a temperature T1 < Tc , keeping the order parameter constant (constant
magnetisation in the case of a magnetic system or constant density in the case
of a fluid or alloy). Since the initial disordered state is not at equilibrium at the
new temperature T1, the system will evolve irreversibly to one of the probable
configurations at T1. If T1¤ 0, in general two phases coexist at equilibrium (liquid–
vapour, positive–negative magnetisation). So we see domains, occupied by one or
the other phase, growing by aggregation, fusion etc. This process of separation,
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which starts on a very small scale and propagates to the macroscopic scale, is called
spinodal decomposition. Let us mention a few examples where the phenomenon has
been observed experimentally or numerically:

• Growth of domains of magnetisation˙M0.T / in ferromagnetic systems and the
associated Ising model

• Spinodal decomposition in binary alloys
• Phase separation in binary fluids

Several studies have brought to light numerically and experimentally [27] that the
relaxation of such a system at long times shows a remarkable scale invariance. In
Chap. 2 we introduced structures that are spatially scale invariant: fractals. These
structures evolve and are related to one another at successive times by changes of
spatial scale. Note that the relaxation of the system acts exactly like an inverse
renormalisation. Quantitatively, the morphology of a system is described by the
correlation function of the order parameterm at two points:

G.r; t/ D hm.r; t/m.0; t/i � hm.r; t/ihm.0; t/i (3.68)

(an average over the initial condition is implicit in this definition). The scale
invariance is expressed by writing that the correlation function only depends on
r or t via the dimensionless parameter r=L.t/:

G.r; t/ D f .r=L.t// when t !1: (3.69)

The scale factor L.t/ contains the physics of this decomposition observed at long
times, L.t/ showing a scaling behaviour:

L.t/ � tn when t !1: (3.70)

We can specify the condition t ! 1: the typical domain size must be larger than
the correlation length for the scaling regime to be established. The scaling law is
observed when L.t/ � �.T /, where �.T / is the correlation length at thermal
equilibrium. Starting from a Langevin equation describing the dynamics (see
Chaps. 4 and 8), n may be determined by a spatiotemporal renormalisation study
(we describe this type of approach in the following chapter). This study leads to
T D 0 and not to the critical fixed point, therefore the exponent n is not a dynamic
critical exponent. It can be shown [4, 5] that the phenomenon shows a certain
universality in the sense that n does not depend on the details of systems within a
universality class. In particular, the details of the kinetics of domain growth are not
involved.

Scale invariance of the spinodal structure has been well established experimen-
tally and numerically, but it is more difficult to demonstrate theoretically, apart from
in a few specific cases. Two cases need to be distinguished depending on whether
the order parameter is conserved or not during the evolution following cooling. In
the Ising model, spins may flip independently of each other in such a way that the
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magnetisation changes during relaxation. In contrast, in an alloy or a binary fluid,
the number of molecules of each type is conserved, which is equivalent to working
at constant magnetisation in a spin system.

3.7.3.1 Domain Growth with Non Conserved Order Parameter

In the first case, where the order parameter is not fixed, domain growth is governed
by the principle of minimisation of surface energy at the boundaries between
domains. A similar growth process, also governed by minimisation of surface
energy, is observed in clusters of soap bubbles. The interfaces relax independently
of one another and the relaxation is therefore rapid:L.t/ � pt . Analytically, we can
describe this situation with local laws. In this case, the proportion of phases is not
fixed in advance and we see a competition between domains. The phase observed in
the final state is the result of this competition. We stress that this result will depend
on the initial condition but also on all the successive random events involved in the
domain growth.

3.7.3.2 Domain Growth with Conserved Order Parameter

In the second case, deformations of different domains are all correlated due to the
constraint of conservation of the order parameter. The evolution is still governed
by the principle of minimisation of surface energy, but this minimisation must be
global. It occurs through diffusion of the order parameter from interfaces of high
curvature towards those with low curvature. The presence of correlations at all scales
in the system, induced by the constraint of conservation of the order parameter and
the global nature this imposes on the dynamics, will significantly slow down the
evolution with respect to the first case of non fixed order parameter.

When the order parameter is conserved, we observe and calculate by renormal-
isation L.t/ � t 1=3, if the order parameter is scalar, and L.t/ � t 1=4, if the order
parameter is a vector. In binary fluids the situation is more complicated because the
scaling regime is truncated by the (in general dominant) influence of gravity (unless
we work in microgravity or the fluids have the same density). We will then typically
see three successive regimes:

diffusive regime, in which L.t/ � t1=3
viscous regime, in which L.t/ � t
inertial regime, in which L.t/ � t2=3: (3.71)

In summary, the dynamics associated with the appearance of order by symmetry
breaking observed at low temperature shows a spatiotemporal scale invariance at
long times, in which the characteristic length L.t/ associated with the spatial
scale invariance behaves like L.t/ � tn. The mechanism of domain growth is
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driven by minimisation of surface energy: the system evolves for as long as there
are transformations lowering its interfacial energy. Relaxation occurs globally and
therefore more slowly in systems where the order parameter is conserved compared
to systems where it is not.

3.7.4 Transitions and Scale Invariance in a Finite Size System

3.7.4.1 Can a System of Finite Size show a Phase Transition?

We have seen that a phase transition is only well defined in the thermodynamic limit
N !1. In this sense, we can define a phase transition as a singularity of physical
behaviour related to the non commutativity of the limits T ! Tc andN !1. This
definition does not help us to understand what a phase transition corresponds to at
the microscopic scale and hardly indicates what will be the natural extension of the
notion of phase transition in a system of finite size. Let us return to the meaning of
the formalism in which we define phase transitions. It it based on the identification,
in the thermodynamic limit, of:

• A thermodynamic quantity Athermo

• The experimentally observed quantity Aobs

• The statistical average hAi
• The most probable value Am

This identification is justified by the probability distribution PN .A/ with relative
variance proportional to 1=N , assumed to have one single peak centred on Am. For
reasonably large N , the saddle point method (method of steepest descent) applies
and ensures that hAi � Am. Fluctuations being negligible, we can make the identi-
fication: hAi � Am � Aobs � Athermo. This approach fails in at least two cases:

• If PN .A/ has several peaks.
• And close to a critical point, where giant fluctuations not decaying as 1=N can

appear due to the divergence of the correlation length.

These two cases correspond precisely to first and second order phase transitions
respectively. From a physical point of view, it seems natural to base the definition
of phase transitions on the form of the probability distribution PN .A/. Then
the essential quantity is no longer the thermodynamic limit of the free energy
but the distribution, at thermal equilibrium and finite size N , of a variable A
physically characterising the phase. A will be for example the density in the case
of liquid–vapour transitions or magnetisation per spin in the case of ferromagnetic–
paramagnetic transitions. A first order phase transition corresponds to a bimodal
distribution PN .A/. The fraction of the system in each phase is given by the area of
the corresponding peak, the peaks remaining well separated. The case in which two
peaks merge into a single peak when we vary a control parameter X , for example
the temperature, corresponds to a second order phase transition. The peak is large
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PN(A) PN(A) PN(A)

A A A

Varying the control parameter X

PN(A) PN(A) PN(A)

A A A

Fig. 3.13 The action of a control parameter X in a finite sized system, in the case of a first order
transition (top), and a second order transition (bottom)

at the moment of fusion, corresponding to the presence of giant fluctuations and a
divergence in the susceptibility (see Fig. 3.13).

3.7.4.2 Scale Invariance in a Finite Sized System

Here we face an apparent contradiction: how can we apply scaling approaches to a
finite system when these approaches are based on scale invariance, which assumes
an infinite system? The paradox is lifted when we are interested in systems that are
finite but large compared with the element size. The behaviour of the system is then
determined by the values of L and the coherence length �:

• If L > �, the system behaves as if it was infinite.
• If L < �, then the boundaries of the system “truncate” the transition.

In practice, the quantity L appears like a new “field”, in the same manner as h and
t , with its own critical exponents. According to the scaling hypothesis expressed
by Kadanoff, we expect the behaviour of the system to be directly linked to the
relationship between L and �. A given property A.t/ will take for example the
following form A.t; L/, in a system of size L:

A.L; t/ � t˛f
�
L

�.t/

�

� t˛f .t�L/ ; (3.72)
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where the universal function f is constant if its argument is small compared to 1.
We will return to this approach of scaling in finite sized systems in the chapters
treating percolation (Chap. 5), superconductivity (Chap. 7) and above all growth
mechanisms (Chap. 8).

3.7.4.3 Effect of Structural Disorder

The existence of dilute static disorder – impurities, topological defects, etc. – can
also profoundly change the nature of a transition. We will give just one example:
that of one dimensional systems. An impurity plays the role of an extremity: the
system is transformed into an assembly of finite sized systems. Impurities represent
“seeds” for the order which is established on each side over a coherence length. If
the distance between impurities is comparable to the coherence length, the system
can become ordered on average due to the static “disorder” induced for instance by
defects. In general, studies of transitions take into account the structural disorder as
a “field” in the same way as temperature and magnetic field. We are often obliged
to draw phase diagrams of physical systems as a function of the structural disorder
intensity [24, 25].

3.8 Conclusion: The Correct Usage of a Model

It was a formidable challenge to correctly describe a physical system containing
infinite relevant spatial scales. Experimental results showing the robustness of
observed critical behaviours were accumulated, but no model, even very simplified
ones, had been solved in three dimensions. This frustrating failure gave birth to a
new type of physical approach, in which the description of properties of a particular
model takes a back seat behind the comparison between the models themselves.

By striving to describe the organisation of phenomena rather than the phenomena
themselves, renormalisation methods lead to intrinsic results, insensitive to the
inevitable approximations involved in theoretical descriptions. A good picture of
this approach is the description of a fractal curve: its length is a relative quantity
L.a/ depending on the step size a with which we survey the curve. In contrast,
the connection between the measurements L.a/ and L.ba/ obtained by choosing
different minimum scales of a and ba respectively, leads to an intrinsic characteristic
of the curve, the fractal dimension df (see Chap. 2). This relationship expresses the
self-similarity – the scale invariance – of the fractal curve.

To construct a physical model is to choose the minimum and maximum scales,
the boundaries and degrees of freedom of the system S and to simplify its
interactions with the environment, etc. A model is therefore necessarily subjective
and imperfect. The usual route, consisting of deriving as much information as
possible about the behaviour of an ideal system described by the model, is therefore
marred by uncertainties, not to mention errors. Renormalisation methods suggest
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a completely different approach, where the analysis moves from phase space to a
space of models. The renormalisation group classifies the models into universality
classes, bringing together each model leading to the same asymptotic properties.
Note that the renormalisation group is nothing but a dynamic system in the space of
models.

Therefore to correctly predict the large scale properties of a system, all we
need to do is to describe the universality class the physical system belongs to,
and to do that a only a basic model is necessary! The exponents appearing in
the asymptotic scaling laws are the same as those of the archetypal model of the
universality class. However, the crux lies in the fact that renormalisation methods
are able to determine whether or not a perturbation to the model is able to change
which universality class the model lies in, that is to say whether the perturbation
will destroy (relevant perturbation) or not destroy (irrelevant perturbation) the
macroscopic predictions obtained before perturbation. In this way we can test the
robustness of the results with respect to modifications in the microscopic details
and therefore the validity of the model, since many microscopic approximations
(discrete–continuous, interactions restricted to nearest neighbours, type of lattice,
etc.) have no consequences at the scale of observation.
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Chapter 4
Diffusion

This chapter is devoted to diffusion phenomena, which provide many examples
involving principles central to this book:

• The experimental analysis of Brownian motion by Perrin marks, amongst others,
the emergence of the concept of self-similarity in physics [53].

• In particular, the trajectory of a particle performing Brownian motion and the
front of an initially localised cloud of diffusing particles (diffusion front), are
fractal structures, illustrating the ideas introduced in Chap. 2.

• The diffusion laws R.t/ � t �=2, describing the temporal dependence of the root
mean square displacement,R.t/, of a diffusing particle in different situations are
examples of scaling laws. In this temporal context we will return to the distinction
presented in Chap. 1 between mean field exponents and critical exponents,
corresponding here to normal diffusion (� D 1) and anomalous diffusion (� ¤ 1).
Studying the origin of anomalous diffusion will enable us to better understand
the typical mechanisms leading to critical behaviour.

• Diffusion is a phenomenon which can be considered at many different scales.
Through this example we will show the subjective, incomplete and even simplis-
tic nature of descriptions at a given scale. We will see that a better understanding
is obtained by a trans-scale, multiscale view, striving to connect the different
levels of description. As it happens this is the only possible approach we can
take as soon as the phenomena show emergent properties, for example critical
properties.

4.1 Diffusion: What We Observe

4.1.1 Thermal Energy

Let us begin with a quick reminder of the “motor” of all diffusive motion, that of
thermal energy.

A. Lesne and M. Laguës, Scale Invariance, DOI 10.1007/978-3-642-15123-1 4,
© Springer-Verlag Berlin Heidelberg 2012
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Statistical mechanics books teach that the temperature T of a gas can be defined
by the average kinetic energy of the constituent molecules:

3kT D mhv2i; (4.1)

where k D 1:381 10�23 J/K is the Boltzmann constant and m the mass of a
molecule. In the following we show that at equilibrium this kinetic temperature
coincides well with the familiar concept of temperature, that which we measure with
a thermometer [43, 46]. Strictly speaking, the statement only concerns dilute gases,
but the qualitative idea of thermal energy remains valid in all fluids. In this way heat
is connected to the kinetic energy of molecular movement. Inversely, the molecules
of a system maintained at temperature T in thermal equilibrium are spontaneously
and continuously moving,1 with an average velocity of

p

3kT=m, called the thermal
velocity, which depends only on their mass and of course on T . More generally, in a
system at thermal equilibrium, each degree of freedom will show fluctuations called
thermal fluctuations of average energy kT=2. This result is known by the name of
the equipartition of energy theorem [35, 36]. This statement is actually only valid
for degrees of freedom in which the excitation energy (quantum) is inferior to the
typical thermal energy kT , however this is in fact the case at normal temperatures
for the translational degrees of freedom that are involved in the context of diffusion.

The qualitative idea to take from this discussion is that of thermal fluctuations of
amplitude controlled by the temperature. This “thermal energy” is the origin of all
microscopic movement in the absence of external fields. It plays an essential role
in establishing the equilibrium states of matter; it is responsible for the fluctuations
affecting these equilibrium states and the spontaneous transitions produced between
states when they coexist (see Chap. 1). Diffusion is a manifestation of thermal
energy that is observable at our scale, providing almost direct access to this
molecular phenomenon. This point was understood and exploited by Einstein and
Perrin at the beginning of the twentieth century, as we will see in the following
paragraph.

4.1.2 Brownian Motion

Brownian motion takes its name from the biologist Brown, who in 1827 very
accurately studied the continual and erratic movement of a grain of pollen in
suspension in water. He not only observed this phenomenon in many fluids including

1There is no paradox or perpetual motion in this statement. Either we consider a perfectly
insulated container, in which case the movement continues simply because the kinetic energy of
the molecules is conserved, or alternatively the movements will have the tendency to dampen, for
example due to inelastic collisions with the walls of the container if this is at a temperature lower
than T . Saying that we maintain the system at temperature T therefore is exactly saying that the
molecular motion is maintained by an adequate supply of energy.
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in a drop of water trapped within a piece of amber, but he also observed the motion
with mineral grains, leading him to definitively reject any explanation based on the
living character of the grain. This was not the movement of a living being and the
question of its origin left the domain of biology for that of physics. It took almost a
century and Einstein’s analysis of the phenomenon in 1905, to have an explanation.
The theoretical study was then validated by the extremely precise experimental
work of Perrin. Their two complementary approaches definitively established that
Brownian motion was due to collisions of the grain with water molecules in thermal
motion; this explanation provided a strong argument in favour of the atomic theory
of matter, which was still new at the time.

Perrin used emulsions of resin in water, which he made monodisperse (that
is the grain size is uniform, in this case of the order of a micron) by fractional
centrifugation. By observing the movement of the grains initially very close to each
other, he began by verifying that convection is not the origin of the displacement
of the grains. He then carried out an exhaustive study by varying the size of the
grains, their mass, the viscosity of the supporting fluid and the temperature. He
found that the movement is all the more active as the temperature is increased, as
the fluid viscosity is decreased and as the grain size is reduced. He also verified that
movement of grains of equal size is not affected by the nature of the grains or by
their mass.

By recording the successive positions of a grain, projected onto a plane, Perrin
showed the irregularity of the trajectories, their random nature and the existence of
details at all scales: if he increased the time resolution of his recording, the linear
sections interpolating two successive positions transformed into segmented lines
composed of shorter segments of random orientations (see Fig. 4.1). He concluded
from this that the instantaneous velocity of the grains as far as he could deduce from
analysing the recorded trajectories, was badly defined since it depended on the scale
with which he observed the trajectories. This absence of characteristic scale fitted
perfectly with the explanation proposed a little earlier by Einstein: if the movement
of the grain did result from kicks it was subjected to from the water molecules, its
velocity must then show constant changes of direction and this property must persist
if you increase the resolution all the way down to the molecular scale.

Furthermore, analysis of trajectories shows that the average displacement hr.t/�
r.0/i is zero due to the isotropy of the erratic movement of the grains. It is therefore
neither the velocity nor the displacement but a third quantity, the root mean square
displacement of the grains R.t/ � hŒr.t/ � r.0/�2i1=2, which is the relevant
observable for a quantitative description of the movement. By tracing logR2.t/
as a function of log t , Perrin could show that the grains obeyed, at long times, a
statistical law:

R2.t/ � 2dDt .t !1/: (4.2)

We generally talk about normal diffusion when the asymptotic behaviour of the root
mean square displacement R.t/ of the diffusing object is, as here, proportional top
t . The constant of proportionality defines the diffusion coefficientD of the object,

here a grain of resin, in the supporting fluid (conventionally, the dimension of space
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d is shown explicitly in the law of diffusion). Once the normal diffusion law is
found to be satisfied by the existence of a linear section of slope 1 on the graph of
logR2.t/ as a function of log t , we determine the value of D as being the slope of
the linear section of the graph of R2.t/ as a function of 2dt .

A few years before Perrin’s work, Einstein [18] had established a formula which
now carries his name:

D D RT

NAv

1

6�r0�
(Einstein’s formula): (4.3)

This formula, which we will present in more detail in Sect. 4.4.2, expresses the
diffusion coefficient D as a function of the temperature T , the ideal gas constant
R D 8:314, the (measurable) radius r0 of the grains (assumed to be spherical),
the dynamic viscosity � of the fluid and Avogadro’s number NAv. The quantity D
gave Perrin an experimental access to Avogadro’s number2 and achieved what was
considered as a direct proof of the existence of atoms [19, 62]. We refer the reader
to the original work of Perrin [53] Les Atomes, and its translation [53], for all the
details of this historic breakthrough.

We finish with a comment on methodology. The direct analysis of the exper-
imental data showed that R2.t/ behaves as 2dDt at long times, measured D,
and then showed how D varies with the observable parameters (mass and size of
grain, fluid viscosity, temperature). It is however essential to have an underlying
theory, in this case the kinetic theory of fluids, to interpret these results in terms
of molecular mechanisms (the collisions of molecules with the grain), and to have
an explicit theoretical result, the Einstein formula, to extract from the observations
the value of a microscopic parameter (i.e. related to the underlying microscopic
reality, unobservable at the micrometer experimental scales envisaged here), namely
Avagadro’s number, which also makes the microscopic image falsifiable.

4.1.3 Self-Similarity of the Trajectories

Brownian motion is an example of a mechanism generating fractal structures, here
the typical trajectories of the grains. We have just seen that Perrin, in 1913, had
highlighted the property of the trajectories that we today call (statistical) self-
similarity: if we observe the trajectories with a better spatial resolution, k times
finer, they statistically conserve the same appearance, more specifically the same
statistical properties, after resetting the scale by a factor k (Fig. 4.1).

This self-similarity comes from the microscopic origin of the movement: a
displacement of the grain corresponds to a transient anisotropy in the variation

2Perrin obtained 6:85 � 1023, compared to 6:02 � 1023 known today.
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Fig. 4.1 Diagram illustrating the statistical self-similarity of trajectories of Brownian motion:
a detail enlarged (here by a factor k D 5) shows the same statistical properties as the initial
observation. This property is at the origin of the continuous but not differentiable character of the
trajectories, typical of fractal curves

of momentum resulting from a very large number of random collisions of water
molecules with the grain. When we refine the spatial resolution by a factor of k, we
can see the consequences of anisotropies of shorter duration: a segment of length �
after the change of resolution appears as a segmented line made up of segments of
length �=k.

Changing the temporal resolution has the same effect: on decreasing the time step
�t by a factor k2, less instantaneous fluctuations in the position3 are accumulated
and the root mean square displacement, proportional to the square root of the
duration, is reduced by a factor k. The observed motion therefore reflects the
statistical velocity distribution of the water molecules and the way in which
fluctuations in the velocity of the impacting water molecules will accumulate their
effects, at all scales, finally leading to the diffusion law R.t/ � p2dDt for the
grain. We will return in a more precise manner to this statistical law of addition
of microscopic fluctuations, which is at the origin of the self-similarity of the
trajectories, in Sect. 4.3.1, as well as in Sect. 4.5, where we will present the limits of
this law.

The self-similarity nature of the trajectories can be quantified. The scaling law
R.t/ � p2dDt relating the root mean square displacement at time t elapsed since
the start can be interpreted differently: t is also the arc length coordinate along the
trajectory, in some sense the “mass” of the object while R.t/ is its linear extension

3We have just been talking about the movement of the grain in terms of fluctuations in momentum
and now in terms of fluctuations in position: both descriptions are possible and they are obviously
linked. We will elaborate on this point in Sect. 4.4.2, once we have introduced the necessary
technical tools.
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in space. Rewriting t � R2=2dD, the normal diffusion law expresses that the
trajectories have fractal dimension df D 2, whatever the spatial dimension d ,
provided that d � 2. In dimension d D 1, the fractal dimension df D 2 means
that the trajectory returns back on itself very often. This calculation is based on an
average property of the trajectories. In the case of the continuous model (Wiener
process), which we will present in Sect. 4.3.2, we can even show a stronger result:
in spatial dimensions d � 2, almost all the possible trajectories of the Brownian
particle have a fractal dimension equal to 2; in other words, a trajectory has a
probability 1 of having fractal dimension df D 2 [20].

The example of Brownian motion displays a temporal self-similarity expressed in
the scaling law R.t/ � p2dDt , and a spatial self-similarity, directly visible in the
fractal nature of the trajectories. As the demonstration of the qualitative explanation
of the phenomenon in terms of molecular collisions, spatial self-similarity reflects
the self-similarity of the dynamic process – an accumulation of variations in
momentum – at the origin of the observed motion. It is a prime example of the close
link between the spatial patterns observed (here the trajectories) and the dynamics
that generated them. We will encounter many other examples, in particular fractal
growth of interfaces in Chap. 8 and strange attractors in Chap. 9.

In the same fashion, this example shows that spatial fluctuations, as we can show
with a statistical description, are closely coupled to temporal fluctuations, together
reflecting the spatiotemporal organisation of the phenomenon. In particular, the
correlation time and correlation length will diverge simultaneously, as observed for
example in critical phase transitions (see Chaps. 1 and 3). Sticking within the context
of diffusion, in the following paragraph we will present another manifestation of
self-similarity in diffusion, as spatial as it is temporal: diffusion fronts.

4.1.4 Diffusion Fronts

The results obtained by Perrin came from an analysis of individual trajectories,
however this approach is only easily implemented experimentally for quite large
particles, of the order of a micron. Another type of experiment, real or numeric,
is the observation of a diffusion front. The idea is to start from a situation where
the species A whose diffusion we want to study is localised, with for example a
step function profile in a direction Ox, the step being of finite size4 (limited by the
walls of the container). At the macroscopic scale, we then observe a broadening and
dampening of the profile over time under the influence of diffusion (Fig. 4.2).

4The diffusion profile describing the evolution of a semi-infinite (towards negative x) step is
different; its expression is shown to be c.x; t/ D erfc.x=

p
4Dt/ D R

1

x=
p

4Dt e�u2du, also a

solution to the diffusion equation @t c D D@2xxc but verifying at every instant the boundary
condition c.x D 0; t/D 1.
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Fig. 4.2 Diffusion front observed at the macroscopic scale. The diffusion coefficient of a species
A (molecules, macromolecules, colloids or dust particles) in a given fluid can be measured by
observing the evolution of its average concentration c.x; t/, starting from an initial step function
profile of finite size in the direction Ox (flat profile in the directions Oy and Oz orthogonal to the
direction Ox of the concentration gradient)

Fig. 4.3 Diffusion front observed at the microscopic scale, here of a numerical simulation in two
dimensions (initial profile consists of 150 particles with a height of 75 lines). The interface and the
corresponding average profile are shown at two successive time steps, highlighting the development
of inhomogeneities. The front looks like a rough interface, with spatial fluctuations at all scales: it
is a fractal structure

The spatialtemporal evolution of the average concentration gives the diffu-
sion coefficient D: we will see in Sect. 4.2.1 that at long enough times, the
average profile in the direction Ox of the initial gradient behaves as c.x; t/ �
.1=
p
2dDt/ expŒ� x2=4Dt�. The quality of this method of measuringD is limited

by density fluctuations, both longitudinal (in the direction of the gradient Ox) and
lateral (in the directions Oy and Oz perpendicular to the gradient). The profile,
which is regular if we observe it at the macroscopic scale, actually shows a complex
microscopic structure reflecting the molecular and random origin of diffusion.

Numerical simulation of the phenomenon in d D 2 or three dimensions, shows
that the interface marking the boundary of the cloud of particles (i.e. the diffusion
front in the strict sense) is extremely irregular (Fig. 4.3). The irregularity of the
interface accentuates over time; its surface (or length in the two dimensional
case) and its thickness increase indefinitely. Specifically this border has a highly
convoluted fractal structure at spatial scales smaller than its thickness (but larger
that the particle size).
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t = 0
T = Ti < T0
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Fig. 4.4 Self-similarity of a diffusion front, here of a fluid A in an fluid B , miscible only at
temperatures T > T0. The system is prepared at a temperature Ti < T0 where the two fluids
are not miscible and separate under gravity. The system is then brought to a temperature Tf > T0.
A complex interface develops: the composition of the mixture shows fluctuations at all scales

For hard (impenetrable) non-interacting particlesA, a theoretical model5 predicts
a fractal dimension df D 7=4 in spatial dimension d D 2 (in which case the front is
a line) [Gouyet 1996]. In spatial dimension d D 3, the front is much more extended
along Ox with an advanced fractal region of dimension df � 2:5 and an internal
region which is porous but homogeneous in the sense that its fractal dimension is 3.

The fractal structure of diffusion fronts can also be demonstrated experimentally
by starting with a situation where the concentration profile has an abrupt step. For
example take two fluids A and B that are non miscible at low temperature and
miscible at temperatures T > T0. Preparing the system at low temperature the
denser liquid, say A, will be underneath B and its concentration profile therefore
has a step in the vertical direction. Let us increase the temperature to above T0 at
time t D 0. The fluids A and B start to diffuse into each other. We then observe
the interface between the two fluids by looking at the system in the direction of the
gradient Ox: the surface appears rough with irregularities at all scales (Fig. 4.4).
These horizontal spatial fluctuations (i.e. from one point to another along the
directions perpendicular to the gradient) develop rapidly6 and only disappear when
the system has relaxed completely [63, 69].

Let us point out that diffusion fronts are nonequilibrium structures which, in
infinite medium, continue to develop indefinitely. It is only in finite mediums that we
observe a relaxation to an equilibrium diffusive state of homogeneous concentration
at long times.

5The concepts used in the microscopic analysis of these fronts, in particular to establish the value
of their fractal dimension, directly result from the theory of percolation, which we will present in
Chap. 5 [58]. We will meet other examples of the growth of fractal interfaces in Chap. 8.
6The only limitation to the size of these fluctuations in the envisaged experimental system is that
imposed by gravity.
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A more recent measurement method: FRAP
Recently, state of the art fluorescence techniques have led to an ingenious
method of studying diffusion of macromolecules, for example proteins inside
a cell or polymers in a solvent. The method is known by the name FRAP,
acronym for Fluorescence Recovery After Photobleaching [48]. The molec-
ular species whose diffusion is to be studied are labelled with fluorophore
(fluorescent molecules).7The fluorescent markers must be small enough not to
change the diffusion properties of the species under consideration, in practice
limiting the method to the study of large macromolecules. The lifetime of the
fluorescent emission, excited by a laser of appropriate wavelength, is long, of
the order of several hundreds of seconds. The principle of FRAP is to destroy
(“bleach”) the fluorescence locally at an instant in time t0 using another laser
pulse: the molecules in the irradiated area no longer emit a fluorescent signal.
This area is then observed with a confocal microscope. The irradiated area
which becomes dark (“bleached”) at the instant t0 progressively recovers
its fluorescence, which can only be due to the penetration of fluorescently
labelled molecules coming from surrounding areas by diffusion. The fluores-
cent signal emitted by the bleached region is therefore directly related to the
flux of labelled molecules passing through the region. Comparing this signal
with predictions made by a model describing the diffusion of the species under
consideration gives the diffusion parameters. This method is more reliable
than that consisting of imposing a strong gradient in concentration of the
studied species and observing how the gradient relaxes by diffusion since such
an imposed gradient is actually itself affected by large spatial fluctuations (see
Sect. 4.1.4).

Most importantly, FRAP enables an observation of diffusion occurring
during the “natural” behaviour of a system such as a living cell.

4.1.5 Diffusion: Exceptional Motion

We started this chapter with the example of Brownian motion. This comes about
as an indirect consequence of the thermal motion of molecules in the medium
(of size less than a nanometre) exerted on a supramolecular object (typically of
order a micron).

7It is now known how to insert a gene for a naturally fluorescent protein into the gene coding for
a given protein, such that the cell makes modified proteins containing a fluorescent domain but
without disrupting their biological function. This allows us to follow the localisation and dynamics
of these proteins inside a living cell.
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A second example of diffusion is that of the mixing of a drop ink deposited in
water, directly resulting from the thermal energy of the dye molecules and the water
molecules. However mixing is only provided by diffusion at small spatial scales; at
larger spatial scale convection may play a role. The comparison of diffusive terms
with convective terms defines a dimensionless number called the Peclet numberPe,
determining the order of magnitude of these “small” scales l at which diffusion
dominates.8 This number is the ratio of a characteristic diffusion time l2=D to a
characteristic convection time l=V :

convection

diffusion
� V=l

D=l2
� V l

D
� Pe; (4.4)

where V is the typical convection speed in the medium (water here) in which the
phenomenon is observed. We see that this ratio Pe is small compared with 1 as
soon as l is small enough; the upper bound on l is larger the smaller the convection
speed V . Therefore we could almost abolish the effects of convection by observing
diffusion of a dye in a gel: crosslinking of macromolecules in a gel completely
suppresses convection whilst relatively insignificantly slowing down diffusion of
small molecules, which “pass through the gaps in the gel mesh”.

The two examples of diffusion we have just seen, Brownian motion and mixing
of ink in water, lead to very similar (and often confused) observable phenomena.
This simply shows that the self-similarity of the phenomenon extends over a wide
range of scales. This self-similarity is observed whenever the motion is induced by
random kicks from molecules in the supporting fluid, whether the particle being
hit is another molecule of comparable size (the example of ink in water) or a
much larger particle (a grain of pollen or resin performing Brownian motion): the
motion is therefore characterised by the diffusion coefficient D of the particle/fluid
pair. Perrin’s observations and the expression (4.3) of this coefficient show that the
diffusive motion depends on the viscosity � of the medium where the diffusion takes
place (D � 1=�), the temperature T (D � T ), the size a of the diffusing particle
(D � 1=a) and to a lesser extent the shape of the particle (unless this shape is
very particular, for example a long linear chain). To give an idea of the orders of
magnitude: in water, D is typically 10�9 m2/s for a small molecule, 10�11 m2/s for
a macromolecule and 10�13 m2/s for a micrometre sized grain.9

A point worth noting is that the coefficient D does not depend on the mass of
the diffusing particle. This independence highlights a fundamental characteristic of
diffusion phenomena: inertial effects are negligible. It is precisely when we can

8For example, heating a room of 20 m3 takes about 10 hours by diffusion (withD � 2� 104 m2/s
for a gas) compared to 5 min by convection (with V � 1 cm/s). In this case the Peclet number is of
the order of 100, corresponding to a critical length separating the diffusive and convective regimes
of the order of a centimetre.
9The dynamic viscosity of water is � D 1:14 10�3 kg/(m�s). For an approximately spherical grain
of radius r0 expressed in microns, Einstein’s formula (4.3) therefore givesD � .2=r0/ 10

�13 m2/s.
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ignore the acceleration term (also called the inertial term) in the equation of motion
of the particles that we talk about diffusion.10

As the size of the particle increases, the effect of diffusion quickly becomes
negligible compared to other mechanisms at work: Brownian motion becomes
indiscernible at macroscopic scales. In the case of sedimentation of particles in
suspension, an upper bound on the size of the particle appears, which we call the
colloidal limit and is typically of the order of a micron. Above this size gravity
dominates over diffusion and the particles fall to the bottom of the container; below
this size Brownian motion is sufficient to maintain the particles in suspension.

In summary, diffusion is a random motion which is statistically isotropic; the
average displacement is therefore zero.11 Diffusion is only the principal cause of
motion in situations where inertia is negligible (in practice small objects, less than
a micron) and at scales small enough that convection doesn’t play a role. The
dependence R.t/ � p2dDt of the root mean square displacement shows that
diffusion is only an efficient method of transport at short times (or equivalently,
at small length scales) since the apparent velocity R.t/=t � 1=

p
t decreases with

increasing time.

4.2 The Diffusion Equation and its Variants

4.2.1 Fick’s Law and Diffusion Equation

The simplest description of diffusion and that which is the closest to current
observations (see for example Fig. 4.2) is the partial differential equation describing
the evolution of the local concentration c of the diffusing species:

@tc.r ; t/ D D�c.r ; t/; (4.5)

where � is the Laplacian operator: � D r 2, written in Cartesian coordinates as
� D @2xx C @2yy C @2zz. The justification of this macroscopic description seems better
when we decompose the above equation, known as the diffusion equation, into two

10We will see in paragraphs Sects. 4.2.3 and 4.5.4 that different mechanisms can lead to similar
macroscopic behaviours to that of a cloud of diffusing particles, described by analogue macro-
scopic equations. The diffusion that we describe in this paragraph is “thermal” diffusion, which
originates from the thermal energy of the molecules and during which the diffusing particles do
not experience any acceleration.
11The slowness and isotropy of diffusion explains why in living organisms faster and orientated
“active” transport mechanisms very often take over; for example advective transport in circulatory
flow and intracellular transport provided by molecular motor proteins.



120 4 Diffusion

coupled equations. The first is a conservation equation,12 simply expressing the
conservation of the total number of diffusing particles in the absence of any source
or chemical reactions:

@t c.r ; t/C r :j .r ; t/ D 0: (4.6)

It involves the current density j of the species (j has dimensions of velocity
multiplied by concentration). To obtain a closed system this equation needs to be
completed by a constitutive equation giving the expression for j as a function
of concentration. It is this second equation which takes into account the physical
mechanism underlying the movement. The phenomenological equation proposed
by Fick in 1855 is a linear response, expressing that j is proportional to the
concentration gradient (“the flow of a river is greater the steeper the slope”):

j D �Drc: (4.7)

By using this expression, now known as Fick’s law, in the particle conservation
equation, we obtain the usual diffusion equation @tc D D�c. The conservation
equation (completed with a source term if necessary) is actually quite simple; it is
Fick’s law applied to diffusion. At this stage, it was purely empirical and descriptive;
it was not until several decades after Fick that a fundamental microscopic explana-
tion for it was given (see paragraph 4.1).

It is worth mentioning that the diffusion equation is formally identical to the
heat equation by Fourier (c there is simply replaced by the temperature and D by
the thermal conductivity of the medium). Just as for the diffusion equation, the
heat equation must be completed by initial conditions c.r ; t D 0/ and boundary
conditions of the spatial domain where the phenomenon is produced, if it is finite,
or by the behaviour required at infinity if it is not bounded. These boundary
conditions critically influence the solutions.13 Figure 4.5 illustrates intuitively the
spatiotemporal evolution associated with the diffusion equation.14

12To obtain it we write that the variation @t
R

V c.r; t /dd r of the number of particles in a volume
V can only be due to particles entering or leaving the volume, in other words the flow

H

ıV j :dS

across the closed surface ıV surrounding the volume V (the surface element dS being oriented
along the outward normal to the surface). A (very useful) result of vector analysis transforms this
surface integral into a volume integral

R

V r :j .r ; t /ddr . Since the volume V here is arbitrary, we
can deduce from this the local form of the conservation equation: @t c C r :j D 0.
13At least from a mathematical point of view, since these boundary conditions determine the
functional space where the solutions occur.
14A technical result associated with the diffusion equation (derived from the maximum principle for
parabolic equations) is as follows: if c1.x; t / and c2.x; t / are two bounded real positive solutions
of the diffusion equation @t c D D@2xxc, such that c1.x; t D 0/ � c2.x; t D 0/ at all x,
then c1.x; t / � c2.x; t / at all subsequent times [54]. By taking c1 � 0, this result shows that
c.x; t/ remains positive if it is positive at the initial time (which is satisfied if c describes a
concentration). This theorem also shows that c.x; t/ remains bounded above by the maximum
value supx c.x; tD 0/ taken by the initial condition.
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x

c (x)

Fig. 4.5 Graphical interpretation of the diffusion equation @tc D D@2xxc. A localised initial
condition c (continuous line), its spatial derivative @xc (dotted line) and the term D@2xxc (dashed
line) – how this term evolves c is shown by the arrows

4.2.2 Scale Invariance of the Diffusion Equation

The usual diffusion equation @tc D D�c shows a scale invariance with respect to
the transformation .r ! �r; t ! �2t/, the verification of which is sufficient to
establish the normal diffusion law.15

Let us simplify the problem by working in one dimension and consider an initial
profile of width l and mass A0, then we can write c0.x/ D .A0=l/�0.x=l/ where
�0 is of bounded support and is normalised to 1. The solution of @t c D D@2xxc is
written as the product of the convolution c.x; t/ D ŒGt � c0�.x/ of the initial profile
by the Green’s function of the diffusion equation (which is the solution for an initial
profile ı.x/):

Gt.x/ D 1p
4�Dt

e�x2=4Dt
�

lim
t!0Gt .x/ D ı.x/

�

: (4.8)

Explicitly:

c.x; t/ D
Z 1

�1
e
� 12

h
x

p

2Dt
�z l

p

2Dt

i2
A0�0.z/p
4�Dt

d z (4.9)

�0 being of bounded support, we can take the limit l=
p
2Dt tends to 0 in the

integrand. Then we obtain a solution c1.x; t/ � Gt.x/, which is invariant under

15More explicitly, let us take T D �2t , R D �r and C�.R; T / D c.r; t /. Then for all � > 0, C�
satisfies the same equation: @tC� D D�C�.
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the transformation Œx ! �x; t ! �2t�, i.e. showing the same scale invariance as
the starting equation. Several points are worth highlighting:

• The total mass A0 moving under diffusion is conserved; this point proves to
be essential for the properties stated here (we will see a counter example in
Sect. 4.5.4).

• The exponent � D 1, which is the exponent of the temporal dependence of the
law of diffusion (in the general form R2.t/ � t� , see Sect 4.5), obtained by a
simple dimensional analysis of the evolution equation.

• The asymptotic solution c1.x; t/, which is scale invariant, has lost its memory of
the initial condition. Due to the conservation of total massA0, if it is localised in a
bounded interval, at t D 0 this could be concentrated at 0 or spread over a width l .
The initial width l of the profile just introduces a correction O.l=

p
2Dt/ which

is negligible at long times. This explains why this solution c1.x; t/ coincides
with the Green’s functionGt.x/.

• This asymptotic scale invariant solution can be obtained directly from the
diffusion equation by exploiting a self-similarity argument. We introduce an
auxiliary variable z D x=

p
2Dt and the auxiliary function ', by the relation

(in d D 1 dimension):

c1.x; t/ D Ap
2Dt

'

�
xp
2Dt

�

: (4.10)

The factor in front of ' follows from the normalisation of c (probability density).
The scale invariance of diffusion means that the phenomenon can be described
with one single variable z. It immediately follows that the function ' satisfies:

2

6
6
6
6
6
6
6
4

'00 C z' 0 C ' D 0
'.˙1/ D 0
Z 1

�1
'.z/d z D 1

' even:

(4.11)

The problem is now reduced to solving an ordinary differential equation that can
be easily integrated:

'.z/ D 1p
2�

e�z2=2 where c1.x; t/ D 1p
4�Dt

e�x2=4Dt : (4.12)

The scale invariant diffusive regime takes place at intermediate times, long
enough that the transient influence of the initial condition has disappeared (t �
l2=2D), but before having attained a trivial state of c � 0 or sensing the effect
of confinement due to the finite size L of the domain accessible to the diffusion
movement (t 	 L2=2D).
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The diffusion equation says nothing about the trajectories of a single particle. The
scaling behaviour .�x/2 � �t results from this equation driven to a divergence at
short times of the “apparent velocity” �x=�t . This behaviour simply reveals the
existence of a specific phenomenon at the microscopic scale that must be described
in a totally different framework, as we will see in Sect. 4.3.

Diffusive coupling
In a macroscopic description of “continuous medium” type, a diffusion term
appears in the equation for the evolution of an observable A.r; t/ when the
coupling between different regions of the system remains local. Let us expand
on this point. The most general coupling (in one dimension for simplicity) is
written in integral from:

@tA.x; t/ D
Z 1

�1
K.x � y/A.y; t/dy C 
 
 
 ; (4.13)

where .: : : / represent the terms associated with local interactions that do
not concern us here. The kernel K.x � y/ describes the weight with
which the value A in y contributes to the evolution of its value in x, with
R1
�1K.x/dx D 0 (coupling term) and

R1
�1 xK.x/dx D 0 (by symmetry).

By rewriting the integral term
R1
�1K.y/A.x�y; t/dy and replacingA by its

Taylor expansion in x (assuming that the kernel K decays fast enough), the
first non zero term is

@tA.x; t/ D K2@
2
xxA.x; t/C 
 
 
 with K2 D 1

2

Z 1

�1
x2K.x/dx:

(4.14)
If the coupling is short ranged (i.e. if the kernel K.x/ is peaked around 0
with a small enough width), this term is dominant and we can neglect terms
involving derivatives ofA of higher order and we therefore talk about diffusive
coupling.

Here we see an intuitive interpretation appearing of the presence of such a
term proportional to @2xxA not just in the equation describing the diffusion of
a population of particles (A being then the local instantaneous concentration
of particles) but also, for example, in the equation describing the evolution of
magnetisation (which is then A) of a system of spins (Landau’s theory16).

In certain situations, the next term in the expansion, K4@
4
xxxxA where

K4 D
R1
�1 x

4K.x/dx=4Š must be taken into account. This is the case in
systems where an activator coupling is superimposed at short range and an
inhibitor coupling at longer distances (or the other way round), which we
meet for example in reaction-diffusion systems or in neural networks [49,50].
We will also see, in Chap. 8, that terms of this type appear in the modelling of
certain growth mechanisms.
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Fig. 4.6 Left: the real porous medium: the intervening space (white) is full of fluid in which
diffusion takes place, described by the equation @t c0 D D�c0 completed by the boundary
conditions, reflecting the fact that the particles, of local concentration c0.r ; t /, cannot penetrate
the solid regions (black), where the concentration is therefore c0 D 0. Right: the effective
homogeneous medium: we describe the local state by a concentration c D hc0i, obtained by a
spatial average over a representative volume. The diffusion is therefore governed by the equation
@t c D Deff�c. The effective diffusion coefficient Deff, proportional to D, takes into account in an
average way how the diffusion slows down due to the reduction of space actually accessible. Here
the diffusion remains normal

4.2.3 Diffusion in a Porous Medium

A question of practical and fundamental interest is the diffusive behaviour observed
when the fluid in which diffusion is occurring is confined in a porous medium.

If the structure formed by the pores (spaces accessible to the diffusion) is fractal
(df < 3), the exponent of the diffusion law is affected: R.t/ � t �=2 with � < 1

(diffusion is slower). This is an example of anomalous diffusion, which we will
study in more detail in Sect 4.5.

Here we will consider the opposite situation, in which the interstitial space still
has a fractal dimension 3. In particular, the volume fraction is finite and defined by
a coefficient ˛ D Vpores=Vtotal called the porosity of the medium. The concentration
c0 of diffusing particles, which is non zero in regions occupied by the fluid, changes
abruptly to zero in the solid regions inaccessible to diffusion. The challenge is then
to solve the diffusion equation @tc0 D D�c0 in the region occupied by the fluid,
taking into account the boundary conditions prescribed by the very complicated and
irregular geometry of the accessible volume Vpores and its surface Spores.

The trick is to bypass this difficulty by noting that the interesting quantity, for
example from an experimental point of view, is a concentration c D hc0i obtained
by averaging the real concentration of diffusing particles in a representative volume
which includes the solid regions (in which c0 � 0) and the pores in which diffusion
takes place (see Fig. 4.6). This volume must be chosen to be small enough to
conserve a significant spatial dependence but larger than the typical pore size, in
such a way as to obtain a function that is regular throughout space. The crucial
step in the analysis will be to establish the effective equation that c obeys, by

16The Landau free energy F.m/ contains the description of the dynamics of relaxation of the
system towards equilibrium, by the equation @tm D � ıF=ım; the term .rm/2 in F.m/ gives a
term �m in the evolution equation (see Sect. 3.4.3).
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performing the average at the level of the conservation equation and Fick’s law.
Spatially averaging Fick’s law j D �Drc0 involves a relation hj i D �Dhrc0i D
�Dr hc0iCI where I is a surface integral describing the additional contribution
to hrc0i coming from the boundaries of zone accessible to the liquid (surface Spores)
[50]. This integral appears as a mean field adding its influence to that of the linear
response term �Dr hc0i (response term at the scale where the medium appears
homogeneous). We show that it is written I D .1 � 	/Dr hc0i with 	 D 1 if the
medium is homogeneous (and 	 < 1 if the medium is porous). In this way we obtain
a Fick’s law hj i D �	Dr hc0i for the average quantities, where 	D � Deff < D

is the effective diffusion coefficient of the porous medium.
This mean field approach is based on the fact that the physics, which is very

complicated at the microscopic scale (here the scale of the pores), simplifies at
a larger scale. This approach was developed in many contexts, from diffusion in
porous rocks [38] to diffusion in living tissues of complex structure, for example
the brain [50]. Under the name of homogenisation,17 it was formalised and proved
mathematically by various theorems establishing the validity of the effective
averages and their properties [5, 28]

So the result is remarkably simple: at the scale in which the medium appears
homogeneous (but of porosity, also called relative density ˛ < 1), diffusion taking
place within it obeys an effective diffusion equation:

@t c D Deff�c with Deff � D

�2
: (4.15)

The effective diffusion coefficient Deff is proportional to the “bare” diffusion
coefficient D. This is generally written in the form Deff D D=�2 where �, called
the tortuosity, is a geometric parameter if the medium. This parameter � can be
calibrated by observations or calculations based on a local model of the porous
medium and the perturbation it induces on a random walk. Theoretical arguments
[1] suggest a relation �2 � ˛�ˇ , where 1=2 < ˇ < 2=3, but a local analysis of
the medium, for example numerical, remains the most efficient way of determining
Deff, knowing a priori that this coefficient has meaning from the above analysis.

The procedure of homogenisation we have just described is a mean field theory.
As such, it fails when the phenomenon becomes critical, here when the interstitial
space becomes fractal, due to the existence of pores of all sizes. In this case the
diffusion is therefore anomalous and its exponent � < 1 deviates from the value
� D 1 obtained in “mean field”.

17Other procedures of homogenisation are met in the context of diffusion, e.g. when D is a
rapidly oscillating spatially periodic function (i.e. of small wavelength). We use a mean field
approximation consisting of neglecting correlations between the function D and the function j .
Averaging Fick’s law here involves the approximation hj=Di � h.1=D/i hj i, leading to the
expression Deff D h.1=D/i�1 for the effective diffusion coefficient of the medium, h i designating
here a spatial average over the period of D.
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Other “diffusion equations in porous media”.
The term “diffusion in porous media” covers more generally various phe-
nomena and equations. In particular we should distinguish two classes of
problems.

The first concerns diffusion of substances in a porous substrate entirely
filled with fluid. As for Brownian motion, this diffusion results from thermal
motion of the fluid molecules. The porosity of the medium superimposes an
effect of quenched inhomogeneity on the Brownian diffusion taking place
inside the pores. In this situation, the confinement of the diffusing particles is
weak enough not to destroy normal diffusion; the particular geometry of the
substrate is taken into account simply by a renormalisation18 of the diffusion
coefficientD.

This interstitial diffusion can deviate from normal diffusion if the porous
substrate has a fractal structure. In such a case the existence of pores of all
sizes makes the procedure of homogenisation invalid (because the procedure
rests on the hypothesis that the medium is homogeneous at a mesoscopic
scale in order to perform the average defining c D hc0i). It is therefore the
exponent of the diffusion law and not just the diffusion coefficient D that
must be modified (anomalous diffusion).

The second class of problems concerns the diffusive displacement of a
liquid in a porous rock that is initially dry. It behaves as a hydrodynamic
phenomenon and the movement is described at a scale much larger than
that of the fluid molecules. Here there is a real “diffusion force” at work
(hydrodynamic pressure) and not just the entropic (purely statistical) force
underlying Fick’s law. This diffusion force operates through Darcy’s law
producing a current proportional to the pressure gradient.

There could be a barrier to penetration of the liquid, when the pores are
very small or linked to each other by narrow channels. In this case we use
percolation models, such as those presented in Chap. 5 [Gouyet 1992].

Even when this effect of obstruction is negligible, another effect introduc-
ing a dynamic asymmetry will lead to a modification of the diffusion equation:
when a pore empties a thin film of liquid remains on the sides of the pore
(Fig. 4.7).

18The term “renormalisation” is used here in the sense of “redefinition of a parameter to include
in an effective manner influences that we do not want to describe explicitly” (e.g. microscopic
details or correlations). This procedure, introduced more than a century ago in the context of
hydrodynamics, is not unrelated to the renormalisation methods presented in Chap. 3: it constitutes
the elementary step. It is sufficient in non critical situations such as here where a separation of
scales makes a homogenisation procedure possible.
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Fig. 4.7 Diffusion in a porous rock substrate limited by a deep horizontal impermeable layer.
The initial situation is one of a localised surplus of liquid (with mass A0 and horizontal linear
extension l). The evolution of this profile due to diffusion of liquid in the porous rock is affected
by the retention of a film of liquid in the pores that empty leading to a decrease in the mass of
moving liquid. This causes a memory of the initial condition and of the elapsed time that affect the
diffusion law (see also Sect. 4.5.4)

The conservation equation must be modified to take into account this reten-
tion of water or other liquids by making the diffusion coefficient dependent
on the sense of variation of local concentration. If @t c > 0, corresponding
to an influx of liquid, we take D D D0 and if @tc < 0, corresponding to a
local drying we take D D D0.1C 
/. We end up with an equation, called the
porous medium equation, of the form:

@tc D D.@t c/ �cn; (4.16)

where the exponent n depends on the nature of the porous medium, in par-
ticular on its deformability [4, 25]. It is a typical model of out of equilibrium
spatiotemporal phenomena, such as those we will meet in Chap. 8. In the
example shown in Fig. 4.7 n D 2 and we therefore talk of non linear diffusion.
The case of n D 1, corresponding to an elastoplastic medium and called
Barenblatt’s equation, is more interesting to us. Comparing it with the usual
diffusion equation identifies the consequences of non conservation of moving
mass, in particular the initial mass will be one of the parameters controlling
the evolution. The unusual form of the diffusion coefficient, depending at each
point and each moment in time on the trend with which the local density
evolves, destroys the self-similarity of normal diffusion. The solutions show a
behaviour called “anomalous diffusion”, which we will present in Sect. 4.5.4.
The full treatment of this second example of diffusion in porous media, very
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different from that we presented at the beginning of this section, is done in the
framework of a scaling theory by using a renormalisation method to determine
the observed diffusion law. We refer the reader to the detailed presentation
shown in the work by Goldenfeld [25].

4.3 Stochastic Descriptions of Diffusion

4.3.1 Ideal Random Walk and Normal Diffusion

The basic microscopic model to describe diffusion of a particle is that of a random
walk, called ideal or Brownian to differentiate it from models with bias, broad
distributions of steps or correlations, which we will look at later (Sect. 4.5). In
the simplest version, the particle makes jumps of length a over duration � , in a
direction chosen at random (from a distribution with a constant probability) and
independently from the previous step. Numerical implementation simplifies the
model further by restricting the steps to edges on a square (d D 2) or cubic (d D 3)
lattice of lattice spacing a. The position at time t D n� is therefore given by the
random vector:

X.n�/ D
nX

iD1
ai ; (4.17)

where the vectors .ai /i are identically distributed, independent random vectors of
length a and zero average (isotropic distribution). It follows immediately that the
average displacement of the particle is zero:

hX.n�/i D 0: (4.18)

Due to the independence of successive steps, the variances simply add, which leads
to the diffusion law describing the root mean square displacement R.t/ of the
particle:

R2.n�/ � hX2.n�/i D na2 � 2dDt: (4.19)

The diffusion coefficient D, describing the average behaviour at long times is, in
this way, related to the microscopic nature of the movement by knowing the length
a and duration � of the elementary steps in the model under consideration:

D � a2

2d�
(in d dimensions): (4.20)
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We can generalise the model without affecting the asymptotic result by allowing
a certain dispersion in the length and duration of the steps. In this case diffusion
remains normal and we have another expression D D a2=2d� , where � is now
the average duration and a2 is now the variance of the step length.19 We will see
in Sect. 4.5 that it is essential that a and � are finite in order for diffusion to remain
normal. We can also relax the condition of statistical independence of the steps .ai /i
of the random walk: it can be easily shown that finite range correlations do not affect
the normal character of diffusion.

Within these models, the concept of normal diffusion extends to situations where
the root mean square displacementR.t/ D hX2.t/i1=2, i.e. the standard deviation of
the instantaneous position, behaves asymptotically as

p
t . The scaling law R.t/ �p

2dDt is therefore only valid in the limit t ! 1, which in practice means for
sufficiently long times. From this we see that the diffusion coefficient is not only an
average, but also an asymptotic characteristic of diffusion:

D D lim
t!1

R2.t/

2dt
: (4.21)

In the presence of an external field, the relevant model becomes a biased random
walk. In one dimension (to simplify the analysis), the probability of a step to the
right becomes p D .1C 
/=2 where 0 < j
j � 1; steps to the right are preferred if

 > 0. This results in a drift:

hX.t/i D .2p � 1/ at=� D 
at=�: (4.22)

However the variance continues to follow a normal diffusion law:

hX2.t/i � hX.t/i2 D p.1 � p/ ta2=� D 2Dt.1 � 
2/: (4.23)

If 
 	 1, at short times (t 	 t�.
/ D �=
) we observe a diffusive motion, although
at long times (t � t�.
/) we observe a drift corresponding to a deterministic motion
of uniform velocity v.
/ D 
a=� . The resulting observed behaviour is therefore a
superposition of two scaling laws with different exponents, the relative weights of
which vary with the (temporal) scale of observation. So we observe a crossover in
the region around t D t�.
/, which is longer the weaker the bias.

Diffusion of the particle could also be described by its probability density20

P.r ; t/, such that P.r ; t/d dr is the probability that the particle is found at time t
in a volume ddr around r. The density P.r ; t/ (the integral of which is normalised

19If we consider diffusion of a molecule amongst other molecules (e.g. ink in water, Sect. 4.1.5),
this formula is still valid if we take the mean free path l (distance travelled by the molecule between
two collisions) for a and the mean free path time (� D l=vth where vth is the thermal velocity of
the molecule) for � , giving 2dD D lvth.
20We write here r for the argument of the distribution P.:; t /, to distinguish the random variable
X .t / from the values r that it can take.
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to 1) is then simply the law of probability of the random variable X.t/. Since the
observable X.t/ is a sum of identical statistically independent random variables,
which are centred on zero (in the case of no bias) and have finite variance a2, a
general result of probability theory, the central limit theorem,21 tells us that the
distribution P.r ; t/ is asymptotically Gaussian, centred on zero and with variance
2dDt :

P.r ; t/ �
�

1

4�Dt

�d=2

e�r2=4Dt .t !1/: (4.24)

Effect of non critical correlations
Let .ai /i be a series of centred random variables which are statistically
stationary in the sense that the joint distributions are invariant under trans-
lation of indices. In particular, the correlation function hai :aj i only depends
on jj � i j and we will therefore write it as C.j � i/. Explicitly calculating the
variance of

Pn
iD1 ai , shows that if the correlations decay fast enough that the

sum
P1

nD�1 jC.n/j is finite, then X.t D n�/ D Pn
iD1 ai follows a normal

diffusion law, with

D D 1

2d�

1X

nD�1
C.n/: (4.25)

Even though there are correlations between successive steps, the behaviour
at long times is that of an ideal random walk: R.t/ � p2dDt , where the
expression of D shows that it acts as an effective diffusion coefficient taking
into account the effect of correlations. We recover the formulaD D a2=2d� if
the steps are independent (and we therefore haveC.n/ D 0 as soon as jnj�1).
If the correlations are positive, diffusion is accelerated (D > a2=2d�). If on
the other hand the correlations are negative, the particle tends to return on
itself and diffusion is slowed down (D < a2=2d�), however the exponent
1=2 of the diffusion law is not changed.22

21We will expound this, along with its generalisations and implications in Sect. 4.5.2.
22Note that the criterion ensuring the persistence of the normal character of the diffusion involves
a sum of absolute values, whereas it is the sum S D P

1

nD�1
C.n/ of values with their signs

which comes into the expression for the effective diffusion coefficient (4.25).
p
S is interpreted

as the effective step size of an ideal random walk which is asymptotically equivalent. ncorr DP
1

nD�1
jC.n/j=2C.0/ is interpreted as the number of steps over which the correlations are

appreciable (with ncorr D n0 if C.n/ D C.0/e�jnj=n0 /. It is therefore important to take the sum of
absolute values because the sign of the correlations must not affect the estimation of their range in
a compensatory way.
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4.3.2 Mathematical Modelling: The Wiener Process

By definition, the random walks we have discussed above depend explicitly on the
scale at which we describe the movement (time step �t D �) and the specific
details of the movement at each scale (step length and orientation distributions for
example). However their long time behaviours, characterised by a normal diffusion
law, are very similar, even identical if the diffusion coefficients are the equal.
It makes sense to try to unify random walks leading to the same diffusion law
in a continuous time description, valid at all scales. It is soon clear that a new
mathematical object is necessary to reproduce the particular properties of diffusive
motion, knowing the random nature of the trajectories and the fact that they are
continuous but not differentiable.

This continuous time model, known by the name of the Wiener process and
denoted WD.t/, is entirely defined23 by the following properties (expressed in
dimension d D 1) [41, 68, 70]:

1. It is statistically stationary.
2. Its trajectories are continuous.
3. W.0/ D 0.
4. If t1 < t2 � t3 < t4 then WD.t4/�WD.t3/ andWD.t2/�WD.t1/ are statistically

independent
5. WD.t/ �WD.s/ is Gaussian, centred and of variance 2Djt � sj.

We extend this process to dimension d by considering that the d components of
motion (along each coordinate axis) are independent Wiener processes. In practice,
we only need to remember the absence of temporal correlations and the Gaussian
distribution of this process:

PD.r ; t/ D
�

1

4�Dt

�d=2

e�r2=4Dt : (4.26)

We should note that this distribution is equal, for all values of t , to the asymptotic
distribution of the random walks considered in the previous paragraph. As such, it
is exactly scale invariant:

for all k > 0, kd PD.r ; t/ D PD.kr ; k2t/: (4.27)

A mathematical result ensures that the fractal dimension of almost all Wiener
process trajectories is df D 2 (for dimension d � 2) [20].

23Incidentally it is sufficient to assume it is statistically stationary and thatWD.t D 1/ has variance
2D to obtain the general expression for the variance. The coherence of these hypotheses is given
by the fact that a sum of independent Gaussian variables is a Gaussian variable with variance the
sum of variances. A theorem, the general version of which is due to Kolmogorov ensures that this
defines a unique process.
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The Wiener process is an idealisation: real diffusion actually has a natural cutoff
length, the mean free path of the diffusing particle (between two collisions), but this
scale is so small that the continuous approximation is very good. The non rectifiable
nature of the trajectories must therefore be seen as an artifact of this idealisation and
not as damaging the physical meaning.

The Wiener process seems to be a universal basis, common to all discrete
descriptions of the same dimension d and the same asymptotic diffusion law. It
also seems to be the continuous limit of discrete diffusion models (random walks).
We show in the following paragraph that the renormalisation ideas presented in
Chap. 3 establish that the Wiener process and Brownian random walks effectively
belong to the same universality class, that of normal diffusion. These ideas will also
prescribe the transition procedure generating the Wiener process at the continuous
limit. Here the situation is simple enough that we can say without further calculation
that the step length a and duration � should be jointly taken to zero, with a2=2d� D
cte D D (in d dimensions).

Renormalisation of a random walk
The asymptotic equivalence of ideal random walks and the Wiener process is
a result that can be obtained using a renormalisation approach. It consists of
showing that random walks can be divided into universality classes of the sort
that the diffusion law is asymptotically the same in each class.

The first step is to build a renormalisation transformation Rk;K , with two
real positive parameters k and K , acting on the probability density p.r ; t/
according to24:

.Rk;Kp/.r ; t/ D kd p.kr ; Kt/ (for dimension d ). (4.28)

If p is defined on a lattice of parameter a, with a temporal discretisation
of step � , we see that Rk;Kp will be defined on a finer spatiotemporal
mesh, of parameters .a=k; �=K/. In which case the fixed points p� of Rk;K ,
that is to say the probability densities satisfying Rk;Kp

� D p�, will be
necessarily continuous processes. The root mean square displacementR.p; t/
(the notation makes it explicit that R.t/ is a function of p) satisfies:

RŒRk;Kp; t� D k�1 R.p;Kt/: (4.29)

24We note that the renormalisation can be just as well defined on the characteristic functions [40].
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We confirm that the Wiener processWD , of distributionPD , is a fixed point of
the transformations Rk;k2 , which is another way to show its self-similarity.25

We have seen in Chap. 3 the role and interpretation of fixed points of
renormalisation transformations as typical representatives of universality
classes. In the present case, taking pa;� as the probability distribution of a
random walk with parameters �x D a and �t D � , we have the following
convergence property towards the fixed point WD under the action of the
renormalisation:

lim
k!1Rk;k2 pa;� D lim

n!1Rn

k0;k
2
0
pa;� D PD where D D a2

2d�
: (4.30)

The intermediate equality is obtained by noting that iterating the renormalisa-
tion modifies its scale parameters: Rn

k0;k
2
0

D Rkn0 ;k
2n
0

. It proves the asymptotic

equivalence of discrete random walks and Wiener processes; the Wiener
processWD is seen as the typical representative of normal diffusion processes
with diffusion coefficient D. In this example we see that renormalisation
is a constructive and demonstrative general method to correctly implement
transition at the continuous limit.

The renormalisation approach may seem an unnecessary sophistication for
the question of the asymptotic equivalence of Brownian random walks and
Wiener processes, which can be shown directly. However, the same method
is the only method that can answer this question for more complex random
walks (the implementation is obviously more technical). For example it can
show that a finite memory (the distribution of a step depends on the realisation
of the k previous steps, k <1) and that a “weak disorder” (random transition
probabilities, varying at each time step) does not destroy normal diffusion [9].

Note that the renormalisation just presented only applies to Markovian
processes.26 We will see in Sect. 6.3.5 that other methods must be developed
in the context of self avoiding random walks with infinite memory.

25We can follow up the study with the analysis of other transformations Rk;K . Fractal Brownian
motions with exponent H , which we introduced in Sect. 4.5.5, are fixed points of the transfor-
mation Rk;k1=H , whereas Levy flights with exponent ˛ (Sect. 4.5.2) is a fixed point of Rk;k˛ . The
self-similarity of these processes therefore translates into invariance by usable renormalisation to
test the robustness of the associated diffusion laws with respect to various perturbations to the
underlying laws of motion (perturbations to the short time dynamics).
26A Markovian process is a stochastic process .Xt /t without memory, in the sense that knowledge
of an instantaneous state Xt0 D x0 is sufficient to predict subsequent behaviour for all t > t0,
without it being necessary to know all the evolution history at times t < t0, or even part of this
history. This property is explained by the conditional probabilities: Prob.Xt D xjXt0 D x0; Xt1 D
x1; : : : ; Xtn D xn/ = Prob.Xt D xjXt0 D x0/ for all integer n 	 1 and all times t > t0 >

t1 > � � � > tn.
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4.4 From One Scale to the Next

Over the preceding sections we have seen several descriptions of the diffusion of
particles (ink molecules, grains of resin, etc.) in a supporting fluid, for example,
water. These correspond to experiments performed at different scales and therefore
subscribe to different theoretical frameworks, each one adapted to its scale. Before
going further, let us summarise the results.

• In the experimental context of Brownian motion, the diffusion law
R.t/ � p2Ddt is obtained from statistical analysis of individual trajectories
(Sect. 4.1.2). These trajectories are self-similar: they are fractal structures with
dimension df D 2 (Sect. 4.1.3).

• We can also observe the evolution in time27 under the influence of diffu-
sion of a population of particles with an initial concentration profile that is
localised (a finite length step, Fig. 4.2, or point like: c.x; 0/ D ı.x/). At
the macroscopic scale, at long times we obtain an even profile c1.x; t/ D
.4�Dt/�1=2 expŒ�x2=4Dt�. At the microscopic scale, we see a fractal interface
developing (Sect. 4.1.4).

• The phenomenological law j D �Drc proposed by Fick leads to a description
of the macroscopic evolution of any concentration profile by the diffusion
equation @tc D D�c (Sect. 4.2.1). This equation is invariant under the scaling
transformation .r ! kr ; t ! k2t) for all real k > 0 (Sect. 4.2.2).

• Several microscopic models have been proposed to describe normal diffusion
of a particle: random walks in discrete time (Sect. 4.3.1) and the Wiener process
in continuous time (Sect. 4.3.2).

We will see in this Sect. 4.4 that a remarkable coherence of these seemingly
disparate results can be obtained by showing that they can be deduced from each
other with the aid of simplifications or approximations justified by the change in
spatiotemporal scale of the descriptions. In particular, we show that it is the same
diffusion coefficientD that appears in these formulae.

4.4.1 How the Different Descriptions Are Related

The different descriptions of the phenomenon of diffusion can be arranged by
increasing spatial scales. We distinguish three levels of description.

• The first level, the lowest, corresponds to the deterministic and reversible
description that we can make (at least formally) at the molecular scale. We
consider the equations of motion of all the molecules within the framework of

27A new interpretation of the diffusion law R.t/ 
 p2Dt is possible: if we imagine sitting at a
point x0, the concentration c.x0; t / increases with time t provided x0 > R.t/ D p2Dt ; whilst if
the characteristic size R.t/ of the profile is longer than x0 so we are sitting inside the profile, the
concentration decreases with time.
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classical dynamics: the system is described by a Hamiltonian and the associated
evolution equation. That is the evolution of the probability distribution of the
presence of molecules in the phase space of all the degrees of freedom of
the molecules. This evolution equation is known by the name of the Liouville
equation and is equivalent to the set of equations of the molecular dynamics.
The interactions between molecules are described by a specific potential, but
since this is short ranged we generally absorb these interactions into the elastic
collisions; the potential enters only in an effective manner in the collisional cross
section of the molecules. Taking into account the exponential amplification of
any noise at each collision and the large number of particles (and therefore of
collisions), the resulting evolution has an extremely short correlation time and
becomes rapidly unpredictable in the long term. We therefore talk of molecular
chaos (see Fig. 4.8).

At larger scales the evolution of the population of molecules appears totally
random and only its statistical properties can be described. Theoretical analysis of
the deterministic model shown in Fig. 4.8 (one of the versions of a model known as
a Lorentz gas) can be implemented using tools from chaos theory (see Sect. 9.2).
It shows that the resulting asymptotic movement follows a normal diffusion law
in an appropriate range of concentrations of obstacles. We therefore know how to
relate the diffusion coefficient to other statistical characteristics of the microscopic
dynamics.

One of the implications of this result is to reconcile determinism and stochas-
ticity. When modelling a phenomenon, these two concepts are partly subjective
because they depend on the scale that is regarded as the elementary scale and the
scale at which the behaviour is to be predicted by the model. Diffusion is a case
in point and we will see alternate deterministic and stochastic descriptions as we
increase the minimum scale of the model.

Fig. 4.8 Cartoon of microscopic model (Lorentz gas) explaining the concept of molecular chaos
underlying the random nature of diffusion. Here a particle moves in a network of fixed diffusers,
with whom it undergoes elastic collisions: its velocity, well defined between collisions, remains the
same as its thermal velocity. Despite the perfectly deterministic nature of this model, the trajectory
is unpredictable at long times because each collision doubles the angular uncertainty in the initial
condition, due to inevitable noise present in the system. In practice, the phenomenon observed at
long times and large spatial scales has all the characteristics of a stochastic motion. We show that
it follows a normal diffusion law, as long as the obstacles are not be too numerous (trapped) nor
too sparse (rectilinear movement, in a straight line). These properties are still observed when the
particle moves within a cloud of other particles that are also moving
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• Due to the unpredictability of molecular motion which we have just talked
about, it is simpler and above all more practical to adopt a stochastic model
that is equally valid at the scale of a single molecule within a population and
at the scale of a grain suspended in a population of solvent molecules. We
can adopt a discrete model (random walk) or a continuous model (stochastic
process). Showing the equivalence of these two descriptions requires taking the
limit carefully. The step length a and duration � of the random walk must be
simultaneously taken to zero, with a2=2d�D D. We have already seen that it is
very productive to use the method of renormalisation (Sect. 4.3.2).

Note that, unlike the molecular dynamic description, this stochastic description is
only kinematic in the sense that the basic laws of motion are given. For example, in
situations more complicated than simple diffusion, additional physical mechanisms
(e.g. trapping by adsorption, external fields) and constraints (e.g. walls, excluded
volume) playing a role in the diffusion are simply taken into account in an effective
manner in the choice of probability laws governing the particle. The validity of the
choice can be established by comparing the predictions of the stochastic model with
the observed behaviours or by rooting it in the dynamic description at a molecular
level as described in the previous point.

The stochastic description can also be placed at a slightly larger spatial scale,
forgetting the individual trajectories in order to describe the evolution of the
probability distribution. Let us illustrate this point with the simplest example, that
of a non biased random walk in one dimension. During the time step�t , the particle
has a probability of 1=2 of taking a step �x to the right and a probability of 1=2 of
taking a step �x to the left, .�x/2 D 2D�t , which is written:

P.x; t C�t/ D 1

2
P.x ��x; t/ C 1

2
P.x C�x; t/: (4.31)

An expansion up to second order, valid at a scale in which �x and �t are the
infinitesimal quantities, easily leads to the equation:

@tP D �x2

2�t
@xxP D D @xxP: (4.32)

This type of reasoning can be made more rigorous and put in a more general
framework leading to the Fokker–Planck equation, which in the example considered
is equivalent to the diffusion equation.

We refer the reader to [31, 39, 56, 64] for a more complete presentation of this
derivation, its conditions of validity and implicit approximations.

Kinetic theory
It is worth mentioning that a statistical description of a population of N
particles that is more complete than that of Fokker–Planck, is formulated
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in terms of the joint probability densities f1.r ; v; t/, f2.r1; v1; r2; v2; t/,
. . .fN .r1; v1; : : : ; rN ; vN ; t/ with 2d degrees of freedom28 .r ; v/ of the
different particles. For example, we define f2.r1; v1; r2; v2; t/dr1dv1dr2dv2
as being the probability of finding, at time t , two particles at (approximately)
r1 and r2 with velocity (approximately) v1 and v2 respectively. This approach
is known by the name of kinetic theory. Introduced by Boltzmann, it was
essentially developed for gases, i.e. media dilute enough that the molecular
interactions do not play a dominant role. The approach is rooted directly in the
deterministic molecular description. From the Liouville equation for fN we
can derive a hierarchy of equations describing the evolution of the different
distributions .fj /j	1, called the BBGKY hierarchy (from the names Born,
Bogoliubov, Green, Kirkwood and Yvon). It is an infinite system of coupled
equations and we talk of hierarchy because the evolution equation of fj
involves the higher order functions .fk/k>j . Various relations are introduced
to close the set of equations to obtain a closed finite system of (approximate)
equations. In a dilute gas, we recall that the Boltzmann approximation
neglects the correlations between two particles before collision, written
f2.r1; v1; r2; v2; t/ � f1.r1; v1; t/f1.r2; v2; t/. The justification of this is
molecular chaos, illustrated in Fig. 4.8, and the fast decorrelation of associated
motion [23, 24]. Using this approximation, the first equation in the hierarchy,
describing the evolution of f1, becomes a closed equation: the Boltzmann
equation. In the presence of an external field of force a (field on the unit of
mass), this equation is written:

@t f1 C v:r r f1 C a:r v f1 D I .f1/; (4.33)

where I describes the contribution of the collisions (the collision integral);
which is expressed (exactly) as a function of f2 but the Boltzmann approx-
imation transforms it into a quadratic functional of f1 (integral in velocity
space). This kinetic approach, explicitly taking into account the molecular
velocities, allows us to describe phenomena of relaxation towards thermal
equilibrium. After integrating over the velocities, we find29 the Fokker–Planck

28Unlike the velocity of a Brownian particle, which depends on the scale at which we observe it,
the molecular velocities are well defined degrees of freedom (the molecules being here depicted as
point particles).
29The procedure, known as the Chapman–Enskog method consists of a perturbative expansion
of the Boltzmann equation about the equilibrium state, in which the velocity distribution is
Maxwellian (�0.v/ 
 expŒ�mv2=2kT � up to a normalisation constant); here we therefore plug an
expression of the form f1.r ; v; t /D P.r ; t /�0.v/Œ1C higher orders� into the Boltzmann equation.
After integrating over v, we obtain, to lowest order, the Fokker–Planck equation mentioned above
for the unknown function P.r ; t /.
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equation in a more justified and better microscopically based way. Kinetic
theory is, in this way, a route leading from Newtonian molecular dynamics
to the Fokker–Planck equation. More generally, it is a theory positioned
“between” the Hamiltonian deterministic microscopic description and the
continuous spatiotemporal field description (hydrodynamic theory in the case
of fluids, Sect. 9.5), which enables us to derive the field description from the
microscopic equations and, if necessary, complete it with information about
the fluctuations and correlations of the molecular velocities.

This summary only scratches the surface of kinetic theory; we suggest
[11, 17, 55] for a more substantial presentation.

• Finally, at our macroscopic scale, we adopt a global spatiotemporal description
of a population of particles. The observable is then the concentration c.r ; t/
such that c.r ; t/d d r is the number of particles in the volume ddr, considered
as small at the scale of description, but large enough at the microscopic scale
to contain many particles (hypothesis called continuous media). If N is large
enough and the particles are sufficiently non-interacting, we can identify, up
to a normalisation factor, this concentration c with the probability distribution
P.r ; t/ of a random walk with equation @tc D D�c, according to the Fokker–
Planck equation. The argument invoked in this identification is the law of large
numbers. We therefore see the connection between the microscopic description in
terms of trajectories and the macroscopic description in terms of concentrations;
it shows that the diffusion coefficients involved in the diffusion law on one hand
and the diffusion equation on the other hand are identical. One single coefficient,
the diffusion coefficient D of a particle in a carrier fluid, describes the basic
essentials of diffusive motion, whatever the scale of observation. Note that at
this macroscopic scale, we recover a deterministic evolution equation, but it is
irreversible, unlike the molecular equations (see Sect. 4.4.3).

The diffusion equation @c D D�c, the microscopic foundation of which we have
just shown, can also be introduced, or completed, in a phenomenological manner,
as it was done historically by Fick’s law. We can therefore now better interpret
Fick’s law j D �Drc: the current j is a probability current. The origin of the
apparent “force” driving the particles in the direction opposite to the concentration
gradient towards less densely populated regions is therefore only statistical; the
effect only occurs in the presence of a large number of particles. There is no real
force exerting at the molecular level and there is no “diffusion force” that exists. The
term entropic force is sometimes used to indicate this statistical effect perceived
at the macroscopic scale. We will show in Sect. 4.4.3 that this microscopic and
statistical origin of diffusive motion is also reflected in the irreversibility of the
diffusion equation.
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Law of large numbers
This law is the most famous statistical law. It states that the arithmetic

average of a sequence .�i /i of statistically independent random variables,
identically distributed and with a finite variance, converges to its statistical
average, i.e. to a number: limN!1N�1

PN
iD1 �i D h�i. It justifies the often

observed fact that a large number of microscopic random events can produce
a deterministic and reproducible macroscopic behaviour. For example, the
average of a sequence of tosses of a coin, heads (1) or tails (0), tends to
1=2 when the number of throws tends to infinity. This law in particular
enables the identification of the frequency of an event X 2 Œx; x C �x�

with its probability P.x/�x. Analogously, here we apply this to the random
variable �i.x; t/ taking the value 1 if the particle i is found between x and
x C �x at time t ; we therefore have ProbŒ�i .x; t/ D 1� D P.x; t/�x and
PN

iD1 �i .x; t/ D NAv c.x; t/�x if we measure the concentration c in number
of moles per unit volume. The central limit theorem then ensures that the
deviation between NAv c.x; t/ and NP.x; t/ goes as

p
N .

4.4.2 Einstein Formula and the Fluctuation-Dissipation Theorem

At the microscopic scale, the effect of microscopic collisions, which is reflected
in the diffusion coefficient D, also results in the viscosity of the medium and in
the friction coefficient  of a moving particle: when the particle is moving with
velocity v, the viscous friction force exerted on it is  v. We can view this force
as the “coherent” effect of molecular collisions on the moving particle producing
work, while the diffusion describes the “incoherent” contribution. This common
origin between diffusion and viscosity is expressed in the Einstein formula, already
seen in Sect. 4.1.2 [18]. The most general form, also known by the name of the
fluctuation-dissipation theorem, of which the Einstein relation is a particular case,
is written30:

D D kT


; (4.34)

where D is expressed in m2=s and  in kg s�1. We should highlight that  , like
D, is a characteristic of the particle-medium pair in question:  is in fact related

30This relation can hold in certain situations where the diffusion is anomalous. In this case the
diffusion coefficient D.t/ � R2.t/=2dt and the mobility 1= depend on time [51].
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to the dynamic viscosity31 � of the fluid environment by Stokes formula, written as
 D 6�r0� for a spherical particle of radius r0. This formula leads to the more
explicit, but also more specific, form of the Einstein formula:

D D kT

6�r0�
: (4.35)

We can express the Boltzmann constant k as a function of the ideal gas constant
R D 8; 314 (known experimentally well before the first studies of Brownian motion)
and the Avagadro number NAv. This gives the Einstein formula in its original form:

D D RT

6�r0� NAv
(4.36)

used by Perrin to determine the value of the Avogadro number NAv. The quantity
1= , called the mobility of the particle, is a linear response coefficient32: if the
particle is submitted to an external force F , its velocity takes the value F = . We
can therefore write the Einstein formula as:

response � v D DF

kT
� D excitation

kT
: (4.37)

This formula shows the linear response relation seen in Chap. 1 (for example
Sect. 1.1.7). In addition, D occurs as a coefficient describing the spontaneous
velocity fluctuations. In the case of diffusion of a “labelled” (at least mentally) fluid
molecule in a medium of identical molecules, we can demonstrate33 the Green–
Kubo formula relating D to the temporal autocorrelation function of the molecular
velocities (in d dimensions):

31� is an effective quantity appearing in the deterministic macroscopic description of hydrodynam-
ics. It is measured in units of poise, equal to 0:1kg=.m s/ D 0:1Pa s (for example � is 1 millipoise
for water at 20ıC). It is in this context, for macroscopic spheres, that Stokes showed “his”
formula; it therefore does not apply to atoms, nor in dilute media where the “continuous media”
approximation underlying hydrodynamics no longer applies. More precisely, � is introduced in a
phenomenological manner by a law similar to Fick’s law describing the transport of the moving
quantity: Jij D � � ri vj where v is the (macroscopic) velocity field of the fluid and J is the
tensor describing the current density of the moving quantity, generated in the fluid in response
to the velocity gradient (Jij is a force per unit surface, in other words a pressure). Nevertheless,
the origin of viscosity ultimately lies in collisions of fluid molecules with each other and with the
moving object. All the analysis presented in this paragraph relating to the diffusion coefficient can
therefore be applied to the viscosity �.
32The equation of motion of a particle, of mass m, is written mPv D F �  v. In the stationary
regime this becomes vD F = .
33The approach used starts from the Liouville equation (molecular dynamics); it can be generalised
to a number of other transport phenomena [17, 35].
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D D 1

d

Z 1

0

hv0:vt i dt (Green–Kubo formula): (4.38)

The mobility 1= can be seen as a “susceptibility” since we can write, within the
framework of linear response, that @vi =@Fj D ıij = , where v is the velocity of
the particle subjected to an applied force F and ıij is the Kronecker delta symbol
(zero unless i D j , when it takes the value 1). The Green–Kubo formula, rewritten
R1
0
hv0:vt i dt D d kT .1= /, is therefore exactly analogous to the relationship

between the magnetisation correlation function (quantifying the fluctuations) and
the magnetic susceptibility � in a system of spins (of n components):

Z 1

0

hM .0/:M .r/i ddr D n kT �: (4.39)

These two relations are particular cases of the fluctuation-dissipation theorem,
which stipulates that at thermal equilibrium, the response function G (linear
response to an external field) and the correlation function C of fluctuations (in
the absence of an external field) are proportional [36]. In other words, as long
as we stay in the linear response regime, that is close to equilibrium, the system
reacts to an external perturbation in the same way as it reacts to its spontaneous
internal perturbations. The most general and most commonly found statement of
this theorem expresses the functions C et G in terms of Fourier components. By
denoting the external perturbation as kTf (in general time dependent) and the
conjugate variable as q (in the sense where kTfq is an energy) with which we
measure the response of the system, we can show34:

bC.!/ D 2kT

!
ImŒbG.!/� with

( h Oq.!/i D bG.!/ Of .!/
h Oq.!/ Oq.!0/i D 2�ı.! C ! 0/bC.!/:

(4.40)

where the equalities to the right are the expressions in conjugate space of C.t/ D
hq.t/q.0/i and hq.t/i D R1

0
G.t � s/f .s/ds defining C.t/ and G.t/.

In conclusion, we will regroup the different expressions for the diffusion
coefficient that we have seen (in d dimensions), from the microscopic descriptions
to the macroscopic and phenomenological descriptions:

(1) D related to other statistical (chaotic) properties of deterministic microscopic
dynamics.

(2) D D .1=d/ R1
0
hv.0/:v.t/idt (Green–Kubo formula).

(3) D D a2=2d� (random walk with step length a and duration �).
(4) D parameterising the Wiener process WD .

34This theorem, shown to be true for equilibrium systems, has been recently generalised: it remains
partially valid in certain stationary nonequilibrium states, in which fluxes flow across the system,
such as we observe in dissipative systems [57].
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(5) D D kT= (Einstein formula).
(6) j D �Drc (Fick’s law).
(7) D D limt!1R2.t/=2dt (diffusion law for a particle).
(8) P1.r ; t/ D .4�Dt/�d=2 expŒ�r2=4Dt� (asymptotic probability distribution in

the case of an isotropic diffusion in d dimensions).

(1) and (2) come from statistical analysis of deterministic microscopic dynamics, in
the framework of ergodic theory and kinetic theory respectively; (3) and (4) follow
from a purely stochastic description; (6) is phenomenological and (5) expresses
a coherence between the descriptions at microscopic and macroscopic scales.
Finally, the asymptotic relationships (7) and (8), which are directly comparable to
observation, can be obtained from each of the different descriptions, showing the
equivalence of the different ways of defining the diffusion coefficientD.

Theory of Brownian motion
We started this chapter with Perrin’s experimental results of Brownian motion
of colloids (grains of resin) (Sect. 4.1.2). We then gave a kinetic description
of the random trajectories of particles by a stochastic process, the Wiener
process (Sect. 4.3). Here we will describe more precisely the dynamics of the
grains and its microscopic roots in the thermal motion of water molecules.
We will find the formulae we have already seen, for example the Einstein
formula, but here from a point of view which allows us to prove them. The
objective is also to include Brownian motion in the rigorous framework of
stochastic integration, giving new calculation rules to use, for example to
solve an evolution equation involving Brownian motion or more generally
thermal noise [21, 68].

The evolution equation of a grain
The starting point of the theoretical analysis is the physical explanation of
Brownian motion: it boils down to saying that the irregular and random
trajectories of the grain are entirely determined by water molecules in thermal
motion colliding with the grain. The idea is then to decompose the force
exerted on the grain into two contributions:

• A deterministic component  u where  is the friction coefficient of the
grain in the fluid environment.

• A random component called a Langevin force, b, which has a zero mean
by construction.

As we have already highlighted in Sect. 4.4.2 when introducing  , these two
components have the same origin, namely the collisions of the fluid molecules
with the grain. The first describes the resulting deterministic contribution
and the second describes the fluctuating part. The evolution equation for the
velocity, u, of a grain of mass m, is then written:
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m Pu D � uC b: (4.41)

The heart of the analysis will be to quantify the characteristics of this
“noise” b, and then integrate (4.41) to deduce the (observable) statistical
properties of the trajectory r.t/.

Different time scales of Brownian motion
We bring to light three characteristic time scales:

1. The correlation time �0 of the random force b; it is related to the time
between collisions of water molecules (mean free time), characterising
both the relaxation time of the medium after the grain has passed and its
autocorrelation. According to the molecular chaos hypothesis (illustrated
in Fig. 4.8) it is very short, of the order of a picosecond. Whenever we are
at a time scale larger than �0, we can assume that b.t/ is not correlated
to the instantaneous velocities u.s/ and has no autocorrelation, which
can be written for two components i and j at instants of time t and s:
hbi.t/ bj .s/i � A2 ıij ı.t � s/ where the constant A is, at this stage, still
to be determined;

2. The viscous relaxation time �m D m= where m is the mass of the grain.
This is the time after which all memory of the initial conditions .u0, r0/

has been lost, as we can see by formally integrating (4.41):

u.t/ D u0 e� t=m C 1

m

Z t

0

e� .t�s/=m b.s/ ds; (4.42)

where u0 is the well determined initial velocity of the grain. �m is of the
order of a nanosecond for a grain of the order of a micron diffusing in
water;

3. The observation time �obs , in general longer than a millisecond, at which
we describe the diffusive movement of the grain.

Thermal noise: white noise
In situations in which we normally study Brownian motion, we have �0 	
�obs and it is therefore legitimate to replace the random force b by a term A�

satisfying (exactly) h�i .t/�j .s/i D ıij ı.t � s/. This noise � is called white
because its intensity is uniformly distributed among different Fourier modes,
just as the energy of white light is uniformly distributed among the different
monochromatic wavelengths: h O�i .!/ O�j .!0/ D 2�ıij ı.! C !0/.

Saying that the noise is white is therefore equivalent to saying that it
is isotropic, stationary and not correlated in time. This condition entirely
defines the noise if we assume in addition that the noise is Gaussian and
centred, since a Gaussian process is entirely prescribed by its average and
its correlation function. We can then use (4.42). It first of all follows that
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hu.t/i D u0 e� t=m: the average velocity of the grain is asymptotically
zero and in practice zero as long as t � �m. We then express the velocity
correlations of the grain:

hui .t/uj .s/i � hui .t/ihuj .s/i D A2

2m
ıij

�

e� jt�sj=m � e� .tCs/=m
�

:

(4.43)
For t D s � �m, we obtain the kinetic energy mhu2=2i D d A2=4 , which
is identified with the thermal energy d kT=2 (equipartition of energy theorem
for d translational degrees of freedom) showing that A D p2kT . The
random component of Brownian motion, which we call the thermal noise is
therefore entirely determined by:

b D
p
2kT � with

( h�i .t/i D 0; i D 1 : : : d
h�i .t/�j .s/i D ıij ı.t � s/

(white noise):

(4.44)
Solution in the overdamped regime
In the limit m ! 0, the expression for the velocity correlations of the grain
simplifies to hui .t/uj .s/i D

p

2kT= ıij ı.t � s/, in a way which is
coherent with the equation u D  �1A� D p

2kT= � obtained in this
limit. When the time scale at which we describe the motion is long compared
to �m (in particular, the grain must not be too heavy), we can simplify the
analysis by neglecting the inertial termm Pu in (4.41). This is referred to as the
“overdamped regime”.35 Integrating the evolution equation r D p

2kT= �

gives r.t/ � r0 D
p

2kT=
R t

0 �.s/ds. So < Œr.t/ � r0�
2 >� 2dkT t= ;

by comparing with the diffusion law < .r.t/�r0/
2 >� 2dDt , we obtain the

fluctuation-dissipation relation D D kT . This relation reflects the fact
that the thermal noise term (Langevin force) and the friction coefficient
have the same origin: collisions with molecules in thermal motion. They
describe the influence of the same phenomenon at two different scales. It is
easy to check that

R t

0 �.s/ds D W 1=2 (normalised Wiener process); so we find
that r.t/� r0 D

p
2D W 1=2 D W D . The description of Brownian motion as

a Wiener process relies on the equipartition of energy between translational

35Equation (4.42) shows that a white noise b.t / in the equation for u.t / gives a correlated noise
B.t / in the equation for r.t /: hBi.t/Bj .s/i 
 cte:ıij ejt�sj=� to leading order. If �m � �obs ,
we can neglect the autocorrelation of the noise B.t /. This is also the approximation underlying
the hypothesis of the overdamped regime; in other words, it amounts to eliminating from the
description those variables that rapidly relax to zero.
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degrees of freedom and it involves two approximations: firstly, the noise term
is assumed to be “white”, non correlated, justified by the fact that the time
scales are large compared to the correlation time of molecular collisions:
�obs � �0; secondly, we neglect the inertial effects (overdamped regime),
which is justified by the small mass of envisaged particles: �obs � �m [67].

Starting from this description of the grain, it is finally possible to derive
three Fokker–Planck equations, describing the respective evolution in velocity
fug space, in phase fu; rg space and in real space (position frg space)
[12].36 The latter takes the form of the usual diffusion law37: @P.r ; t/ D
D�P.r ; t/ [46].

4.4.3 Irreversibility of Diffusion

Let us finish this section by underlining a fundamental aspect of diffusion: its
irreversibility. This is even visible in the form of the macroscopic diffusion equation
@t c D D�c, which is not invariant under time reversal: Changing t to � t changes
D to �D but a diffusion equation with a negative diffusion coefficient has no
physical sense since its solutions are unstable under the smallest of perturbations.
This point can be understood without calculations: in Fig. 4.5, the vertical arrows
could be drawn with their directions reversed whilst remaining proportional to the
second derivative of the profile. In other words, such an equation describes an
amplification of the smallest inhomogeneities, the amplification being larger the
more localised the inhomogeneity. So, when we try to go back in time following the
diffusion equation, the smallest hitch in the profile c.x; t/ results in a divergence
over a time � � l2=2D if l is the characteristic scale of the defect. This instability
of the dynamics with respect to the smallest noise reflects the physical impossibility
of evolving a diffusion profile in reverse: to do so we would need to perfectly control
the tiniest source of noise.

The microscopic description of Brownian motion gives a different formulation
to the same explanation. To reverse the diffusive motion of a cloud of particles
(molecules or grains) and return to an initial concentration profile, it would need to
be possible, at a given time t0, to reverse exactly the velocities of all the particles in
the system. The reversal must be applied to, not just the velocities of the particles we

36We sometimes talk about a Brownian particle when the motion is described by its position r.t /

and a Rayleigh particle when the motion is described more accurately by its velocity v.t / [64].
37More generally, the equation describing overdamped Brownian motion of a particle in a force
field F .r/ is written: Pr D F .r ; t /= Cp2kT= �. The associated probability flux, involved in
the Fokker–Planck equation @tP D �r :J , is therefore J D FP= � kTr P= [60].
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observe diffusing but also, those of the fluid molecules in which the diffusion takes
place, whose thermal motion, transmitted to the diffusing particles over countless
collisions, is itself the origin of the diffusive motion of the diffusing particles. In
addition, this reversal must be an exact reversal of the sign of the velocity v ! � v
without the slightest fluctuation in direction and without any time delay. Even if
such a reversal was possible, it would, in all probability, lead to an evolution which
rapidly deviated from the “projection backwards in time” of the evolution observed
between 0 and t0, due to the amplification of the effect of noise (inevitably present
in the system) in the individual trajectories (Fig. 4.8).

This explanation of the irreversibility we observe for all diffusive motion
anticipates the concept of chaos, which we will present in Sect. 9.2 [22, 23]. It can
also be stated within the framework of statistical mechanics.38 In the example of
ink diffusing in water, the fact that the reverse evolution (ink reconcentrating into a
droplet) is never observed is explained by the fact that the volume Vi in phase space
(of 6N dimensions if there are N particles) occupied by the initial state is infinitely
smaller than the volume Vf of the set of diluted states. Using the reversibility of
molecular motion itself, we can show that

Prob.f ! i/

Prob.i ! f /
D Vf

Vi
	 1; (4.45)

where Prob.i ! f / denotes the probability of observing an evolution from the
initial state to a diluted state within Vf and Prob.f ! i/ that of an evolution in
the reverse direction, to a configuration within Vf , to return to the initial state. The
evolution of one of these diluted states to a state where the ink is concentrated is not
impossible, it is just improbable.39

Diffusion illustrates in an exemplary way the “degradation” of molecular evo-
lution equations, deterministic and reversible when written at the molecular scale,
into irreversible and random processes at larger scales. This irreversibility is, in this
way, an example of an emergent phenomenon, that is a phenomenon that appears

38This is not surprising if we remember the dynamic root of statistical mechanics; Boltzmann’s
ergodic hypothesis replaces the temporal description by a static picture in which time has
disappeared (Sect. 9.3.1).
39This explanation, already presented in Boltzmann’s work is now known as the microscopic
foundation of the second law of thermodynamics for closed systems [6, 37].

To avoid any confusion, we remark that the H-theorem of Boltzmann is a different result:
it follows from an approximation consisting in neglecting pairwise correlations (hypothesis of
factorisation of joint distributions of several particles), justified by the randomising nature of
microscopic dynamics, which we call the hypothesis of molecular chaos (Fig. 4.8, Sect. 9.3.1).
This result is “subjective”, concerning the irreversibility of our model and it is a bit of a jump to
relate it to an “objective” irreversibility of the phenomenon under consideration.

Whilst we are on the subject, it is worth mentioning that the explanation of irreversibility is
more subtle and still under discussion in the case of open systems far from equilibrium, in the
context of chaos theory. We suggest the works, [10, 17, 45], for a profound discussion of these
questions; a few foundational texts are presented in [2].
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only at macroscopic scales, due to the large number of coupled degrees of freedom
that play a role at these scales, and that cannot be predicted from the underlying
mechanisms.

4.5 Anomalous Diffusion

4.5.1 Possible Origins of Anomalies

We have obtained in Sect. 4.3.1 an expression D D a2=2d� , giving the diffusion
coefficient D as a function of the average length a and average duration � of
steps of a random walk describing the motion of diffusion. This expression and
the arguments used to reach it immediately make apparent situations in which the
movement does not follow a normal diffusion law:

1. The first example is a situation in which the average duration of steps diverges:
� D1. This is the case whenever a trapping mechanism can keep the particle at
a given site for arbitrarily long times.

2. The second example is a situation in which the step length has an infinite
variance a2 D 1. This is the case whenever a mechanism generating long
straight excursions is superimposed on the thermal diffusion.

3. A third situation is that in which the correlation time diverges. Whenever we
can no longer claim that the steps a.s/ and a.t C s/ are statistically independent
for all times t longer than a certain fixed time,t0, in other words whenever the
correlations between steps have an infinite temporal range, the exponent of the
diffusion law is different. A typical example is that of self-avoiding random walks
used to model the spatial conformation of linear polymers. The fact that they
cannot cross themselves, entails a permanent memory of their previous route
(see Chap. 6). Negative correlations of infinite range can also exist, in which
case diffusion is slowed down. On the other hand, we have shown in Sect. 4.3.1
that finite range correlations do not affect the normal character of diffusion.

4. A final example is a situation where the random walk does not take place
in Euclidian space (of d dimensions) but is confined in a medium of fractal
geometry, of dimension df < d .

We talk of anomalous diffusion when the deviation from an ideal random walk is
as far as to change the exponent of the diffusion law to R.t/ � t �=2, with � ¤ 1

and 0 � � � 2 (other values of � are incompatible with the stationary state of
the statistics40). We talk of superdiffusion if � > 1. It is understood intuitively,

40Note that this constraint � < 2 only comes into play if the motion has finite variance and we
can define a finite root mean square displacement (R.t/ < 1). The constraint disappears when
the constitutive steps have infinite variance (Lévy flights) and the diffusion law is expressed by a
convergence of the renormalised sum to the Lévy law L˛ (see p.150) with ˛ < 1.
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and we will show in the following paragraphs, that such a motion is found when
a random walk is performed with large deterministic steps (case 2 above) or has
positive correlations of infinite range, associated for example with an excluded
volume constraint (case 3). The motion is said to be subdiffusive if � < 1. We
expect to observe such a motion in the case where diffusion is slowed down by
trapping phenomena (case 1), negative correlations (case 3) or a fractal geometry of
the supporting medium (case 4). Typical models of anomalous diffusion replace the
Brownian walk and the Wiener process associated with normal diffusion. These are,
on the one hand, Lévy flights and, on the other hand, fractal Brownian motions, and
will be presented in the two following subsections.

4.5.2 Lévy Flights

Starting from a Brownian random walk, a model showing an anomalous diffusion
law is obtained by keeping the statistical independence and isotropy of successive
steps .ai /i , but taking a distribution P.a/ for their length which has infinite
variance, without a characteristic scale, which we call a heavy tailed (broad)
distribution. The typical example is that for which this distribution asymptotically
takes the form of a power law P.a/ � a�.1C˛/ for large a, with 0 < ˛ � 2 (which
has an infinite variance). The random walk obtained with such a distribution for
the constituent steps is called a Lévy flight.41 The generalised central limit theorem,
which we will state precisely below, means that Lévy flights asymptotically follow
an anomalous diffusion law R.t/ � t1=˛ . In addition, the asymptotic form of their
density probability is written P.r ; t/ � t�1=˛L˛.rt

�1=˛/ where L˛ is a particular
distribution called a Lévy distribution (Fig. 4.9).

Central limit theorem
Let .ai /i be a set of random, independent, identically distributed, real
variables. We then construct XN D PN

iD1 ai . If the variance Var.ai / D �2

is finite, the average m D hai is also finite and the central limit theorem
states that ŒXN � Nm�=

p
�2N tends to a centred Gaussian distribution with

variance 1 (called the normal distribution). This theorem is called the central
limit theorem because it rigorously states a principle which is omnipresent
in nature: phenomena which are essentially random can show a regular
deterministic collective behaviour. We refer to this as a statistical law. Critical

41If we take for the distribution of steps a law P.a/ 
 e�a=� , with a finite characteristic scale � ,
we obtain a Rayleigh flight which follows a normal diffusion law. Going from a Rayleigh flight to a
Lévy flight, we find again the passage from a power law to an exponential law, typically associated
with the emergence of critical behaviour.
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Fig. 4.9 Diagram illustrating the difference between an ideal random walk (left) and a Lévy flight
(right), in which the probability to make long straight excursions is not negligible. This difference
is reflected quantitatively in the exponent � > 1 of the diffusion law R.t/ 
 t �=2 associated with a
Lévy flight compared to the exponent � D 1 of the normal diffusion law observed in, for example,
Brownian motion

phenomena are precisely those in which this principle fails, either because of
a divergence of the range of correlations, or due to broad distributions (i.e.
with infinite variance) of constituent events. We will consider the second case
here.

Suppose that the asymptotic behaviour of the distribution P.a/ of random
variables ai is a power law: P.a/ � jaj�.1C˛/ for jaj ! 1 with ˛ > 0 (so
that P remains normalisable). The moment haqi diverges when q � ˛. We
distinguish the following three cases:

• If ˛ > 2, we recover the normal behaviour: the averagem and variance �2

are finite, XN �Nm �
p
�2N and the usual theorem applies.

• If 1 < ˛ < 2, the variance diverges but the average m is still finite, and
XN � Nm � N1=˛. We can state a generalised limit theorem: .XN �
Nm/N�1=˛ converging to the Lévy distribution L˛.

• If 0 < ˛ < 1,m is not defined (or diverges) and the dominant behaviour is
XN � N1=˛ (note that 1=˛ > 1). The generalisation of the limit theorem
is then expressed as: N�1=˛XN converging to the Lévy distribution L˛ .

If we give back the steps their duration � , we must replaceN by t , m bym=�
and �2 by �2=�2 in the formulae above.

The Lévy distribution L˛, appearing here as an asymptotic distribution,
has itself a power law behaviour: L˛.x/ � jxj�.1C˛/ for jxj ! 1. It can be
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shown42 that the largest value xmax.t/ taken by the set .ai /i between 0 and
t behaves as t 1=˛ , that is to say as their sum: the rare events dominate the
collective behaviour.

Lévy distributions .L˛/˛ replace Gaussian distributions when the central limit
theorem is extended to cases in which the constituent random variables have a power
law behaviour and an infinite variance [42]. Correspondingly, they are stable with
respect to addition of the corresponding random variables (as for all Gaussians):
if X1 and X2 follow Lévy distributions L˛, then X1 C X2 also follows a Lévy
distribution L˛. This stability is necessary for it to take its place as an asymptotic
distribution in a limit theorem.

Lévy distributions are explicitly defined, not by their probability density but, by
their characteristic function �˛ (Fourier transform of L˛). This has a particularly
simple form, which by limiting ourselves to the case of centred symmetric distribu-
tions is given by:

�˛.u/ � heiuX˛i D e�Ajuj˛ ; (4.46)

whereX˛ is the underlying random variable. It can be seen that the asymptotic form
of the corresponding probability density L˛ is indeed a power law, proportional to
jxj�.1C˛/ for large values of x (but L˛ is continuous at x D 0). From this expression
we easily find the “stability” already mentioned of Lévy distributions, also called
stable distributions for this reason. In mathematical terms this amounts to stating
the stability by a convolution of the parametric forms of the associated probability
distributions, equivalent to the stability by a simple product of the characteristic
functions.The density is only explicit in the case where ˛ D 1, thereby giving the
Cauchy distribution (it is also known as the Lorentz distribution), parameterised by
its width �:

L1.x/ D �

�2�2 C x2 : (4.47)

An important property of Lévy flights worth highlighting is their self-similarity. It
is in fact fairly predictable given the status of the limiting distributions of Lévy
flights. These are involved both to describe the distribution of constitutive steps (as
typically broad distributions, behaving as a power law) and to describe the long time
behaviour of the process obtained by adding such steps in a statistically independent
manner, just like the Gaussian distribution describes the asymptotic behaviour of
a Brownian walk in the case of normal diffusion. However the self-similarity of
Lévy flights is different from the self-similarity of Brownian walks. For the case
of Lévy flights, by denoting X˛.t/ the process at time t , we obtain (maintaining the
independence of successive steps):

42xmax.t/ is such that t
R

1

xmax.t/
L˛.x/dx D 1: we have at most one value greater than xmax.t/

between 0 and t . By replacing L˛.x/ by its power law behaviour, we obtain xmax.t/ 
 t 1=˛ [8].
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�.t;u/ � heiu:.X˛ .t/�X˛.0//i D �.1;u/t � e�At juj˛ : (4.48)

The scale invariance is therefore written:

�.t;u/ D �.kt; k�1=˛u/ (4.49)

that is to say that the process is invariant with respect to the combined transformation
(t ! kt , u! k�1=˛u) or, returning to real space, with respect to the transformation
(t ! kt , r ! k1=˛r). In this way we find that the diffusion law of a Lévy flight is
R.t/ � t1=˛ .

The model of Lévy flights has the advantage of entering into the well explored
mathematical framework of the generalised central limit theorem, but it has the
drawback of attributing the same duration to all jumps, whatever their length. This,
sometimes not very realistic, ingredient can be rectified by introducing a finite
displacement velocity v for the particle such that the duration of a step of length
a will be a=v. We keep a broad distribution, in a power law, for the step length.
This new model is called a Lévy walk. The diffusion law will be different from
that of a Lévy flight of the same distribution P.a/, however it remains anomalous.
For example we show that if P.a/ � a�.1C˛/, then R2.t/ � t3�˛ , that is a value
� D 3 � ˛ > 1. More complex models, better taking into account particular
experimental situations, are obtained by taking a velocity v.a/ which is dependent
on the length of the step [33, 59].

Chaotic transport and anomalous diffusion
One interesting question is to study the movement of (non charged) particles
transported by a fluid. The motion behaves a priori as convection and not
diffusion. However when the fluid is driven by a non trivial motion, for
example if it obeys a Hamiltonian dynamics with a phase space containing
chaotic regions (Sect 9.2), the only possible description is made in terms of
statistical properties of the motion. The concepts are therefore those used to
characterise diffusive motion resulting from a random walk forgetting that the
trajectory results from a deterministic dynamical system.

In this context, anomalous diffusion is often observed, typically Lévy
flights or walks. The trajectory remains trapped in a region where the
dynamics is slow or localised, then makes a long “straight” excursion and then
the motion is localised again. The exponent of the anomalous diffusion law
will depend on the distribution of trapping times and flight times [33, 59, 61].
This example occurs in various concrete problems such as the dispersion of
pollutants in the sea or the atmosphere, which we want to control, or at least
predict.
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4.5.3 Fractal Brownian Motions

We have already mentioned that the central limit theorem, and the associated normal
diffusion law, no longer apply in the presence of long range correlations. One
necessary condition to see the appearance of anomalous diffusion is therefore that
P

t jC.t/j diverges. A typical model of an associated anomalous random walk
is provided by the family of fractal Brownian motions. They are defined by the
characteristic function of their growth:

�.t;u/ � heiu:.X tCs�X s/i D e�Au2jt j2H ; (4.50)

where H � 1 is called the Hurst exponent [32]. Like the Wiener process that
they generalise, fractal Brownian motions show a self-similarity property, in which
their exponents (different from those of Brownian motion) reflect their anomalous
behaviour:

�.kt; k�Hu/ D �.t;u/: (4.51)

By using thatR2.t/ D � @2�=@u2.t; u D 0/, we immediately deduce from this scale
invariance the diffusion law obeyed by these processes:

R.t/ � tH or � D 2H: (4.52)

The autocorrelation function of the growth:

hŒX tCs �X s �:ŒX s �X 0�i D AŒ jt C sj2H � jsj2H � jt j2H � (4.53)

shows that the growth is positively correlated ifH > 1=2 (persistent hyperdiffusive
motion) and negatively correlated if H < 1=2 (subdiffusive motion). This power
law form of correlations reflects the divergence of the correlation time, typical of
dynamic critical phenomena.

4.5.4 Examples

Examples are encountered in many domains. We find them throughout this book:
subdiffusion in a cluster at critical percolation (Chap. 5); superdiffusion of self
avoiding random walks, the trajectories of which model spatial conformations of
(long) linear polymers (Chap. 6); the relaxation of a spin glass can be described as
a random walk in a landscape of complex topography, the energy landscape of the
spin glass; electrical transport properties in amorphous disordered or quasiperiodic
materials can also be described in terms of anomalous diffusion [7]. For example,
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the subdiffusive motion of electrons in quasi-crystals43 leading to these materials
having insulating properties even though they are metal alloys.

Another example is that of Lévy flights observed in giant micelles [52]. Micelles
are continually rearranging: they break and after diffusing in the solvent the
fragments recombine differently. The phenomenon can be studied by labelling the
surfactant molecules making up the micelles with fluorescent markers allowing indi-
vidual molecules to be followed. By observing in this way the motion of a surfactant
molecule of the system, alternating phases are seen of the molecule diffusing within
a micelle and jumping from one micelle to another leading to a superdiffusion.

It has been observed that albatross migration changed, from Brownian motion
if prey was abundant, to hyperdiffusive Lévy flights when fish was scarce. The
same phenomenon is observed in certain bees following the abundance of pollen
sources [66]. It is also observed that the motion of an individual within a herd shows
a hyperdiffusive behaviour as the herd begins collective motion [29].

As we have detailed in Sect. 4.5.2, transport by a fluid driven by chaotic motion
and superdiffusion phenomena observed in turbulent motion are well described by
Lévy walks.

Fractal Brownian motion has been used to model, among other things, flooding
of the river Nile and stock market prices [47].

A final example, which we will describe in detail below, is that of diffusion
of a liquid in a porous rock that is initially dry. In contrast to the examples we
have just cited, this is not treated just in a stochastic “microscopic” framework,
but at a macroscopic level, by a modified diffusion equation to take into account a
temporal asymmetry fundamental to the motion, underlying the anomalous nature
of the observed diffusion.

Anomalous diffusion in a porous medium
The final example introduced in Sect. 4.2.3, is that of diffusion of a liquid in
a porous rock that is initially dry. The asymmetry between filling and drying
of pores, the latter being only partial, invalidates the usual diffusion equation.
The phenomenon can be taken into account by taking for D a discontinuous
function of the rate of change of local and instantaneous concentration @tc:
@t c D D.@t c/ �c. D just needs to change value with the sign of @t c, taking
a smaller value during the filling phase than during the drying phase, D0 and
D0.1C 
/ respectively. Due to the fact that a film of liquid remains trapped
inside the pores after the liquid has passed though (see Fig. 4.7), the total mass
of moving liquid decreases. This non conservation of mass gives the system a
“memory” and, contrary to the case of normal diffusion, we cannot eliminate
reference to the initial condition .A0; l/where l is the extension of the domain

43Quasi-crystals are assemblies of metallic atoms that have a symmetry of order 5, for example
Al, Fe and Cu, and are thus incompatible with crystalline order and lead to quasiperiodic
structures [65].
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in which the initial mass A0 is localised. Whilst it is possible to let l tend to
zero to determine the universal asymptotic properties of normal diffusion (see
Sect. 4.2.2), hereA0 and l must be changed simultaneously. The spreading out
of liquid from a new fictitious initial extension l 0 < l , to the original extension
l is accompanied by a loss in mass of moving material and must therefore be
associated with a new value of the mass A00 with extension l 0 to continue
to describe the same phenomenon. Letting l tend to zero must therefore be
accompanied by a change in the parameter A0. The renormalisation methods
presented in Chap. 3 were specially designed to solve this type of difficulty.
Renormalisation determines the “right way” to let l tend to zero whilst jointly
transforming (“renormalising”) the other system parameters in order to leave
the physics at work in the observed phenomenon unchanged. Using this, the
non trivial asymptotic regime emerges, which is not at first sight evident in
the initial diffusion equation. In this way a condition A0l2˛.
/ D const: is
explicitly determined, completing the procedure of taking the limit l ! 0.
A diffusion law with exponent � D 1 � ˛.
/ then follows [25]. Here the
anomalous diffusion reflects the aging of the system. In a way, the system
“measures the time passed” through the evolution of the mass. It is this extra
temporal dependence that is responsible for the anomalous diffusion. The
equation is of the form (in one dimension):

c.x; t/ � 1

.2Dt/1=2C˛.
/
g

�
xp
2Dt

; 


�

(4.54)

implying the same scaling variable z D X=
p
2Dt as normal diffusion. It is

the anomalous prefactor 1=.2Dt/1=2C˛.
/ that leads to an exponent � D 1 �
˛.
/ < 1 in the diffusion law. As in critical phenomena, dimensional analysis
alone does not determine the anomalous exponent (unlike the case of normal
diffusion); and more complete analysis by renormalisation is required.44

To conclude let us note that here anomalous diffusion appears at the level
of deterministic description by a diffusion equation without it being necessary
to introduce stochastic fluctuations explicitly.

44We can clarify this point by distinguishing [3]:

– a normal similarity U D f .X1; X2/ where X1 and X2 are dimensionless variables and U is the
dimensionless function that we wish to determine; here the function f is a regular function of
its two arguments;

– an anomalous similarity U D X˛
2 g.X1=X

˛
2 / where g is a regular function; an anomalous

exponent ˛ appears here that could not emerge from a simple dimensional analysis of the
starting equation. The example presented here illustrates this second case.



4.5 Anomalous Diffusion 155

lo
g[

R
2 (

t)
]

log (t )

lo
g[

R
(t

)]

log ( t )

log (t*)

Rmax

Fig. 4.10 Typical appearance of a graph representing logR2.t/ as a function of log t , R.t/
being the root mean square displacement. Left: normal diffusion (circles) and anomalous diffusion,
subdiffusive (triangles) or hyperdiffusive (ovals); symbols represent experimental points, straight
lines a linear interpolation found by the method of least squares. The slope of the lines gives an
estimate of the exponent � of the diffusion lawR2.t/ 
 t � . Right: a situation in which at long times
(t > t�) the root mean square displacement shows a saturation at a value Rmax , corresponding to a
confinement of the particle in a region of linear extension proportional toRmax ; the system achieves
a homogeneous diffusive equilibrium state (in this way the link between the linear extension L of
the confinement region and the saturation value Rmax can be calculated). The motion can remain
diffusive at short times, as seen on the graph by the linear part for t < t�, of slope equal to the
exponent � of the diffusion law

We will end this subsection with a warning for analysing experimental data.
Starting from a recording of particle trajectories (in the general sense: molecules,
cells or grains) performing diffusive motion, it is always possible to calculate
a root mean square displacement R.t/ and to trace logR2.t/ as a function of
log t . However it is more subtle to interpret the graph obtained. For example,
diffusion between obstacles or traps typically leads to a subdiffusive motion (� <1)
whereas diffusion in confined media leads to a saturation of the root mean square
displacement (Fig. 4.10). However it is difficult to distinguish, only by looking at
the graph, a diffusion between very dense obstacles inducing trapping and confined
diffusion inside a volume enclosed by walls (for example membranes in a biological
context). This is all the more true when more complex mechanisms come into
play, for example diffusion between dense but fluctuating obstacles and diffusion
in a confined space but with mobile walls. It is therefore essential to use a model
of diffusion to analyse the observations, interpret them in terms of microscopic
mechanisms and to extract quantitative information.

4.5.5 Spectral Dimension

Random walks are an illustration of the connection existing between static geomet-
ric properties of a fractal structure and the underlying dynamic properties.
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A more complex question, but one of particular interest is that of diffusion in a
pre-existing fractal structure. The properties of diffusive motion will be profoundly
changed by the particular geometry of the accessible regions and paths. Never-
theless, since this geometry is self-similar, the asymptotic behaviour will remain
described by a power lawR.t/ � t�=2 . In addition to the exponent � of this diffusion
law and the fractal dimension df of the substrate, we will introduce a third exponent,
the spectral dimension ds of the substrate.

The most direct way to define ds is to consider the modes of vibration of the
fractal structure, here serving as a medium supporting diffusion. Let �.!/d! be the
number of modes with frequencies between ! and d!. For an Euclidian lattice of
dimension d (for example a crystalline solid), the number of modes with frequencies
less than ! varies as !d where �.!/ � !d�1. This spectral density will be strongly
affected by the fractal nature of the medium under consideration. We therefore
define ds by the relation �.!/ � !ds�1. For example, we can calculate explicitly the
spectral dimension of a Sierpinski gasket: ds D 2 log 3= log 5 D 1:364:::. In general
it can be shown that ds � df � d [Gouyet 1992].

Let us now consider a random walk on a fractal lattice of fractal dimension df
and spectral dimension ds . Since R.t/ � t�=2 is the only characteristic scale in the
problem, the probability of a particle being present has the scaling behaviour:

P.r ; t/ � R.t/�df f
�

r

R.t/

�

; (4.55)

where f is a some scaling function, at this stage unknown (besides, it does not
concern us). The factor R.t/�df comes from ensuring P is normalised, the domain
of integration being here reduced to the fractal medium. In addition, it can be shown
[7] that the probability of first return to the origin (first passage) behaves as t�ds=2.
Comparing this result with the behaviour of P.r ; 0/, considering R.t/ � t �=2,
we find:

� D ds

df
: (4.56)

The fractal dimension of a typical trajectory remains equal to 2=� (so equal to
2df =ds). We always have ds � df �d , hence � � 1, even with � < 1 if the structure
is actually fractal (in which case ds < df < d ). Diffusion on a fractal structure is
therefore subdiffusive and the dimension 2=� of trajectories is always greater then 2.
These properties quantitatively reflect the fact that diffusion is hampered and slowed
down by the restraining geometry where it takes place. Observations of diffusion of
a labelled particle (a “tracer”) on a structure will therefore quantitatively reveal these
properties.

The spectral dimension ds thereby describes the geometry of the supporting
medium from a dynamic point of view. A fractal structure with many dead ends and a
well connected fractal structure (obtained for example by adding to the first structure
some connections, of zero total mass, to transform dead ends into passageways) can
have the same fractal dimension. However they would have very different spectral
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dimensions, far smaller in the first case. This point is illustrated, for example, in
the solution–gel transition of polymers: ds considerably increases the moment the
chains are crosslinked (leading to the formation of a gel) whereas df does not vary
much.

4.6 Driven Diffusion and Processes Far from Equilibrium

Diffusion processes have served as a test bed for statistical physics at and near to
equilibrium (linear response theorem). We will see that they also play a central
role in certain recent developments in statistical physics far from equilibrium.
A model example is that of “forced” or “driven” diffusion, in which the system,
composed of impenetrable particles in thermal motion, is maintained far from
equilibrium by imposed boundary conditions. Studying this example will elucidate
the theoretical analysis and properties of all systems that are placed between two
different reservoirs imposing different values on their associated intensive variables
(for example, temperature, density or electrical potential) and by thus maintaining a
flux (of heat, particles or charges respectively) through the system.45

4.6.1 A Typical One Dimensional Model

The most basic one dimensional model we will present is that of displacement with
exclusion, in which particles diffuse under the constraint that two particles cannot
occupy the same site, which corresponds to a short range repulsive interaction
between particles. In one dimension, this interaction creates strong geometrical
constraints on the relative positions of particles. As a result, their movements are
correlated with each other and we therefore expect radically different results from
those observed in the case of non-interacting particles. This model has two variants;
a “symmetric simple exclusion process” (SSEP) in which the diffusion is symmetric
or an “asymmetric simple exclusion process” (ASEP) in which the diffusion is
biased in a given direction [13]. The particular case of a totally asymmetric
process, “totally asymmetric exclusion process” (TASEP), in which all the jumps
are in a single direction, is analytically tractable and so shows in an indisputable
way the fundamental differences existing between systems at equilibrium and
systems maintained far from equilibrium, through which a flux flows. Let us
immediately give the three essential differences: (i) boundary conditions will control

45Let us underline straight away that non trivial nonequilibrium properties only appear if a complex
internal dynamics, coupling microscopic degrees of freedom of the system, add up to destabilise
the boundary conditions. This coupling is ensured here by the exclusion constraint; it can also
follow from chaotic microscopic dynamics [10].
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the stationary state of the system and the phase transitions it can show; (ii) the free
energy is only defined globally, without being us able to identify a local functional;
(iii) fluctuations of macroscopic quantities around their mean values are no longer
Gaussian.

4.6.2 Density Profile and Phase Diagram

The system consists of a one dimensional chain of L sites on which particles
move.46 Its discrete nature makes this system particularly well adapted to numerical
studies. The particles make their attempted moves independently of each other and
without memory, over time intervals distributed following a Poisson law: over a
time interval dt , each particle attempts a jump with probability dt=� . Following the
exclusion principle, a displacement is only accepted if the new site is free. At the
two extremities the system is connected to two reservoirs of particles of densities �A
and �B fixing the boundary conditions: �.0/ D �A and �.LC 1/ D �B (Fig. 4.11).
The exclusion principle imposes � � 1, so �A and �B are varied in the interval Œ0; 1�.
The left hand boundary condition (reservoir of particles with density �A) attempts
to inject particles at x D 0 with rate �Adt , injection being actually realised when
the entry site x D 1 is empty. In the same way the right hand boundary condition
(reservoir of particles with density �B ) extracts particles on the exit site (x D L)
with a rate .1 � �B/dt . The number of particles present in the system is not fixed
a priori but is one of the observables to be determined, along with the density �.x/
and the current j.x/. The control parameters are the densities �A and �B of the
reservoirs controlling the flux in and out of the system respectively. The resulting
dynamics is written by a master equation, that is by the evolution for the probability

ρ
A

ρ
A

ρ
B

ρ
B

time  t

time  t+1

j

Fig. 4.11 Totally asymmetric process with exclusion: particles move by elementary jumps only
towards the right and only if the new site is unoccupied. The system is maintained nonequilibrium
by the densities �A and �B imposed at the extremities being different from each other (�A ¤ �B ),
inducing a uniform current of particles j in the stationary state

46These particles can be fictitious and correspond to local excitations (for example quanta of
vibration called phonons).
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distribution of the presence of N particles in terms of the transition probabilities
from one configuration of particles on the chain to another.

Symmetric processes: The simplest situation is that in which the diffusion of
particles is symmetric: each particle has the same probabilityp D 1=2 of attempting
a jump to its neighbouring site to the right or to the left, the jump being accepted
if the envisaged new site is empty. It can then be shown that a stationary state is
established in which the density profile is linear:

�.x/ D �A C .�B � �A/x=L: (4.57)

On balance, the current j of particles crossing through the system is zero, The
difference from equilibrium systems concerns the fluctuations which are no longer
Gaussian [16].

Asymmetric processes: A richer scenario is that in which one of the directions
is preferred: the particle attempts a jump to the right with probability p ¤ 1=2 and a
jump to the left with probability 1� p. This is the case in which a constant uniform
field is applied to the system. Particle movement is then ruled by two effects:

• On the one hand a stochastic diffusive motion statistically leads, by an entropic
effect, to a current of particles towards regions of low concentration, here towards
the right if �B < �A.

• On the other hand a deterministic movement in which each particle individually
feels a force of amplitude proportional to 2p � 1, pushing it in one of the two
directions. If �B < �A, this force cooperates with the diffusive motion if p > 1=2
or opposes it if p < 1=2.

A concrete example is that of the diffusion of ions in a transmembrane ion
channel with a potential difference ıV between its extremities across the membrane
(electrodiffusion47) [26].

Totally asymmetric processes: The extreme case of p D 1 corresponds to the
case in which a field, or the nature of the problem itself, forces the particles to jump
from one site only to its neighbouring site to the right, provided it is unoccupied.
This is a simple model of road traffic; it is also used to account for the movement
of ribosomes (molecular machines that assemble amino acids into proteins) along a
messenger RNA.48

47The macroscopic description of this problem involves the sum of the current �Dr n given by
Fick’s law (D being the diffusion coefficient of ions and n the ion concentration) and the current
�zen.D=kBT /r V given by Ohm’s law (z being the valance of ions, V the electric potential
and the Einstein relation has been used according to which the mobility of an ion is equal to
D=kBT ). These two terms are multiplied by ze and by Avogadro’s number to obtain a charged
current density. The interest of the microscopic model presented in this section is to go beyond
this macroscopic mean field description. This thus allows us to evaluate the role of fluctuations and
correlations, as well as the fine structure of the density profile.
48It was in this context that the model was introduced [44].
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Fig. 4.12 Phase diagram of
the totally asymmetric
process (see text)
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For this totally asymmetric model, we know how to calculate the configurational
probability distribution in the stationary state [14]. The density in the middle of the
system converges to a stationary value ��, as a function of �A and �B , enabling a
phase diagram to be drawn. It can also be shown that the spatially uniform current
in the stationary state is a function of the density in the centre: j � D j.��/ D
��.1� ��/. We obtain the phase diagram shown in Fig. 4.12 [34]. Three phases are
observed: a low density phase �� D �A if �A < 1=2 and �A < 1��B , a high density
phase �� D �B if �B > 1=2 and �B > 1 � �A and a phase �� D 1=2. The line S
is a first order transition line since �� has a discontinuity �B � �A D 1 � 2�A > 0.
Suppose we start at time t D 0 with a step function density profile: �.x/ D �A if
x < x0 and �.x/ D �B if x > x0; the current in the left hand side is �A.1 � �A/
whereas it is �B.1��B/ in the right hand side. This singularity gives rise to a shock
wave. In other words, to reconcile the two currents, the position of the step will
move at velocity v D 1 � �A � �B (as long as it remains far from the boundaries).
On the line S , we have v D 0 and the step is the nonequilibrium analogue of the
coexistence of two phases �� D �A and �� D �B . On the other hand, �� remains
continuous on crossing the lines C . In the zone enclosed by these lines C , we have
�� D 1=2 and the current is maximal: j � D 1=4. This can be understood intuitively:
on average one site in two is occupied; each particle (in this average, of course very
approximate, picture) therefore always sees an empty site in front of it and follows
a free, unconstrained, motion, as if it never saw the other particles and was alone on
the chain. Throughout this zone we see a spontaneous critical behaviour: the system
must organise itself to reconcile the boundary condition � D �A and the value at the
centre �� D 1=2. To do so, it develops boundary layers, which are scale invariant
in the sense that their density profiles follow power laws (in the stationary state):
to the left, �.x/ � �� � x�1=2 and to the right, �.x/ � �� � .L � x/�1=2. Spatial
correlations in these boundary layers also have a power law behaviour [30].
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a(ρ )

v, n

V, N

ρρ

Fig. 4.13 Analysis of large deviations. The large deviation function a.�/ describes the probability
of local density fluctuations in a sample of volume v: Prob.v=n D �/ D expŒ�va.�/�. This
probability is maximum when � is equal to the average density N� D V=N

4.6.3 Large Deviations

A very interesting quantity for the theoretical description of nonequilibrium systems
is the large deviation function (Fig. 4.13). Let us consider a volume V containingN
particles so the average density is N� D N=V . If we now imagine a sample element of
volume v	 V , it will contain a random number n of particles. The large deviation
function a.�/ describes the local density fluctuations � D n=v about N�:

Prob
hn

v
D �

i

D e�v a.�/: (4.58)

The interesting point is that in the case of equilibrium this function, which is
minimum at N�, coincides with the free energy of the system; it is therefore involved
in the fluctuation-dissipation theorem, which is written:

h.n � hni/2i D v

a00. N�/ (at equilibrium): (4.59)

So the large deviation function is a potential candidate to extend the concept of free
energy to nonequilibrium systems [15, 16].

4.6.4 Crucial Difference from Equilibrium Systems

The concluding message to remember is that nonequilibrium stationary states, i.e.
driven flows, differ profoundly from equilibrium states. We have just seen that
they show phase transitions in one dimension. Peierls’ argument no longer
applies because the interfaces between phases are susceptible to being moved.
In addition, fluctuations are generally not Gaussian, the fluctuation-dissipation
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theorem (Sect. 4.4.2) does not apply a priori and new universality classes are to
be determined. Nonequilibrium stationary states are controlled by the boundary
conditions; flux through the system from left to right propagates the influence of the
left hand boundary into the heart of the system and backpropagates the influence of
the right hand boundary.

The example presented here shows that a statistical mechanics formalism,
founded on the concepts of the partition function and free energy, and forming
a connection between microscopic descriptions and macroscopic thermodynamic
properties, is totally inappropriate and does not have an evident nonequilibrium
analogue. We have just seen an initial approach at establishing a formalism valid far
from equilibrium, which relies on the large deviation function. A second approach
will be presented in Sect. 9.3, in which the relevant macroscopic quantities are
defined and relationships between them are established for particular dynamical
systems (hyperbolic dynamical systems, whose invariant measures belong to a
particular class called SRB). The relationships obtained are then assumed to be more
general than the case (chaotic hypothesis) in which the were rigorously established
[17]. The role of models, such as this one, that are analytically solvable or easy to
simulate is therefore very important because by using them we can test the concepts
introduced and the conjectured relationships.

4.7 Conclusion

Diffusion is a directly observable manifestation of thermal motion. Thermal motion
is an inevitable ingredient of all natural phenomena. It introduces a random
component (we speak of thermal noise or intrinsic stochasticity) which averages
and only appears at larger scales implicitly in the values of effective parameters,
apart from in the neighbourhood of critical points (encountered in Chap. 1), dynamic
singularities (bifurcations) which we will describe in Chap. 9, or when the system
has certain geometries (fractal structures).

The scaling law R.t/ � t�=2 describing the diffusive behaviour only emerges at
long times; the limit t !1 is the exact analogue of the thermodynamic limitN !
1 in which singularities and scaling laws associated with phase transitions appear.
An analogy with the concepts presented in Chap. 1 may follow: the normal diffusion
law can be thought of as a “mean field description”, in which one single effective
parameter, the diffusion coefficient D, is enough to describe the phenomenon. The
exponent takes its mean field value � D 1 and the distribution of fluctuations is
Gaussian. The mean field approach fails if the underlying microscopic events follow
a broad distribution (Lévy flights) or if they have long range temporal correlations.
We then observe a “critical exponent” � ¤ 1. Anomalous diffusion can therefore be
seen as the temporal equivalent of the static critical phenomena discussed in Chap. 1.
It is critical in the sense that it reflects a “statistical catastrophe”, that is to say a
dramatic effect of fluctuations, either because they are amplified by correlations
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with diverging range, or because the local fluctuations are themselves anomalous,
distributed with a broad distribution (of infinite variance).
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edition 1992 J. Gabay, Paris)
43. S.K. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading Mass., 1976)
44. J.T. Mac Donalds, J.H. Gibbs, A.C. Pipkin, Kinetics of biopolymerization of nucleic acid

templates. Biopolymers 6, 1 (1968)
45. R.M. Mackey, Time’s Arrow: Origins of Thermodynamic Behaviour (Springer, 1992)
46. D.A. Mac Quarrie, Statistical Mechanics (Harper & Row, New York, 1973)
47. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982)
48. T. Misteli, Protein dynamics: implication for nuclear architecture and gene expression. Science

291, 843 (2001)
49. J.D. Murray, Mathematical Biology, 3rd edn. (Springer, 2002)
50. C. Nicholson, Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Physics

64, 815 (2001)
51. G. Oshanin, O. Benichou, S.F. Burlatsky, M. Moreau, in Instabilities and non-equilibrium

structures IX, ed. by E. Tirapegui and O. Descalzi. Biased tracer diffusion in hard-core lattice
gases: some notes on the validity of the Einstein relation (Kluwer, Dordrecht, 2003)

52. A. Ott, J.P. Bouchaud, D. Langevin, W. Urbach, Anomalous diffusion in “living polymers”: a
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Chapter 5
The Percolation Transition

5.1 Introduction

What physical concept can unite the flow of liquid through ground coffee, electrical
conduction in a conductor–insulator mixture, target collapse on shooting, the birth
of a continent, polymer gelification and the spread of epidemics or forest fires? One
question is common to all these processes: how is “something” produced at large
scales by contributions at small scales? In all these situations, a quantity (liquid,
electric charges, target fracture, dry land, molecular crosslinks, disease or fire) may
or may not propagate from one element to its neighbour. As in the previous chapters,
we are interested in asymptotic properties resulting at large scale, that is to say
in a system that is large compared with the size of the individual elements. The
analogue of temperature T here is the inverse of the relative population density p of
elements (pores, conducting regions, impacts, etc) which varies between 0 and 1 for
the maximum population density. p � 0 corresponds to a large amount of disorder
for a dilute population and p � 1 corresponds to a large amount of order established.
In these situations we can ask ourselves the same questions as for changes of states
of matter in thermal systems:

• Is there a clear cut transition and a critical population density pc?
• How does the transition take place?
• Is there a critical behaviour?
• Can we propose a mean field description’?
• What are the limits of its validity?
• Do universality classes exist and if so what are they?

The answer to the first question is that there does exist a clear transition. In
1941 the physicist Flory [8] applied a phase transition type description to polymer
gelification, and then in 1957 Broadbent and Hammersley [5] introduced the name
percolation transition. An almost perfect analogy can be established between
phase transitions and the percolation transition, even though this may appear
surprising. For phase transitions, order is established in the material due to a
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Table 5.1 Examples of large scale processes generated by accumulation of contributions at small
scales

Small scale element Large scale process

Pores in ground coffee Flow of liquid
Conducting regions Electric current
Impact of a bullet Collapse of the target
Emergence of an island as sea level drops Formation of a continent
Interactions between polymers Gel: “molecule” of macroscopic dimensions
Contamination of an individual Epidemic
Tree catching fire Burning forest

competition between microscopic interactions and thermal motion, whereas nothing
of the sort exists in percolation scenarios. For percolation there is no interaction
between elements and no competition with thermal motion, in fact percolation is a
purely topological effect. Distances do not count, the only useful quantity for the
percolation transition is the number of neighbours of a site and not the exact form
of the lattice. It is precisely these topological analogies at the critical point, such as
the divergence of the characteristic length and scale invariance, that mean we can
use the same methods to describe the two cases. This is what gives the percolation
transition the same universal nature as phase transitions. The same critical behavior
is indeed observed in very different physical situations (Table 5.1).

5.1.1 An Initial Mean Field Approach

A simple example of a percolation transition is given by an Ising model where
each site is randomly occupied by a spin or not. How does the ferromagnetic–
paramagnetic transition depend on the population density p of spins? This complex
problem involving two generalised fields, temperature and population density p,
(see the end of this section and reference [12] for a rigorous approach) can be
described by the mean field approach, which we used for the Ising model in
Sect. 1.1, (1.18). By simply replacing the average number of neighbours q of an
occupied site by pq, the average magnetisation can be evaluated by the implicit
equation:

m D tanh

�
pqJ

kT
m

�

:

Near the transition, the magnetisation is weak and tanh.x/ can be replaced by x.
This leads to a transition temperature:

Tc D p
qJ

k
D pTMF

proportional to p, where TMF is the critical temperature predicted by the mean
field approach for an Ising lattice in which all the sites are occupied. At nonzero
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temperature, an order, that is to say a path allowing step by step propagation of
spin orientation, is established within this approximation when p > 0. This is
obviously wrong because when the system is very diluted the occupied sites are
far from one another and cannot interact to establish long range order, whatever the
temperature. In the next section we will see Cayley–Bethe’s description, which is
a less “primitive” mean field approach. But first let us see why the mean field on a
randomly occupied Ising lattice is not an appropriate description.

5.1.2 A Path Through the Network: The Infinite Cluster,
Its Mass and Branches

Experimentally and by numerical simulations the existence of a critical population
density has been seen, above which a path connecting the opposite sides of the
system is established (see Fig. 5.1). Even though filling is random, the population
density threshold pc and the “critical” behaviours are perfectly reproducible when
the number N of elements in the system is large.

We call the group of elements that are connected to each other a cluster. The
propagating quantity (flow for a liquid) only propagates within each cluster and
not between clusters. Above the threshold, the size of at least one cluster diverges
and is therefore called infinite. In two dimensions it is easy to show that there is
only one infinite cluster because of the topological impossibility of two or more to
exist, however when we are exactly at the threshold, this result remains true in three
dimensions. This is justified intuitively by the significant branching of an infinite
cluster: even though topologically possible in three dimensions, the existence of
two infinite clusters with no points of contact between them is improbable, with
strictly zero probability in an infinitely sized system. The number of sites in the
infinite cluster, i.e. its mass, grows very rapidly above the threshold (see Fig. 5.2),
because many isolated clusters suddenly aggregate. Paradoxically, the liquid flow
or conductivity increase more slowly above the threshold. This is due to the very
branched structure of the infinite cluster at the percolation threshold (Fig. 5.3). Only
the infinite cluster backbone is useful for the propagation or flow. (To improve the
readability of this figure, the population of finite clusters containing only a few

Fig. 5.1 A critical
population density threshold
pc exists above which at least
one continuous path is
established between two
opposite sides of the system



170 5 The Percolation Transition
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Fig. 5.2 Above the threshold pc , the mass M
1

of the infinite cluster (dotted line) increases
rapidly with the population density p. The dashed line shows the M

1

for a randomly filled
Ising lattice described within the mean field approximation. The solid line show the electrical
conductance G in an insulator–conductor mixture which is zero below pc and increases much
more slowly than M

1

above pc . This difference is due to the fact that many “dead ends” exist in
the infinite cluster, which are not useful for conducting the electric current

Fig. 5.3 Just above the percolation threshold, the structure of the infinite cluster is very branched.
We can distinguish two principle regions: the “backbone”, in thick lines, made up of the set of
paths connecting one side to the other, and the side branches, in thin lines, which lead to dead
ends. These cul de sacs represent the large majority of the mass of the cluster. The backbone itself
incorporates “red bonds” in grey, which are the passages the fluid is obliged to pass through and
loops in black, which offer several possible paths

elements has been highly under represented for readability of the graph.) It can be
shown simply that the electrical conductance of the percolating cluster, assumed
to consist of elements of electrical resistance, is directly related to the effective
diffusion coefficient of a diffuser in the infinite cluster. This physical situation has
kept the name the ant in the labyrinth proposed by De Gennes [9]. Physicists later
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have used other insect names to characterise various situations (termites, parasites,
etc.)

The particularly large branching of the infinite cluster at the percolation thresh-
old can be seen in a simple computer experiment of the lifetime of a forest fire [16]
as we will see in the following.

5.1.3 Lifetime of a Forest Fire as a Measure of the Percolation
Threshold

We will consider the following computer game: a fire is lit along one side of a
square representing a section of forest. The fire propagates from one tree to its
nearest neighbours, if they exist, in a given time. A tree that has burnt no longer
propagates the fire. We evaluate the lifetime of the fire, the average time required
for its extinction, which is strongly affected by the density of trees. The average is
taken over a large number of randomly propagated fires lit on the same system. It is
observed that:

• If the population of trees is sparse (p � pc), the initial bonfires only consume
the trees in each isolated cluster in contact with the face set alight. The fire does
not propagate, its short average lifetime corresponds to the time required to burn
the largest of these isolated clusters.

• If the population of trees is very dense (p � pc) with only a few depopulated
regions the fire propagates continuously from one side to the other. The average
lifetime of the fire corresponds to a step by step “simple route” from one side to
the other.

• If the population density corresponds to the percolation threshold (p � pc),
the fire propagates along all the branches, bends, twists and turns of the infinite
cluster. In this case the lifetime of the fire diverges. The divergence of the lifetime
of the fire is an effective way to illustrate the percolation threshold (see Fig. 5.4).

It turns out that the value of the percolation threshold (pc D 0:59275 in the case
of a square lattice) is very reproducible for large systems. The forest size required
to obtain this reproducibility is 10 to 100 million elements, as we will show later in
Sect. 5.3.2. It can be easily shown that if the next nearest neighbours are included
(leftmost curve in Fig. 5.4), the percolation threshold is complementary to the value
for nearest neighbours:p(next nearest)

c D 1 � 0:59275 D 0:40725. On a triangular
lattice, the percolation threshold is strictly equal to 1=2. So, we find that, just like
the critical temperatures, the percolation threshold depends on the details of the
microscopic model: it does not have a universal character.

Table 5.2 shows the exact or numerical values for the percolation thresholds of
different regular lattices in two and three dimensions. Depending on the lattice, the
threshold value varies by a factor of 1:4 in two dimensions and more than a factor
of 2 in three dimensions. These ranges of values become considerably narrower if
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Fig. 5.4 Variation in average lifetime of a forest fire on a square lattice, as a function of the initial
population density of trees. The middle curve corresponds to the case where the fire propagates
to nearest neighbour trees and the curve to the left to propagation to nearest and next nearest
neighbours. The right hand curve is obtained by assuming that two of its nearest neighbouring
trees must be burning for a tree to catch alight (after [16])

Table 5.2 Values of site percolation thresholds, for regular lattices in two and three dimensions
(2D and 3D respectively) (See text for the difference from bond percolation.)

Dimensions Lattice Percolation
threshold
(fraction of
occupied
sites)

Density of a
lattice filled
by spheres

Percolation thresh-
old (volume
fraction)

2D Square 0:5927603 �=4 0:4655

Triangular 0:5 �
p

3=6 0:4534

Honeycomb 0:697043 �
p

3=9 0:4214

3D Simple cubic 0:311608 �=6 0:1632

Body-centered cubic 0:2459615 �
p

3=8 0:1666

Face-centered cubic 0:1992365 �
p

2=6 0:1475

Diamond cubic 0:4286 �
p

3=16 0:1458

they are evaluated as a proportion of the volume occupied by discs or spheres at each
site. By correcting for the density of the equivalent perfectly filled lattice in this way,
we obtain about 0:45 in two dimensions and 0:15 in three dimensions. In practice,
the “elements” are rarely in circular or spherical form. In three dimensions, their
flattening or elongation leads to large variations in the percolation threshold value,
typically between 0:05 and 0:15 volume fraction.
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5.1.4 Site Percolation and Bond Percolation

Percolation is characterised by the establishment of a path in a large system. A
detailed discussion of the effect of the finite size of the system is presented in
Sect. 5.3.2. At the scale of the elements, different models are used to consider
whether a path is established between two neighbouring points.

– In the case of site percolation, which we considered in the previous subsection, a
step in the path is established by the presence of two elements on neighbouring
lattice sites. The parameter p is then the probability of site occupation.

p

– In the case of bond percolation, a step in the path is established by the presence
of a bond between two neighbouring points. The population density p is then the
probability of bond occupation.

p

– In the case of site-bond percolation introduced to describe polymer crosslinking
transitions (sol-gel transitions), x is the fraction of occupied sites whereas p is
the probability that a bond between two occupied sites is present. This general
framework contains the two other cases: p D 1 corresponds to site percolation,
whereas x D 1 corresponds to bond percolation.

px

It is interesting to distinguish these different situations in order to apply them to
different physical systems. However, they are members of the same universality
class: site percolation and bond percolation show the same critical behaviour.

5.1.5 Correlated, Driven and Stirred Percolations

In the previous cases, the elements were assumed to be assigned randomly,
independent of each other. However, there are many percolation type physical
situations in which these conditions are not fulfilled [6].

One family of scenarios, which we described in Chap. 1, correspond to thermal
order–disorder transitions in which neighbouring elements have an interaction
energy. For example, the Ising model can be considered as a correlated percolation
problem. The up spins " represent populated sites, down spins # the empty sites
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and establishment of long range order corresponds to the establishment of a large
scale percolating path. We can also imagine a general case of site-bond correlated
percolation, characterised by three quantities (three fields): temperature T , bond
population density p and fraction of occupied sites x. This scenario offers a rich
variety of complicated transitions [12].

In the other families introduced below, the element, sites or bonds, are always
assumed to be deposited independently of each other. An important family is that of
driven percolations in which the bonds are “diodes” which let current through only
in one direction. Studies have also been made on nonlinear bonds characterised by
a critical current beyond which they are resistant and on bonds which can switch
form a conducting to an insulating state, representing reasonably well what happens
in a random network of Josephson superconducting junctions [15].

Stirred percolation is the interesting situation in which clusters are stirred by a
fluid, their lifetimes being comparable or shorter than the average passage time of
the diffuser (ant) in a cluster [14] This model is suitable for electric conductivity in
an emulsion or microemulsion.

By this list of a few examples of percolations, we hope to have convinced the
reader of the richness of this concept used today in all branches of science. This
chapter will be mainly dedicated to site percolation, the universal results of which
being also applicable to bond percolation and site-bond percolation.

5.2 Statistics of Clusters and the Ferromagnetic–Paramagnetic
Transition

Theoretical percolation studies have been strongly stimulated by the demonstration
of their rigorous analogy with phase transitions, for example ferromagnetic–
paramagnetic transitions [11]. Near the critical point, the analogue of the relative
temperature difference t D .T �Tc/=Tc is .pc�p/. We define the quantity ns.p/ as
the number of clusters containing s sites, relative to the total number of lattice sites.
Studying the percolation transition amounts to describing the number of clusters as
a function of s and p. All the quantities that we will introduce can be deduced from
this. The probability of an occupied site in a cluster containing s sites is s ns.p/.
The average size S.p/ of a finite cluster is then directly given by

S.p/ D
P

s s2ns.p/
P

s s ns.p/
: (5.1)

The order parameter of the percolation transition is the probability P.p/ that a
site belongs to an infinite cluster:

• P.p/ D 0 if p < pc .
• P.p/ is finite if p > pc .
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Finally, the condition that an occupied site is in either an infinite cluster or a finite
cluster is expressed by:

p D P.p/C
X

s

s ns.p/: (5.2)

5.2.1 Correlations, Characteristic Lengths and Coherence Length

Another important quantity in characterising percolation systems is the pair correla-
tion function, that is the probability g.p; r/ that two sites separated by a distance r

belong to the same cluster. In the following paragraph we will see how this function
can be described in the same way as the correlation function of a phase transition
(Chaps. 1 and 4):

g.r; p/ D e�r=�. p/

rd�2C�
: (5.3)

The correlation length �. p/ can be defined in a percolation system as well as
several other characteristic lengths, including the following two:

• The radius of gyration of finite clusters, which is also the average connectivity
length1 of a finite cluster. Finite clusters exists on both sides of the percolation
threshold and their size diverges as p tends to pc .

• The homogeneity cutoff scale of the infinite cluster is the scale below which, if
p > pc , the infinite cluster is fractal and above which it is homogeneous.2

It can be shown that all these quantities have the same divergence as a function of
.p � pc/:

�.p/ D �0 jp � pcj�� : (5.4)

When we refer to the coherence length �.p/, this equally represents any one of
these characteristic lengths. The universality of the exponent � is well verified
experimentally. However, the prefactors �0 depend on the exact definition of �.p/

as well as the sign of .p � pc/.

5.2.2 Analogy with Phase Transitions

It can be shown [11] that each of the quantities used to describe the percolation
transition is the analogue of a magnetic quantity and that it shows a power law
behaviour near the threshold pc (see Table 5.3). This analogy rests on the scale

1By the average connectivity length of a given cluster, we mean the average distance separating
the cluster elements.
2That is to say it has classical geometric properties (non fractal), for instance the number of
elements contained in a region of linear extension L of the infinite cluster varies as Ld where
d is the dimension of space (see also Sect. 3.1.1).
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Table 5.3 Analogy between ferromagnetic–paramagnetic and percolation transitions

Quantity Magnetic Percolation Dependence
transition transition

Order parameter m.t/ P.p/ jp � pcjˇ
Free energy f .t/ ˙ns jp � pcj2�˛

Susceptibility �.t/ S.p/ jp � pcj��

Correlation function G.r; t/ g.r; p/ exp .�r=�.p//=rd�2C�

Coherence length �.t/ �.p/ jp � pcj��

invariance of percolation when the population density is equal to the critical
population density. The scaling hypothesis (Sect. 3.2.2) is taken here, in other
words all the critical behaviours stem from the divergence of the coherence length.
Physically, this hypothesis results in the idea of a dominant cluster, as we will see
in more details in the next subsection.

5.2.3 Hypothesis of the Dominant Cluster and Scaling Relations

The main hypothesis of percolation theory relies on two points. The first is that a
dominant cluster exists whose characteristic size corresponds to a coherence length
�.p/. We assume that it has a mass s� which obeys a power law:

s�.p/ D jp � pc j�1=� : (5.5)

We also assume that the number of clusters ns.p/ can be expressed in the
following way:

ns.p/ D ns.pc/	

�
s

s�

�

D s�
 	
�

s jp � pcj1=�
�

: (5.6)

The power law hypothesis ns.pc/ � s�
 is well verified experimentally (see
Fig. 5.5). All the critical exponents of the percolation transition can then be
expressed in terms of the two exponents � and 
 . For example the free energy
f .p/ is:

f .p/ D
X

s

ns.p/ D
X

s

s�
 	
�

s jp � pc j1=�
�

(5.7)

or, by choosing a constant value for the argument of 	:

f .p/ � jp � pc j 
�1
� : (5.8)

The expression for ˛ can be extracted by expressing that the exponent characterising
f is 2 � ˛:
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Fig. 5.5 Number of clusters
at the percolation threshold
determined by numerical
simulation on a square lattice
of 95;000� 95;000

(after [16]) L = 95 000
p = pc
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˛ D 2 � 
 � 1

�
: (5.9)

In the same way we can obtain the values of ˇ and � :

ˇ D 
 � 2

�
� D 3 � 


�
: (5.10)

This leads us to recover the Rushbrooke scaling relation (Sect. 3.2.1):

˛ C 2ˇ C � D 2 (5.11)

as well as the other scaling relations. Numerical tests that have been carried out seem
to confirm the universality, i.e. that the exponents depend only on the dimension of
space. A mean field approach enables these different exponents to be evaluated in a
way that is valid for the case of infinite dimension.

5.2.4 Bethe’s Mean Field Calculation on Cayley’s Tree

Rigorous description of the mechanism of the appearance of a percolating path
encounters many difficulties due to the complex structure of the infinite cluster
(Fig. 5.3). This structure is the subject of the following section. One of its particu-
larities is the existence of loops which are very difficult to take into account exactly.
Intuitively the relative weight of these loops decreases as the spatial dimension d
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Fig. 5.6 Bethe lattice or
Cayley tree in the case of
z D 3 branches emerging
from each point. Here the tree
is limited to three generations
of branches

is increased. The probability of two random walks, starting from the same point,
crossing is equal to 1 in one dimension, high in two dimensions and less in three
dimensions. The Bethe lattice, also called Cayley tree (Fig. 5.6), completely neglects
these loops. The percolation transition on this tree is exactly solvable.

The tree is made of nodes sending out z bonds to their neighbours. If we leave
from a “central” site and develop the branches up to generation R, the total number
of sites is 1C zC z2 C � � � C zR D .zRC1 � 1/=.z� 1/. The Cayley tree is an object
whose mass (total number of sites) varies exponentially as a function of its radius.
Since the mass of an ordinary object varies as its radius to the power d , the Cayley
tree can be considered as an object of infinite dimension. Suppose now that the sites
are occupied with a probability p. When we start from an occupied site, at each
new node there are z � 1 branches leaving it (other than the one we arrive on). The
average number of occupied sites that allow the path to continue to the extremity
of its branches is therefore p.z � 1/. The percolation threshold corresponds to the
value of p for which this number is 1, in this way statistically ensuring large scale
connectivity. The fact that there are no loops excludes the possibility that the path
can come back on itself:

pc D 1

z � 1
: (5.12)

The probability P.p/ that a typical site is part of the infinite cluster can be
calculated exactly. Let Q be the probability that a site is not connected to the
infinite cluster by a given branch. There are no loops in the Cayley tree and the two
extremities of a branch lead to completely unconnected universes. One of these
universes might or might not be the infinite cluster and this is independently the
case for each branch leaving an occupied site. The probability that an origin site is
occupied but not connected to the infinite cluster is p�P.p/. This probability is also
equal to pQz, signifying that none of the z branches leaving this site are connected
to the infinite cluster. In this way P and Q are related:

P D p.1 �Qz/ i.e Q D
�

1 � P.p/

p

�1=z

: (5.13)
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Table 5.4 Critical exponents obtained by the Bethe mean field approach

Exponent 
 � ˛ ˇ � �

Bethe lattice 5=2 1=2 �1 1 1 1=2

In addition, the probability Q1 that the corresponding nearest neighbour site is
occupied and that none of the z � 1 branches leading out of it are connected to the
infinite cluster is p Qz�1. The probability Q is the sum of Q1 and the probability
1 � p that the nearest neighbour site is empty:

Q D 1 � p CQ1 D 1 � p C pQz�1 (5.14)

from which we have an equation to calculate P.p/. The expression is complex if
z is greater than 3, but whatever z, it can be shown directly that P.p/ is linear in
.p � pc/, near the threshold (the reader may like to try this as an exercise). The
critical exponent of the order parameter is ˇ D 1 in this mean field approximation.
From the same type of argument we can obtain the average cluster size S.p/ and
show that it is proportional to 1=.p � pc/.

The number ns.p/ of clusters of size s can be calculated by evaluating the surface
t of empty sites that surround a cluster of size s. For an isolated site t D z, then each
additional occupied site adds z � 2 empty sites to t . The value of t is therefore a
linear function of s, namely t D .z � 2/s C 2, whilst the value of ns.p/ is:

ns. p/ D ns.pc/ ps.1 � p/.z�2/sC2: (5.15)

which results in an exponential decay of ns.p/ as a function of s. This is particular to
the Bethe lattice: for small sized clusters, in small spatial dimensions, the hypothesis
of the dominant cluster leads to a power law. After all is said and done, this
description does not describe percolation better than the equivalent mean field
approaches in phase transitions. On the other hand, renormalisation, associated with
numerical simulation techniques, is very effective in the case of percolation.

Table 5.4 summarises the values of the exponents deduced by the Bethe
approach. A theoretical renormalisation approach can show that these values are
exact in spaces of six or more dimensions. As for phase transitions, there exists a
critical dimension, but its value is dc D 6 and not 4.

5.3 Renormalisation of Percolation Models

Here we present just a few examples of renormalisation (see Sect. 3.4.1), however
the reader is invited to try this technique themselves on different situations. As we
will mention below, it is possible to obtain good quality results at a much lower
calculation price that in the case of phase transitions.
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5.3.1 Examples of Renormalisation in Two Dimensional Space

5.3.1.1 Site Percolation on a Triangular Lattice

p p ′ = R(p)
p ′

Here we adopt the same approach as for phase transitions. We choose a finite
lattice, perform decimation, calculate the renormalisation function, search of a fixed
point and calculate the exponents. The simplest finite lattice that we can imagine
is a triangular lattice (see diagram). We transform the triangle into a super site by
decimation. By using the majority rule, the super site will be considered occupied
only if at least two sites of the triangle are occupied:

p0 D p3 C 3.1 � p/p2: (5.16)

This relationship leads to two trivial (stable) fixed points, p� D 0 and p� D 1, and
an unstable fixed point which corresponds to the transition pc D 1=2. This value is
exact even though its evaluation on a small finite lattice is a priori very approximate.
Its simple and symmetric value is a reason favouring this result, as we will see later.

The calculation of critical exponents naturally follows the procedure described in
Sect. 3.3.3. Remember that the exponent � corresponding to the coherence length is:

� D log.b/

log.�1/
; (5.17)

where b is the linear scale factor and �1 is the eigenvalue with the largest absolute
value. The scale factor b is obtained by expressing that the number of sites in the
“super site” (here 3) is b2. Here there is only one “coupling coefficient” p. In this
case, the eigenvalue reduces to the derivative of the renormalisation relation at the
critical point:

�1 D R0.pc/ D 6pc.1 � pc/ D 3=2: (5.18)

From which the value of � is given by:

� D log.
p

3/

log.3=2/
D 1:35: (5.19)

Compared to the exact value � D 4=3, the value obtained by this calculation is an
excellent approximation. However this agreement is misleading, as we can see by
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p
p = R(p)

p

renormalising a slightly larger finite lattice consisting of 7 sites (see diagram). In
this case the renormalisation relation is:

p0 D p7 C 7.1 � p/p6 C 21.1� p/2p5 C 35.1� p/3p4: (5.20)

Here again, the unstable fixed point corresponding to the transition is pc D 1=2.
The eigenvalue this time is 35=16, which leads to � D 1:243, from (5.17) (assuming
b D p7). It could be disappointing that this value is substantially further from
the exact values than the previous calculation. This shows that the convergence of
renormalisation steps must be carefully checked.

5.3.1.2 Bond Percolation on a Triangular Lattice

p p′ = R(p)
p ′

Since bond percolation and site percolation belong to the same universality class,
we should get the same exponents, for example � D 4=3. On the other hand, the
percolation threshold is different (see Table 5.2). Here, for bond percolation on a
triangular lattice, we expect pc D 0:34730. We will again use a very simple finite
lattice, shown in the diagram, in which the probability p is that of the presence of a
bond.

The renormalisation relation is obtained in this case by adding the probabilities
that a path exists between the upper and lower site in the finite lattice. This
probability includes all the situations where 0 or 1 bonds are missing, plus 8

situations out of 10 where 2 bonds are missing and 2 situations in which three bonds
are missing:

p0 D p5 C 5.1 � p/ p4 C 8.1� p/2 p3 C 2.1� p/3p2: (5.21)
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+ 8+ 5 + 2

The percolation threshold that we obtain is again 1=2, which is an overestimate
by about 50% in this case of bond percolation. Calculating the exponent � directly
gives the value R0.pc/ D 13=8. We could be tempted to take

p
5 as the scale factor

(reduction in bonds by a factor of 5), which leads to a value of � D 1:66. If, on the
other hand, we return to the definition of b as the reduction in bond length necessary
to superimpose the decimated lattice on the initial lattice, we obtain b D p3 and
� D 1:13. How should we decide which to take?

In practice, the five bonds of the super site do not have the same status. While the
central bond is fully taken into account in the super site, the other four are shared
between two neighbouring super sites in the decimated lattice. The effective number

of bonds contained in the super site is therefore 1C 4 � 1
2
D 3, which also leads to

b D p3:

� D log.
p

3/

log.13=8/
D 1:13: (5.22)

We leave the reader to extend these approaches to other types of network (square
or honeycomb).

5.3.2 Scaling Approach on a System of Finite Size

Let us emphasise again that the success of these simple calculations is misleading in
terms of the effectiveness of renormalisation of finite lattices. The example of site
percolation on a triangular lattice, treated above, shows that a calculation with 7 sites
leads to a less good result than a calculation with 3 sites! It is tempting to pursue the
method with larger and larger finite lattices, leading to larger and larger scale factors
k, calculating the values of �.k/ each time and then to extrapolate to an infinite value
of k. This programme has been pursued by various methods. It is difficult to use the
analytical method used above for finite lattices with large numbers of sites. To go
further with this approach, a new idea needs to be developed: the scaling approach
on a system of finite size, which we quickly referred to in Sect. 3.5.4.

We are confronted with an apparent contradiction: the scaling approaches are
based on scale invariance, which itself assumes that the system is infinite. This
problem is dispelled by the fact that although we consider finite systems we assume
they are very large compared to the size of the elements. However, the hypothesis
underlying scaling indicates that the essential length we must compare the system
size to is that of the coherence length. Observing the percolation transition in a large
number of identical systems of linear size L (see Fig. 5.7), the percolation threshold
is seen to vary from one system to another according to the random filling of sites.
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Fig. 5.7 The masses of
percolating clusters measured
on a finite lattice in two
different cases of random
filling where the percolation
thresholds are pc1

and pc2

respectively, compared to the
mass of the percolating
cluster in an infinite system
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We want to find the distribution of the value of the threshold as a function of L.
Let R.p; L/ be the probability that a system of size L percolates (i.e. a percolating
path between two opposite sides of the system is established) when the population
density is p. From the scaling hypothesis, we expect that the behaviour of this
probability will be directly linked to the ratio between L and �.

• If L > �, the system behaves as if it was infinite.
• If L < �, then the boundaries of the system truncate the percolation process.

We can therefore assume that:

R.p; L/ D ˚.L=�/ D ˚ Œ. p � pc/�L� : (5.23)

The distribution f .p D pcfinite ; L/ of the threshold pcfinite is given by the derivative
@R
@p

of R.p; L/:

f .p D pcfinite ; L/ D @R

@p
D L1=�˚ 0 Œ. p � pc/�L� : (5.24)

At the percolation threshold, the argument of the function ˚ is in the region of 1.
The distribution of the threshold f .p; L/ shows a maximum proportional to L1=� .
The integral of this function is 1 and its width  is thus proportional to L�1=� (see
Fig. 5.8). By measuring the width of the distribution, we can therefore deduce a
value of �:

y.L/ D 1=�.L/ D � log./

log.L/
C Cte

log.L/
: (5.25)

By extrapolation, this method determined the exact values of � [7] as Fig. 5.9 shows.
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Fig. 5.8 Probability of
percolation, R.p; L/, in a
system of finite size
compared to that of an infinite
system. The distribution of
the percolation threshold
f .p; L/ is the derivative @R
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Fig. 5.9 Variation of the width of the distribution of the threshold for triangular lattices of up
to 100 million sites. In agreement with (5.25), the tangent leads to � D 1=y D 4=3, which is
presumed to be exact for an infinite lattice

5.3.3 Finite Size Exponents

We will show that we expect a form analogous to (5.24) for all the critical quantities
as a function of the size L of the system. The scaling hypothesis (see Chap. 3)
predicts in a general way that a quantity Q near the percolation threshold behaves as:

Q.p; L/ D .p � pc/
xq

�
L

�

�

; (5.26)
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where the critical exponent corresponding to Q for an infinite system (i.e. for
L� �) is x. We can also write the relation:

Q.�; L/ ' ��x=�q

�
L

�

�

; (5.27)

where �.p/ D �0.p � pc/�� is the coherence length as it would be in an infinite
system. In a finite system where L � �, i.e. in the immediate vicinity of pc , the
coherence cannot physically extend beyond L. It is therefore legitimate to replace
� by L in (5.27), leading to Q.pc; L/ ' L�x=� . In summary, in a finite system:

• When L� �, i.e. .p � pc/�
�

L
�0

��1=�

Q.p;1/ ' ��x=� : (5.28)

• When L� �, i.e. .p � pc/�
�

L
�0

��1=�

Q.pc; L/ ' L�x=� : (5.29)

Therefore two scaling approaches exist, which are formally symmetric in p or L,
depending on whether we are interested in very large systems or systems with a
finite size at pc . The corresponding exponents are directly related to each other:
x for the scaling in p corresponds to x=� for the scaling in L. When we describe
transport properties in Sect. 5.5, we will see that for conductivity, the scaling in L,
and its universal nature, applies in a vast region, much larger than the region where
universality is observed for the scaling in p.

To conclude this subsection, we must note that this approach to systems of finite
size is not specific to percolation. It can be applied to all scale invariant situations
where a coherence length � diverges around a critical value of a control parameter,
or field, which could be p but also the temperature T or all other control parameters.
Finite size scaling is one of the methods to evaluate the critical exponents precisely.
Table 5.5 draws together the results, presumed to be exact, for the main critical
exponents of percolation.

5.4 Structure of the Infinite Cluster at the Percolation
Threshold

There is always a largest cluster for which p is greater or less than the threshold.
We are interested in the mass ML of this largest cluster as a function of the size L

of a finite lattice. It can be easily shown [16] that:
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Table 5.5 Values of principle exponents of percolation. In two dimensions the values are
presumed to be rational

Exponent � 
 ˛ ˇ � �

Property p � pc s dependences Total Weight of P Average S Coherence
dependence of cluster number of infinite size of length
of number clusters cluster finite �

of clusters
P

ns clusters
Two 36=91 187=91 � 2=3 5=36 43=18 4=3

dimensions
Three 0:45 2:18 �0:62 0:41 1:80 0:877

dimensions
Bethe lattice 1=2 5=2 �1 1 1 1=2

d � 6

• If p < pc , the mass of the largest cluster ML is proportional to log.L/.
• If p � pc , the mass of the largest cluster ML is proportional to Ld as expected

for a full lattice.

What happens at exactly p D pc? At the percolation threshold, the percolating
cluster can be characterised by a fractal dimension dF (see Chap. 2), which
describes its spatial mass density.

5.4.1 Fractal Dimension of the Infinite Cluster

The mass ML of the percolating cluster, which is also the largest cluster (in terms of
number of occupied sites), can be expressed as a function of the linear size L of the
system. By using the definition of P.p/, we express ML D P.p/Ld . In addition,
percolation is produced in a finite system when �.p/ is of order L. In the vicinity of
the percolation threshold we therefore have the relation:

.p � pc/ � L�1=� : (5.30)

By using this in the expression for the mass of the percolating cluster we obtain:

ML � Ld�ˇ=� : (5.31)

Following its most direct definition, the fractal dimension is therefore:

dF D d � ˇ=�: (5.32)

Starting from the values of exponents in Table 5.5, we obtain the values for the
fractal dimension of the infinite cluster given in Table 5.6: These values have been
verified by numerical simulations as shown in Fig. 5.10 of the data from [16].
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Table 5.6 Fractal dimension of the infinite cluster
Dimension 2 3 Bethe: d � 6

Fractal dimension of the infinite cluster 91=48 2:52 4

Fig. 5.10 Size of the largest
cluster (or percolating cluster)
measured by numerical
simulation on triangular
lattices up to 10 million sites.
The straight line through the
data has a gradient of 91=48,
which is the theoretical value
of the fractal dimension of the
infinite cluster in two
dimensional space. After [16]
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5.5 Dynamic Properties Near a Percolation Transition

Up to now, we have been interested in the static properties of percolation. In this
final section, we will briefly address the essentials of what interests the user of
percolation. For example, there must be a path for the fluid in a coffee percolator,
but can we predict the flow of coffee as a function of the porosity p? In each of
the physical situations mentioned at the beginning of this chapter, the same question
concerning the transport properties can be posed, as summarised in Table 5.7. It can
be shown that these dynamic quantities are often physically equivalent, in a first
approximation. We recall briefly below how this is done for the conductance and
the diffusion coefficient.
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Table 5.7 Dynamic quantities in different physical situations of percolation

Small scale element Large scale process Dynamic quantity

Pores in ground coffee Flow of liquid Conductance
Conducting regions Electric current
Impact of a bullet Collapse of the target Elastic modulus
Interactions between polymers Gel: “molecule” of macroscopic

dimensions
Contamination of an individual Epidemic Propagation speed
Tree catching fire Burning forest
Emergence of an island as sea Formation of a continent Diffusion law of a

level drops random walker

5.5.1 Conductivity, Diffusion and Walking Ants

Here we will consider a population of n elementary mobile objects per unit volume.
They could be charges, molecules, bacteria etc. Their constitutive movement is
subject to a viscous friction such that their equilibrium velocity v is proportional
to the force F to which they are subjected:

v D �F: (5.33)

The proportionality coefficient � is the mobility of the object. If each object
transports a charge e (or a mass m, etc.), for a population ensemble this leads to
Ohm’s law

j D n e � E D ˙E: (5.34)

The conductivity ˙ is thereby proportional to the mobility �. Einstein proved that
this is also proportional to the particles’ diffusion coefficient D. One way to show
this is to consider a population n.x/ in equilibrium in a constant electric field E on
the x axis producing a potential V.x/ D V0 � Ex. If we can neglect interactions
between particles n.x/ is given by Boltzmann statistics:

n.x/ D n0 exp

�

� eE

kT
x

�

: (5.35)

This equilibrium also results from the balance, at every point, between the drift
current j , given by (5.34), and the diffusion current jD , resulting from the
concentration gradient:

jE C jD D 0 and so ˙E D n e � E D D rn D DeE

kT
n: (5.36)

This gives the Einstein relation D D �kT and the proportionality between
the diffusion coefficient D and the conductivity ˙ in a homogeneous medium.
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Physicists have therefore focused on describing the diffusion of the walking ant
on percolating clusters since it also reflects the behaviour of the conductivity. We
will discuss this situation in the following subsections. However, one should be
prudent in generalising this relation for heterogeneous media, such as systems at the
percolation threshold, because the effective values of D and ˙ can be produced by
different averages at large scales. At very long times, in fact, diffusion involves only
the infinite cluster, whereas the conductivity should be averaged over clusters of all
sizes, as we will show in the following subsection.

5.5.2 Diffusion and Conduction in Percolating Clusters

In the 1970s, there was a heated debate, regarding the critical behaviour of
conductivity and diffusion, over a common scaling hypothesis:

D � ˙ � .p � pc/
�: (5.37)

The debate was so lively that a new scaling relation for � (often also called t)
was proposed almost every year! The objective was to link � to other exponents,
particularly to the fractal dimension of the infinite cluster. Light was notably shed
on this complex situation by the work of Alexander and Orbach [1]. It turned out
that the dynamic properties are particularly complex because of the multifractal
nature of the infinite cluster [2, 17]. This means that in theory an infinite number
of dimensions is needed to rigorously describe transport in an infinite cluster at the
percolation threshold. We refer the reader to [2] for more details. In the following,
we will successively consider two types of initial conditions for our random walker:
either the walker starts in the infinite cluster, or at any occupied site.

5.5.2.1 Diffusion in the Infinite Cluster

First of all we will consider the case of a random walker who starts from within
the infinite cluster, assuming p is slightly larger than pc . Suppose that after a time
t , measured in number of steps from one site to another, the walker has travelled a
mean square distance R2 from its starting point. The walker may have visited each
of the M.t/ sites within the sphere of radius R zero or more times. In an ordinary
object, the normal diffusion laws lead to the relations:

M.t/ � R.t/d � td=2: (5.38)

In a scale invariant object, we would be tempted to replace d in these two relations
by the fractal dimension of the object. However, that would keep a normal diffusion
law whereas experience shows that this is not valid at the percolation threshold. Here



190 5 The Percolation Transition

we use what is called the spectral dimension ds (already introduced in Chap. 4) to
characterise the temporal dependence of the space visited by the walker:

M.t/ � R.t/dF � tds=2: (5.39)

As we have already discussed in Chap. 4, the name spectral dimension is justified by
the low frequency ! phonon density in the percolating cluster [4], which is shown
to be of the form !ds�1. Equation (5.39) leads to an anomalous diffusion law:

R.t/ � t�D where �D D ds=2dF : (5.40)

The characteristic length R can be considered as a coherence length of diffusion,
where the inverse of time is equivalent to the distance to the critical point t ! 1.
Hence the choice of name is �D for the exponent characterising this anomalous dif-
fusion. Remarkably differing significantly from the fractal dimension, the spectral
dimension of the infinite cluster is practically independent of the spatial dimension
(the conjecture by Alexander and Orbach [1] predicts that ds is strictly independent
of d ). In two dimensions ds D 1:32 and in three dimensions, ds D 1:33, which are
very close to the mean field value (for d � 6) of ds D 4=3.

Diffusion in the infinite cluster remains anomalous up to spatial scales of the
order of �, and becomes normal on longer times. The characteristic time 
 of this
change in regime is:


.�/ � �1=�D � .p � pc/��=�D : (5.41)

The effective diffusion coefficient D.p/ in the infinite cluster at large scale (R �
�), that is to say at very short times, is then expressed in the following way:

D.p/ � �2

t
� .p � pc/��.2�1=�D/ � .p � pc/

2�
�

dF
ds
�1
�

: (5.42)

We could be tempted to deduce the conductivity by the simple proportionality of
(5.42) due to the Einstein relation. In practice, it is necessary to take into account
the contribution of the clusters of finite size.

5.5.2.2 Conductivity of a System Near the Transition: Starting From any
Occupied Site

The calculation in the previous paragraph assumed that the starting point of the
walker is situated in the infinite cluster. The conductivity of the system should be
averaged over all the possible initial sites, however it is zero if the starting point is
not in the infinite cluster. It is therefore necessary to weight the diffusion coefficient
by the mass of the infinite cluster:

˙ � P.p/D.p/ � .p � pc/
�
�

dC2
dF
ds
�dF�2

�

: (5.43)
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So the critical exponent of the conductivity obeys:

� D �

�

d C 2
dF

ds

� dF � 2

�

: (5.44)

Table 5.8 shows the critical exponents corresponding to the conductivity and
diffusion compared to the fractal dimension of the infinite cluster in the case of
two and three spatial dimensions (d D 2 and d D 3) as well as for the mean field
on the Bethe lattice (d � 6).

5.5.2.3 Young’s Modulus of a Gel

Gelification is an important application of percolation. The mechanical properties
of a polymer solution undergo a sharp transition when the degree of crosslinking of
molecules forming the gel passes the percolation threshold. The viscosity � diverges
at the threshold (approached from below) while Young’s modulus becomes finite
above this level of crosslinking (see Fig. 5.11).

Crosslinking may be brought about by irradiation or chemical reaction. In general
the rate of crosslinking increases linearly with time. In practice the transition shown
in Fig. 5.11 is observed as a function of reaction time.

Table 5.8 Critical exponent � corresponding to the conductivity as a function of the dimension

Dimension d D 2 d D 3 Bethe: d � 6

dF fractal dimension of the infinite cluster 91=48 2:52 4

dS spectral dimension of the infinite cluster 1:32 1:33 4=3

�D D dS=2dF anomalous diffusion 0:348 0:263 1=6

� conductivity 1:30 2:00 3

Fig. 5.11 Mechanical
properties of a gel near the
percolation threshold. The
viscosity � and Young’s
modulus E are represented as
a function of the rate of
crosslinking 0 1

E
h

pc
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In the early 1980s, it was thought, by formal analogy, that this elastic transition
was directly linked to the conductivity transition. This analogy, which would
be valid in the case of continuous percolation is not valid in the case of bond
percolation. In fact, a lattice of connected bonds above the percolation threshold can
have a zero resistance to shearing. For example a cubic full lattice has no resistance
to shearing because it can be completely folded without changing the length of
any of the individual bonds. Hence, in practice, it is necessary to triangulate such
structures to give them rigidity. Even in the case of a triangular lattice of bonds,
a completely different rigidity percolation transition is observed from the normal
percolation transition [10]. Not only is the percolation threshold different (0:6602

instead of 1=2) but the critical exponents belong to a new universality class. In this
case the coherence length exponent takes the value � D 1:21 (instead of 4=3) and
that of the order parameter is ˇ D 0:18 (instead of 0:139). This comes from the
fact that a triangle must be complete to be rigid, while only one bond is needed to
carry the current to neighbouring bonds, The rigidity transition occurs when a path
of connected complete triangles forms.

5.5.2.4 Scaling Corrections

The precise calculation of percolation exponents, as for all other critical exponents,
requires taking into account correlations to the scaling, of diverse origins. Remem-
ber that universality, resulting in power law behaviours, is a direct consequence of
the scale invariance of the system at the transition, which is itself a result of the
divergence of a coherence length. We expect to observe this universality only for
large systems, in the immediate vicinity of the transition, where the linearisation
of the renormalisation transformation is valid. Certain correlations or scaling come
from non linearities of the renormalisation transformation. However, determining
an exponent numerically required tracing the expected power law in a finite region
of concentration p of sites or bonds for a range of finite systems sizes L. Since
the coherence length is finite in this range, nothing guarantees a priori the validity
of the universality. The corrections that should therefore be taken into account
have given rise to a vast literature but they are in general small and difficult to
evaluate. An interesting example is that of electrical conductivity and its equivalent
diffusion [17]. Numerical simulations of conductivity in large systems more than
500� 500� 500 [13] can be compared to scaling corrections predicted theoretically
[3]. As we have said, there are two different scaling approaches, L and p, which in
principle enable the scaling corrections to be measured. It is, in principle, possible
to compare these corrections and trace them as a function of the coherence length �

(see Fig. 5.12). In the first case, at the percolation threshold we have � D L whilst in
the second, it takes the normal form � D �0.p � pc/�� . In Fig. 5.12, L varies from
about 30 to 500 and the resistance, measured exactly at pc , behaves in this range
as the expected power law for L, with the exponent t=� D 2:281˙ 0:005. In this
range, for both site percolation and bond percolation, the corrections are impossible
to measure. In contrast, for a cube of size 500 � 500 � 500, the corrections reach
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Fig. 5.12 Scaling corrections to the resistance near the percolation threshold in a simple cubic
lattice. The resistance divided by the expected power law is represented as a function of the inverse
of the side of the cube 1=L (open circles), in this case up to 500, for the case of site percolation
(in the case of bond percolation the corrections are not measurable in this range of sizes) and as
a function of the inverse of the coherence length 1=�.p/ (filled squares), for the case of bond
percolation for a cube of 500 � 500 � 500 (after [13])

20% as the distance from the threshold .p � pc/ becomes 10%, in other words �

is of order 30. The form of the observed variation is in excellent agreement with
the corrections predicted theoretically [3], but their magnitude is at least an order of
magnitude larger than that observed by finite size scaling. This difference is no doubt
related to the multifractal nature of the infinite cluster. As soon as we move away
from the percolation threshold, the topological properties of the infinite cluster, such
as its connectivity or the density of red bonds, are seriously affected.

5.6 Conclusion

Percolation is a unifying concept in describing nature [9], permeating all fields
of science, We live in a three dimensional space where we are surrounded by
many quasi one dimensional and two dimensional objects. Compared to the critical
dimension d D 6, characterising percolation, these are rather small dimensions in
which fluid does not flow easily in a heterogeneous material. In this particular space
of ours, do we find that percolation is important? Far from the transition, there is
no doubt it is. A single blockage makes a 1D pipe useless and gruyère cheese does
not fall apart although it is more than 80% holes. Near the threshold, the universal
character seems even wider.
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Let us relook at the fractal and spectral dimensions characterising the percolating
cluster: as the spatial dimension tends to infinity these tend to 4 and 4=3 respectively.
The fact that the fractal dimension saturates at a value of 4 when the spatial
dimension tends to infinity expresses that the mass of the percolating cluster
becomes relatively smaller and smaller as d increases. Even more instructive is
the spectral dimension ds D 4=3, which is practically independent of the spatial
dimension (see Table 5.8). Recall that it characterises the number of sites M.t/

contained in the sphere of radius R.t/, which is the characteristic distance covered
by a walker in time t :

M.t/ � tds=2 � t2=3 whatever the dimension d of space; (5.45)

compared to the number t of steps made. In the vicinity of the transition, the sites
are visited many times by the walker, whatever the dimension of the space of the
system. The surprising result of (5.45) results from the extremely branched topology
of the percolating cluster. At the threshold, all flows in the percolating cluster
occur as if the local dimension was about 1 and independent of the dimension
of space. Conductance and diffusion are dominated by obligatory passage points
(bottlenecks) that are called red bonds. The percolating path or backbone of the
infinite cluster, the only part useful for transport once the dead ends have been
deleted, is formed of a string of such red bonds alternating with loops (blobs) of all
sizes. Dynamic properties such as diffusion and conduction therefore show a “hyper
universal” slowness near the transition, in the sense that they depends very little on
the dimension of space. Once final point that the reader will not fail to notice is the
simplicity of implementation of numerical simulations and the diversity of model
systems imaginable. The reader may rightly wonder why we have mainly discussed
numerical results and not presented experimental results, as we have done for phase
transitions. In general, physical experiments are much more difficult to interpret,
due to correlations in position, finite size effects, heterogeneity of elements and
quality of contacts between them. In large systems, scaling approach predictions are
accurately verified, but the precision obtained in the value of the exponents does not
have the same quality as that obtained in the case of phase transitions.
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Chapter 6
Spatial Conformation of Polymers

6.1 Introduction

6.1.1 Remarkable Scaling Properties

Although their synthesis takes place in chemistry, or even biology (for example
DNA), polymers are widely studies by physicists, mainly because they form
materials with remarkable properties; just think of the variety and usefulness of
plastics in our day to day environment. However, it is not so much their interest and
importance that preoccupies us here, but the fact that polymer physics is a domain
in which scaling laws are omnipresent, as well as being conceptually fundamental
and extremely useful in practice [5]. Polymers possess a natural scale variable: their
degree of polymerisation N , that is to say the (very large) number of monomers
making up each polymer. N is directly related to the mass of the polymer, which
is the quantity measured experimentally. In addition, the large size of polymers
legitimises their observation, description and simulation at supermolecular scales,
where details of atomic interactions are only indirectly involved in terms of apparent
geometric constraints and characteristic averages.

In this chapter, we will limit ourselves to presenting the scaling laws encountered
when studying the spatial conformation of one of the polymers in the system. Due
to the concurrence, or more often the competition, between the connectivity of the
polymer (linear chain of monomers) and its three dimensional structure (interactions
between monomers depending on their separation distance in real space), the N
dependence of the observables characterising this conformation will be non trivial
and very different from the usual spatial extension which would be observed in a
cloud of free monomers.1

1The limit N ! 1 is often called the “thermodynamic limit” but the nature and theoretical
foundations of these two limits are different, as we will see in Sect. 6.3.3. However, these limits
both have the effect of “coarsening” physical properties by revealing their dominant behaviours

A. Lesne and M. Laguës, Scale Invariance, DOI 10.1007/978-3-642-15123-1 6,
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The conformation of one of the polymers of the system will depend crucially
on the relative weight of the interactions felt between one of its monomers and the
other monomers, other polymers and solvent. It is therefore important to distinguish
between three different concentration regimes. The first is that of very dilute
solutions in which each polymer can be considered isolated and therefore oblivious
to the presence of other polymers but very sensitive to the solvent. The second is
that of very concentrated solutions in which interactions between different polymer
chains play a dominant role. The final regime is that of solutions with intermediate
concentrations, in which the chains interact with each other and the solvent. We will
see that in these different situations, the N dependence of the observables takes the
form of universal scaling laws, in the sense that their dependence on the specific
atomic structure of the polymer (its “chemical formula”) is only through a few
effective parameters.

We will focus our attention mainly on the spatial conformation of an isolated
polymer (which is observed in a very dilute solution) and on the scaling laws
describing the statistical properties of this conformation, for example the average
end-to-end distance and its probability distribution. By interpreting a polymer con-
formation as a trajectory of a random walk (where N plays the role of time), these
scaling laws connect with the diffusion laws presented in Sect. 4.5. Their exponents
are universal within classes determined by the physical context controlling the
interactions between monomers and their influence of the conformation of the
polymer chains. For example, specific behaviours are observed for polyelectrolytes
(polymers in which the monomers are charged, Sect. 6.2.4). The solvent plays an
equally essential role in the conformational properties. The affinity of solvent for the
monomers can change when the temperature changes; if it decreases below that of
the affinity of monomers for each other (we say that we pass from a good solvent to
a bad solvent), a conformational transition is observed, during which the polymers
collapse onto themselves adopting a compact globular conformation. The transition
point, in this case a temperature, is called the � point of the polymer/solvent pair
(see Sects. 6.2.3 and 6.3.2).

At the other extreme lie scaling laws describing properties of very concentrated
solutions and polymer melts. The statistics of a chain within the ensemble is then that
of an ideal, freely jointed chain in which the monomers in the chain do not exert any
constraints on each other (Sect. 6.4.1). Finally, scaling laws appear in semi-dilute
solutions, which are intermediate in concentration between very dilute solutions
and polymer melts. The scaling variable is then given by the volume fraction of
monomers (see Sect. 6.4.2).

We will see that it is possible, as in the case of percolation, to take into account
the effect of all the physical ingredients by using essentially geometric models: the
ideal chain (Sect. 6.2.1), self-avoiding chain (Sect. 6.2.2) and chain with excluded
volume (Sect. 6.2.3). The universality of the scaling laws follows from this. The first

at the expense of dampening higher order corrections. For example, taking such a limit N ! 1
transforms peaks into Dirac functions and smooth steps into discontinuities.
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approaches used to determine conformational properties of a polymer were mean
field type approaches (Flory theory, Sect. 6.3.1 or Flory–Huggins theory including
the solvent, Sect. 6.3.2). We will present their successes but also their failures, which
led to them being replaced by renormalisation methods (Sect. 6.3.5).

The large diversity of sizes, N , accessible both experimentally and numerically
have enabled the validification and exploitation of the corresponding scaling laws.
The important point is that they are valid in a whole range of temperatures and
not just at a singular value Tc . In other words they govern the typical behaviour
of polymers. They will therefore be robust, widely observed and used in all
experimental and technological approaches. Polymer physics is a domain in which
scale invariance is very strong and not limited to the existence of exponents: it is
expressed through universal functions (scaling functions). In practice, experimental
or numerical curves obtained for different values of N superimpose on a single
curve after rescaling the variable and observables: for example, the end-to-end
distance R is replaced by the scaling variable RN�� .

Interest in studies of conformational properties of a polymer has recently been
reinforced by remarkable experimental progress such that it is now possible to
observe and even manipulate a single macromolecule in isolation (for example by
fluorescent labelling and manipulation using micropipettes, atomic force micro-
scope cantilevers or lasers used as “optical tweezers” after grafting beads to the
ends of the molecule). In this way, theoretical models can be directly validated by
experiment and conversely, their predictions form a valuable guide in interpreting
the results of these experiments. They are used in a very fruitful way in biological
contexts (for example for DNA molecules).

6.1.2 Persistence Length

All of polymer physics begins with a modelling step, consisting of “screwing up
ones eyes” so as to see only the averaged out complex and specific atomic structure
of each polymer in terms of only a small number of, far more universal, ingredients,
which we believe are the dominating factors involved in the observed physical
property. This trimming down is further reinforced when we are only looking for
the possible scaling laws associated with the property. This is the approach adopted,
in an exemplary way, when we are interested in the three dimensional shape (called
the conformation) of linear polymers, that is to say polymers consisting of a linear
chain of molecular units.

The first stage of modelling is to consider each monomer unit as an elementary
entity (the smallest unit) and not to describe the more detailed structure: details of
interatomic interactions or the presence of side chains will be taken into account
in the effective size leff of the monomer unit and in the interaction, also effective,
with neighbouring monomer units and more generally with the environment (non
consecutive monomers, solvent, other polymers). Depending on the precision
required, these effective parameters can be obtained from a molecular dynamics
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simulation or fitted a posteriori by comparing the parameter dependent predictions
and the corresponding observations.

A typical example of an effective parameter is that of the persistence length of
a polymer. We must first distinguish between two types of polymers; flexible and
semiflexible.

The family of flexible polymers includes the simplest linear polymers, for
example polyethylene, in which two successive monomers are linked by a single
covalent bond. The dihedral angle between two monomers n and nC 1 is fixed by
the nature of the bond, however, monomer nC 1 can take (with equal probability) b
orientations relative to the chain of the first nmonomers. These possible orientations
correspond to b minima in the total energy with respect to the angular variable
describing the orientation in space of the additional monomer. Figure 6.1 shows
the case of b D 2, observed for example with the cis and trans configurations of
organic polymer chains. The number of possible conformations therefore grows
exponentially fast, in bN , with the number N of monomers. As N increases the
end of the chain will very quickly map out the surface of a sphere, which will be
more dense, homogeneous and isotropic the larger N .

In other words, we observe a decorrelation of orientations. The chain length
beyond which the orientation of the first and the last monomers can be considered
independent is called the persistence length lp of the polymer. To dominant order,
it does not depend on temperature. It is convenient to redefine what we call a
monomer and take this length lp as a single unit. At this scale the polymer appears
as a perfectly supple, flexible chain, called “freely jointed”. This step, reducing
the specificity of the initial model by incorporating it into a single parameter lp,
is particularly interesting in numerical models of polymers, on a lattice. In such a
model a monomer will represented simply by a bond separating two adjacent nodes

0

1

2 2’
3

3’ 3’’

3’’’

4

4’
4’’ 4’’’ etc.

Fig. 6.1 Entropic persistence length lp due to the existence of b possible relative orientations
between two successive monomers. For convenience, the drawing was done with b D 2. It
illustrates the fact that the points where one could find the end of the chain will fill the circle,
in a more and more homogeneous and dense way as the length N of the chain increases (the
radius grows as N whereas the number of points grows as 2N ). lp is the length beyond which the
orientation of a monomer has become independent from that of the first monomer in the chain. lp
is practically independent of temperature
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lpq

dq   kT

Fig. 6.2 Left: angular freedom ı� , allowed by thermal fluctuations, between two successive
chemical bonds along a semiflexible polymer. Right: graphical interpretation of the persistence
length as the (average) characteristic length beyond which thermal fluctuations allow a curve in the
chain corresponding to an angle of �=2 between the tangents at each end. This length typically has
a 1=T dependence on temperature T

on the lattice (Fig. 6.4). The length of this bond is identified with lp to return to real
sizes.

The family of semiflexible polymers consists of polymers with more complex
chemical structures, involving stronger bonds than a single covalent bond between
monomer units, for example double bonds or additional hydrogen bonds or other
physical bonds between successive monomers. A typical example is that of DNA.
For DNA the monomers are the base pairs and they link together atoms in each
strand of the double helix with covalent bonds (“phosphodiester bonds”) forming
the “backbone”. To this, hydrogen bonds are added between the complementary
base pairs (linking the two strands together) and stacking interactions between the
base pair steps.2 In such complex polymers, the orientation between successive
monomers is well defined and the only flexibility allowed lies in the thermal
fluctuations of the dihedral angle �j between monomers j and j C 1 (see Fig. 6.2).
Fluctuations in the angle �j and those of the angle �jC1 are independent, so
their variances, proportional to kT , are therefore additive. The angular freedom
between monomer unit 1 and n will therefore behave as

p
nkT . When this freedom

is quite large, for example when the typical angular deviation exceeds �=2, we
can consider the orientations of the monomers statistically independent (Fig. 6.2).
We therefore see the appearance of a minimal number np � 1=kT (where �
means up to a constant factor) of monomers above which the chain of monomers
has lost memory of its initial orientation (orientation of the first monomer). The
corresponding length lp D np leff is called the persistence length (arc length) of
the semiflexible polymer. It is written lp D A=kT where A depends on the atomic
structure of the linear polymer under consideration. In practice, we can calculate
lp as the angular correlation length via the following relation (l D n leff being the

2Incidentally it is the mismatch between the natural spacing of the bases along the strands, of the
order of 7Å, and that of 3:4Å imposed by these stacking interactions that causes the molecule to
adopt its double helix shape.
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length of the segment of the chain being considered):

*

cos

0

@

nX

jD1
�j

1

A

+

D e�l=lp with lp D A

kT
: (6.1)

An elastic bending energy is therefore associated with each polymer configuration.
If � is the local curvature of the chain, the elastic energy density per unit length3 is
written A�2=2. The coefficientA, independent of temperature T to dominant order,
is interpreted as the bending elastic constant. Such a model is called the worm-like
chain model and it is used when the chain is not very flexible (lp large compared to
the molecular scale) and its rigidity is an essential conformational parameter.

6.2 Conformations of an Isolated Flexible Polymer

6.2.1 Polymers and Random Walks

It is fruitful to envisage the spatial conformation of a linear flexible polymer as
the trajectory of a random walk. Then, mathematical results obtained for random
walks (as in Sect. 4.3) can be interpreted directly in terms of statistical properties of
a polymer. The number of monomers N corresponds to the number of steps of the
random walk. Physical properties of the assembly of monomers (e.g. persistence
length, excluded volume, attractive interactions) result in rules governing the
displacement of the walker. From now on we will denote the root mean square
length of a monomer as a (in practice chosen to be equal to the persistence length
lp to avoid angular constraints between successive steps). Saying that a random
walk asymptotically follows the diffusion law R.t/ � t�=2 means that the end-
to-end distance R.N/ � hjXN � X 0j2i1=2 (see Fig. 6.3) follows the scaling law
R.N/ � N�=2 in the limit N !1, up to a constant factor depending on the units
chosen.4 The simplest polymer model is that corresponding to an ideal random walk
(identical and statistically independent, unbiased steps, Fig. 6.4). We have seen in
Sect. 4.3.1 that in this model:

R.N/ � apN: (6.2)

3By adopting a description of the chain as a continuous curve, of arc length coordinate s and

local tangent t.s/, the bending energy of a length l of chain is written .A=2/
R l

0 .d t=ds/2.s/ds D
.A=2/

R l

0 �.s/
2ds.

4Note that it is not at all obvious that the end-to-end distance of a real linear polymer chain
follows a scaling law with respect to the number of monomers. At this stage it is only a working
hypothesis and this present chapter describes the steps of its validation. The best evidence is the
experimental observation of such a scale invariance. Some theoretical clues are given by the scaling
laws mathematically demonstrated for normal and several anomalous walks (Chap. 4).
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Fig. 6.3 End-to-end distance
R and radius of gyration Rg

R

Rg

The distribution PN .r/ is Gaussian,5 given by

PN .r/ � e�dr2=2Na2 ; (6.3)

where d is the dimension of space. From this we deduce the entropy of an ideal
chain:

SN .r/ D SN .0/ � kB dr
2

Na2
: (6.4)

Most models and results presented in Chap. 4 will have an equivalent in the context
of polymer physics, in particular anomalous diffusion and its critical nature.

6.2.2 Self-Avoiding Random Walks

The ideal random walk model has the major deficiency of not taking into account the
excluded volume constraints between monomers in the chain. In reality, monomers
cannot interpenetrate each other, nor can they approach each other too closely.
Consequently, polymer chains cannot cross themselves nor even touch themselves.
We therefore talk of self-avoiding chains6 shortened to SAW, (see Fig. 6.4) [18].
Quantitatively, this property is modelled by an infinitely repulsive interaction, of
range the diameter of the exclusion zone, in other words by introducing an excluded
volume v, also written v D adw where w is a nondimensional parameter. This
excluded volume is the analogue of the volume of the spheres in hard sphere models.
In lattice models, it is sufficient to simply forbid double occupancy of sites. It should
be emphasized that this model remains purely geometric: the physical property
of short range repulsion between monomers is entirely taken into account in a
constraint imposed on the trajectory of the chain, which results in reducing the space
of allowed configurations.

5We talk about Gaussian chains when PN .r/ is asymptotically Gaussian. This is the case whenever
the range of correlations along the chain remains bounded.
6In mathematical terms, this corresponds to non Markovian random walks: the walker must keep
an infinite memory of its history to avoid repassing a site it has already visited.
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Fig. 6.4 Three polymer models on a (here square) lattice. Left: An ideal walk with independent
successive steps (the length of a step is equal to the persistence length of the polymer, see
Sect. 6.1.2); Middle: self-avoiding walk in which the track cannot cross; Right: self-avoiding walk
with interactions, in which an attractive energy �J is attributed to each of the contacts represented
by dashed lines

In the model of a random walk that does not cross itself (self-avoiding walk),
the chain has a complete memory of its preceding track. In this sense, temporal
correlations have a range N which diverges with the length of the chain: in the
limit N ! 1, such a polymer appears like a critical object. Experimental7 and
theoretical results show that the end-to-end distance behaves as:

R.N/ � N�.d/: (6.5)

We recover �.d/ D 1=2 when the spatial dimension d is higher than a critical
dimension dc D 4, above which excluded volume constraints have a negligible
probability of being felt and are not sufficient to change the ideal walk scaling law.
If d < 4, we have �.d/ > 1=2. This anomalous exponent is called the Flory
exponent.8 The values considered are �.1/ D 1, �.2/ � 3=4 and �.3/ � 3=5.
By definition, the fractal dimension of self-avoiding walks is equal to df .d/ D
1=�.d/, and so less than the dimension 2 of ideal chains (Sect. 4.1.3). The radius of
gyration9 Rg.N / follows a similar scaling law, with the same exponent �, but with

7The experimental results mostly concern the case of three dimensions d D 3; two dimensions
d D 2 can however be achieved by using thin films (for example Langmuir monolayers).
8We sometimes use this in a more restricted sense, to designate the value of this exponent when it
is obtained in the Flory theory, Sect. 6.3.1.
9By writing the position of N monomers as .r i /iD1:::N , the radius of gyration is defined by:

R2g.N / � 1

N
h
N
X

iD1

jr i � rgj2i D 1

2N 2
h
N
X

i;j

jr i � rj j2i;

where rg is the position of the centre of mass of the chain: rg D N�1
PN

iD1 r i . So, the radius
of gyration is the radius of the sphere, centred at rg , with the same moment of inertia as the chain
would have if the total mass N of the polymer was redistributed on its surface (see Fig. 6.3).
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Fig. 6.5 Log-log graph of the radius of gyration Rg as a function of molecular weightM , directly
proportional to the number of monomers N . The slope gives the value � D 0:586 ˙ 0:004 for
the Flory exponent. The black and grey circles correspond to two series of observations, by light
scattering of dilute solutions of polystyrene in benzene (after [3])

a different prefactor. Experimental data (from light or neutron diffraction) show that
the exponent �.d/ is invariant within classes of polymers, over a large range of
temperatures. The value obtained (in three dimensions) is �exp D 0:586˙ 0:004 [3]
(see Fig. 6.5). The most accurate values are obtained theoretically (Sect. 6.3.3). For
example, we have �.3/ D 0:5880˙ 0:0010 [17]. TracingR.N/N�� or Rg.N /N��
as a function of temperature T for different values of N leads to a universal curve
for T > T� where the threshold T� is called the� point of the polymer (Sect. 6.2.3).

Measuring the exponent �
A solution, dilute enough that the chains do not interact with each other and
individually take the conformation they would if they were really isolated, can
be observed by neutron diffraction.

Since the diffraction is elastic, the wave vector ki of incident neutrons and
the wave vector kf of scattered neutrons have the same wavenumber k and
their difference q D kf � ki is related to the diffraction angle � obeying
q D k sin.�=2/. We use “thermal” neutrons, that is neutrons whose kinetic
energy is reduced by thermalisation to bring their wavelength (directly linked
to the resolution) to values of the order of a nanometer, typical of polymers. In
order to extract the signal due to a single polymer when we observe a solution,
half of the chains are labelled with deuterium and a mixture of water (H2O)
and heavy water (D2O) is taken as the solvent. By adjusting the proportions
of the mixture (“contrast variation” method), certain terms in the scattering
intensity can be cancelled, leaving only the term describing the contribution



206 6 Spatial Conformation of Polymers

of individual chains, and therefore the behaviour of an isolated chain can be
deduced.

The first method is to measure the structure factor S.q/ (directly propor-
tional to the scattering intensity in direction �.q/), and to vary the direction �
in which we observe the scattered beam so as to probe the domain a < q�1 <
Rg . In this domain,S.q/ behaves as q�1=� ; in other words, we directly observe
a scaling law involving the exponent � found by considering segments of
variable length q�1, via the choice of observation angle � . In this way the
value � D 0:59˙ 0:2 is obtained [2].

The small angle scattering intensity can also be measured, which corre-
sponds to q ! 0. In this limit, the scattering intensity can be predicted
theoretically as a function of the average radius of gyration Rg.N / of the
chains. By fitting the theoretical curve to the experimental data the unknown
quantity Rg.N / can be determined. By successively considering different
values ofN , Flory’s prediction can be tested and an estimation of the exponent
� can be given. This second method, apparently more direct, rests on the
assumption of monodispersity of the chains, which in practice decreases its
accuracy and reliability. However the systematic error coming from polydis-
persity can be corrected, leading to a value of �exp D 0:586 ˙ 0:004 [3].

6.2.3 The Role of Solvent: The � Point

A remarkable phenomenon, known by the name of the � point, is the transition,
observed at a particular temperature T D T� , between scaling laws with different
exponents for the end-to-end distance or the radius of gyration of a polymer:

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

R.N/ � N�.d/ if T > T�

R.N / � N��.d/ if T D T�

R.N / � N1=d if T < T� :

(6.6)

with 1=d < �� .d/ < �.d/ where d is the dimension of space. The fact that
different scaling laws are observed either side of the temperature T� reveals that
a conformational transition occurs here. The value of T� depends, not only on
the polymer, but also on the solvent, showing that it plays an essential role in
the phenomenon. In three dimensions d D 3, it is theoretically predicted that
�� .3/ D 1=2 and that the asymptotic behaviour R.N/ � pN of an ideal random
walk must be recovered. Note that, despite all that, the chain is not an ideal
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chain: the end-to-end distribution (or radius of gyration distribution), as well as
the correlations between steps, differ from that on an ideal chain. In two dimensions
d D 2, the theories agree on the value �� .2/ D 4=7 [8].

We can qualitatively understand the existence of this � point. It comes from the
fact that the relative weight of interactions between, on the one hand two monomers,
and on the other hand a monomer and the solvent, varies with temperature. At high
temperature (T > T� ), the repulsion between monomers dominates and a monomer
“prefers” to be surrounded by solvent: we call this regime “good solvent”. In this
case, the self-avoiding random walk model correctly describes the conformations of
the chain (so it is called a random coil) and we have R.N/ � N� .

At low temperature (T < T� ), the repulsion between a monomer and the solvent
molecules is so strong that the monomer “prefers” to be surrounded by other
monomers. This causes the chain to collapse on itself, with R.N/ � N1=d : we call
this regime “bad solvent” and the chain is in a globule state. The geometry of typical
conformations is compact, with fractal dimension df D d . At T D T� , the excluded
volume repulsion between two monomers is exactly compensated by the apparent
attraction between monomers coming from the solvent which repels them. The self-
avoiding walk model only describes the chain in good solvent. To take into account
the globular phase and the coil-globule conformational transition occurring at the�
point, we need to add to the model a short range attractive interaction �J , which
manifests itself whenever two non consecutive monomers become neighbours on the
lattice. This model is called an interacting self-avoiding walk, shown in Fig. 6.4.10

The theoretical questions are to determine the nature of this transition and, if
possible, to unify the three scaling laws observed in the three different phases into a
compact form (the analogue of that describing tricritical points)11:

R.N; T / � N�� f .N�.T � T� //: (6.7)

The behaviour of the universal function f at infinity is fixed by the requirement to
recover the scaling laws of the coil state and the globule state:

8

<̂

:̂

f .z!C1/ � z
����
�

f .z! �1/ � jzj 1=d���
� :

(6.8)

10The self-avoiding walk is recovered in the limit T ! 1. It describes the entropic contribution
in the conformation distribution of the interacting self-avoiding walk (the effective parameter
controlling the weight of the interaction is K D ˇJ , where here ˇ D 1=kT ).
11In the phase transitions framework presented in Chap. 1, tricritical points are observed in systems
that have a second control parameter 	 (other than the temperature) governing, for example, the
relative weight of two contributions in the Hamiltonian belonging to different universality classes.
A line of critical points Tc.	/ is then observed and the tricritical points correspond to the singular
points of this line and mark the transition from one universality class to another.
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The exponent �, called the crossover exponent, will in particular describe the way
in which the transition temperature T� .N / depends on finite size N i.e. T�.N / �
T� � N�� . To experimentally observe the � point, we can for example use dilute
polystyrene in cyclohexane, a solvent whose affinity for styrene monomers varies
strongly with temperature. A “� solvent” is obtained for this particular polymer
at a temperature of 34:5ıC. Measurements give the value �� D 0:500 ˙ 0:004

after correction for the effect of polydispersity [3], in agreement with the theoretical
prediction �� D 1=2 in three dimensions [5].

6.2.4 Scaling Laws for a Polyelectrolyte

Let us continue this presentation of scaling laws shown by isolated polymers with
the case of a naturally charged polymer, which we call a polyelectrolyte. One
example is DNA, in which each phosphate group in its backbone carries a negative
charge, so there are two negative charges per base pair,12 which is extremely high
(it gives a total of about 6�109 charges for the DNA contained in one of our cells!).
A polyelectrolyte in aqueous solution with added salt (which is the situation for
DNA in a cell) will strongly attract oppositely charged ions, which will partially
neutralise it. We call these counterions.

It is possible to understand what will be the effect of charges on the conformation
of a linear polyelectrolyte, when all the charges it carries are identical, without
performing any calculations. Each charge repels its neighbours and the polymer
will therefore maximise the distance between its monomers, optimally achieved
when it is straight.13 Let us consider the case of a semiflexible polymer, for example
DNA. The molecule’s natural rigidity is reinforced by a contribution coming from
Coulomb repulsion between the charges. This increase of the chain rigidity can
be taken into account by adding an “electrostatic” persistence length lel to the
structural persistence length l0p, such that lp D l0p C lel [16]. For example, the
total persistence length of DNA in physiological conditions is 53 nm (for a radius
of 1 nm), or around 150 base pairs, with comparable structural and electrostatic
contributions. Polyelectrolytes are therefore very rigid molecules.

The global behaviour of a polyelectrolyte and the way in which it will interact
with its more distant environment will clearly depend on how much it is neutralised
by counterions, so on the number of counterions available in the solution and also
the valency z of the ions. The capacity of a salt solution to neutralise charged objects
placed in them is evaluated by their ionic strength  D P

i c
2
i z21 where the sum is

over all the ionic species,14 ci being the concentration of species i of valency zi .

12Base pairs are 3:4Å apart measured along the central axis of the double helix, giving a negative
charge �e per 1:7Å of DNA.
13Note that in solution Coulomb interactions are screened, so the straightening and stiffening of
the polymer is limited and the total persistence length lp is finite.
14The valency appears in squared form, the contributions from different species are all positive.
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When the interaction of a polyelectrolyte with solvent and ions contained in it is
studied in more detail, three characteristic length scales appear:

• The first is the Bjerrum length lB D e2=4�	kT , where 	 D 	0	r is the
dielectric constant (or permittivity) of the solvent (	r D 78:5 for water). From
this definition, it is clear that this is the length at which the Coulomb energy
between two charges is equal to the thermal energy kT . Therefore, lB is the
distance beyond which thermal motion takes over from Coulomb interactions.

• The second is the Debye length lD D
p

kT	=e2 D 1=p4�lB . It depends on
the solvent (via 	) but also on the salt (via  ). It is the characteristic screening
length of the Coulomb interactions: in salt water the electrostatic potential takes
the form v.r/ D 1

4�	r
e�r=lD , with finite range lD .

• The third, depending only on the polyelectrolyte, is the length 
 per charge along
the chain; the charge line density is therefore˙e=
, depending on the sign of the
charges.15 We distinguish weakly charged polyelectrolytes, for which 
 < lB ,
and strongly charged polyelectrolytes for which 
 > lB .

If the polyelectrolyte is weakly charged, its neutralisation by counterions will
depend on the ionic strength. When salt is added to the solution the polyelectrolyte
will soften because oppositely charged ions (released by disassociation when the
salt dissolved) come and partially neutralise it and thereby reduce the electrostatic
repulsion and the corresponding contribution lel to the persistence length. This
decrease in persistence length lp D l0p C lel is show experimentally when salt is
added, until the value l0p of the neutral chain is reached. The experimental results
imply that the dependence of lel on the concentration of dissolved salt obeys a
scaling law but its exponent is still controversial.

If the polyelectrolyte is charged enough, a remarkable phenomenon occurs:
Manning condensation. This corresponds to the formation of a layer of counterions
practically in contact with the polyelectrolyte. The number of ions which condense
onto the polyelectrolyte and neutralise it is determined by the temperature T , the
charge per unit length of the polyelectrolyte (if it is high enough) and the valency
z of the ions, but it is independent of the concentration of ions in the solution. We
will go into more details below of this phenomenon and its similarity to a phase
transition [19]. The lengths lB and 
 control the transition point, whereas lD controls
the thickness of the counterion layer.

Manning condensation
In the “mean field” treatment of the problem by Onsager [21], we start by
assuming that there is only one counterion situated at a distance less than
lD and we calculate the partition function of N counterions. If zlB > 
, it

15Here we are only considering the simple case of homopolymers, in which all the monomers carry
the same charge.
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diverges whenN tends to infinity, showing that the starting hypothesis is false
and that there are in fact a finite fraction of counterions which condense onto
the filament, at a distance less than lD . The condition zlB > 
 means that the
condensation is produced more easily as the temperature is lowered, that the
polyelectrolyte is charged and that the valency of the counterions present in
the solution is high. The threshold zlB D 
 is interpreted as a phase transition
point corresponding to the condensation of ions on the polyelectrolyte.16

A more rigorous approach, based on the Poisson-Boltzmann equation, con-
firms that this result is valid qualitatively: counterion condensation appears
for zlB > 
. The remarkable point is that the number of counterions is
tuned in such a way that the resulting charge per unit length 
layer of the
covered polyelectrolyte, (i.e. the charge seen from outside, the effective
charge felt be the environment) is lowered to the value e=zlB , the threshold
at which condensation begins to occur. The counterion layer grows until
the value zlB=
layer reaches the threshold, which stops further recruitment
of counterions. The average distance between two effective charges on the
covered polyelectrolyte is then equal to zlB . This effect is common to all
polyelectrolytes and in this sense it is universal. It will of course be involved
in the ionic strength dependence of the electrostatic persistence length. An
approximate calculation gives lel D l2D=4lB .

This condensation plays a crucial role in biology. Most biological macro-
molecules, for example DNA and RNA, are highly charged objects and the
cellular environment where they are found is very rich in ions, including
multivalent ions (z > 1). The first effect of the condensation is to concentrate
ions important for biological function in the immediate vicinity of the
macromolecules. The second effect is to reduce the apparent charge density
to a uniform value, so that all the polyelectrolytes present will seem to have
the same charge density when “seen from afar”. Special effects, when the
polyelectrolyte can no longer be described as a uniformly charged filament,
locally modify this general mechanism [10].

In conclusion, polyelectrolytes form a very special category of polymers, because
in addition to the short range interactions (excluded volume, Van der Waals
forces) polyelectrolytes have Coulomb interactions between the charges they carry.
These interactions, even though screened by the solvent and the ions it contains,

16Since the solvent remains globally neutral (adding cooking salt in water introduces NaC ions
and Cl� in equal quantities), one could ask what has become of the other ions, those having the
same charge as the polyelectrolyte? It can be shown that the play no role in the condensation
phenomenon, which is localised in the immediate vicinity of the polyelectrolyte (and, in the end,
involves not many ions compared to the total quantity present, but their specific localisation gives
them important consequences) [19].
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are far more long ranged. Scale invariant behaviours are still observed, but the
exponents are radically different. So polyelectrolytes form a new universality class,
alongside Brownian random walks (Sect. 6.2.1), self-avoiding walks (Sect. 6.2.2)
and interacting self-avoiding walks (Sect. 6.2.3).

6.3 Theoretical Tools

6.3.1 Flory Theory

The first approach to calculate the exponent � was developed by Flory. It is a mean
field type approach declaring as order parameter the average monomer density c D
N=Rd inside a volume Rd occupied by the chain. It is traditionally presented as a
procedure minimising the free energy F.N;R/ of the polymer with respect to R (at
fixed N ) leading to the expression of the radius of gyration Rg.N /. The Flory free
energy is written (a being as before the length of a monomer):

F.N;R/

kBT
D wad

N 2

Rd
C dR2

a2N
C constant: (6.9)

The first term is the total average repulsive energy, proportional to the average
number of pairs of monomers close enough to each other to feel the repulsion. The
average density of “contacts” is proportional to the average of the density squared,
which we identify with the square of the average density c2. The number of contacts
involved in the average repulsive energy is therefore proportional toRd.NR�d /2 D
N2R�d . This typical mean field approach comes down to neglecting correlations
between interacting pairs of monomers, in other words cooperative effects due to
the fact that the monomers are assembled in a linear chain. Excluded volume effects,
quantified by the excluded volume parameter are uniformly redistributed between
the pairs of monomers and the configuration of the chain is only involved via the
average density. The second term is the entropic contribution, also estimated in an
approximate way by identifying it with its value for an ideal chain (Sect. 6.3.1). The
constant added in F , independent of R, plays no role here. The radius of gyration is
then obtained:

Rg.N / � N�F with

8

<

:

�F .d/ D 3
dC2 .if d � 4/

�F .d/ D 1
2

.if d � 4/:
(6.10)

The Flory formula is exact in dimension d D 1, very good in d D 2 (polymers
in thin films), as well as in d D 3 (�F D 3=5 compared to �exp D 0:586

and �th D 0:5880). The estimation obtained is remarkably correct, despite the
approximations involved. We usually explain this success by the compensation of
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two errors involved in estimating the repulsive energy and the entropic contribution.
In dimension d D 4 the value � D 1=2 of an ideal chain is recovered. In addition,
the ratio of the excluded volume term to the entropic term behaves asN2�d=2, which
shows that excluded volume effects are a small perturbation to the ideal chain once
d � 4, thus explaining the origin of the critical dimension dc D 4 above which the
statistics are that of an ideal chain (� D 1=2).

Flory’s formula and long range correlations of self-avoiding walks
A better explanation is a new interpretation of the Flory theory proposed by
Bouchaud and Georges [1]. By considering the polymer as a trajectory of a
random walk of successive steps .ai /i , the end-to-end distance is calculated
directly from its definitionR2.N / D h.PN

iD1 ai /
2i. Since hai i D 0, the cross

terms hai :aj i are simply the correlations C.j � i/, which gives the explicit
formula for the end-to-end distance: R2.N / D PN�1

nD1�N .N � jnj/C.n/ D
Na2 C 2PN�1

nD1 .N � n/C.n/.
The critical character of a self-avoiding walk results in the decrease of

these correlations as a power law (remember that the power law decrease
replaces the exponential decrease when the range of correlations becomes
infinite): C.n/ � n�˛ . These correlations result from the excluded volume
constraint: the nth monomer is correlated to the previous monomers, since it
must avoid them. If ˛ > 1, the sum of correlations is absolutely convergent
and R2.N / behaves as N , with a proportionality factor which is no longer
equal to a2 D C.0/ but to the sum

P1
nD�1 C.n/, as we have seen in

Sect. 4.3.1, (4.25). Let us now suppose that ˛ < 1. The sum of correlations,
behaving as N1�˛ for a polymer of length N , will be proportional to the
number of contacts (average number since we are considering the statistical
quantity R.N/). The mean field approximation is involved in calculating this
number, estimated as before to be N2=Rd . Therefore ˛ D �d � 1 where
� is the exponent we were looking for. The second term appearing in the
expression for R2.N / behaves as N2�˛ , in other words as N3��d . It is only
involved if 2 � �d > 0, that is to say if ˛ < 1, which is consistent with
the hypothesis made for ˛. So in low dimensions it is the correlation term
that dominates the behaviour of R.N/. Then the expression R2.N / � N2�

defining � leads to the coherence relation N2� � N3��d , leading to Flory’s
formula �F D 3=.d C 2/ and specifying the value of the critical dimension
dc D 4.

In large enough dimensions, we have ˛ > 1 and the average number of
contacts remains bounded, as does the sum of the correlations. The excluded
volume constraints are always present but they are not felt, the relative weight
of potential crossings tends to zero as N tends to infinity. Correlations will
therefore play a negligible role in large enough dimensions and it is then the
first term which dominates and R.N/ � pN .
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This approach, rooted in the statistical description of a polymer as a
random walk and not involving the free energy, better explains the remarkable
result of Flory theory (but it does not validate the method Flory used to
obtain it).

6.3.2 Good and Bad Solvents, � Point and Flory–Huggins
Theory

To take into account the � point of the polymer solution, the Flory approach must
be generalised to explicitly take into account the solvent. The theory developed in
this way is known by the name Flory–Huggins theory. We introduce the volume
fraction ˚ D cad of monomers (dimensionless); the volume fraction of solvent
is then 1 � ˚ . The relevant free energy is the free energy of mixing Fmix.˚/ D
F.˚/ �˚F.1/ � .1 � ˚/F.0/. Described at a site it is written:

Fmix.N;˚/ D kT
�
˚

N
log

�
˚

N

�

C 1

2
.1 � 2�/˚2 C t˚3

6
C : : :

�

: (6.11)

The term 1
2
.1 � 2�/˚2 describes the pairwise interactions. .1 � 2�/ is called the

second virial coefficient. The parameter � is the sum of three contributions:

� D �MM

2
C �SS

2
� �MS (6.12)

coming from the interaction between monomers, between two solvent molecules
and between a monomer and the solvent respectively. The monomer-solvent repul-
sion ends up resulting in an apparent attraction between monomers. In general, �
decreases when the temperature T increases and � � 0 (for interactions independent
of T , we have � � 1=T ). At high temperature, v D a3.1 � 2�.T // is positive and
we call this a “good solvent”. If the temperature is low, v becomes negative and
we call it a “bad solvent”. This theory justifies describing the effect of the solvent
together with that of interactions between monomers, through a single excluded
volume parameter:

v D a3.1 � 2�.T //: (6.13)

The point � D 1=2 where the excluded volume parameter cancels corresponds to
the � point in this theory. We sometimes talk about a “� solvent” but we have
already emphasised that the� point is a characteristic of a solvent-polymer pair. At
the� point, since v D 0, the next term t˚3=6 in the expansion of Fmix.N;˚/ can no
longer be neglected. This term is called the “three body term” because it involves the
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cube of the volume fraction. It describes the average effect of correlations between
interacting pairs.17

6.3.2.1 Analogy with Ferromagnetism: n-Vector Model with n ! 0

A discerning advanced technique for the calculation of scaling laws satisfied by
isolated linear polymers and self-avoiding walks, was carried out in 1972 by De
Gennes [4]. The idea is a formal analogy between statistical properties of polymers
and critical properties of particular spin systems, which had the notable advantage
of having been already exhaustively studied and classified in universality classes
with known critical exponents (see Chap. 3). Before going into the details of this
analogy and its exploitation, we can propose a preamble by showing the parallel
scaling laws:

� � jT � Tcj�� and R � N�: (6.14)

A formal correspondence between spin systems to the left and self-avoiding walks
to the right is given by:

�  ! R (6.15)

t � T � Tc
Tc

 ! 1=N: (6.16)

We have seen in Chap. 3 that a system of spins .S i /i of constant modulus S , placed
at nodes on a regular lattice and in ferromagnetic interaction (restricted to nearest
neighbours) belongs to a universality class entirely determined by the dimension
d of the lattice and the number n of components of the spins. The spins being of
constant modulus, we choose to normalise them S2 D n. In the presence of an
external magnetic field h, the Hamiltonian of the system, if it consists of Q spins,
is written:

H D �J
X

<i;j>

S i :S j �
Q
X

iD1
h:S i ; (6.17)

where the sum
P

<i;j> is over nearest neighbour pairs of spins. By denoting ˇ D
1=kT (not to be confused with one of the critical exponents defined in Chap. 1) and
d˝i the angular integration over all possible orientations of spin i (the phase space
is the set of angular coordinates of the spins since their modulus is constant), the
partition function is written:

17The probability of “real” three body interactions (that is to say between three monomers) is very
weak and these interactions do not have observable consequences.
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Z .ˇ/ D
Z

e�ˇH

Q
Y

iD1
d˝i .ˇ D 1=kT /: (6.18)

The series expansion of the integrand and term by term integration18 involves the
moments of spins with respect to the natural weight

R QQ
iD1 d˝i in the phase space

of angles of Q spins. The integrals over different spins, that is to say over different
angular degrees of freedom, will decouple and factorise:

R R

S 1:S 2d˝1d˝2 DPn
D1

R

S1;d˝1

R

S2;d˝2. Since different spins play an identical role in the
problem (translational invariance), we can consider the moments of one spin S ,
with components denoted by the index j :

hS1:::Sq i0 D
Z

S1 :::Sq
d˝

˝tot
: (6.19)

The notation hi0 indicates a simple average, 19 with respect to the natural volume
of phase space of spin angles, with total volume ˝tot. The odd moments are zero
by symmetry. It can be shown that if we let n tend to zero,20 once the calculation is
complete the only moments that remain are the second order moments:

hS1S2i0 D ı12 : (6.20)

Higher order moments are zero in the limit n ! 0. Consequently, the series
expansion of the integrand gives only a finite number of non zero terms, which
validates calculating the partition function Z by series expansion and term by term
integration (moment expansion).

Let us make the calculation of Z more explicit to understand how random self-
avoiding walks appear in calculating statistical properties of a lattice of spins with
n ! 0 components. By introducing coupling constants Jij such that Jij D J if
sites i and j are nearest neighbours and Jij D 0 if not, the partition function Z .ˇ/

18The validaty of this term by term integration is a priori problematic and often remains so a
posteriori, apart from in the case considered here where we take n D 0, in which the series only
contains a finite number of non zero terms, which ensures its convergence and the validity of the
calculation.
19Be careful not to confusehi0 with the average hi D hiˇ taken with respect to the Boltzmann
distribution of Q spins. The average hi0 corresponds to ˇ D 0 and describes the purely entropic
contribution.
20The number n, initially a positive integer, appears as a parameter in the result of the moment
calculation, so at this stage we can assign any real number to it, including here the rather difficult
to conceive value n D 0. It is the same trick used in assigning the value d D 4�	 to the dimension
of space (see Sect. 3.3.5).
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in zero field is written:

Z

˝tot;Q
�
*
Y

i>j

eˇJij S i :S j

+

0

D
*
Y

i>j

 

1C ˇJij
nX

˛D1
Si;˛Sj;˛ C ˇ2J 2ij

nX

˛D1

nX

D1
Si;˛Sj;˛Si;Sj;

!+

0

:

(6.21)
The higher terms in the expansion contribute zero. Each term can be represented
by a graph by associating a bond .i; j / to each non zero Jij appearing in this
term. Note that the averages over different spins factorise. Si;˛ must appear 0 or
2 times with the same component ˛, in a term for its average hi0 to give a non zero
contribution in the limit n! 0. In other words, a given site must belong to exactly
two sites, or not be involved. The corresponding graphs of the terms giving a non
zero contribution are therefore closed loops, do not overlap and involve the same
component ˛ in each of their sites.

By carrying out the calculation, it can be shown that Z =˝
Q
tot D 1 in the limit

n ! 0. Calculating the correlation function of spins at finite temperature is
addressed in the same way, showing that:

hSi;˛Sj;iˇ D
1X

ND0
.ˇJ /N @N .ij / .n! 0/; (6.22)

where @N .ij / is the number of self-avoiding paths of N steps connecting the sites i
and j . This expression is the discrete form of a Laplace transformation with respect
to the variable N , evaluated at the value log.1=ˇJ /. Remember that kTc D J , so
that the reduced variable t is expressed log.1=ˇJ / D t and the formula becomes:

hSi;˛Sj;iˇ;nD0 D
1X

ND0
e�Nt @N .ij /: (6.23)

This explicitly gives the link between the number of paths @N .ij / and the
correlation function of spins hSi;˛Sj;iˇ calculated in the limit n! 0. The number
@N .ij / of self-avoiding paths connecting sites i and j leads to the Boltzmann
distribution of a chain of length N at infinite temperature, which is nothing other
than the entropic contribution to the distribution at finite temperature, normally
called the density of states. Since the site i is fixed,

@N .ij /
@N D PN .r D rij / with @N D

X

j

@N .ij /: (6.24)

The relation (6.23) is the basis of the calculation of exponents associated with
random self-avoiding walks knowing those of the spin system. The point of this
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roundabout approach is that the scaling properties of spin systems will be directly
transferable to self-avoiding paths due to the explicit link between their statistical
properties.21 For example, the existence of a unique characteristic length � � t��
will give the typical linear path size, expressed as a function of the variable 1=N
as: R � N� , and hence the value of the Flory exponent � D �.d; n D 0/. This
approach gives the value 0:5880 ˙ 0:0010, more in agreement with experimental
results than Flory’s value 0:6 and considered today as the best estimate of � [17].
From this the scaling PN .r/ � N��d �.rN��/ is also drawn. The asymptotic
behaviour of the distribution � is obtained, starting from knowing the asymptotic
behaviour of the spin correlation function, by inverse Laplace transform, giving
�.x/ � e�x1=.1��/ .

In the same way the scaling law describing the probability that a self-avoiding
walk returns to its origin (closed path) can be determined. The number of closed
chains of N C 1 steps behaves asymptotically as N�2C˛ , where ˛ is the specific
heat exponent (for n D 0 and d corresponding to the lattice being considered). We
also obtain that the critical dimension of isolated linear polymers is the same as that
of spin systems, i.e. dc D 4. Above this dimension, the mean field like behaviour
(behaviour of an ideal chain in the case of a polymer) applies.

Within the framework of this analogy the � point, described in Sects. 6.2.3 and
6.3.2 in the limitN !1 appears as the end of a line of critical points (traversed on
varying the excluded volume, i.e. the temperature), which we call a tricritical point.
In three dimensions d D 3, it lies next to the region in which the mean field is valid,
justifying the law R.N/ � pN observed at this point.

6.3.2.2 Polymers as Unusual Critical Objects

In the framework of lattice models, we can predict the critical properties of an
isolated linear polymer (in good solvent) by introducing the generating function:

G .!/ �
1X

ND0
!N@N .d/; (6.25)

where @N .d/ is the number of possible conformations of a chain of N steps and
in d dimensions. An exact enumeration follows from a mathematical extrapolation
procedure (Padé approximant) determining the expression of @N .d/, confirmed by
numerical simulations (by the Monte Carlo sampling method):

@N .d/ D 
�Nd N ��1: (6.26)

21A completely analogous approach, the Fortuin-Kasteleyn representation, is used in the context
of spin glasses, but in the opposite direction, to access statistical properties of spin systems from
those of the associated geometric system, in this case the model of directed percolation [15].
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In comparison, we have @N .d/ D .2d/N for an ideal chain. The quantity �d is
an effective connectivity constant (�d < 2d � 1). Substituting this expression for
@N .d/ into the definition of G .!/, gives:

G .!/ �
�

1

! � !c
��

with !c D 1

�d
(6.27)

showing a critical point ! D !c . In the framework of the previous analogy with a
spin system, the generating function G .!/ is interpreted as a magnetic susceptibility
�m:

kT �m D
X

j

hSi0;Sj0; iˇ;nD0 D G .ˇJ /: (6.28)

Expanding �m in t gives � � t�� , meaning the exponent � in @N is a susceptibility
exponent. It depends on the dimension: �.d D 2/ D 43=32 and �.d D 3/ �
1:1608.

This generating function concept can be generalised to interacting self-avoiding
chains eventually leading to the � point and properties of the coil–globule
transition:

Z .K; !/ D
1X

ND0

X

m

eNKm !N @N .m/; (6.29)

where m is the number of contacts with a monomer and @N .m/ the number of
chains of N monomer steps with m contacts. This expression is nothing but the
grand canonical partition function, where ! is the fugacity controlling the length
distribution of chains. At infinite temperature or zero interaction .K � ˇJ D 0/,
the simple self-avoiding walk and function G .!/ are recovered. By analogy with the
behaviour of G .!/, the expression of Z .K; !/ suggests there exists a line of critical
points ! D !c.K/. These preliminary results strongly encourage us to turn to
renormalisation methods to complete the phase diagram in parameter space .K; !/.

One may doubt the validity of models of polymers on lattices since the positions
of monomers in a real polymer do not only take discrete values corresponding to
nodes on a lattice. We expect that the discrepancies in the statistical properties
with respect to continuous polymer models to disappear as the length of the chain
increases. The effect can on the other hand be important for short chains and it
should be evaluated and taken into account in the analysis of numerical results
(lattice simulations). Comparisons between lattice simulations and simulations in
which the positions are allowed to vary (almost) continuously indicate that the effect
is only serious for very short chains (N � 20). Renormalisation method will also
enable us to unify discrete and continuous models and show that their asymptotic
properties are identical.
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6.3.2.3 Criticality and Extensivity of an Isolated Polymer

Let us emphasise that the previous analogy between spin systems and isolated
polymers is indirect and should not be pushed too far. There actually exist crucial
differences between the two types of system. The size N of a polymer is, at
the same time, both the reference extensive variable, directly proportional to the
molecular weight of the polymer, and a parameter controlling the state of the
polymer since 1=N plays the same role as the temperature difference T � Tc in
a spin system.22 In the case of an isolated polymer, letting N tend to infinity is
a very unusual procedure, because at the same time as the system size tends to
infinity, the control parameter 	 D 1=N tends to its critical value 	c D 0. Therefore
the “thermodynamic limit” and the critical point are reached simultaneously, as if
the number of spins and the temperature were varied together. This confirms the
statement already made above that: in the limit in which its size tends to infinity, a
polymer is a critical object at all temperatures and it will show scaling laws at all
temperatures.

The role of real space is also different in a spin system and a system of an
isolated macromolecule, which stops us being able to simply transfer the concepts
of extensibility, thermodynamic limit and all the thermodynamic formalism which
follows [22]. We therefore do not have the same conceptual framework at our
disposal for conformational transitions of isolated macromolecules as for phase
transitions. In particular, the scaling law satisfied by a polymer chain as a function of
its lengthN presents only a formal analogy with finite size scaling laws encountered
for phase transitions and percolation. It does not have the same physical meaning
nor origin. The difficulty can be identified as the fact that although the volume
V and density N=V of the spin system are fixed once and for all at the moment
of “fabrication” of the system (even if a mental fabrication), the volume Rd and
density NR�d of an isolated polymer are the observables, arising spontaneously
from the statistics of the polymer conformations and therefore varying with the
control parameters. Depending on the temperature, we have a radius of gyration
Rg � N� if T > � , Rg � N�� if T D � , and Rg � N1=d if T < � . In one sense,
everything happens as if the polymer “lived” in a space of dimension deff D 1=�eff

(with �eff D �; �� or 1=d ), which would give it a volume Veff D R1=�eff � N

and therefore an apparent constant density (remember that the thermodynamic limit
of a spin system is defined and calculated at constant density). From this fact,
the typical fractal geometries of polymers cannot be ignored when studying the
statistical properties and in particular in defining the thermodynamic limit. For
example, the scale invariance of the end-to-end distance distribution PN.R/ will
be radically different:

22This point comes from the fact that N measures the importance of the non Markovian nature of
the random walk; the memory becomes infinitely long as N becomes infinite.
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• In the coiled phase, deff D 1=�, the polymer shows a non trivial fractal scale
invariance PN.R/ � pc.RN��/.

• In the � phase, deff D 1=�� and the polymer shows another non trivial fractal
scale invariance PN .R/ � p�.RN��� /.

• In the globular phase, deff D d , the polymer locally fills all space and the
dependence of its properties onN is that of an extensive system in d dimensions:
PN .R/ � p.R=N1=d /.

Note that the auxiliary functions p (different in the different phases) appearing
here are not equal to PND1. These functions p are the renormalised distributions
including in an effective way the correlations at small scale23 [13]. These scaling
arguments can be pushed further to obtain an expression unifying the distribution of
the end-to-end distance. The idea is to construct an expression rewriting the scaling
above in different limiting situations where we expect that a single phase contributes
to the statistics. This gives [14]:

PN.R/ � exp

"

�A1
�
N�

R

� d
�d�1

� A2
�
R

N�

� 1
1��

#

(6.30)

(A1 and A2 are numerical constants).

6.3.3 Renormalisation Approaches

We have just seen that from the point of view of conformational properties, a
polymer behaves like a critical object. It is therefore natural to attempt to implement
general principles of renormalisation to take into account as best as possible the
effects of excluded volume and the “anomalous” correlations they introduce in the
random walk representing the polymer conformation. Several approaches have been
developed:

• In real space
• In the grand canonical ensemble
• Using the analogy with the n-vector model (n! 0)
• Using a perturbation method about the Gaussian chain

23That is to say before the scaling behaviour emerges. It is precisely the fact that the scaling
behaviour is not yet confirmed for small values of N which requires the redefinition of the
effective distributions p. A temporal analogue would be a random walk for which the asymptotic
regime emerges transiently failing to show the same scale invariance. For example, a transitory
trap, with characteristic time �eff > 1 does not destroy a normal diffusion but simply leads to
a “renormalisation” of the diffusion coefficient D to the weaker Deff D D=�eff, or equivalently
in terms of an effective number of steps Neff D N=�eff (NDeff D NeffD). Implementing this
explicit calculation of the distributions p in the case of self-avoiding walks needs a numerical
sampling [13].
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6.3.3.1 Approaches in Real Space

The most direct approach consists of redefining the elementary unit as a “macromer”
of k consecutive monomers. The renormalisation transformation leading to a size
a1 and dimensionless excluded volume w1 (v1 D ad1 w1) of these N1 D N=k

macromers can be written:

Rk W
8

<

:

N1D N=k

a1 D a
p
k Œ1C Ak.w/�

w1 D wk2�.d=2/ Œ1 �Wk.w/�
(6.31)

showing the “reference” transformation a01 D a
p
k and w01 D w0k2�d=2 that we

would obtain with an ideal chain, by estimating the number of contacts inside a
macromer of length k to be k2�d=2. Ak and Wk have to be determined numerically.
For d � 4, it can be shown that w D 0 is the only fixed point and that it is a stable
fixed point. This demonstrates that the asymptotic behaviour of an ordinary chain
is actually that of an ideal chain: above the critical dimension dc D 4, excluded
volume effects play a negligible role, simply because the probability of a chain
crossing itself is too small for it to be felt. For d < 4, a fixed point w� exists. At
step j (therefore there are N=kj macromers of length aj and excluded volume wj
in the renormalised chain), the end-to-end distance is written:

Rj D aj f
�
N

kj
;wj

�

; (6.32)

where f is some function independent of j . For large enough j , we can replace wj
by its limit w� in f and in the renormalisation relation for a giving: ajC1=aj �p
k.1 C Ak.w�//. In general, a renormalisation transformation takes into account

the change of a model when the scale at which the real system is described, is
changed. 24 Renormalisation does not affect the system itself and must consequently
conserve all its observable properties. So in the present case, the observable Rj
must not depend on j (if the renormalisation has been done correctly!). Therefore
the j dependence of aj must cancel with that coming from the argument N=kj

of f .:;w�/. The form of the scaling f .x;w�/ � x� adequately ensures the
cancellation and provides the scaling lawR.N/ � N� and the value of the exponent
� in the given context involving the functionsAk and Wk .

The reasoning we have just presented relies on a very strong scale invariance
hypothesis: the functions Ak and Wk must be the same at all levels of iteration (i.e.
be independent of a) and be exact enough that the radius of gyration of the renor-
malised chains remains effectively equal to the real radius of gyration. In practice,
we have simply moved the difficulty to lie now in the (numerical) determination of

24It is by relating two “subjective” views of the system that allows us to access the “objective”
properties of the critical exponents.
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the functionsAk andWk and the method is all in all not very different from a direct
numerical determination of �.

One of the advantages of the previous approach is its ability to be extended
to take into account the � point [20]. In the version above, interactions between
non consecutive monomers are written only implicitly by the single parameter
w (dimensionless excluded volume). Yet we have seen in Sect. 6.3.2 that the �
point was characterised by the cancellation of the coefficient w and that therefore
the next term, t˚3=6, in the expansion of Fmix=kT as a function of the volume
fraction ˚ became dominant. So we will take the same approach25 but include
the transformation of t in R. The renormalisation flow, that is to say the set of
trajectories under the action of R, is represented in Fig. 6.9. Iterating R, in other
words moving along the trajectories, comes down to considering longer and longer
initial lengths N , tending to infinity as we approach the points A and B , which
therefore give the asymptotic behaviourN !1.

The fixed point A (w�; t D 0), identical to the fixed point of the reduced trans-
formation, describing the universality class of self-avoiding walks. The extended
approach therefore brings nothing new concerning the exponent �, but the fact that

t

A

B

Fig. 6.6 Renormalisation flow in .w; t / space (in d D 3 dimensions). Iterating the renormalisation
comes down to letting the length N of the chain tend to infinity. The fixed point A is associated
with the universality class of random self-avoiding walks whereas the fixed point B corresponds
to the � point, i.e. to the transition to compact configurations situated to the left of the separating
line in bold (after [4])

25It is a general procedure: the more parameters we consider (the more terms in the Hamiltonian
or evolution law), the more accurately we describe the change of scale in the space of models, so
the more chance we have of discriminating correctly between different universality classes. In this
way these are coherent arguments that determine the validity of a renormalisation method. This
shows that the parameters that could be included to enlarge the space in which the renormalisation
acts play no role in the large scale properties (“irrelevant” parameters).
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t D 0 in the class shows that the “three body term” t˚3=6 is effectively negligible
asymptotically. The renormalisation approach therefore allows us to demonstrate
the validity of the approximation of truncating the expansion of Fmix.˚/ after the
second term when we are only interested in the coiled phase (in which the typical
conformations are self-avoiding walks). We say that the term t˚3=6 is irrelevant
(see Chap. 3). This type of result, demonstrating that certain terms play no role in
the asymptotic properties, is another success of renormalisation, just as remarkable
as the explicit calculation of critical exponents. We can then rigorously justify the
use of minimal models to describe large scale behaviour.

The trajectories to the left of the separation line reaching B correspond to the
globular phase. The three body term here is also asymptotically negligible26 and
the pairwise interactions become more and more attractive, driving the collapse of
the chain on itself as we observe in bad solvent.

The fact that w D 0 at fixed point B means it is identical to the � point. In the
limitN !1, this point is situated at the end of a dividing line which qualifies it as
a tricritical point by analogy with diagrams obtained for spin systems. Analysis of
the action of R in the vicinity of B leads to a scaling law R2.N / � a2N (in three
dimensions).27

6.3.3.2 Grand Canonical Approach

The grand canonical approach is a method built on geometrical bases similar to
those used in the context of percolation (so still in real space). It was devised for
a polymer model on a square or cubic lattice with excluded volume (by forbidding
double occupancy of a site) and attractive interactions between monomers that are
neighbours on the lattice without being consecutive in the chain (interacting self-
avoiding walk model, Sect. 6.2.3). The difficulty emerging when we carry out a
direct geometric renormalisation of a configuration is to preserve the connectivity of
the chain and its self-avoiding property. It seems, to do so we need to allow a certain
flexibility in the number of monomers. The method must therefore be developed in
grand canonical space. The model then has two control parameters28:

• The coupling constant J of the attractive interaction, or equivalently the dimen-
sionless coefficientK D ˇJ .

• The fugacity ! controlling the chain size distribution, the number of monomers
N here being no longer fixed but is instead one of the observables characterising

26Even though the three body term is asymptotically negligible in the coiled and globular phases,
it should be emphasised that it plays a key role near the � point, entering in the expression of the
separatrix leading to point B .
27The next term in this scaling law can also be evaluated and shown to behave as N= logN and we
therefore talk about logarithmic corrections.
28This approach was first of all developed just for self-avoiding walks, bringing into play only the
fugacity [23].
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O

A B

C
D

Fig. 6.7 Calculation of the probability !1 of the existence of a renormalised bond, by exact
enumeration on a 2 � 2 motif. The final configuration takes into account the possibility of
encountering very compact conformations at low temperature. We obtain !1 D !2 C 2!3 C
eK!4 C e2K!4

the state of the chain. The probability of observing a chain of N steps is
proportional to !N .

The renormalisation is then performed in this generalised conformational space. The
idea is still the same. First we “decimate” the conformation, in this case redefining
the elementary units (motifs), which boils down to changing the resolution with
which we look at the conformation. Then we determine the parameters .K1; !1/ D
R.K0; !0/ involved in the statistical description of the decimated configurations.
The geometrical operation implied in defining the renormalisation transformation R
here is a bit more complicated than the decimations in spin systems and percolation
networks. It is known by the name corner rule due to the shape of the motifs on
which we define R by exact enumeration (see Figs. 6.7 and 6.8). Let us first of
all determine !1, defined as the probability of a bond existing in the renormalised
chain. It will be equal to the probability with which the chain entering the motif by
the corner O passes through it, leaving by A or B; exits by C or D should not be
counted to avoid ending up with a branched or crossed renormalised configuration.
The different contributions and resultant transformation are given in Fig. 6.7. We
see that the transformation of the number of monomers is not one-to-one, hence the
necessity of working in the grand canonical space. It is ! notN that is the parameter
transformed by R. The same approach of exact enumeration, implying this time
two motifs, is used to determine the transformation K1. We actually determine the
transformation !21eK1 of the probability of a contact interaction (Fig. 6.8).

We then exploit renormalisation in the classical way. Determining the fixed
points of R shows three non trivial fixed points29 identified with the fixed point
associated with self-avoiding walks (point A, K D 0; !c D 1=�d ) already seen
in Sect. 6.3.2, the � point (point B) and the globular phase (point C at infinity)
respectively. For K > 0, there exists another critical value !c.K/ of the fugacity:

29These fixed points should not be confused with the points A and B on Fig. 6.9. The parameter
space is actually different, as is the theoretical context – interacting self-avoiding walks (Fig. 6.9)
and Flory–Huggins theory (Fig. 6.9). The analogy in results obtained by these two different
approaches strengthens the validity of their conclusions.
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1 2

3 4

Fig. 6.8 Calculation of the probability !21eK1 of a contact between two renormalised bonds. We
have represented a few starting chain configurations similar up to one contact at the level of
the renormalised chain. We must exclude counting configurations that will lead to branches or
crossings in the renormalised configuration. We obtain: !21eK1 D !4 C 2!5 C 3!6 C eK!5.1C
!/2 C e2K!4.! C 2!2 C 4!3 C !4/C 2e3K!7 C e4K!6.1C ! C 2!2/C e6K!8

A

B

C

eK

w

Fig. 6.9 Renormalisation flow in .eK; !/ parameter space. Point A is associated with the
universality class of self-avoiding walks (scaling law R.N / � N�), point B corresponds to the
� point (scaling law R.N / � N�� ) and point C , pushed back to infinity with the choice of
coordinates .eK; !/, corresponds to the globular phase (scaling law R.N / � N1=d )

therefore a line of critical points appears, terminating in the � point. The globular
phase is well described by the renormalisation procedure we have just presented.
We find the exact value 1=d of the exponent �. The results can be improved
by considering larger motifs, for example 3 � 3 (so a scale factor k D 3). The
complexity of the enumeration quickly limits the size of motifs.

6.3.3.3 Approach “By Analogy”

Another renormalisation approach is that developed for the system of spins with
n ! 0 components, to calculate the exponent �.d; n ! 0/ in the framework
of the analogy developed in Sect. 6.3.2. The calculation of the critical exponents
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has been conducted for all relevant values of n, in conjugate space and within the
framework of the perturbation method in 	 D 4 � d presented in Chap. 3. It is a
very technical method but it produces the best estimation of � D 0:5880˙ 0:0010
[17]. However it does not generalise to other universality classes and does not give
access to properties of the � point, making other approaches necessary.

6.3.3.4 Approaches Involving Path Integrals

The most powerful methods are the very mathematical methods developed by
putting the polymer and its conformations in the context of (continuous time)
stochastic processes. It involves perturbative methods taking as zeroth order
the Wiener process associated with ideal chains. They are technically difficult
(involving Feynman diagrams, i.e. functional integrals with respect to the Wiener
process trajectories, which are called path integrals) and here we will give just an
idea. The change in scale involves both time (arclength along the chain) and space
(Euclidean space between points in the chain). The interaction between two sites i
and j is repulsive at very short range (excluded volume), attractive at short range
and zero beyond that. The idea is to take into account this interaction peturbatively
by successive assimilations, depending on the size of the loop connecting i and j .
We start by including the influence of small loops, giving a first renormalised
chain, described by effective parameters. Loops of larger and larger size, less
frequent but of larger weight in the statistical properties of the chain, are taken into
account in the second and subsequent renormalisation steps. The results (scaling
laws and associated exponents) follow from the analysis of the fixed points of this
renormalisation.

Note that it is a situation in which one must introduce an “ultra-violet cutoff” dis-
carding very small scales. Here the singularity, comes from using the “ideal” object
limit, that is the Weiner process: the associated velocity diverges at small scales. We
must therefore truncate the wavevector space, in practice as soon as we reach the
molecular scale, where the physics becomes regular again while the Wiener process
becomes singular. The theory of self-avoiding walks is renormalisable in the sense
that the macroscopic results do not depend on the value of the cutoff.

6.4 Polymer Solutions

To complete our tour, we will very briefly mention the case of less dilute solutions
in which different chains influence each other. In this vast domain, we will focus
on a particular point, the concept of a blob, because it illustrates the concept of
correlation length, essential throughout this book, in the context of polymers.



6.4 Polymer Solutions 227

6.4.1 Polymer Melts

Let us briefly consider the case in which the system made up of only polymers,
called a polymer melt. Due to the interpenetration of different chains, the probability
that a monomer has a neighbouring (non consecutive) monomer from the same chain
is negligible compared to the probability it is surrounded by monomers belonging
to other chains. These other chains will, in a way, screen the intra-chain excluded
volume interactions, in the sense that these interactions have almost no opportunity
to be felt. The consequence is that the statistics of a chain in a melt is that of an
ideal chain:R.N/ � pN . This is verified experimentally by fluorescently marking
the chain, or labelling it with deuterium if we observe it by neutron diffraction
(Sect. 6.2.2).

Let us point out that remarkable phenomena, still not well understood, appear
when the temperature of such a liquid polymer is lowered. A glass transition is
observed leading to a metastable amorphous gel phase. Slow relaxation phenomena
occur associated with properties of nonlinear response (e.g. aging and violation of
the fluctuation-dissipation theorem) [24].

6.4.2 Semidilute Solutions

In a solution, there are two concentrations (number of monomers per unit volume)
involved: the average concentration c0 of the solution, adjustable by the observer,
and the concentration c D N=Rdg of the interior of the volume occupied by the
chain, which is an observable indirectly adjustable by changing the quality of the
solvent and the length of the chains. We also use the volume fraction ˚ D ca3 (and
˚0 D c0a3), which is a dimensionless quantity.

Fig. 6.10 The concept of
“blobs” in a semidilute
solution: the statistics of the
segment of chain inside a
blob is that of a self-avoiding
walk; the chain of blobs
(highlighted blobs) however
follows the statistics of an
ideal walk
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As long as˚0 	 ˚ (a dilute solution), the conformation of a chain is not affected
by the presence of other chains and the arguments made for an isolated polymer
describe this real situation well. If we increase ˚0, the situation changes when the
chains start to interpenetrate. The threshold, ˚�, is reached when ˚0 D ˚ and we
therefore have ˚� � N1��d in good solvent. We call a solution in which ˚� 	
˚0 	 1 a semidilute solution. Here a chain will feel its own influence, but also
those of the other chains (˚0 
 ˚�) and that of the solvent (˚0 	 1).

We can establish (and observe) various scaling laws with respect to ˚0. For
example, the osmotic pressure ˘ D �@F=@V (variation in the free energy when
the volume of the solvent is varied while the number of monomers is kept fixed) in
a monodisperse solution behaves as:

˘a3

kT
D constant ˚9=4

0 : (6.33)

The exponent 9=4 reflects the connectivity of chains. We would have an exponent
of 1 in a dilute solution of disconnected monomers (i.e., a perfect gas of monomers)
of the same concentration [5]. More generally, the observables will be universal
functions of ˚=˚�. In a semidilute solution, a key concept is that of a blob, which
is a small volume containing a segment of polymer of mass b monomers and linear
size � (e.g. its radius), such that the segment “ignores” everything happening outside
of this volume (see Fig. 6.10). In other words, the configuration of the segment is
that of an isolated polymer and two blobs are statistically independent. � is naturally
interpreted as the correlation length of the system. The complete system appears as
a homogeneous assembly of blobs, in the interior of which we observe the scaling
laws of an isolated polymer.

Let us limit ourselves to the case of three dimensions d D 3. The length �,
which is an observable of the particular system, can also be put in the form � D
constant .˚=˚�/m where m is an exponent to determine. By definition, there is
only one blob per chain for˚ D ˚� (they are only just beginning to interpenetrate)
so the constant is equal toR.N/ � N3=5 (taking � � �F D 3=5). The same concept
of blobs entails that � must not depend on N . A blob ignores what the rest of the
chain is doing, so in particular how long it is in total (N ). Since ˚� � N�4=5, then
m D �3=4 and

� � a˚�3=4: (6.34)

The number b of monomers inside a blob is:

b �
�
�

a

�5=3

� ˚�5=4: (6.35)

So b D c �3, which justifies talking about “homogeneously close packed blobs”.
Blobs with the same chain passing through them will perform an ideal walk since
they are statistically independent. Therefore:
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R2.N;˚/ � �2
�
N

b

�

� a2N˚�1=4: (6.36)

We can also directly find R in the form R D constant .˚=˚�/m and determine the
constant and the exponentm, which leads to the same result. This blob picture is in
agreement with the behaviour of the autocorrelation function gauto.r/ of a chain: at
short range (r < �), we recover the correlation function gsaw.r/ of a self-avoiding
walk whereas at larger distances (r > �), the correlation function gauto.r/ will
reflect the ideal behaviour of the chain of blobs. In three dimensions, it becomes:

gauto.r/ �
8

<

:

gsaw.r/ � r�4=3 if r < �

c�=r if r > �:
(6.37)

The pair correlation function g.r/ of the solution (the monomers of the pair no
longer necessarily belong to the same chain) also involves the characteristic size �
of the blobs:

g.r/ � c�

r
e�r=� .Ornstein�Zernike/: (6.38)

6.5 Conclusion

We conclude that the universality of conformational properties of a polymer occurs
due to the following reason, already invoked in the case of percolation: we can
reduce all the physics into geometric parameters, here the persistence length and
the excluded volume. Polymer physics is therefore one of the areas where scaling
laws are the best verified and the most used to concretely understand the typical
behaviour of the systems under consideration. Here we have given only a very brief
overview of the range of scaling theories in polymer physics, by addressing only
the case of statistical properties related to solutions of linear homopolymers. Many
other polymeric systems have been studied following the same scaling methods,
for example copolymers (i.e. polymers made up of segments of different chemical
composition), polymers grafted or adsorbed on a surface, branched polymers etc.
We refer the reader to the reference book on the subject [5], an introductory book
[12] and more technical books [6, 11] without forgetting the historic work [9]. In
addition we have only considered conformational properties, that is to say the static
properties. Dynamical properties (e.g. modes of deformation, reputation, depinning)
and stress response properties (e.g. force-extension curves, shear, viscoelasticity)
also show remarkable scaling properties. These dynamical aspects are treated in for
example [7] and [11].
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Chapter 7
High Temperature Superconductors

7.1 Superconductivity and Superconductors

This chapter is dedicated to the study of the superconductor–insulator transition in
high temperature superconductors. We saw, in Sect. 1.3.3, that metal superconduc-
tors were not so interesting from the point of view of critical phenomena. This is
because their coherence length at T D 0 is of the order of a micron, so the critical
region is around 10�14 K, which is obviously impossible to observe. However this is
not true for high temperature superconductors, which exhibit a critical temperature
of the order of 100 K. The most important high temperature superconductor family
is that of the superconducting cuprates discovered in 1986 by Bednorz and Müller.
Since then other families have been discovered for example C60, MgB2 and AsFe.
However the most important family is still the one that was discovered first, the
cuprate family, which is the only one with superconducting properties above 100 K.
This is also the most documented family both experimentally and theoretically. For
these reasons, in this chapter we will focus only on superconducting cuprates. Their
coherence length at T D 0 being of the order of 15Å, the critical region can reach a
few tens of kelvins! So these materials represent, in principle, an ideal case in which
to study critical phenomena, even more so given that the transition can be induced
by a magnetic field (as for all superconductors) or by doping (a unique property of
high temperature superconductors). In principle, these two parameters, can induce
quantum transitions at T D 0. This physical system certainly seems interesting to
test new descriptions of critical phenomena.

However, there are two significant difficulties physicists face. One is that
the physical system in question is one of exceptional microscopic complexity.
Despite 100,000 or so publications on the subject the underlying mechanisms
have still not been reliably identified. In addition the structure and composition
of high temperature superconductors are complex and subjected to uncontrollable
variations. As a consequence, the other difficulty arises which is that whilst there
is a large amount of experimental data, it is not very reproducible. The data are
rarely able to distinguish between different theoretical descriptions. Whatever it is,

A. Lesne and M. Laguës, Scale Invariance, DOI 10.1007/978-3-642-15123-1 7,
© Springer-Verlag Berlin Heidelberg 2012
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this domain is a strong driving force for research. We could say it gave birth to a
new condensed matter physics since the proposed mechanisms differ so much from
that of the solid state physics founded in the 1930s by Felix Bloch.

Here we will concentrate on properties of superconductor–insulator transitions
as a function of temperature T and doping ı (charge injected into the copper oxide
CuO2 planes), summarised in a .T; ı/ plot called a phase diagram. Physicists try
to explain it by two approaches; microscopic or phenomenological. Microscopic
approaches rely on the existence of pairs of charges, Cooper pairs, which are
actually observed in high temperature superconductors. The methods consist of
describing the density, properties and coherence of these pairs as a function of
position in the phase diagram (see Fig. 7.3). One of the crucial questions, still not
yet resolved when this book was in press, is the probable, but not demonstrated,
existence of non condensed (non coherent) pairs in the region of the phase diagram
called the pseudogap. The theme of this chapter picks up on the second type
of approach, phenomenological descriptions. The question is simple: transitions
belong to which universality class in each region of the phase diagram? First of
all however, we give a brief introduction to superconductivity and superconducting
materials.

7.1.1 Mechanisms and Properties

7.1.1.1 A Challenge for Physicists’ Imaginations

In the superconducting state, discovered in 1911, matter shows strange electric
and magnetic properties. Superconductivity remained an enigma for 50 years. The
name “superconducting state” comes from the sudden complete disappearance of
electrical resistance in a material when its temperature is lowered below a certain
value Tc called the critical temperature. The first superconductor to be discovered
(by Holst and Kammerling Onnes) was mercury, which is a superconductor when its
temperature is below 4:2K i.e.� 269ıC. At the beginning of 1986, the superconduc-
tor with the highest critical temperature, 23K, was niobium-germanium Nb3Ge. It
was therefore a real surprise in 1986 when Müller and Bednorz discovered cuprates,
in which the current record for the highest critical temperature is T c D 138K
for mercury barium calcium copper oxides composed of HgBaCaCuO. A priori,
superconductivity seems to be a violation of the principle of the impossibility
of perpetual motion. It allows an extremely stable electric current in a closed
superconducting ring. Such a current could persist longer than the age of the
universe! This kind of perpetual motion therefore actually does exist (it is used
today in thousands of hospitals in MRI scans), however, like the movement of
electrons in Niels Bohr’s model of an atom, it is quantum in nature. Since the 1920s,
physicists have known that superconductors are not perfect conductors (normal
metals in which the resistance could become extremely low for some unknown
physical reason). If so, the resistance would increase with the smallest defects,
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material perturbation, surfaces, electrical contacts etc. But, the exact opposite is
seen. Superconductivity is a robust state, sometimes even reinforced by disorder (see
Fig. 1.12 in Chap. 1)! In the 1930s, physicists understood that superconductivity is
also forbidden in the quantum description of a normal metal due to the fact that the
quasi-continuous spectrum of excitations excludes any state with zero resistance.

In 1933, the physicist Alexander Meissner discovered that superconducting mate-
rial does not let magnetic flux penetrate it. This property, the Meissner–Ochsenfeld
effect, was a key to the description of the mechanisms of superconductivity. The
London description can predict the (very small) depth �magnetic flux can penetrate
into a superconductor. It also contains the principle of a property that would not
be observed and explained until 30 years later: magnetic flux can penetrate a
superconductor only in the form of quanta, of a universal value of ˚o D h=2e.

7.1.1.2 A Powerful Mean Field Description

The thermodynamic description of a superconducting system by Ginzburg and
Landau [7] led to a calculation of another characteristic length, the coherence length
�. This second length characterises the thickness over which superconductivity
gradually disappears near an interface with a non superconducting material. From
this we understand that the superconducting state leads to a large energy gain. This
gain in energy explains why the exclusion of magnetic flux, the Meissner effect,
is possible despite its high energy cost. If we increase the magnetic flux density
B , beyond a value Bc (corresponding to an external magnetic field Hc) such that
the gain and loss in energies are equal, the material suddenly becomes normal and
lets the magnetic flux penetrate. The Ginzburg–Landau theory also shows that two
types of superconductors exist, depending on whether � is larger than �

p
2 (type

I superconductors) or smaller than �
p
2 (type II superconductors). In this second

case, by far the most common in practice in materials of interest, the onset of
superconductivity is favoured at interfaces with regions in the normal state.

Between two values Hc1 and Hc2, type II superconducting materials are in a
mixed state, where the superconducting material is pierced by narrow regions in the
normal state, called vortices, containing exactly one quantum of magnetic flux. If
the magnetic field is less than Hc1 then the material contains no vortices. Whereas
aboveHc2 the material is in a normal state without any magnetic properties.

The superconductors that interest us particularly here, high temperature super-
conductors, are very much type II, � being about 100 times smaller than �. The
Landau description predicts that the ratio Hc2=Hc1 is of the order of the square of
the ratio �=�. In high temperature superconductors,Hc2 is of the order of hundreds
of teslas, whilst Hc1 is of the order of 0:01 tesla. In the great majority of practical
situations, these superconductors are in the mixed state where they contain vortices.

Paradoxically, the thermodynamic description of Ginzburg–Landau theory, con-
structed blindly without knowing the microscopic mechanisms, remains particularly
useful in describing high temperature superconductors, exactly because it assumes
nothing about the microscopic mechanisms.
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a) Cuprate plane, CuO2
2 – b) Mother compound CaCuO2

Fig. 7.1 Basis structure of cuprate compounds. (a) Cuprate CuO2 planes have a chessboard
structure where the corners of the squares represent oxygen atoms and one square in two has a
copper atom in the centre. (b) The neutral, insulating, mother compound CaCuO2, consists of
alternating cuprate planes and divalent ions Ca2C

Ginzburg–Landau theory predicts the thermal dependence of all quantities. In
this mean field approach, the characteristic lengths both diverge with the inverse of
the square root of the distance from the critical temperature:

�.T / � �.T / � .Tc � T /�1=2: (7.1)

This description is completely valid in the case of metal superconductors. We
saw in Sect. 1.3.3 that the Ginzburg criterion predicts a particularly small critical
region (10�14 K) because of their long coherence length. This is not true for high
temperature superconductors (see Fig. 7.1).

7.1.1.3 BCS Theory: Finally a Microscopic Description

In 1957, the physicists Bardeen, Cooper and Schrieffer proposed a mechanism that
agreed excellently with the superconducting properties of many metals. Their key
idea was that electrons are associated in pairs, Cooper pairs. In this state they form
bosons (particles of integer spin) which obey different rules from those obeyed
by single electrons which are fermions (of half integer spin). The paradox of an
electronic perpetual motion contradicting physics disappears in this description, the
legitimacy of which was quickly confirmed by direct observation of electron pairs
and their effects.

The first ingredient involved in this theory is the long distance interaction
between the electrons and vibrations (or phonons) of ions in the crystal lattice.
John Bardeen observed in 1955 that this can indirectly lead to an attraction between
electrons. The exchange of phonons between electrons can be illustrated by a very
schematic classical picture. An electron passing through distorts the crystal lattice
by repelling negative charges and attracting positive charges. A second electron
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passing through in its wake does so more easily due to this displacement of ions
and therefore behaves as if it was attracted by the first electron.

A second essential step was made by the young theoretical physicist Leon
Cooper, employed by John Bardeen, in 1954, to establish a theoretical framework
for this system. Surprisingly Cooper showed that the attraction between electrons,
regardless of its smallness, must completely mess up the states accessible to the
electrons close to the Fermi surface. Powerful perturbation calculations using
Feynman diagrams were unable to predict this effect and yet Leon Cooper’s
demonstration of this instability of electronic states under the effect of an attraction,
even if very weak could not be ignored.

A third pillar was necessary to construct the theory: condensation of electron
pairs assembling in the same quantum state at low temperature. After having actively
searched for a wavefunction description, the young student John Robert Schrieffer
finally tried an expression presented during a seminar on a totally different domain
by the nuclear physicist Tomonaga. The result was stunning. In a few weeks the BCS
trio recalculated all the properties of this novel state by replacing the Bloch functions
normally used for electrons in a metal by Schrieffer’s wavefunction. They obtained
many results in perfect agreement with superconductor properties, including the
following:

• The critical temperature is given by the expression:

Tc D �D exp

�

� 1

n.EF /V

�

; (7.2)

where �D is the Debye temperature of the material, characterising the phonons,
n.EF / is the density of states at the Fermi level in the normal state and V is the
attractive potential between electrons.

• The density of states in the superconducting state has a band gap of 2�,
proportional to the number of condensed pairs. The Cooper pairs are stable as
long as they are not given an energy greater than or equal to 2�. Below this value,
the pairs stay in the ground state (possibly moving and so carrying a current in
this state), without causing even the tiniest energy dissipation. This characteristic
is what explains the robustness of the superconducting state.

• The energy 2� characterises the typical interaction energy between two electrons
in a pair and is therefore of the same order of magnitude as the thermal energy
kTc that destroys superconductivity by breaking up the pairs. For superconduc-
tors with weakly bound Cooper pairs, the relation 2� D 3:5 kTc predicted by
BCS theory, is well established for metals for which n.EF /V < 1. For other
metals, a generalisation of BCS theory by Eliashberg accounts for 2�=kTc well.

By noticing that the Debye temperature and the electron–phonon coupling
(measured by V ) are related, we find the not so encouraging result [13] that within
the BCS framework we cannot hope for values of Tc higher than 30K.
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BCS theory bears a hallmark of the greatest theories: a single new quantity
introduced by Cooper, the attractive potential V between electrons, leads to
quantitative predictions of dozens of seemingly independent properties.

7.1.1.4 Superconductors with Electrical Resistance

One important consequence of the Ginzburg–Landau description concerns the
maximum electrical current density, the critical current. In the “mixed” state, in
which a type II superconductor is penetrated by vortices, the resistance is not strictly
zero if the electrical current density is larger than a critical value Jc . Unlike type I
superconductors, the resistance of type II superconductors can be non zero, due
to the motion of vortices under the influence of the electric current. This motion
causes an induction (due to the Lorentz force), which in turn results in an electric
field and finally the Joule effect. Everything happens as if the motion of vortices was
submitted to a viscous drag. Note that even if most of the volume of the material is
in the superconducting state with a local zero resistivity, the overall resistance is non
zero. Another paradox is that some material defects can considerably increase the
critical current density by blocking vortex motion. For most applications, the critical
current density needs to be larger than a value of order 10;000 to 100;000A=cm2.
In general such values are largely achieved or exceeded in good quality thin films.
However they are harder to obtain in cables. In 2011, commercial superconducting
wires using Y(Dy)BaCuO thin films reached about 200 kA=cm2.

7.1.1.5 Josephson Junctions

The quantum nature of the superconducting current results in diverse characteristic
properties. The macroscopic coherence of the quantum wavefunction can produce
interferences like that produced by light through a thin slit. The equivalent here
is superconducting current crossing a thin insulating region interrupting the super-
conductor circuit. We call this superconductor–insulator–superconductor junction a
Josephson junction. It can be made in a number of different ways. The properties of
such a junction are very unusual. For example, Josephson junctions can store binary
information and can therefore be used in logic components for computers.

Another property is the variation of the critical current of the junction with
applied magnetic field, which is used to measure extremely weak magnetic fields,
for example, up to femtoteslas. A SQUID (Superconducting Quantum Interference
Device) is a combination of two Josephson junctions on a superconducting ring and
is equivalent to Young’s two slits for light. The voltage measured between the two
superconducting regions varies periodically with the magnetic flux that penetrates
the ring, each oscillation corresponding to a quantum of magnetic flux entering or
leaving. Counting the quanta, or even smaller flux variations, penetrating the ring
enables very refined measurements of magnetic fields. Actually magnetic flux is not
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quantised in the vacuum, but only inside materials in the superconducting state, and
only those of type II.

7.1.2 Families of Superconducting Compounds

There are many superconducting materials belonging to diverse families. If we
consider just the elements, 38 of them are superconducting (out of the 101 elements
classified in the periodic table). A dozen or so other elements are superconducting
under pressure or in thin films (see Figs. 1.10 and 1.11). Some, such as tungsten, are
superconducting in amorphous form, that is when the atoms have disordered posi-
tions. Elements that are not superconductors are often magnetic. Superconducting
and the magnetic states are in competition because they both lower the energy of the
material. However, the magnetic order is particularly sensitive to the quality of the
crystal whereas superconductivity is not very sensitive as the coherence length is
much longer than the interatomic distances. So, at low temperature, magnetism can
be favoured in a crystal, whilst superconductivity replaces it in the same material
when it is quenched in a crystallograpically disordered state (Fig. 1.12).

As this book goes to press, the most studied high temperature compound is
YBa2Cu3O7 (Tc D 92K), and the one with the highest critical temperature 138K is
Hg0:8Tl0:2Ba2Ca2Cu3O8Cı [3]. These compounds are layered perovskite structures
of copper oxide with a quasi two dimensional character. This is the important
characteristic for the scaling properties we will present in this chapter. They are
made up of regular layers of CuO2, in which the superconducting currents reside,
alternating with layers of non superconducting atoms. The CuO2 planes interact
with each other by Josephson coupling across the non superconducting atomic
layers. Copper plays an essential role which is not well understood, and all attempts
to replace it with another element have not led to comparable superconducting
properties (for instance, the Fe-As family discovered in 2008 only reaches critical
temperatures in the 50 K range). In their normal state these superconducting cuprates
are poor metals or insulators with mechanical properties of ordinary ceramics.
A wide variety of theoretical models have been proposed to capture the specific
superconducting properties of high temperature superconductors, such as their high
critical temperature and their very short coherence length. So far, experiments have
not been able to distinguish between the proposed descriptions.

In 1990, a new family of superconductors appeared, the fullerenes, also called
buckyballs because of the shape of the molecule C60 which is the essential
component of their architectures. C60 actually has the exact form of a football
of 1 nm diameter! The critical temperature of the compound Cs2RbC60 is 33K.
There are also many other families of superconductors, from organic compounds
to uranides (elements with atomic numbers larger than 91), with sometimes very
exotic properties.
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7.1.3 Applications: From Telecommunications
to Magnetoencephalography

Many applications have been imagined using the variety of unusual properties of
superconductors. Few have actually been commercialised, because of technical
difficulties in implementing them, particularly the necessity of cooling the material.
However, superconducting electromagnets (for example for MRI medical equip-
ment), made of niobium alloys, and measurement of very weak magnetic fields
with SQUIDs are well established applications. Superconducting cuprates cooled
by liquid nitrogen now seem to be usable for microwave frequency components of
mobile communication. Superconducting materials should also increase the speed
of computers and decrease the energy dissipated by components. It is now known
how to make good quality Josephson junctions and how to make them work in a
computer, in RSFQ logic elements invented by the physicist Likharev.

“Strong current” uses (magnets, alternators, motors etc) are still not established
because of the mechanical properties and current densities required. But they
represent a huge market starting to open in the 2010s. Cuprate ceramics are not
as ductile and malleable as metal alloys. However cables several kilometers long,
maintained at liquid nitrogen temperature, 77K, have already been commercialised.
They started to supply energy to big cities in 2010 (Manhattan).

7.2 The Phase Diagram

Despite their diversity, cuprate superconductors contain only one molecular super-
conducting component, the cuprate CuO2 plane. Its structure is represented in
Fig. 7.1a.

In the valence state 2 (the most common for copper), the cuprate plane is ionised,
carrying two negative electric charges per copper atom. A simple structure, called
the “mother”, or infinite phase, is made of a neutral compound of alternating cuprate
planes and divalent ions (see Fig. 7.1b). Due to their ionic radius, it is mainly
calcium ions Ca2C which are used to make superconducting compounds. However
CaCuO2 is an insulating antiferromagnet with Néel temperature 530K [11]. Single
electrons from copper (Cu) atoms in the 3d9 orbital are effectively localised by a
strong Coulomb interaction. Displacing an electron from one copper atom to its
neighbouring atom costs and energy of the order of 5eV. Although not our main
topic, we should at least point out that this repulsion energy leads to strongly
correlated electron properties. A priori Fermi liquid type descriptions leading to
single electron bands are not valid. The microscopic description of high temperature
superconductors is still an open problem (in 2011). The only well established fact is
the extreme complexity of the mechanisms involved, which seem to locally combine
charge and magnetic effects as well as superconducting effects all at similar order.
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Since the compound CaCuO2 is insulating, charges must be injected in the
cuprate plane to dope them to obtain superconducting properties.

7.2.1 Doping

Doping in cuprates is the analogue of doping in semiconductors, which modulates
their conductivity within a very large range. However there are significant differ-
ences between the two systems:

• Doping semiconductors is intended to inject a low concentration of carriers (1012

to 1018charges=cm3, or 10�10 to 10�4 charges per atom) in an empty conduction
band. This shifts the Fermi level into the bandgap, but it does not penetrate
the conduction band, which remains sparsely populated. The charges therefore
remain very dilute, so a rigid band model can be used, identical to that of non
doped material.

• Doping cuprates must reach concentrations of tenths of charge per atom to
display superconducting properties. This causes a significant chemical transfor-
mation of the compounds. The valency of copper is changed in a range from
1:7 (doping with electrons) to 2:3 (doping with holes). The resulting doped
compounds are very different from the non doped compounds. Any rigid band
model is only a very simplistic approximation of the new electron density.

The particularly high level of concentration of charges necessary to achieve super-
conductivity leads to the following property, as a direct consequence of Poisson’s
equation:

Injected charges are confined in one or two atomic layers around the charge
reservoir.

The principle of this effect is that the non doped material is insulating, but doping
locally establishes metallic properties. The screening length, or Debye length, is
very small in metals. Consequently, all sources of doping are only active in one or
two atomic layers around it due to the large change in electron density required.

Doping consists of inserting into the structure electroactive molecular blocks,
called charge reservoir blocks, which will inject charges to their immediate
surroundings. The point made above indicates that:

To be effective, reservoir blocks must be of the size of a few atoms, at least in
one direction.

Superconducting properties of different cuprate compounds essentially depend
on the level of doping of the CuO2 planes, as well as the coupling between different
cuprate planes in the structure. Here we are just interested in the first point, namely,
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Ca 2+

Charge reservoir

Superconducting block

Fig. 7.2 Cartoon of the layered structure of superconducting cuprates

in a phenomenological approach to the dependence of properties as a function of
doping. We first specify how cuprates are doped in practice.

7.2.1.1 Doping Chemically

The structure of standard cuprate compound superconductors can be visualised
schematically as alternating layers of two types of block, superconducting and
reservoir (Fig. 7.2). The superconducting block is composed of n alternating CuO2

planes separated by n � 1 atomic planes (in general Ca2C and Y3C or a trivalent
rare earth element for the RBa2Cu3O7 family). The charge reservoir block is made
of a succession of layers [AO] [BO]m [AO], where m is 1 or 2. Due to their ionic
radii, the atom A is Sr or Ba, whereas the atom B can be Cu (in another oxidation
state), Bi, Tl; Hg, etc. There is a large diversity of charge reservoir blocks as
many electroactive blocks satisfy the constraints of structural compatibility with
the superconducting block.

When the nature and/or degree of oxidation of the reservoir block is changed
while the superconducting block remains unchanged, the average doping of cuprate
planes can be varied over a large range. The observed properties can be represented
in the (doping, temperature) plane in a phase diagram (Fig. 7.3). This diagram has
four regions and is qualitatively symmetric about zero doping:

• At small doping, cuprates are insulating, showing long range antiferromagnetic
order. The Néel temperature, above which the system is disordered, rapidly
decreases with the absolute value of doping to zero for a doping of a few
hundredths of charges per copper atom.

• For higher doping, at low temperature we cross an insulating region with complex
properties that are not well understood. In this region, long range order has disap-
peared, but large antiferromagnetic fluctuations persist. A pseudogap is observed
which seems to be reminiscent at high temperature of the superconducting gap
observed below the critical temperature. Cooper pairs could be formed in this
region without showing an ordered phase. This region is bounded by a maximum
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Fig. 7.4 As we change the number n of cuprate planes in each superconducting block (see
Fig. 7.2), the critical temperature is maximum for n D 3. The diagram indicates that above this
value, there is no longer enough doping (grey zone) of the cuprate planes by the reservoir blocks

temperature T � (broad grey line in Fig. 7.3) which corresponds to a regime
change rather than a sharp transition.

• At higher doping, a region is observed in which the compound is superconduct-
ing, within a particular range of doping. For positively charged doping (holes),
the range is about 0:05 to 0:3 with a maximum critical temperature for a doping
of about 0:18. For negative doping, a symmetric but narrower superconducting
region is observed.

• For doping about an absolute value of 0:3, a metal region is observed.
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If we vary the number n of cuprate planes in the superconducting blocks, whilst at
the optimal doping for superconductivity, a maximum is observed for n D 3. This
is particularly well demonstrated for compounds of the HgBaCuO family (Fig. 7.4).

For n varying from 1 to 3, the critical temperature increases as we would expect.
The system becomes less two dimensional, fluctuations less important and order
becomes more robust. From n D 4, cuprate plane doping is no longer homogeneous
and planes in the centre of the superconducting block are no longer sufficiently
doped (see the diagram in Fig. 7.4). Therefore the critical temperature decreases
with n.

7.2.2 The Thermal Transition

In this section we describe the way in which the question of high temperature
superconductor–insulator transitions is asked from a phenomenological point of
view. Three essential aspects determine the analysis: the high anisotropy of cuprates,
the marked difference between underdoped and overdoped cuprates, as well as the
quantum transitions at zero temperature (covered in Sec. 7.3). Our objective here is
to give the reader a flavour of an area of physics currently under construction, by
extracting a few key directions of the field, which is particularly complex in terms
of microscopic mechanisms.

Standard high temperature superconductors are made of layers (Fig. 7.2) with
strong two dimensional properties. A simple way to characterise their anisotropy
is the ratio between the effective masses m== and m? related to the dispersion of
electronic states parallel and perpendicular to the cuprate planes, respectively. The
cuprate planes themselves can be slightly anisotropic in some compounds, however
we will omit this small intraplanar anisotropy, which only plays a small role in their
properties.

7.2.2.1 Anisotropy

The anisotropy of the conductivity � , gives a good idea of the ratio between the
effective masses � :

� D
r
m?
m==

�
r
�==

�?
: (7.3)

The anisotropy � varies in a wide range depending on the high temperature
superconductor structure. Table 7.1 shows the currently accepted values for typ-
ical cuprate compounds at optimal doping. The essential factor determining this
anisotropy is the thickness and conductivity of the reservoir block. The anisotropy
factor � fixes the ratio between the corresponding characteristic lengths in each
direction:
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Table 7.1 Anisotropies of principal families of high temperature superconductors at optimal
doping1

Compound TC (K) � �==0 (Å) �
?0 (�m) �==0 (Å) �

?0 (Å)

YBaCuO 92 9 1000 0.87 15 1.6
LaSrCuO 35 18 1700 3.2 30 1.7
HgBa2CuO4 94 29 800 2.2 26 0.9
HgBa2Ca2Cu3O8 133 50
Tl2Ba2CuO6 88 120
Bi2Sr2CaCu2O8 85 � 250 2500 63 27 0.1

�==

�?
D �?
�==
D �: (7.4)

Table 7.1 shows the values of these lengths at zero temperature for a few cuprate
compounds.1 Parallel to the cuprate planes, these lengths range from 15 to 30 Å, for
�==0, and from 1;000 to 2;500Å, for �==0. The spread of values is much larger for
lengths perpendicular to the cuprate planes, ranging from 0:1 to 1:6 Å, for �?0, and
0:9 to 63¯m for �?0.

7.2.2.2 2D and 3D Regimes for an Optimally Doped Cuprate

The dimensionality of superconducting behaviour is determined by the way in which
�?.T / compares to the distance cb between two superconducting blocks:

• If �?.T / � cb then the superconductivity has a 2D character.
• If �?.T / is greater than or equal to cb then the superconductivity has a 3D

character.

Depending on the compound, cb varies between 12 and 18 Å, values much larger
than �?0. Consequently:

• At zero temperature, or clearly less than Tc , cuprate compounds all show a 2D
behaviour.

• Near the critical temperature, the coherence length �?0 in the direction perpen-
dicular to the cuprate planes diverges as:

�? D �?0 t�	 with t D Tc � T
T

: (7.5)

1These lengths are only orders of magnitude. They have been measured by different teams, using
diverse techniques and on samples of varying quality. Therefore the published values are quite
varied.
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Table 7.2 Values of the temperature T3D of the change of regime such that for Tc � T3D <

Tc � T < Tc the superconducting behaviour is three dimensional

Compound TC (K) � �
?0 (Å) cb (Å) t3D TC � T3D (K)

YBa2Cu3O7 92 9 1.6 12 0.05 4.5
Bi2Sr2CaCu2O8 85 � 250 0.1 15 0.0005 0.04

• There exists a region of temperature t3D such that if t < t3D the superconducting
behaviour is three dimensional:

�?.t3D/ D cb or t3D D
�
�?0
cb

�1=	

: (7.6)

Table 7.2 illustrates this regime change in two extreme cases, YBa2Cu3O7 and
Bi2Sr2CaCu2O8. In practice, YBa2Cu3O7 is the only one for which we observe
a real three dimensional superconducting behaviour in a range of a few kelvins.
This behaviour is still only clearly demonstrated if we include the finite size effects
of dynamics and “scaling corrections” [17]. For other cuprate compounds, the 3D
regime only occurs in a region around Tc that is too narrow to see.

7.2.2.3 2D and 3D Regimes as a Function of Doping

So far, we have only considered optimally doped compounds. One of the significant
advances in the study of high temperature superconductors was, around 1993,
the observation of the radical difference between underdoped and overdoped
compounds. It is one of the keys to elucidating the physical mechanisms of
superconductivity in these structures (still in the future in 2011). Many changes
in their properties as a function of doping are observed, including the symmetry
of the order parameter (which we will not address), and the ratio 2�=kTc , which
reaches very high values (more than 20 compared to the BCS value of 3:5) at
low doping, to around 5 for overdoped compounds. We are especially interested
in the variation of the anisotropy and the characteristic lengths. Figure. 7.5 shows
the characteristic evolution of anisotropy as a function of doping for a cuprate
compound.

To date, the only detailed and reproducible measurements have been made on
LaSrCuO and YBaCuO compounds. For YBaCuO, it turns out that the anisotropy
� increases by a factor of about three when we pass from optimal doping
(Tc D 92K) to highly underdoped (Tc D 70K). In this range, the coherence
length �?0 perpendicular to the cuprate planes remains roughly constant whilst
the coherence length �==0 parallel to the cuprate planes increases by a factor of
three [9].
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Fig. 7.5 Schematic evolution
of the anisotropy of cuprates
as a function of their doping
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7.2.2.4 Two Schematic Pictures for the Phase Diagram

To close this brief presentation of the phase diagram of high temperature super-
conductors, we offer the reader two schematic pictures that summarise the essential
properties. For simplicity we assume that the doping is by holes. This is also the case
that has been most widely studied. A priori, we expect a qualitatively symmetric
behaviour for doping by electrons.

The first scheme summarises the universality classes that we expect from
experimental observations, as a function of doping and temperature (Fig. 7.6). The
following points summarise this figure:

• Overdoped compounds can be described as classical superconductors using mean
field theory. Their transition can be described by a version of BCS adapted to the
particular symmetry of the order parameter (d symmetry) for which we expect a
ratio 2�=kTc of about 4:5. This has been confirmed by experiments [4].

• Underdoped compounds have an anisotropy that is larger the smaller the doping
(Fig 7.5) and they are therefore essentially of the 2D�XY class.

• In the immediate vicinity of the thermal transition, there exists a 3D-XY region
due to the divergence of the coherence length �?.T /. We have seen that in
practice this region is only observable for YBaCuO. For other cuprates, its
extension is less than 1K (Table 7.2).

• At zero temperature, there exists two quantum critical points; one for doping
ıu (u standing for underdoped) corresponding to the superconductor–insulator
transition, and one for doping ıo (o standing for overdoped) corresponding to the
superconductor–metal transition.

Many microscopic or phenomenological descriptions have been proposed to
explain the features of this diagram. We present below the description proposed
in 1993 by Emery and Kivelson [5] which is a good pedagogical example (Fig. 7.7).

Order in a superconducting state is represented by a quantum wavefunction:


 D j
 j ei� : (7.7)
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Fig. 7.6 Schematic picture of the expected universality classes in different regions of the phase
diagram of cuprate compounds (after Schneider and Singer 2000). Dark grey areas correspond to
the superconducting state and light grey to the critical region. The wide grey lines correspond to
regions of regime change rather than sharp transitions. At zero temperature, the doping level ıu is
a quantum critical point for the superconductor–insulator transition, whilst doping ıo corresponds
to the superconductor–metal transition

The modulus and phase of this function are related to the density of Cooper pairs and
the superconducting current respectively. The volume density ns of paired electrons
is equal to the squared modulus of this function:

ns D j
 j2 : (7.8)

The superconducting current density jjj s can be expressed from the value of the
momentum operator:

bp D � i„r C e

c
AAA; (7.9)

whereAAA is the vector potential. In a region where the density ns of Cooper pairs is
constant, the current has a part proportional to the gradient of � and a part related to
the vector potential:

jjj s D nse

m

n

„r� C e

c
AAA
o

: (7.10)

In Fig. 7.7, the phase ordering dominates the superconductor–insulator transition
for underdoped materials, whilst the formation of pairs dominates the transition for
overdoped materials. The grey line represents the order–disorder transition for the
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Fig. 7.7 Schematic diagram for high temperature superconductors, proposed by Emery and
Kivelson [5]. The grey line represents the order–disorder transition of the phase “teta” of Cooper
pairs, whilst the black line represents the transition of the wavefunction modulus, i.e. the transition
of the appearance of Cooper pairs. For overdoped materials, as soon as the pairs appear they are
simultaneously condensed in a coherent state, so there is only one transition, of BCS type. However
for underdoped materials, there exists a pseudogap region where uncoherent pairs exist. These
disordered pairs can then condense at lower temperature into a coherent state. The transition then
behaves as a Bose–Einstein condensation

phase “teta” of Cooper pairs, whilst the black line represents the transition for the
modulus of the wavefunction, that is to say the transition of formation of Cooper
pairs:

• For overdoped materials, as soon as pairs appear, they are simultaneously
condensed into a coherent state, i.e. there is only one transition, of BCS type.

• For underdoped materials below a temperature of T �, a pseudogap state exists
where pairs exist but without order in their phase. These disordered pairs can then
condense at a lower temperature into a coherent state. So there is a Bose–Einstein
condensation transition.

This schematic diagram, by Emery and Kivelson, is the basis for many microscopic
descriptions of high temperature superconductors proposed since. The essential idea
is that of a change in nature of the transition between the underdoped (Bose Einstein)
and overdoped (BCS).
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7.2.2.5 Scaling Behaviour of Conductivity (in the Normal State)

Before describing what we expect for quantum transitions (at T D 0/, we recall a
few basic concepts of dynamic effects (from Sect. 3.5.2) and finite size effects (from
Sect. 3.5.4) and their consequences for the scaling behaviour of superconductors.
Initially this is purely dimensional analysis.

The superconducting current expressed by (7.10) has a dimensional behaviour as
a function of the size L of the superconducting block (e.g. imagine a hypercube of
side L):

jjj � L1�d : (7.11)

The same expression gives the behaviour of the vector potential which must be
consistent with the gradient operator:

AAA � L�1: (7.12)

The electric field is related to the vector potential by Maxwell’s induction equation:

EEE D 1

c

@AAA

@t
� t�1L�1: (7.13)

The dimensional behaviour of the conductivity � related to time and the system size:

� D J

E
� tL2�d : (7.14)

The dynamic exponent z, which we will define later when talking about growth
mechanisms (Sect. 8.1.2), relates the characteristic time to the coherence length:

t � Lz � �z: (7.15)

Finally, the conductivity can be written in the following form:

�.T;H/ D �2�dCzF

�
�

�0

�

D �2�dCzF

�
H�2

�0

�

; (7.16)

where H is the magnetic field, �0 D h=2e the quantum of magnetic flux and �
the flux crossing a “coherence area” �2. F.x/ is a universal function, constant for
T > Tc and finite at Tc . From this we deduce the dependence of � on magnetic field
as H tends to zero, by replacing �2 by 1=H in such a way that the argument of F
remains constant:

� .Tc;H/ � H� 2Cz�d
2 : (7.17)

In the same way the frequency dependence of the conductivity can be deduced
from (7.14):

�.T; !/ D � 2�dCz
2 ˙ .! �2/; (7.18)
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Table 7.3 Exponents obtained from measurements of the conductivity of two YBaCuO com-
pounds

Material Mechanism
of fluctuations

Characteristic T 	.z � 1/ 	 z

Ceramics � continuous
thermal and
dynamic
fluctuations

Tc D 92:44 K 2=3 	3D D 2

3
z3D D 2

Monocrystal �.!/

Melting vortex
glass

TGlass D 91 K 8 	G D 1:6 zG D 6

where ˙ is a universal function. � and ! are both complex numbers with real an
imaginary parts related to the resonant and damped components in the classical
way. Equation (7.18) gives the critical behaviour of the modulus and phase as the
frequency tends to infinity:

j�.Tc; !/ j � j! j�x D j! j�
2�dCz

z (7.19)

whilst the phase tends to:

' .! !1/ D 

2

�
2 � d C z

z

�

(7.20)

Remarkably, in two dimensions, the phase tends to =2 whatever the value of z.
In practice, experimental results are mostly for YBaCuO compounds. We present

results obtained for two types of material, ceramics [16] and monocrystals [Koetzler
1999] of YBa2Cu3O7. In both cases, we observe the material near to Tc where
the behaviour is known to be 3D-XY, for example the variation of the magnetic
susceptibility. In this case the exponent of (7.16) is simply z�1 and the conductivity
of DC current of a 3D material behaves as:

� � �z�1 �
�
T � Tc
Tc

��	.z�1/
: (7.21)

Table 7.3 shows results obtained, in the first case for DC current and in the second
case as a function of frequency. The data clearly show the existence of dynamic
effects in the superconductor–insulator transition of YBaCuO.

7.3 Quantum Transitions in Superconductors

A “quantum transition” is a change of state at T D 0 driven by the variation of a
physical quantity other than temperature. In the case of superconductivity, this can
be the magnetic field H , film thickness dF or doping ı. In principle, we expect
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to see an analogy between thermal and quantum transitions by replacing T � Tc
by H � Hc , dF � dFC or ı � ıc . In the same way a divergence in the coherence
length, �, leads to universality classes characterised by universal critical exponents.
Effects of the magnetic field on high temperature superconductors are complex
and the subject of a large literature. We will not cover these in this chapter, but
instead draw the attention of the reader to some published results as a function of
thickness and doping. Even though the quality and extent of measurements is not in
general sufficient to establish the existence of quantum transitions, they are not in
contradiction with the corresponding model predictions.

The basic concepts of thermal transitions are valid for quantum transitions,
however now the fluctuations are quantum fluctuations. In principle these are only
relevant for a strictly zero temperature, otherwise thermal fluctuations should dom-
inate. However in practice quantum fluctuations can extend to finite temperatures
close to T D 0 (Sects. 7.3.1 and 7.3.2). This is due to the dynamics of quantum
fluctuations whose effect is quickly averaged out at all finite temperatures. At
zero temperature, only quantum fluctuations exist and their static value cannot be
separated from their dynamics. Table 7.4 summarises these points.

Because of the importance of dynamics for quantum transitions, we define two
coherence lengths: a normal coherence length � and a temporal coherence length �� .
If we choose to study the critical quantum behaviour as a function of a quantity ı,
which could be the magnetic field, doping or film thickness, the scaling behaviour of
the lengths will be characterised by exponents 	 and 	� respectively, as well as the
dynamic exponent z D 	�=	. Deviation from the critical quantity ıc will be called ı:

ı D ı � ıc
ıc

� � j ı j�	 �� � �z � j ı j�	� z D 	�

	
: (7.22)

Scaling relations for different physical quantities are obtained from the standard
relations for thermal transitions, by replacing the temperature deviation t D .T �
Tc/=Tc by ı and 1=kT by �� . As an example, the free energy is characterised
by a critical exponent 2 � ˛ related to the exponents given above by the (new)
hyperscaling relation:

2 � ˛ D 	.d C z/: (7.23)

When the dimension of space d is less than or equal to two, it is necessary to
consider spatial variations of the order parameter in the longitudinal (parallel to the
order parameter) and transverse directions. Longitudinal variations are associated

Table 7.4 Thermal and quantum transitions

Finite temperature Zero temperature

Thermal fluctuations Dominant Absent
Quantum fluctuations Not relevant because

averaged out by dynamics
The only fluctuations

present, divergence of
relaxation time

Transition Thermal Quantum
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with the usual coherence length and we introduce a transverse coherence length
for the transverse variations. The details of this approach go beyond the scope
of this chapter but the reader may find them in detailed references [17]. A direct
consequence of the scaling behaviour of the transverse order parameter, and notably
its possible torsion, is the relationship between the critical temperature and ı near
the quantum critical point:

Tc � ız 	 : (7.24)

In two dimensions a simple relation also exists between Tc and the London
penetration length � , when ı ! 0

Tc.ı/ � 1

�x.T D 0; ı/�y.T D 0; ı/ : (7.25)

Since high temperature superconductors have a practically square lattice (perfectly
square in some compounds), the relationship becomes simply Tc / 1=�2. Here we
present the scaling relations related to Tc as an example but it is possible to predict
the behaviour of many physical quantities near the quantum critical point, such as
conductivity, by replacing the temperature deviation t D .T � Tc/=Tc by ı and
1=kT by �� . This gives the conductivity in two dimensions tending to:

�.ı ! 0/ D A�Q D A4e
2

h
; (7.26)

where 4e2=h D 6:45k� andA is a numerical factor that depends on the microscopic
model.

7.3.1 Superconductor–insulator Transition with Respect to Film
Thickness

Remarkable measurements on bismuth films have clearly shown a transition as a
function of film thickness [12]. The film is deposited on a crystal plane at the atomic
scale and covered with a 1nm thick amorphous layer of germanium. The bismuth
film thickness is carefully controlled between 0:9 nm, when the film behaves as
an insulator, and 1:5 nm when it is a superconductor. The transition occurs at a
critical thickness of 1:22 nm for which the resistance is Rc D 7;8k� (Fig. 7.8).
Equation (7.24) leads to a value of the exponent z	 of about 1:3.

Measurements of this type are also made on cuprate compound superconductors
by two different techniques. The first consists of ultra thin films, for example
of LaSrCuO [15], in which a superconductor–insulator transition is observed in
agreement with an exponent z	 of around 1. This technique is however very
dangerous in the case of cuprates, because the critical thickness (1 nm for LaSrCuO)
is of the order of the thickness of the structural unit (c D 1:33 nm for LaSrCuO).
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Fig. 7.8 Resistance “per square” of films of bismuth of different thicknesses as a function of
temperature. Plotting resistance as a function of thickness (insert) shows all the curves cross at the
critical thickness of 1:22 nm

The risk is we might observe a percolation transition (Chap. 5) rather than a quantum
transition. In addition, cuprates are highly oxidised in order to by optimally doped
but we observe a significant variation in their degree of oxidation near an interface.

The other technique used is to make superlattices with superconducting layers
of variable thickness alternating with non superconducting layers. This procedure
was used by several authors in the case of YBaCuO alternating with layers of
PrBaCuO of identical structure where yttrium is replaced by praseodymium [8].
Unlike YBaCuO, PrBaCuO remains insulating whatever its degree of oxidation.

The results shown in Fig. 7.9 lead to a value around 1 for the exponent z	. In the
case of cuprates, the quantities z, 	 and A (7.26) have been evaluated with different
microscopic models. As an example, we present below, in Table 7.5 predictions
proposed by Cha et al. [1,2], Sorensen et al. [18] and those by Schneider and Singer
[18]. The experimental results, although quite uncertain, appear to be in agreement
with values of z	 � 1 as predicted by some microscopic descriptions of underdoped
cuprates summarised in Table 7.5.
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Fig. 7.9 Variation in critical
temperature of a
YbaCuO/PrBaCuO
superlattice as a function of
the thickness of alternate
layers [8]

100

80

60

40

20

0
0 0.02 0.04 0.06 0.08 0.1

T
c

1/d (Å–1)

7.3.2 Doping Transitions

Here we are interested in the description of the high temperature superconductor
phase diagram for which we presented experimental determinations in Sect. 7.2
(Fig. 7.3). In general, depending on the compound, this diagram has been only
very partially explored experimentally due to chemical and structural constraints.
We will discuss the case for which the diagram has been described in a reasonably
complete way, that of La1�xSrxCuO4 compounds, in which substituting lanthanum
by strontium provides a doping by holes in the whole superconducting regime
[6, 14, 19, 20]. We are interested in two transitions observed at T D 0 when we
increase the doping (see for example Fig. 7.6):

• superconductor–insulator transition, occurring in underdoped compounds for a
doping ıU .

• superconductor–normal metal transition, occurring in overdoped compounds for
a doping ıO .

7.3.2.1 Superconductor–Insulator and Superconductor–Normal Metal
Transitions

In underdoped compounds, the quantum superconductor–insulator transition
belongs, in principle, to the 2D-XY universality class (Fig. 7.6). The expected
behaviour for Tc.ı/ is predicted by (7.24):

Tc � .ı � ıU /z 	 : (7.27)

The exponent z and 	 can be evaluated from microscopic descriptions (Table 7.5).
The models in which the predictions are closest to the experimental observations
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Table 7.5 Calculated values of exponents and A calculated for different models

Reference Model z 	 z	 A D �=�Q

[1, 2] Anisotropic .2C 1/D � XY model �1 �2=3 �2=3 0:285

[1, 2] Hubbard model (integer number of
electrons in band,
filling D 1=2)

�1 � 2=3 �2=3 0:52

[1, 2] Hubbard model (integer number of
electrons in band,
filling D 1=3)

�1 �2=3 �2=3 0:83

[1, 2] Hubbard model C random
interaction (integer number of
electrons in band,
filling D 0)

�1:07 �1 �1:07 0:27

[1, 2] Hubbard model C random
interaction (integer number of
electrons in band,
filling D 1=2)

�1:14 �1 �1:14 0:49

[18] Hubbard model C disorder C
short range repulsion (non
integer number of electrons in
band)

�2 �1 �2 0:14

[18] Hubbard model C disorder C long
range Coulomb interaction (non
integer number of electrons in
band)

�1 �1 �1 0:55

[17] Attractive Hubbard model 2 1=2 1

predict an exponent z	 of around 1 for the quantum superconductor–insulator
transition.

In overdoped compounds, the superconductor–normal metal transition is mean
field like and we can describe it as a classic BCS transition in a normal metal (Fermi
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Fig. 7.10 Phase diagram of LaSrCaCuO. Experimental points provided by references [6, 14, 19,
20]. Continuous line corresponds to (7.29)

liquid) in which the superconductor–insulator transition occurs under the effect of
decreasing doping. The mean field approach in this case leads to an exponent z	 �
1=2 for the quantum superconductor–normal metal transition2:

Tc � .ıO � ı/1=2 : (7.28)

Equations (7.27) and (7.28) are only valid near Tc D 0. Expressions can be proposed
that describe the entire superconducting region assuming that it never strays too
far from the quantum regime, i.e. that the temperature remains low enough. For
example, one of these is:

Tc D
h

a .ı � ıU /�1 C b .ıO � ı/�1=2
i�1

: (7.29)

This expression accounts for existing experimental observations for LaSrCaCuO
doped by the substitution Ca ! Sr (Fig. 7.10). However, the number and diversity
of values measured does not at all allow us to claim that the exponent z	 is actually
near the values indicated theoretically.

2For the calculation see for example the reference [17].
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7.4 An Open Domain

In concluding this chapter, we note that current experimental data on super-
conductor–insulator transitions in high temperature superconductors are insufficient
to establish a precise scaling behaviour.

In terms of thermal transitions, data on superconductor–metal transitions in
metals are often of excellent quality, but the Ginzburg criterion (Sect. 1.3.3)
indicates that they always fall within the mean field approximation, since the critical
region is totally inaccessible (�10�14 K). The coherence length of high temperature
superconductors being two to three orders of magnitude smaller, the critical region
reaches tens of kelvins and can therefore be easily observed in this case. However,
high temperature superconductors are complex materials, the details of whose
composition and structure are not very reproducible. The procedure of doping itself
consists of substituting or intercalating a considerable number of atoms into these
compounds, equivalent to a few tenths of the number of copper atoms present on the
structure. This operation changes the doping of the cuprate planes, but also many
electronic and structural properties of the compound. It can be done in different
ways, by oxidation or substitution of various cations, and we never obtain exactly
the same result. If it is well established that the transitions observed in cuprates are
significantly affected by fluctuations, thermal or quantum, their poor reproducibility
prevents, for the moment, them being used to infer detailed scaling behaviours.
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Chapter 8
Growth and Roughness of Interfaces

8.1 Introduction

Our daily lives are full of interfaces of various kinds. Be it through our skin
or across the membranes of our cells, we are continually exchanging matter and
energy with the environments we pass through. The shape of these interfaces is
crucial for exchange processes, as is for example the fine structure of our lungs for
exchanging oxygen, or the surface of glass for its transparence to light. In general
their morphology depends on the scale at which we look, e.g. the smooth surface of
Mars seen from the Earth is very different from the roughness of its soil seen by a
hypothetical Martian.

Here we apply scaling approaches to the shape of interfaces, their formation
and their evolution in nonequilibrium. We have already discussed in Chap. 4 a
nonequilibrium process, diffusion, where we followed the position r of a random
diffuser over time. Here we are interested in the position h.r; t/ of an interface
between two media (Fig. 8.1), for example, during a growth process by aggregation
of material from one of the media to the other. The generic term “growth” is in
practice used in the general the sense of evolution for physical situations such as
propagation of a front, soil erosion, spread of a forest fire, flow of liquid in a porous
medium or growth of a bacteria colony.

As in the study of phase transitions, we are not interested here in the very
detailed shape of the interface, or its evolution, but in its asymptotic scale invariant
properties. Here the property of statistical1 self-similarity is extended to self-affinity.
An interface is self-affine if it has the same statistical properties under changes of
scale with different factors, k for the height of the interface h and k0 for the position
along the interface r , such that h.r/ and kh.k0r/ have the same statistical properties.

1Here we will only encounter statistical scale invariance. When we use the expressions “scale
invariance”, “self-similarity” or “self-affinity” the subtext is that these terms should be understood
in the statistical sense.

A. Lesne and M. Laguës, Scale Invariance, DOI 10.1007/978-3-642-15123-1 8,
© Springer-Verlag Berlin Heidelberg 2012

259



260 8 Growth and Roughness of Interfaces

Fig. 8.1 Evolution of the
interface between two media.
Material coming from
medium B can aggregate to
medium A, which can in turn
be eroded by medium B . For
example, A could be a fire
devastating B , or a liquid
soaking into a porous
medium B

r

L

h
(r

,t
)

B

A

Fig. 8.2 Growth along the edge of, initially straight, atomic steps on a monocrystal of silicon
shown by Scanning Tunnelling Microscopy (IEMN, Laboratoire de Physique, Lille)

In simple systems r has only one component, as was the case for example of
the simulations of a burning forest that we talked about in Sect. 5.1, where the fire
was lit at time zero along one side of the forest. Here we assume that the forest
can be irregular, but that its density is always higher than the percolation threshold.
Another system in the same family is that of growth, atom by atom, along the edge
of an “atomic step” that is initially straight (Figs. 8.2 and 8.6).

A random walk in one dimension gives an analogy of an interface such as the
one in Fig 8.1. The trajectory of the position h of the walker over time plays
the role of r . An important application of this approach is to DNA sequences.
Genetic information code is made up of bases from two families, purines (A;G)
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and pyrimidines (T;C). We can let one correspond to a step up and the other to a
step down (see Sect. 11.3). In this way we obtain a graphical representation of the
sequence (Fig. 8.3) which gives an idea of correlations in its underlying structure
[6, 11].

In this chapter we present three models of growth, of increasing complexity,
followed by the method of dynamic renormalisation which can explain their
universality. We end with a presentation of different types of evolution equations
and their corresponding universality classes.

8.1.1 Discrete Models, Continuous Equations

Many physical systems mentioned above are well described by discrete models,
e.g. an atom joins the aggregate, a tree catches fire, a bacterium is born etc. Such

T
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– 200
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Fig. 8.3 A “DNA walk” exposing surprising correlations in the “non coding” regions (after
[6, 11])
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models are well adapted to numerical simulations which can start from a very
simplified description at the elementary scale. As we have leant earlier in this book,
the asymptotic behaviours are more sensitive to the way properties change with
scale than to microscopic details of a model. At large scales, these details can be
neglected and stochastic evolution equations can be used, of the following type:

@h

@t
D G C �; (8.1)

where G represents the deterministic part of the growth and � the noise to which it
is subjected.

There are basically two approaches to establish such equations. We can either
treat a particular growth problem by characterising its mechanisms by appropriate
expressions for G and �, or we express the symmetries of the problem by these
expressions. In this case we make use of the Landau approach used for the mean
field description of phase transitions. For example, since growth is independent of
the origin chosen to locate the interface, the first relevant terms in G will be the
spatial derivatives of h. We know that renormalisation classifies the relevant and
irrelevant terms as a function of their effect on asymptotic behaviour. This scaling
approach (expressing the symmetries and renormalisation) in most cases establishes
minimal continuous equations, each one being representative of a universality class.

8.1.2 Characteristic Exponents of Growth

We will illustrate the general properties of growth mechanisms using the simple
model of ballistic deposition. On a square lattice, atoms coming from region B
(Fig. 8.1) aggregate at the interface on simple contact with region A. This model
is simple to simulate numerically, using the rule:

h.i; t C 1/ D maxŒh.i; t/C 1; h.i � 1; t/; h.i C 1; t/�; (8.2)

where i is a site, chosen at random from a uniform probability distribution, at which
an atom is adsorbed. The terms with indices i � 1 and i C 1 in (8.2) account for
the possibility of a lateral aggregation, such as that depicted by the black square in
Fig. 8.4.

The average height hhi at time instant t is given by:

hh.t/i D 1

L

LX

iD1
h.i; t/: (8.3)

The name ballistic deposition signifies that the trajectory of particles in the gas
suddenly stops on contact with the first interface site, and all subsequent diffusive
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Fig. 8.4 Ballistic deposition. Left: mechanism for aggregation of atoms; Right: results of a
simulation on an interface of L D 100 sites, on which 12 800 atoms are deposited. The colour was
changed after each 800 atoms had been deposited

motion is forbidden. If the flux of atoms is constant, hhi is proportional to t . The
roughness of the interface is described by a characteristic thickness w.t/, which
measures the average distance from the average height:

w.L; t/ D
"

1

L

LX

iD1
Œh.i; t/� hh.t/i�2

#1=2

: (8.4)

At the beginning of the deposition process, the roughness is zero. If L and t are
large, the following behaviour is observed experimentally:

• Initially, w.L; t/ grows with time as a power law tˇ .
• For very long times, w.L; t/ saturates at a value depending on the size as L˛ .
• The crossover between these regimes occurs at a time tx which varies as Lz.

Growth is therefore characterised by three exponents ˛, ˇ, and z. In the case of
ballistic deposition in one dimension, experiments give values of ˛ D 0:47˙ 0:02,
ˇ D 0:33 ˙ 0:006 and z D 1:42 ˙ 0:09. It is important to note that these three
exponents are not independent, as indicated by determining the crossover time tx in
each of the three regimes:

w.L; tx/ � tˇx � L˛ (8.5)

which leads to a scaling relation:
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z D ˛

ˇ
: (8.6)

Therefore, a universal relation between w, L and t is:

w.L; t/ � L˛f
�
t

Lz

�

: (8.7)

8.1.3 Correlations

Closely examining growth by ballistic deposition in Fig. 8.4, we observe branches
and pores oriented roughly at 45ı to the interface. Where can such structures come
from in a totally random mechanism? They simply come from the rule set, illustrated
at the left of the same figure. Depending on the column where the atom aggregates,
the rule triggers the development of an irregularity in the “vertical” (e.g. white atom
on the left of Fig. 8.4) or “lateral” (e.g. black atom in Fig. 8.4) direction. A simple
experiment is to start with an interface containing a single column irregularity,
which is already high (Fig. 8.5). The irregularity develops laterally until it occupies
the whole width of the interface. This illustrates the existence of correlations in the
growth process. The characteristic width of the “tree” in Fig. 8.5 is a correlation
length �== in the direction parallel to the interface. We can also define a correlation
length �? perpendicular to the interface which has the same scaling behaviour as the
characteristic thickness w. Figure 8.5 illustrates well the saturation of w occurring
once the correlation length �== is of the order of L. From (8.7) we can predict the
scaling behaviour of �== before saturation:

w.L; t/ � L˛f
�
t

Lz

�

� L˛g
�
L

�.t/

�

(8.8)

which leads to:
�.t/ � t1=z for t � tx: (8.9)

Fig. 8.5 Ballistic growth from an interface initially containing a point irregularity. The initial
interface consists of 100 sites and a column of size 35. The colour was changed after each 800
atoms had been deposited
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8.1.4 Model of Random Growth

In this section, we present the solution of the model of random deposition. The
mechanism, illustrated in Fig. 8.6, is the simplest one could imagine. The rule
is simply to randomly (from a uniform distribution) choose one column i and
increment its height.

Given that there are no correlations between columns, each one grows with a
probability p, at each instant in time. The probability P.h;N / that a column has
height h when N atoms have been deposited is given by the binomial distribution.
The value of w2 can be extracted directly from this (independent of L since there
are no correlations between columns):

w2.t/ D Np.1� p/: (8.10)

For constant flux, we obtain that w is proportional to t 1=2 and ˇ D 1=2. As the
correlation length remains zero in this model, the roughness never saturates. Neither
does the interface show self-affine properties since there is no characteristic scale
parallel to the interface.

The continuous equation that describes the asymptotic behaviour of this model is:

@h.x; t/

@t
D p C �.x; t/: (8.11)

The term �, which is zero on average, expresses the random nature of deposition. Its
second moment depicts the absence of spatial and temporal correlations:

h�.x; t/�.x0; t 0/i D 2Daı.x � x0/ı.t � t 0/; (8.12)

where a is the size of an atomic unit.

Fig. 8.6 Random deposition. Left: mechanism for aggregation of atoms (unlike the ballistic
mechanism in Fig. 8.4 there is no lateral growth). Right: results of a simulation of an interface
consisting of 100 sites on which 50;000 atoms are deposited. The colour was changed after every
5;000 atoms had been deposited
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Integrating the evolution equation leads to hhi D p t and:

hh2.x; t/i D
*�

p t C
Z t

0

dt 0�.x; t 0/
�2
+

D p2t2 C 2Dt: (8.13)

We therefore obtain w2:

w2.t/ D hh2i � hhi2 D 2Dt: (8.14)

On average the interface behaves as a biased one dimensional random walk, with a
mean displacement proportional to time.

8.2 Linear Approach Including Relaxation

Here we consider a model of random deposition that includes a relaxation in the
position of the deposited atom towards the nearest potential well, that is to say the
site j nearest to i that is a local minimum in h (Fig. 8.7).

This relaxation process smooths the surface and all porosity disappears (Fig. 8.7).
In one dimension, experiments lead to values of ˛ D 0:48 and ˇ D 0:24. Our first

Fig. 8.7 Random deposition with relaxation. Left: mechanism for aggregation of atoms (unlike
the random deposition illustrated in Fig. 8.6 the atoms can relax to a neighbouring site with higher
coordination number). Right: results of a simulation on an interface of 100 sites on which 30;000
atoms are deposited. The colour was changed after each 1;500 atoms had been deposited
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objective is to establish a continuous equation reflecting this process. The first step
will be to study the symmetries of the growth model, symmetries that the equation
must obey.

8.2.1 Symmetry Study

Unlike the ballistic or random deposition mechanisms, relaxation implies a local
equilibrium. This means for example that the interface properties would be the same
if we exchanged the media A and B (Fig. 8.1). This is not obvious a priori, but
becomes clearer if we reformulate the process seen from each medium:

• Seen from medium A as we have just done:

– Randomly choose a column i
– Search for the nearest local minimum j

– Deposit an atom on this site

• Seen from medium B:

– Randomly choose a column i
– Search for the nearest local maximum j

– Remove an atom from this site

This is a process of smoothing the interface, which leads to maxima and minima that
are geometrically statistically symmetric. As well as growth processes, this interface
could also represent, for example, the border between two magnetic domains. In the
following subsections we will in turn discuss the invariance of the mechanism, and
therefore of its equation, with respect to spatio-temporal translation, rotation about
the growth axis and by change of sign of h (exchanging the two media).

8.2.1.1 Translation in Time

We take the general form of (8.1) describing the evolution of the interface including
the dependences we expect a priori:

@h.r; t/

@t
D G.h; r; t/C �.r; t/; (8.15)

where G is the determinant part and � the stochastic part of the evolution
mechanism. Invariance of the process with respect to changing the origin of time
t ! t C t0 forbids any explicit dependence on time. However, derivatives with
respect to time such as @h.r;t /

@t
are in agreement with this symmetry.
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8.2.1.2 Translation Parallel to the Interface

In the same way, growth is independent of the origin chosen locating r along
directions parallel to the interface. The equation must therefore be invariant with
respect to the transformation r ! r C r0. Explicit dependencies on r are therefore
not allowed and G can contain only combinations of differentials such as:

@

@rx
;

@2

@r2x
;

@3

@r3x
; � � � @n

@rnx

8.2.1.3 Translation in the Growth Direction

The equation must also take into account the fact that growth is independent of
the origin chosen locating the position of the interface along the h direction. So
it must be invariant with respect to transformations h ! h C h0. Therefore,
explicit dependencies on h are not allowed and G can only contain combinations
of differentials such as:

rh; r2h; � � � rnh

8.2.1.4 Inversion of the Growth Direction

In the particular case of growth with relaxation, each incident atom is placed at an
equilibrium position. We have seen that this leads to a form of the interface in which
the media A and B can be exchanged. The equation must be invariant to inverting the
interface h! �h. Given that the first term @h.r;t /

@t
in the evolution equation is odd in

h, even terms are not allowed and G can only contain combinations of differentials
such as:

rh; r2h; .rh/3; .r2h/3 � � � .rnh/2pC1

8.2.1.5 Rotation about the Growth Direction

Rotational symmetry excludes all odd order differential forms, so G can only
contain terms such as:

r2h; � � � r2nh

8.2.2 The Edwards–Wilkinson Equation

From the rules in the previous subsection, we obtain the general form of the
equations respecting the symmetries of random growth with relaxation:
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@h.r; t/

@t
D a1r2hC a2r4hC � � � C anr2nh

C �b1r2hC b2r4hC � � � C bpr2 ph
� �

c1.rh/2 C c2.rh/4 C � � � C cq.rh/2q
�

C � � � C �.r; t/ (8.16)

The asymptotic properties (t !1 and L!1) are most sensitive to lowest order
terms. A renormalisation calculation can rigorously show that only the lowest order
term is relevant. This means that it is the only term influencing the value of the
exponents characterising the growth. In this way the Edwards–Wilkinson equation
is obtained [3], which is the simplest equation describing the mechanism of random
relaxation of a surface:

@h.r; t/

@t
D �r2h.r; t/C �.r; t/ [Edwards–Wilkinson]: (8.17)

The main characteristics of this equation are the following:

• It conserves the average height hhi. To describe the growth mechanism of Fig. 8.7
an extra term F.r; t/ should be added which measures the flux of atoms adsorbed
at point r and time t .

• When the flux F is uniform and constant, it does not affect the asymptotic
properties of roughness. The first order equation (8.17) contains all the physics
of this growth model. It is sufficient to represent the corresponding universality
class.

• It has the same form as the diffusion equation (see Chap. 4) if the noise
term is omitted. Like the diffusion equation, it gradually erases irregularities in
interfaces.

• The coefficient � plays the role of surface tension. The larger �, the faster the
smoothing of the system.

• It correctly describes random growth with relaxation, as long as the gradient rh
of the interface remains small. This means that:

j ıh j � j ır j : (8.18)

• We also know that jıhj � jır j˛ from the definition of ˛. For long distances this
condition therefore constrains ˛ < 1. This is actually the case, as we will show
in the following subsection.

8.2.2.1 Solution by Scaling Arguments

It is possible to calculate the exponents of growth by scaling arguments, but we will
also present an exact solution in the next subsection. Assume that the interface is
self-affine, we subject it to a change in scale with parameter b:

r ! r 0 D br h! h0 D b˛h and t ! t 0 D bzt: (8.19)
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The interface obtained by such a transformation should be statistically identical to
the original. This means that the equation must be invariant under this transforma-
tion. We should also evaluate the scaling behaviour of the noise �. Here we assume
that the noise has no correlations:

h�.r; t/�.r 0; t 0/i D 2Dadıd .r � r 0/ı.t � t 0/; (8.20)

where a is the size of an atomic unit. From this relation, we can obtain the scaling
behaviour of the noise:

�.br; bzt/ D b� dCz
2 �.r; t/: (8.21)

By substituting (8.19) and (8.21) in the Edwards–Wilkinson equation (8.17) we
obtain:

b˛�z @h.r; t/

@t
D �b˛�2r2hC b� zCd

2 �.r; t/: (8.22)

By expressing the fact that this equation is independent of the value of b, we obtain
the values of the exponents:

˛ D 1 � d
2

ˇ D 1

2
� d
4

z D 2: (8.23)

Note that ˛ D 0 and ˇ D 0 for the critical dimension d D dc D 2.

8.2.2.2 Exact Solution

Since the equation is linear, it is possible to solve it exactly. To do so, we use the
Fourier transform .r; t/! .q; !/:

h.q; !/ D �.q; !/

�q2 � i! : (8.24)

We express the absence of noise correlations in this space as:

h�.q; !/�.q0; ! 0/i D 2D

�2ad
ı.q C q0/ı.! C !0/; (8.25)

where a is the size of an atomic unit and � is an elementary time step. Combining
these two equations (8.24) and (8.25) and returning to real space, we obtain2:

2a is the elementary size parallel to r and � the elementary time, included here for the homogeneity
of the expression.
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hh.r; t/h.r 0; t 0/i D D

2�

ˇ
ˇ r � r 0 ˇˇ2�d f

 

� j t � t 0 j1� d
2

j r � r 0 j2�d
!

; (8.26)

where the function f .x/ is proportional to x at short times, and saturating to 1
at long times. This expression recovers the exponents obtained in the previous
subsection by simple scaling arguments. In one dimension the values of the
exponents, ˛ D 1=2 and ˇ D 1=4, are very close to the values ˛ D 0:48 and
ˇ D 0:24 observed experimentally for random deposition with relaxation. Here we
obtain confirmation that the Edwards–Wilkinson equation (8.17), constructed based
on symmetry arguments, does belong to the same universality class as the discrete
model that we started out with.

We note that for d D 2 we obtain ˛ D 0 and ˇ D 0, which correspond to
logarithmic variations in w as a function of t and L. These exponents are negative
when the interface is in three or more dimensions, that is to say when the growth
takes place in four or more dimensions. This means that all irregularities introduced
by noise are smoothed out very quickly by the surface tension and the interface is
flat.

The essential feature of the Edwards–Wilkinson equation (8.17) is that it is
linear and therefore invariant under inversion of the direction of growth. It describes
mechanisms close to equilibrium well, but it is incapable of describing mechanisms
far from equilibrium, such as ballistic deposition. For that, nonlinear terms need to
be included. Kardar et al. [8] were the first to introduce a nonlinear equation, which
now carries their name (KPZ equation).

8.3 The Kardar–Parisi–Zhang Equation

We now want to construct an equation that obeys the same symmetries as the
Edwards–Wilkinson equation except invariance to inversion of the growth direction.
We simply include in the Edwards–Wilkinson equation (8.17) the lowest order term
that was forbidden by this symmetry, i.e. the term .rh/2. This give the Kardar–
Parisi–Zhang (KPZ) equation:

@h.r; t/

@t
D �r2hC �

2
.rh/2 C �.r; t/: (8.27)

8.3.1 Construction of the KPZ Equation by Physical Arguments

We want to explain, among other mechanisms, ballistic growth in a continuous
description that is more general than the model on a square lattice presented above
(Sect. 8.1.2). In ballistic growth atoms are frozen as soon as they make contact
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Fig. 8.8 Transposition of the
ballistic growth mechanisms
into a system of continuous
growth. The growth
increment has a components
normal and parallel to the
local normal of the interface

dh

Fdt

h  Fdt

with the surface. We assume that the line passing through two atoms in contact
at the interface can have a component parallel to the interface (black atom on
Fig. 8.4) unlike the random deposition mechanism (Fig. 8.6). This microscopic
model therefore results in a lateral growth, the effects of which we attempt to
characterise in this new equation. This mechanism of growth by ballistic deposition
can be transformed to a continuous description in which a growth increment ıh
normal to the average direction of the interface is made up of two components; one,
F ıt , parallel to the local normal of the interface and the other lateral, jrhjF ıt ,
perpendicular to the local normal (Fig. 8.8).

An expression for ıh can be extracted from this:

ıh D F ıt �1C .rh/2�1=2 � F ıt
�

1C .rh/2
2

�

(8.28)

illustrating that the lateral growth can be taken into account by a term of the form
.rh/2. If � > 0 in the KPZ equation, this term has the effect of reinforcing the local
gradient of the interface. This effect is opposite to that of r2h which smooths out
irregularities.

8.3.2 KPZ Exponents from Scaling Arguments

As for the Edwards–Wilkinson equation we can use the fact that the KPZ equation
(8.27) must be invariant under changes of scale:

@h.r; t/

@t
D �bz�2r2hC �

2
b˛Cz�2 .rh/2 C b�˛C z�d

2 �.r; t/ (8.29)
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where the two variables have been divided by b˛�z (remember that z D ˛=ˇ).
We now have three relations to determine two exponents. Since the nonlinear term
dominates over the linear term, one response is to ignore it, leading to ˛ D 2�d

3
and

ˇ D 2�d
4Cd . Unfortunately this result is wrong because we cannot ignore the linear

term. The reason for this is that here we have to account for the coupled variations of
the coefficients �, � andD when we change scale. We will see that a renormalisation
approach can overcome this difficulty. In particular it shows that the nonlinear term
as it appears in (8.29), is actually invariant under change of scale and that therefore:

˛ C z D 2: (8.30)

This relation is valid whatever the dimension. An application of the fluctuation-
dissipation theorem shows that ˛ D 1=2 in one dimension, meaning that the
interface evolves over time like a non correlated random walk. In one dimension,
we therefore obtain:

˛ D 1=2 ˇ D 1=3 and z D 3=2 [KPZ 1D]

This result, which uses (8.30) established by renormalisation, is in excellent
agreement with experimental values measured for ballistic deposition in one dimen-
sion. To study the behaviour in other dimensions, a more general renormalisation
approach is needed.

8.4 Dynamic Renormalisation

After their application to phase transitions at equilibrium, renormalisation methods
were quickly adapted to address nonequilibrium phenomena [4, 7]. The formalism
using diagrammatic methods is hard work, but the principle is the same as that we
presented in Chap. 3. We illustrate the principle of this approach for the case of
the KPZ equation (8.29) expresses the transformation of the KPZ equation by a
change in scale by a factor b. We said that it is not possible to ignore the variation
of the parameters �, � and D in this change in scale. Below we propose a dynamic
renormalisation approach which takes into account the coupling between these three
parameters. Equation (8.29) gives the following equations:

�! bz�2�

D! bz�d�2˛D

�! bzC˛�2�:

(8.31)

We know the exact solution of the Edwards–Wilkinson equation obtained for � D 0.
Here the objective is to study the KPZ equation by an expansion in powers of � about
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the solution to the Edwards–Wilkinson equation. Below we give an outline of this
approach.

8.4.1 Renormalisation Flow Equations

Let us take (8.24), which expresses the Fourier transform of the Edwards–Wilkinson
equation, and add the KPZ nonlinear term:

h.q; !/D 1

�q2 � i!
�

�.q; !/ � �
2

Z Z
ddkd˝

.2�/dC1 k.q�k/h.k;˝/h.q�k; !�˝/
�

:

(8.32)

8.4.1.1 Expansion About the Edwards–Wilkinson Equation

This expression can be expanded to express h in terms of powers of �. The Feynman
diagram method significantly lightens the calculation. We define a propagator
P�.q; !/ relating h and the noise �:

h.q; !/ D P�.q; !/�.q; !/: (8.33)

For � D 0, the propagator is that of the Edwards–Wilkinson equation (see (8.24)):

P0.q; !/ D 1

�q2 � i! : (8.34)

The perturbation calculation to third order in �, leads to:

P�.q; !/ D P0.q; !/�

2�2DP2
0 .q; !/

Z Z
ddkd˝

.2�/dC1 Œkq� Œk.q � k/�

P0.k;˝/P0.q � k; ! �˝/P0.�k;�˝/CO.�4/: (8.35)

Calculating the integral allows us to evaluate effective parameters, �eff and Deff,
such that:

P�.q; !; �;D/ D P0.q; !; �eff;Deff/CO.�4/ (8.36)

giving:

�eff D �
�

1 � �2 D
�3
Kd

d � 2
d

Z

dq qd�3
�

CO.�4/ (8.37)
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Deff D D
�

1C �2 D
�3
Kd

Z

dq qd�3
�

CO.�4/; (8.38)

where Kd is a numerical constant that depends on the dimension of space. It may
seem like we have achieved our goal, since we have established expressions of the
interdependence between the KPZ parameters �, � and D. However, an analysis of
the convergence of higher order perturbations shows that we have done nothing of
the sort. The expressions above are insufficient and it is necessary to renormalise by
expressing the auto-affinity of the interface in the asymptotic regime.

8.4.1.2 Renormalisation Flow

We therefore proceed to an infinitesimal change of scale. We take a scale factor
b D 1C ıl close to 1, so we can write bx as .1C xıl/. Substituting this expression
for bx into (8.31), we obtain scaling relations for the two effective parameters for
infinitesimal changes:

�0
eff D �eff Œ1C ıl.z� 2/� (8.39)

D0
eff D Deff Œ1C ıl.z � d � 2˛/� : (8.40)

Finally, by combining these with the results of the perturbation calculation (8.37)
and (8.38), we can establish two evolution equations for the parameters � and D,
to 4th order in � and for an infinitesimal change in scale (the integral in (8.37) and
(8.38) must be evaluated with limits q D 1 � ıl to q D 1):

d�

dl
D �

�

z � 2 � �2 D
�3
Kd

d � 2
d

�

(8.41)

dD

dl
D D

�

z � d � 2˛ C �2D
�3
Kd

�

: (8.42)

The parameter � is only affected by the change in scale:

d�

dl
D � ŒzC ˛ � 2� : (8.43)

It is worth noting that the quantity g D �2D=�3, which we call a coupling constant,
plays a special role in the interdependence of the parameters. It is possible to
establish its independent evolution equation from (8.41) and (8.43):

dg

dl
D 2 � d

d
g CKd

2d � 3
d

g3: (8.44)
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8.4.2 KPZ Regimes

We can now express the self-similarity of the interface, i.e. that all the parameters
are invariant under a change in scale, in other words that the right hand sides in
(8.41) to (8.44) are zero.

First of all, we recover the relation zC ˛ D 2, from (8.43).

8.4.2.1 KPZ in 1D

In one dimension (8.44) leads to two fixed points g�
1 and g�

2 :

g�
1 D 0 (unstable) and g�

2 D .2=Kd/
1=2 (stable): (8.45)

Unlike for phase transitions, here it is the stable fixed point such that � is non
zero, which interests us. Linearising around it leads to the exact 1D values we have
introduced:

˛ D 1=2 ˇ D 1=3 z D 3=2

8.4.2.2 KPZ in 2D

Two is the critical dimension of the Edwards–Wilkinson equation. The reader can
actually check that the flow (8.44) for g only gives the trivial fixed point g� D 0

and the perturbation calculation is insufficient to lead to a satisfactory fixed point.
Only a calculation with strong coupling, i.e. one that does not assume � is small,
can evaluate the fixed point parameters �, � and D and derive their exponents in
two dimensions.

8.4.2.3 KPZ in d > 2: A Phase Transition

In greater than two dimensions (d > 2), there is a non trivial critical point:

g�
2 D

�
d.d � 2/

2Kd.2d � 3/
�1=2

: (8.46)

The significant difference from the one dimensional (d D 1) case is that this fixed
point is unstable. This has the following consequences:

• If g is small (g < g�
2 ), i.e. if the nonlinear contribution in the equation is small,

then the system will converge towards the trivial fixed point g�
1 D 0. The system

will have an asymptotic behaviour identical to that of the Edwards–Wilkinson
equation, i.e. that of a flat interface.
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Fig. 8.9 Roughness as a function of coupling g obtained by numerically solving the KPZ equation
in three dimensions (after [12])

• If g is large (g > g�
2 ), i.e. if the nonlinear contribution in the equation is large,

g will tend to diverge under the effect of renormalisation. The effect of the
nonlinear term becomes relevant, but the perturbation calculation cannot evaluate
the exponents. In this case, the KPZ equation belongs to a new universality class.

Experiments and numerical simulations seem to show this transition, as shown
in Fig. 8.9.

How do the “strong coupling KPZ” exponents behave as a function of dimension?
Different conjectures have been suggested to explain the values of exponents
observed by numerical simulation in the case of ballistic deposition or its variants
(Eden model, “solid on solid” model, etc). As an example, we describe the
conjecture proposed by Kim and Kosterlitz [9] for a discrete “solid on solid” model.
This model is a version of random deposition modified by limiting the local gradient
of the interface to a maximal value. A site is chosen at random and an atom is
deposited provided that the height difference between the site and its neighbours
does not exceed a certain height of N atoms. Kim and Kosterlitz [9] proposed the
following relations:

˛ D 2

d C 3 ˇ D 1

d C 2 z D 2d C 2
d C 3: (8.47)

Let us now see how growth behaves in a more complex situation, that of
molecular beam epitaxy commonly called MBE. In this case, atoms arrive in
isolation, adsorb, diffuse, aggregate in the preferred sites, or possibly desorb. We
will discover that, despite its complexity, this growth mechanism can often be well
described by the KPZ equation.
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8.5 Molecular Beam Epitaxy (MBE)

Molecular beam epitaxy (MBE) refers to a family of techniques that share a way
of deposing material on a substrate atom by atom or molecule by molecule. It has
many applications. A number of discrete models have been proposed to describe
the growth method. Symmetry analysis suggests two types of continuous equations,
linear or nonlinear, which we will describe in turn. We should point out a paradox
in this scaling approach for MBE interfaces. Whilst the engineer or technician is
interested in the extreme planarity (flatness) of the interfaces that this methods
produces, the physicist is interested in rough interfaces. The deposition of low
energy molecules3 in conditions of low flux and high substrate temperature, leads
to an almost perfect relaxation of the interface. Most experiments designed to test
scaling theories have therefore been done on conditions of little practical interest.
However, the scaling approach to MBE has two areas of practical application. Firstly
it guides the search for conditions of two dimensional growth, that is to say which
lead to a flat interface. Secondly, it described well the formation of two dimensional
aggregates during construction of an atomic monolayer.

Compared to the previously discussed cases, here two new mechanisms are
considered: diffusion of atoms on the interface by displacement from site to site
and their possible desorption, that is to say their return to the gas phase.

In addition, the mobility of atoms here can depend on their state of contact with
the interface. In the classic terrace ledge kink (TLK) model represented in Fig. 8.9,
it is assumed, for example, that the only mobile atoms are those on terrace sites (T)
which have a single contact with the interface, or those on ledge sites (L) which have
two connections. Atoms on kink sites (K) which have three contacts are assumed
to be immobile. Unlike all the models of numerical growth we have mentioned
up to now, the TLK model is a model of realistic microscopic growth in which
physical characteristics can in principle be calculated if we know the nature of the
atoms and contacts. Predictions of this model can therefore be tested by physical
measurements.

8.5.1 Linear MBE Equation

We will address, in turn, the two new mechanisms that have to be taken into account,
desorption and then diffusion. We will then construct the equation for h and discuss
the relevance of the corresponding extra terms.

3In the following, we no longer mention the case of molecules. For simplicity we use the word
atoms. This does not restrict the generality of the system as long as it does not produce chemical
reactions such as dissociation.
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DiffusionK
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T

Fig. 8.10 Microscopic mechanism involved in molecular beam epitaxy (MBE). Compared
to previous cases, it involves two new mechanisms: diffusion of atoms on the interface by
displacement from site to site and their possible desorption i.e. return to the gas phase. In the
illustrated terrace ledge kink (TLK) model, three classes of sites are distinguished: terrace sites (T)
with a single contact with the substrate, ledge sites (L) with two connections and kink sites (K)
which have three connections

8.5.1.1 Desorption Term

In the microscopic description illustrated in Fig. 8.10, the atom’s interaction energy
determines the probability of desorption. We assume that desorption can be
characterised by an activation energy nE1, where n is the number of contacts of the
adsorbed atom and E1 is the interaction energy of one contact. The corresponding
term in the evolution equation is therefore of the form:

@h

@t

ˇ
ˇ
ˇ
desorption

D �B exp

�

�nE1
kT

�

(8.48)

In a continuous description of the interface, the number of contacts n is replaced
by the local curvature r2h. If the atom is in a trough or valley, it is less easily
desorbed than if it is at a peak. If the interaction energy nE1 is of the order or less
than kT , the exponential can be linearised (note also that n and r2h correspond to
the opposite of the local chemical potential):

exp

�

� nE1
kT

�

� 1 � nE1
kT
� 1 � ar2h � 1C b	.r; t/: (8.49)

To first order, up to a constant which will just add the deposition flux, the
desorption term is written

@h

@t

ˇ
ˇ
ˇ
desorption

D B r2h (8.50)

and behaves like the relaxation term in the Edwards–Wilkinson equation.
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8.5.1.2 Diffusion Term

To evaluate the diffusion term, we use the general expression of the diffusion
equation when the chemical potential is not related in a simple way to the diffusing
quantity (see Chap. 4):

@h

@t
D Ddiffr2	: (8.51)

By replacing the value of 	 by that given in (8.49), we obtain the diffusion term:

@h

@t

ˇ
ˇ
ˇ
diffusion

D �Kr4h: (8.52)

If we add the noise term � and the flux F of incident atoms, we obtain an equation
for growth with diffusion, but without a relaxation term:

@h

@t
D �Kr4hC F C �: (8.53)

Since this equation is linear, we can solve it by expressing its scale invariance, as in
Sect. 8.2.2. We obtain the following expressions for the exponents:

˛ D 4� d
2

ˇ D 4 � d
8

z D 4: (8.54)

Note that the value of the roughness exponent ˛ is high. High roughness implies
local gradients can be large, which seems to contradict our starting linear equation
that assumed small variations in h. In practice, if the roughness is large, we probably
should not neglect the relaxation and/or desorption terms.

8.5.1.3 Linear Equation

Adding the relaxation term to (8.53), we obtain a linear expression including all the
mechanisms present in epitaxy:

@h

@t
D � r2h�Kr4hC F C �: (8.55)

Let us summarise the meaning of each term:

• �r2h corresponds to the relaxation in the Edwards–Wilkinson equation, as well
as the desorption. These two mechanisms tend to smooth out the interface whose
curvature is r2h. The parameter � is the analogue of a surface tension.

• Kr4h is the expression of the diffusion of atoms at the interface. It is fourth
order due partly to the local chemical potential 	, which is itself proportional to
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the local curvature, and partly to the diffusion mechanism itself characterised by
�r2	. The parameterK plays the role of a diffusion coefficient.

• F accounts for the exchange with the gas phase. It measures the incident flux
minus the average desorption flux.

• � is the noise term. Physically it comes from for example the stochastic
adsorption and desorption.

Changing the scale by a of factor of b, we obtain:

@h

@t
D �bz�2r2h �Kbz�4r4hC F C b.z�d�2˛/=2�: (8.56)

From the first two terms, we can define a length LMBE characterising their relative
weights:

LMBE D
�
K

�

�1=2

: (8.57)

The behaviour of these two terms when the scale is changed identifies two
regimes:

• At small scales (b ! 0), i.e. at short times, the term bz�4 dominates:

Diffusion regime for �.t/ < LMBE i.e. diffusive behaviour (8.54).

• At large scales (b !1), i.e. long times, the term bz�2 dominates:

Desorption regime for �.t/ > LMBE i.e. Edwards–Wilkinson type behaviour.

Our custom being to be interested only in asymptotic behaviours, we should simply
ignore the diffusion regime and note that the corresponding term is not relevant.
However, this attitude, although conforming with our starting philosophy, is not
always in agreement with the practical situation. The length LMBE of the change
in regime should be compared to the characteristic size L of the real system
under consideration. Each of these two mechanisms in competition, desorption
and diffusion, is thermally activated, that is to say is controlled by energy barriers
characterised by an activation energy. The characteristic length LMBE is:

LMBE � exp

�
Edes �Ediff

2kT

�

: (8.58)

The thermal dependence of this length is related to the difference between the
characteristic activation energiesEdes of desorption and Ediff of diffusion. A simple
reasoning saying that it is inherently easier to overcome a diffusion barrier than a
desorption barrier (otherwise the atoms desorb before being able to diffuse) would
imply a positive difference and therefore an increase of LMBE with temperature.
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However, to compare the corresponding fluxes, we must take into account the nature
of the sites that dominate desorption and diffusion respectively (these sites may not
be the same).

8.5.2 Nonlinear MBE Equation

We already know a general nonlinear term, that of the KPZ equation (8.27).
Remember that this term expresses the irreversible nature of deposition in that
the interface is not invariant under exchange of the two media. It can describe the
nonlinear nature of growth mechanisms involved in MBE, except that of diffusion.
As we saw in the previous subsection, diffusion is the only new mechanism we have
to account for in MBE and we should therefore identify its associated nonlinear
terms.

8.5.2.1 Nonlinear Diffusion Term

The nonlinear terms to be taken into account must respect conservation of mass,
so they can be considered as the divergence of a current. However, the term .rh/2
does not fulfil this condition. To fourth order in the differential we can identify two
possible contributions:

r2 .rh/2 and r .rh/3 : (8.59)

The effects of the first term have been studied by several authors, which is not the
case for the second. Actually, no physical system seems to correspond to this second
term which is relevant at short times. Therefore we will take into account the first
term to form the following nonlinear equation:

@h

@t
D �Kr4hC �1r2 .rh/2 C F C �: (8.60)

This equation must be solved by the dynamic renormalisation method, just like the
KPZ equation in Sect. 8.4.

8.5.2.2 Solution by Dynamic Renormalisation

By following the same approach as for the KPZ equation (Sect. 8.4), we obtain the
following equations for the renormalisation flow:
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Table 8.1 Comparison of exponents of the diffusive regime predicted by the linear and nonlinear
MBE theories, for a two dimensional interface

Exponent ˛ ˇ z

Linear MBE equation (diffusive regime) 1 1=4 4

Nonlinear MBE equation (diffusive regime) 2=3 1=5 10=3

dK

dl
D K

�

z � 4CKd�
2
1

D

K3

6 � d
d

�

dD

dl
DD Œz � 2˛ � d�

d�1

d l
D �1 ŒzC ˛ � 4� ;

(8.61)

where Kd is the same numerical constant as in Sect. 8.4.1. These equations
determine a single non trivial fixed point, which leads to values for the exponents as
follows:

˛ D 4 � d
3

ˇ D 4 � d
8C d z D 8C d

3
: (8.62)

8.5.2.3 Comparison with the Linear Diffusive Regime

In practice interfaces often have two dimensions. In this case, Table 8.1 shows the
values of exponents of the diffusive regime (�.t/ < LMBE), obtained by the linear
and nonlinear models.

The results of the theory including the nonlinear term are more convincing
than that of the linear theory. For example the exponent ˛ is smaller, as is the
resulting characteristic slope of the roughness. Equation (8.60) describes well the
experimental reality of MBE growth without desorption. We can actually obtain it
from discrete models such as the TLK model illustrated in Fig. 8.10. In conclusion,
we have learnt that:

• If desorption dominates (� > LMBE), the Edwards–Wilkinson equation (8.17)
describes MBE well.

• If diffusion dominates (� < LMBE), (8.60) describes the growth well.

8.6 Roughening Transition

What is commonly called a roughening transition refers to the roughness of
a surface of a three dimensional solid, at equilibrium. In this way it is a bit
of a digression from the other sections in this chapter covering nonequilibrium
mechanisms. The topic is of great practical interest as we will see later, however
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its description requires a special treatment due to the two dimensional aspect of the
interface and the discrete nature of its fluctuations. Since it acts as an equilibrium
phase transition, we can examine its universality class.

As h is a natural choice of order parameter, we could think of following the
example of the Ising model since it corresponds to a scalar order parameter.
However, as we have already pointed out, the energetic term driving growth is
related to the local curvature of the surface, linear in h. In practice, as we will show
below, the combination of a continuously varying order parameter and the discrete
nature of fluctuations produced by a periodic potential, leads to a system of XY
type, which has a two component order parameter. An analogy can be established
with the model for two dimensional melting described by Nelson and Halperin [13]
or with the magnetic 2D XY model, which we described in Sect. 3.6.5.

In this description we showed the microscopic excitations leading to the tran-
sition are vortex/antivortex pairs. Table 8.2 compares different mechanisms of
excitation responsible for the KT transition in different physical systems where the
XY model in two dimensions can be applied [14,16]. A direct physical analogy with
two dimensional melting can be made with the aid of pairs of screw dislocations
(Fig. 8.11). A screw dislocation in a solid is a helical defect corresponding to a shift
of one crystalline plane as we go round one turn of the defect axis.

8.6.1 Continuous Model

We want to describe the interfacial energy of a solid that has reached an asymptotic
growth regime. As in the previous descriptions, we aim to transform the discrete
nature of the solid into a continuous model. We assume that the energy of
the interface is simply proportional to its surface area, with the proportionality
coefficient being the surface tension �. In two dimensions, the area element is

Table 8.2 Comparison between different excitation mechanisms of Nelson–Halperin type leading
to a Kosterlitz–Thouless transition

Physical system Excitations leading to KT transition

Magnetism Vortex/antivortex pairs
Superconductivity/superfluidity Vortex/antivortex pairs
Melting of a 2D solid Dislocation/anti-dislocation pairs
Roughening transition Screw dislocation/anti-screw dislocation pairs

Fig. 8.11 Screw
dislocation/anti-screw
dislocation pair

Dislocation + Dislocation –
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h

1C .rh/2
i1=2

dxdy, so the energy has the form:

E D �
ZZ

dxdy
h

1C .rh/2
i1=2

: (8.63)

If the gradient remains small, to first order in .rh/2 we obtain:

E D �L2 C �

2

ZZ

dxdy .rh/2 : (8.64)

This is formally identical to (3.60), simply relating this energy to the stationary
state of the Edwards–Wilkinson equation, (8.17), under the effect of surface tension.
It predicts that there is no transition: roughness exists at all temperatures. Since
d D 2 is the critical dimension of the Edwards–Wilkinson equation, the growth of
roughness as a function of size is marginal (that is to say logarithmic, log.L/, and
not a power law).

This equation does not explain numerical simulations that clearly show that a
transition does exist. The main difference between the simulations and (8.64) is the
discrete nature of the solid. In general this difference is not relevant (see Chap. 3)
for transitions belonging to a universality class. Here, we expect a non universal XY
type transition in two dimensions. In this case the microscopic features, such as the
periodicity of the lattice, are crucial for the transition. We therefore need to add a
periodic term to the energy. We will also ignore the constant term as it plays no role
in the transition:

E D
ZZ

dxdy

�
�

2
.rh/2 � V cos

�
2�h

a

��

: (8.65)

8.6.2 Renormalisation

The renormalisation procedure is the same as for equilibrium phase transitions.
A differential change in scale leads to the flow (8.67), introducing two reduced
variables:

x D 2a�

�kT
y D 4�V

kT

(8.66)

dx

dl
D y2

2x
A

�
2

x

�

dy

dl
D 2y x � 1

x
;

(8.67)

where
 is a characteristic length used in the renormalisation. The complex function
A.u/ is only used in the region near u D 2 in which its value is A.2/ D 0:398.
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These flow equations were established by Kosterlitz and Thouless for the 2D XY
model (see Sect. 3.4.5 for the magnetic homologue). We have good evidence that
this model corresponds well to the physical system being studied. The results show
the following:

• A transition, the roughening transition, occurs at temperature

TR D 2a�

�k
: (8.68)

• Far below this temperature, the interface is flat, whereas near TR the roughness
diverges, independently of the system size L, as:

w.T ! TR/ � .TR � T /�1=4: (8.69)

• For temperatures T < TR , the correlation length �.T < TR/ remains infinite.
This feature of the XY model means that it remains critical as long as the
temperature does not reach the transition temperature. Remember that in the
2D XY model, there is never long range order at finite temperature. The transition
switches the system from a state of finite order containing few defects to a totally
disordered state.

• When the temperature is very close to the transition, the roughness saturates at
a constant value which it keeps beyond the transition temperature. The system
then recovers the logarithmic behaviour predicted by the Edwards–Wilkinson
equation (8.17):

w.T > TR/ � log.L/: (8.70)

• In this region (T � TR), the correlation length diverges in the usual way for the
KT transition:

�.T > TR/ � exp

 

B T
1=2
R

.T � TR/1=2
!

where B � 1:5: (8.71)

This complex behaviour is well reproduced by numerical simulations [17] as
illustrated in Fig 8.12.

As well as numerical simulations, several experimental results confirm the
existence of the roughening transition. Experiments cannot be carried out on all
solids, because for many materials TR is near to or above the melting temperature,
making observation of the transition impossible. Examples of reliable observations
include indium (110) at TR D 290 K, lead (110) at TR D 415 K and silver (110) at
TR D 910 K [10]. Various techniques are used, but they most often use reflection
high-energy electron diffraction (RHEED). The properties, notably the transition
temperature, depend on the orientation of the crystal observed, as there is no reason
why the associated surface tension should be the same for different crystal faces.

Another physical system giving very interesting information is that of solid
helium 4, detailed studies on which have been done [5], showing a roughening
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0.545
0.571

0.60
0.632

0.667

Fig. 8.12 Evolution of surface roughness as a function of temperature for a “solid on solid”
simulation. Numbers show the reduced temperature at the characteristic interaction energy J . The
transition (saturation of roughness) is expected at T=J D 0:62 (after [17])

transition at 1:28K. The experiments measured the crystal growth velocity around
this transition. The growth is very slow below 1:2K, increases rapidly and then
saturates above 1:3K. When the interface is flat (T <TR), the only way for incident
atoms to irreversibly aggregate is nucleation, that is to say the rare statistical
formation of a cluster which is large enough to be stable. Such cluster formation
is a rare event and the process is slow. Also, when the interface is rough, incident
atoms easily find adsorption sites where they are irreversibly fixed (for example kink
site K in Fig. 8.9). The roughening transition also involves profound changes in the
dynamics of the interface, which we will briefly describe in the next section.

8.6.3 Nonequilibrium Roughening Transition

Now that we know the relevance, in the non universal case of the transition, of the
periodic potential term modelling the crystal periodicity, we can include it in an
evolution equation such as KPZ equation (8.27):



288 8 Growth and Roughness of Interfaces

@h.r; t/

@t
D �r2hC �
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.rh/2 � 2�V

a
sin

�
2�h

a

�

C F C �.r; t/: (8.72)

Dynamic renormalisation analysis shows that the term .rh/2, characteristic of the
KPZ equation, is relevant. However, in practice, it hardly changes the predictions
obtained by assuming � D 0. Within this hypothesis we can study the growth
velocity and characterise it by its mobility 	interface:

	interface D 1

F

�
@h

@t

	

: (8.73)

The analysis distinguishes two regimes:

• Deposition regime where F is finite.
In this case, the roughening transition is smoothed out by the effect of depo-
sition, and the growth regimes previously proposed are recovered (for example
Edwards–Wilkinson regime for MBE on long scales and times).

• Equilibrium regime where F is finite or very small.
In this case, the roughening transition exists:

– At high temperature (T > TR), the interface it rough and its mobility high.
– At low temperature (T < TR), the interface is flat and its mobility small. This

is the nucleation growth regime which was studied in 1951 by Burton et al. [2].
The, very nonlinear, nucleation regime has been quantitatively described by many
authors [15].

8.7 Universality Classes of Growth

In this section we summarise results obtained from continuous equations describing
growth mechanisms. The equations are grouped into universality classes according
to their symmetries. For mode details on this classification, we refer the reader to
the excellent work of Barabasi and Stanley [1].

The general form of equations of growth,

@h

@t
D G C � (8.74)

contains two terms: the deterministic termG and the stochastic term �. These terms
have two types of characteristic properties:

• The deterministic term G is linear (L) or nonlinear (N). We have met two types
of linear terms: the Edwards–Wilkinson linear term r2h which we call (L2) and
the linear term r4h related to the diffusion which we call (L4). We have also met
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Table 8.3 Main universality classes of growth. In the case of KPZ, the exponents are evaluated
numerically for d > 1 (see Table 8.1)

Symmetries Name Equation Exponents

G � ˛ ˇ z

– D Random
@h

@t
D � – 1=2 –

L2C D EW
@h

@t
D �r2hC �

2� d

2

2� d

4
2

(Edwards–
Wilkinson)

N2D D KPZ(Kardar
@h

@t
D�r2h 1=2 (dD1) 1=3 (dD1) 3=2 (dD1)

Parisi Zhang) C�

2
.rh/2 C �

L4C D MBE 1
@h

@t
D �Kr4hC �

4� d

2

4� d

8
4

linear diffusion
with deposition

L2C C EW with
@h

@t
D �r2hC �d �d

2
�d
4

2

diffusive noise

L4C C linear diffusion
@h

@t
D �Kr4hC �d

2� d

2

2� d

8
4

without deposition

N4C D MBE 2
@h

@t
D �Kr4h

4� d

3

4� d

8C d

8C d

3

nonlinear C�1r2
h

.rh/2
i

C �

with deposition

N4C C MBE 3
@h

@t
D �Kr4h 1=3(dD1) 1=11 (dD1) 11=3 (dD1)

nonlinear diffusion C�1r2
h

.rh/2
i

C �d
2� d

2
(d > 1)

2� d

8
(d > 1) 4(d > 1)

without deposition

two nonlinear terms: .rh/2 in the KPZ equation, denoted (N2), and r2
h

.rh/2
i

for diffusion, denoted (N4).
• The number of atoms at the interface can be conserved (C) or not (D) for each

of the terms G and �. For G, only the nonlinear KPZ term, .rh/2, does not
conserve the number of atoms. Therefore there is no LD type universality class
for a linear equation that does not conserve atoms. Regarding the noise, we have
met two sources of noise: the noise, �, related to the atomic deposition process
(non conservative, D) and the noise, �d , related to diffusion (conservative, C).

The main universality classes can be inferred as follows in Table 8.3.
The values of the exponents deduced, for the equations we have studied in this

chapter, are collected in Table 8.4.
In conclusion, we emphasise that a two dimensional interface is both the most

common case in practice and the most difficult theoretically. Two effects combine to
make the job difficult for theorists. One is the fact that d D 2 is the critical dimension
of the basic (Edwards–Wilkinson) equation (see Table 8.3), and the other is that
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Table 8.4 Numerical values of exponents for d D 1, 2 and 3 for the main equations

Equation d D 1 d D 2 d D 3

˛ ˇ z ˛ ˇ z ˛ ˇ z

EW 1=2 1=4 2 0 0 2 �1=2 �1=4 2

KPZ 1=2 1=3 3=2 0:38 0:24 1:58 0:30 0:18 1:66

MBE 2 with deposition 1 1=3 3 2=3 1=5 10=3 1=3 1=11 11=3

(N4CD)
MBE 3 with deposition 1=3 1=11 11=3 0 0 4 �1=2 �1=8 4

(N4CC)

the roughening transition occurs specifically in two dimensions, with its complex
non universal features. This leads to a wide variety of possible behaviours [1]
as confirmed by experiments and numerical simulations. When the interface has
a single dimension, the exponents ˛ and ˇ are large and the interface is usually
rough. If we imagine a three dimensional interface in four dimensional space, the
exponents are small or negative, leading to a flat interface. Hopefully we have
convinced the reader that our three dimensional space provides the largest variety
of growth mechanisms. Readers will also realise that this domain has many avenues
to be explored and groundwork to be done, maybe by themselves ... we wish them
success!
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Chapter 9
Dynamical Systems, Chaos and Turbulence

We continue our exploration of systems without characteristic scales and specific
methods into the field of dynamical systems, with the analysis of chaotic and
turbulent behaviours. Due to the sheer magnitude of this field, our presentation
will be deliberately selective, focusing only on critical aspects and behaviours and
associated scaling laws. A brief introduction to the theory of dynamical systems
takes us first of all to the important concept of bifurcation, a qualitative change in the
asymptotic dynamics. An anecdotal but familiar example is that of a “dripping tap”
whereby as we turn the tap off water flow passes abruptly from a continuous stream
to a periodic regime of drops. This concept of bifurcation is closely connected
to that of instability, which we will illustrate in a very rich experimental system,
Rayleigh–Bénard convection, shown in Fig. 9.1. We will show that bifurcations
are analogous to phase transitions, in terms of scaling or universality properties
(Sect. 9.1). We will then go through the concept of chaos, an extraordinary type
of dynamics that is perfectly deterministic but nevertheless unpredictable on the
long term. We will see that chaotic dynamical systems are temporal analogues of
critical systems, since the smallest of perturbations end up having repercussions at
all scales. This sensitivity removes all usefulness from the concept of a trajectory,
which must be replaced by a statistical description in terms of invariant measures.
So analysis does not give details of a particular trajectory but global properties of the
flow. Characteristic scenarios have been used to describe the transition to chaos, for
example in Rayleigh–Bénard convection. As in the study of phase transitions, the
relevant questions are considered to be to look for universal properties, determine
universality classes and in the same way structural stability analysis of the models
(Sect. 9.2). We have seen in Sect. 4.4.1, how the description of diffusion was
justified by the chaotic properties of the movement of diffusing particles when
viewed at the microscopic scale. More generally, chaos at the molecular scale
validates the foundations of equilibrium statistical mechanics and is also behind that
recently proposed to develop statistical mechanics of systems far from equilibrium
(Sect. 9.3). We will also talk about a particular chaotic behaviour, intermittency,
which has remarkable scaling properties (Sect. 9.4). We will end this chapter with
a brief presentation of turbulence and its hierarchical structure – a cascade of

A. Lesne and M. Laguës, Scale Invariance, DOI 10.1007/978-3-642-15123-1 9,
© Springer-Verlag Berlin Heidelberg 2012
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T

l = 2h

h

T + DT (Heating)

Fig. 9.1 Rayleigh–Bénard experiment. By heating from below a liquid film confined between
two horizontal glass plates, we maintain an adjustable vertical temperature gradient. The existence
of an instability is intuitively understood from the fact that hotter, so less dense, lower regions of
liquid tend to rise, whereas relatively heavy upper regions of liquid tend to sink. This mechanism
is dampened by thermal diffusion and viscous friction such that convective motion only appears
if the temperature gradient is large enough. Quantitatively this instability threshold is expressed
by the value of a dimensionless parameter, the Rayleigh number Ra D g˛h3�T=��, depending
on the gravitational acceleration g; temperature difference �T and separation h between the two
plates; kinematic viscosity �, isobaric thermal expansion coefficient ˛ and thermal diffusivity �
of the liquid (with � D �=Cp where � is the thermal conductivity and Cp the heat capacity per
unit volume) [16, 32, 55]. For Ra > Rac � 1;700, circular convection currents appear whose size
is fixed by the fluid film thickness h. The liquid is all moving, but in an organised way, forming
a steady state structure. If �T (and so Ra), is increased further, secondary instabilities appear.
Waves of period � start moving along the convection cells deforming their linear sides into sine
waves and then subharmonic waves of period 2� appear. If the experimentalist is very careful
a few further period doublings can be observed. The succession of these instabilities leads to a
chaotic regime (Sect. 9.2.3). We describe this transition to chaos in Sect. 9.2.4. If we continue
to increase �T , a fully developed turbulent regime is observed. This is qualitatively analogous to
hydrodynamic turbulence which we will address in Sect. 9.5, but is relatively simpler because the
temperature and density of the fluid are constant.
The case where the upper surface is open to the air is different, because surface tension effects are
important, even dominant, and another dimensionless number (Marangoni number, Mg) controls
the fluid dynamics

eddies – leading to ideal scaling laws, namely Kolmogorov theory and, more
recently, the multifractal model (Sect. 9.5).

9.1 A Different View of the Dynamics of a System

9.1.1 A “Geometry” of Dynamics

The natural approach in studying the dynamics of a physical system is to solve
the equations of motion as a function of the initial conditions, exactly following the
trajectory1 of the system over a finite duration. This approach is not always practical,
for the simple reason that it is often not possible to analytically integrate the

1Let us emphasize at the start that throughout this chapter, “trajectories” are trajectories in phase
space not in real space (unless the two spaces coincide).
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differential equations governing the movement. Poincaré showed that a Hamiltonian
system composed of N interacting bodies (for example the solar system where
ND10) is in general not integrable if N � 3. It is even more difficult if we are
interested in the system behaviour as t ! 1 (which we called the asymptotic
regime) and its dependence on the initial conditions. Perturbative methods are only
valid on short times. Numerical integration possible today does not remove this
difficulty because it also can only follow the dynamics over a limited duration.
This is because it relies on discretisation schemes which may introduce uncontrolled
deviations and numerical errors due to the finite precision of the machine (“numeri-
cal noise”) can be amplified by the nonlinear dynamics and grow exponentially fast
with the integration time. Other difficulties are added when we return to the physical
reality, due to the fact that, since the initial condition is never known with infinite
precision, the dynamics of a bundle of trajectories must be followed. In addition,
the dynamical model itself is only a simplification of the real dynamics, since
influences judged as secondary are always left out, but this judgement, although
justified for short times, can turn out to be incorrect at long times. We should
therefore think of a set of evolution laws, derived by perturbing the initial model.
In conclusion, determination of individual trajectories can not form predictions of
long term behaviour of a physical system. These were the problems facing Poincaré
when he was trying to answer the question of the stability of the solar system. He
therefore adopted a geometrical and global point of view, the basis of the modern
theory of dynamical systems [69].

In summary, the defining characteristic of the theory of dynamical systems,
compared to mathematical analysis of ordinary differential equations (the approach
mentioned at the beginning of this section), is to address the following questions, of
great interest to physicists trying to make reliable and robust predictions:

• What is the long term behaviour of the system?
• How is it changed if we slightly alter the initial condition?
• What does it become if the evolution law itself is perturbed?

9.1.1.1 Fundamental Concepts of Dynamical Systems

The first step in modelling a physical system consists of describing its instantaneous
state by a set of variables, which we denote in shorthand as x, not to be confused
with a position in physical space. The set X of these points x, each representing a
possible configuration of the system is called the phase space. Note that this set will
depend on the particular modelling and therefore the observation scale.

A continuous dynamical system is therefore a deterministic model of evolution of
the form Px.t/ D V Œx.t/�, where the dot means the derivative with respect to time t .
For example, the evolution equation m Rx C � Px C U 0.x/ D 0 following from the
principle of Newtonian dynamics applied to a damped oscillator of massm, friction
coefficient � and potential energy U.x/, takes the form of a dynamical system:
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x*
x1

x0 x2

Fig. 9.2 Discretisation by “Poincaré section”. We keep only the trace of a continuous time
evolution in a section of phase space transverse to a periodic trajectory (a planetary orbit in
Poincaré’s original work), here in bold. Instead of studying a trajectory x.t/, we study the sequence
of points of intersection .xn/n�0 with this section. Note that this discretisation is intrinsic to the
dynamics (the “first passage time” taken to pass from xn to xnC1 depends on n and the trajectory
under consideration). The presence of a periodic trajectory is not an absolutely necessary condition:
it is invoked to ensure that neighbouring trajectories will actually recross the chosen section

Œ Px D v; Pv D �U 0.x/=m� �v=m� of two variables x and v. Another example is that
of the system of equations obtained in the field of chemical kinetics [47].

One of the fundamental ideas of the theory of dynamical systems is to describe,
not a particular trajectory over a finite time, but the set of trajectories (in phase
space) which we call the flow. It is this global knowledge that will enable prediction,
at least qualitatively, of the asymptotic behaviour of the system.

We also use2 discrete models of evolution: xnC1 D f .xn/. For example, models
of population dynamics (n is then the number of generations) and discrete dynamical
systems obtained by the method called Poincaré section illustrated in Fig. 9.2.

9.1.1.2 Conservative and Dissipative Systems

An important distinction is that separating conservative and dissipative systems.
Conservative systems are Hamiltonian systems with conserved total energy and
dissipative systems are all the rest, in which trajectories evolve in phase space to

2There is an important difference to understand intuitively between continuous and discrete
dynamical systems. Trajectories of an autonomous (i.e. where V does not depend explicitly on
time) continuous dynamical system can only cross or meet themselves at fixed points, which
they only reach asymptotically. This topological constraint does not exist for discrete trajectories
generated by a transformation. Given a discrete dynamical system in d dimensions, continuous
dynamical systems generating dynamics whose trace obeys this discrete dynamical system take
place in a dimension strictly larger than d , as explicitly shown in Fig. 9.2.



9.1 A Different View of the Dynamics of a System 297

particular subsets called attractors.3 They reduce to equilibrium states (fixed points)
if the system is isolated (i.e. not driven by any input of energy or matter). More
generally, dissipative systems are systems in which the dynamics is accompanied by
a reduction in the natural volume of phase space, whereas this volume is invariant
in conservative systems (Liouville’s theorem). The evolution of a dissipative system
can nevertheless lead to a non trivial asymptotic state if it is driven, that is if the
dissipation is compensated for by an injection of energy or matter. For example, in
the case of a chemical system, dissipation associated with the progress of a reaction
must be compensated for by the injection of reactants to observe a non trivial steady
state.

9.1.1.3 Fixed Points and Linear Stability Analysis

A fixed point of the dynamics (in continuous time) is a point x� 2 X such that
V.x�/ D 0, which corresponds to an equilibrium state. To determine the stability
properties of this equilibrium state, we study the evolution of a small perturbation
y0 of the equilibrium state, small enough that we can use the linearised evolution
equation: Py D DV.x�/ y, where y D x � x� is the deviation from the equilibrium
point. Integrating this directly gives: y.t/ D etDV.x

�/ y0. Trajectories will approach
x� in directions of eigenvectors of DV.x�/ that are associated with eigenvalues
with strictly negative real parts, called the stable directions. On the other hand,
trajectories will move away from x� in the unstable directions, associated with
eigenvalues with strictly positive real parts. If all the eigenvalues have non zero
real parts, it can be demonstrated that the flow is equivalent to the linearised flow
and analysis of the matrix DV.x�/ will therefore be sufficient to determine the
behaviour of trajectories in the vicinity of x�. On the other hand, the marginal
situation, in which one or more of the eigenvalues has a zero real part, is singular
and associated with bifurcation which will be discussed in Sect. 9.1.2.

In the case of a system in discrete time, x� is a fixed point if it satisfies
f .x�/Dx�. The linear evolution is written ynC1 D Df.x�/ yn where yn D xn�x�
and where Df.x�/ is the Jacobian matrix for the transformation f of the fixed
point x�. Therefore, the stability of the fixed point in the direction of an eigenvector
of Df.x�/ is obtained by comparing the modulus of the associated eigenvalue 	
with 1: stable directions are those for which j	j < 1. In this discrete case, the
condition for which the flow is equivalent to the linearised flow is that no eigenvalues
have modulus 1.

3The intuitive concept of an attractor A � X has appeared in various mathematical formulations,
more of less strict depending on the context and the authors. They share the condition of invariance
(f .A / D A in discrete time) and the fact that A “attracts” (strictly it is the limit ensemble) all
or some of the trajectories passing nearby. This means that the study of asymptotic behaviour of
trajectories becomes the study of that of the dynamics restrained to A . See [59] for an in depth
discussion of the concept of attractor and the different definitions proposed.
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9.1.1.4 Limit Cycles and Attractors

A limit cycle is a periodic trajectory asymptotically attracting all trajectories passing
near it. At long times, all trajectories starting from a point near a limit cycle will
therefore have an oscillation behaviour with the same frequency and form as that
of the limit cycle. A limit cycle is the simplest case of an asymptotic regime that
does not reduce to an equilibrium state. A typical example is the following, given in
Cartesian and polar coordinates respectively:

8

<

:

Px D ax.r0 �
p

x2 C y2/ � !y

Py D ay.r0 �
p

x2 C y2/C !x
”

8

<

:

Pr D ar.r0 � r/

P
 D !:
(9.1)

If a < 0, the fixed point .0; 0/ (i.e. r D 0) is stable and the cycle r D r0 is
unstable, i.e. a perturbation ır is amplified over time. If a > 0, the fixed point is
unstable, but the cycle r D r0 (with angular velocity !) has become stable. It can be
explicitly verified in this example that a D 0 is a special case, which we will return
to in Sect. 9.1.2 under the name of Hopf bifurcation. The eigenvalues are complex
conjugates (˙i!) and their real parts cancel.

Note that a limit cycle, due to its status as an attractor, corresponds to a robust
oscillation behaviour: its period and amplitude are not permanently affected by a
perturbation, the influence of which eventually ends up as just a phase shift.

More complex asymptotic regimes exist than fixed points and limit cycles. In
conservative systems, quasiperiodic regimes are often seen, which have several
incommensurable frequencies: x.t/ D '.!1t; : : : ; !nt/. Amongst dissipative sys-
tems, where the asymptotic dynamics is mainly governed by dynamics constrained
to attractors, the most notable example is that of strange attractors associated with
chaotic dynamics (Sect. 9.2).

9.1.2 Bifurcations

The global “geometric” approach of asymptotic dynamics taken by the theory of
dynamical systems, lead to the key concept of bifurcation. By this term we mean
all qualitative changes in the asymptotic dynamics observed when a parameter �
of the dynamics is varied. The value � D �0 where the change is produced is
called the bifurcation point. This concept has been particularly exploited in the case
of dissipative systems, where a bifurcation corresponds to a qualitative change in
the attractor (bifurcation theory). This change can be visualised on a bifurcation
diagram representing the attractor as a function of the parameter �.
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9.1.2.1 Experimental Realisation

The parameter controlling the asymptotic dynamics (which here we call control
parameter) is related to the amplitude of the nonlinear amplification terms, rate
of injection of energy, amplitude of the nonlinear saturation terms and size of
dissipation. These first two terms have a destabilising effect, whereas the other
two counterbalance these. The qualitative analysis of the phenomenon is enough to
identify the different mechanisms involved in the dynamics, but a step of modelling
is necessary to elucidate the dimensionless control parameter encapsulating the
result of their competition. In this way, we have met the Péclet number in Sect. 4.1.6,
Rayleigh number in Fig. 9.1 and we will see the Reynolds number in Sect. 9.5.2.
In practice, it is usually the experimental device which prescribes the adjustable
parameter � (for example the temperature difference �T in the Rayleigh–Bénard
experiment). The parameter � is varied slowly enough that the system has the time
to stabilise to its asymptotic regime for each value of �.

An initial example is that of secondary instabilities observed in the Rayleigh–
Bénard experiment (Fig. 9.1). If we parametrise the shape of the circulating
convection currents and study the temporal variation of the parameters, each
instability appears as a bifurcation during which a limit cycle is destabilised and
replaced by a cycle with double the period. Bifurcations can also be observed in
the continuous flow of liquid between concentric cylinders rotating at different
velocities (Couette–Taylor problem) [18]. Another famous example is that of a
“dripping tap” where, on decreasing the water output, we pass from a regime where
the jet is continuous to periodically falling drops [57, 67, 78]. We also mention the
bifurcation observed when we tilt a sheet of corrugated iron on which a bead has
been placed. At a critical incline, the stable and unstable positions join and there is
no longer any stationary positions because the incline is too steep and the bead rolls
down the sheet. Many examples of bifurcations are found in chemistry, for example
the Belousov–Zhabotinski reaction (Sect. 9.2.1) can start spontaneously oscillating
[47, 79]. We also find bifurcations in biology, in population dynamics [61] as well
as at the cellular scale, for example in the glucose cycle, enzymatic reactions or in
the activity of certain neurons [34].

9.1.2.2 Mathematical Analysis

Dynamical systems describing real dynamics usually take place in phase spaces of
dimension greater than 1. However, amazingly the dynamics near a bifurcation is
dominated by modes that become unstable, enabling the dynamics to be reduced
to a system in 1 or 2 dimensions (see Sect. 9.1.4 for details). In the case
of spatiotemporal evolutions, as we have seen in the case of Rayleigh–Bénard
convection, the problem must be reduced to purely temporal dynamics of amplitudes
or other parameters of spatiotemporal solutions of the given parametrised form [55].
So explicit treatment of concrete examples often starts with a step reducing the
dynamics. Here we assume that this step has already been made.
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The simplest entirely identified case is that where the attractor before bifurcation,
(for � < �0), is a stable fixed point x0.�/, so the eigenvalues of the stability matrix
DV Œx0.�/� all have strictly negative real parts. Destabilisation occurs at � D �0,
when (at least) one eigenvalue crosses the imaginary axis. In the case of a discrete
dynamical system, a bifurcation is produced when the largest modulus eigenvalue(s)
cross the unit circle. 	1.�/ being the eigenvalue with the maximum real part (or
maximum modulus in the discrete case), we can summarise a bifurcation situation
as follows:

• In continuous time: Re	1.�/ < 0 if � < �0, Re	1.�0/ D 0.
• In discrete time: j	1.�/j < 1 if � < �0, j	1.�0/j D 1.

The references [71] and [17] give complete presentation of bifurcation theory.
Here we will limit ourselves to giving a few mathematical examples which are
among the most representative and that are involved in the transition to chaos, as
we will see in Sect. 9.2.4. The universality and therefore the scope of these models
will be discussed in Sect. 9.1.4.

9.1.2.3 A Few Typical Bifurcations

We first mention a bifurcation that we will return to in Sect. 9.4.1 in the context
of intermittency: the saddle-node bifurcation (also sometimes called tangential or
fold bifurcation). It corresponds to the collision of two fixed points, one stable and
one unstable, followed by their “annihilation”. This is the bifurcation observed in
the example of a bead on an inclined sheet of corrugated iron. A typical model is
presented in Fig. 9.3.

x

x

y

m0 m
m

Fig. 9.3 Left: Saddle-node bifurcation observable in the evolution Px D ���0Cx2. For � < �0,
we have two fixed points,

p
�0 � � (unstable) and �p

�0 � � (stable). They collide at �0 and
disappear for � > �0. Arrows indicate the instability of the upper branch and stability of the lower
branch. Right: Hopf bifurcation observable in the evolution Pr D r.� � r2/, P
 D !. The branch
r � 0 is stable for � < 0 and destabilises at �0 D 0 being replaced by a limit cycle r.�/ D p

�

(as attractor)
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Fig. 9.4 Period doubling
bifurcation (pitchfork
bifurcation) in discrete time.
It is for example observed in
the evolution xnC1 D 1��x2n
at �0 D 3=4. Here the fixed
point x0.�/ is replaced by a
cycle of period 2:
x˙.�/ D f�Œx

�.�/�.
Arrows indicate the stable
branches

m0
m

X – (m)

X + (m)

X0 (m)

A second example is the onset of an oscillating regime corresponding to the
destabilisation of a fixed point in favour of a limit cycle. This is the bifurcation
observed in, for example, the dripping tap. We have seen a theoretical example in
Sect. 9.1.1 with the system PrD�r.r0 � r/, P
 D!. In this case, called subcritical
Hopf bifurcation, finite amplitude oscillations (rD r0) suddenly appear at the
bifurcation point, at �0D 0. Before bifurcation the cycle is present but unstable. In
the example shown in Fig. 9.3, the amplitude of the cycle is zero at the bifurcation
point (no cycle exists for � < 0) and the oscillating regime therefore continuously
connects with the equilibrium state. This case, shown in Fig. 9.3, is called a
supercritical Hopf bifurcation. In both cases, transfer of stability from a fixed point
to a limit cycle is produced when two complex conjugate eigenvalues cross the
real axis (or the unit circle for a discrete dynamical system). Their values ˙i!
(e˙i! in the discrete case) at the bifurcation point determine the period 2�=! of
the oscillating regime at the moment it appears. In the discrete case, the value
e˙i! D �1 must be treated separately. Since its value is real, the destabilisation
only involves one eigenvalue. We therefore observe a fixed point being replaced
by a cycle of period 2 (Fig. 9.4). If the discrete dynamical system is obtained
by a Poincaré section of a continuous dynamical system, this will show a period
doubling, during which a limit cycle is destabilised leaving a limit cycle with double
the period. This bifurcation is shown, for example, by the secondary instabilities in
Rayleigh–Bénard convection.

9.1.2.4 Sensitivity of Dynamics at Bifurcation Points

Bifurcations are critical points in the sense that they are very sensitive to perturba-
tions and noise. Consider the case of a bifurcation corresponding to an exchange of
stability between two attractors (opposite case from saddle-node bifurcation treated
in Sect. 9.4.1). If we apply a perturbation, even very small, to a system at the
bifurcation point, it will interfere with the competition between the two marginally
stable attractors on offer to the system. This will result in a response without
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characteristic scales (neither in duration nor amplitude), which is very different from
the linear response observed away from bifurcation points. This property leads us
to study in more detail the analogy between bifurcations and phase transitions and
critical phenomena encountered in the previous chapters.

9.1.3 Analogy with Phase Transitions

A bifurcation seems like the temporal version of a thermodynamic phase transition,4

where the “order parameter” M is related to the asymptotic state of the dynamical
system. Before the bifurcation (� < �0), x0.�/ is a stable fixed point and we can
always bring it to 0 by a change of variables such that M.�/ D x0.�/ D 0 if
� < �0. Above the bifurcation, the asymptotic state can be a fixed point x1.�/, in
which case M.�/ D x1.�/ ¤ 0, or even a cycle of amplitude r.�/, in which case
M.�/ D r.�/ > 0. In particular, in one dimension, the evolution Px D V.x/ can
be written Px D �@F=@x and the fixed points are therefore obtained by minimising
F.x/, in exactly the same way as the value of the order parameter is obtained by
minimising the free energy.

9.1.3.1 Asymptotic Regime and Thermodynamic Limit

The asymptotic limit t ! 1 is analogous to the thermodynamic limit. It also acts
as an idealisation corresponding to a limiting case which is never strictly reached,
but that we hope is a correct approximation to what happens at long but finite times.
Since in taking the limit we keep only the dominant terms, the description is both
simpler and more universal. It helps draw out the relevant concepts, for example
bifurcation, just like taking the thermodynamic limit is necessary for the system to
display clear-cut phase transitions.

In the Ising model, the thermodynamic limit does not commute with the limit
H ! 0; we have to take the magnetic field H to 0 after the thermodynamic
quantities have been determined to access the actual behaviour of the system. One
analogous difficulty is encountered here when the dynamical system depends on
a small parameter  in a singular way, in the sense that the system for  D 0

corresponds to qualitatively different dynamics (for example if  appears as a factor
of the time derivative). In this case, the limits t ! 1 and  ! 0 do not commute.
Therefore the bifurcation diagram obtained for  D 0 will be qualitatively different
from the limiting behaviour obtained by considering the attractor for values of
 tending to 0 [45]. Ensuring a correct treatment of such singular systems with

4Note that the analogy is with phase transitions in classical thermodynamics, described in a “mean
field theory” in the sense of neglecting fluctuations and where only the average order parameter is
written: the “critical exponents” of a bifurcation are always rational.
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several limits being involved together is one of the successes of renormalisation
methods [48].

9.1.3.2 Critical Exponents of a Bifurcation

As in all phase transitions where the system is poised between two regimes, a
bifurcation is the result of temporal critical properties. Consider an evolution Px D
V.�; x/ in one dimension, with x0 D 0 as a stable fixed point if � < �0 and with a
bifurcation at� D �0. For� < �0, the derivative @V=@x taken at x0 D 0 is negative
and can be written�1=�.�/. The linearised system is written Px D �x=�.�/ and has
exponential solutions x.0/ expŒ�t=�.�/�, depending on the initial condition x.0/.
The characteristic time �.�/ is the time required to reach the fixed point. It is also
the response time after which the system stabilises in a new equilibrium state after
a (small) stimulation. In other words, �.�/ is the relaxation time of the system.
At the bifurcation point, the derivative @V=@x.�0; 0/ is zero, corresponding to the
divergence of this characteristic time: �.�0/ D 1. This divergence of the time to
reach the attractor and, more generally, the characteristic time of the dynamics is a
general signature of bifurcation points. In our one dimensional example, the system
is written to lowest order Px D �cx2 where c is equal to .�1=2/ @2V=@x2.�0; 0/.
Integrating gives x D x0=Œ1 C x0ct�, which behaves as 1=ct at long times. We
therefore have an asymptotic regime that is scale invariant and independent of the
initial condition. This regime is characterised by the exponent 1. Summarising we
have:

� < �0 W dVdx .�; 0/ D � 1
�.�/

< 0 and x.t/ � e�t=�.�/

� D �0 W dVdx .�0; 0/ D 0; �.�0/ D1 and x.t/ � 1=t:
(9.2)

It could happen that all the derivatives @kV=@xk.�0; 0/ are zero for all k � n.
It can be shown that in this case we have a different exponent, equal to 1=n and
asymptotically the approach to the fixed point behaves as x.t/ � t�1=n.

9.1.3.3 Finite Size Effects

If trajectories are observed over a too short finite duration T , they may not yet
be perfectly stabilised on the attractor but only locally in its neighbourhood. This
deviation from the asymptotic behaviour will be more marked the closer a system
is to a bifurcation point, because the time taken to reach the attractor diverges at
bifurcation. So the bifurcation diagram obtained has distortions similar to those
observed on the phase diagram of a sample of finite size N . The sharp features
of the diagram, for example jumps or vertical tangents, disappear leaving instead a
continuous line without kinks. This is expected as trajectories of finite duration T
are regular with respect to variations in the control parameter � which is not the
case in the limit T !1 where singularities appear at bifurcation points.
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9.1.3.4 Summary of the Analogy

bifurcation  ! phase transition
t  ! r

duration T  ! size L
asymptotic regime  ! thermodynamic limit

divergence of characteristic time  ! critical slowing down

To conclude, we insist on the fact that this analogy is so profound it could be
seen as an identity: a phase transition is nothing other than a bifurcation in the
underlying microscopic dynamics, which will explore different regions of phase
space both sides of the transition. Bifurcations are thus the underlying dynamics
of phase transitions. A phase will be an invariant region in configuration space. It is
only exactly invariant in the thermodynamic limit. For finite size, we still could have
a few transitions between different regions, corresponding to a finite free energy
barrier and a blurred separation between phases.

9.1.4 Normal Forms and Structural Stability

The important result is that close to bifurcation, components of the evolution
in directions becoming unstable at the bifurcation point dominate the behaviour
[37]. This makes sense intuitively since in stable directions the dynamics relaxs
exponentially fast to zero. We therefore start by reducing the description to only
these marginally stable degrees of freedom, leading, for example, to a dynamical
system in one dimension if only one eigenvalue becomes unstable. A second result
is that the reduced system can then be reduced by conjugacy to a polynomial
evolution law, which we call the normal form of the bifurcation. It is a sort of
common denominator of all the dynamics that have this bifurcation and is actually
the simplest dynamical system in which it can be seen. Once the fixed point has
been transformed to x0 D 0 and the bifurcation point to �0 D 0, the normal forms
of two typical bifurcations5 of continuous systems are (Fig. 9.3):

• Saddle-node bifurcation: Px D � � x2.
• Hopf bifurcation: Pr D �r � r3, P
 D 1C ar2.
to which we add (Fig. 9.4):

5Other notable normal forms exist, but are associated with non generic bifurcations (the associated
bifurcation theorems involve equalities not inequalities):
– transcritical bifurcation: Px D �x � x2;
– pitchfork bifurcation: Px D �x � x3 for the supercritical case or Px D �x C x3 � x5 for the
subcritical case (Fig. 9.5).
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• Period doubling bifurcation, unique to discrete dynamical systems: f .x/ D 1 �
�x2 with here �0 D 3=4 and x0.�0/ D 2=3.

These bifurcations are generic6 in the sense that the bifurcation theorems describing
the systems where they occur only involve strict inequalities (involving the deriva-
tives of V.�; x/ or f�.x/ with respect to x and �, taken at the point (�0; x0.�0/))
[2, 3]. Therefore these remain true if we slightly change the evolution law for V
or f .

9.1.4.1 Normal Forms and Universality

Although proofs leading to normal forms and associated bifurcation theorems
are mathematical, their conclusion is most interesting for physicists: models with
the same normal form have qualitatively identical bifurcations. To understand the
implications of this result, we need to remember that a physical model is an
approximation, often quite rough, to reality. To build a model, a physicist voluntarily
puts on a partial blindfold in choosing to describe only a small number of quantities
and only consider a limited number of parameters. In doing so, everything that
happens outside the system or at different scales is taken into account in an average
(or negligible) manner. With this theory of normal forms, we see the appearance of
universality of properties envisaged by the theory of dynamical systems. In this way
we justify the claim that analysis of very simple, even simplistic, dynamical systems
can shed light on the behaviour of real systems.

We should nevertheless remember that the validity of normal forms is limited to
the vicinity of bifurcation points: a normal form describes the generic mechanisms
whereby the instability of the dynamics at .� D �0; x D x0.�0// develops, giving
way to another branch of steady states. It does not accurately reflect the mechanisms
that will control these steady states beyond the bifurcation point (�� �0).

9.1.4.2 Structural Stability and Modelling

This discussion of the theory of normal forms and its scope brings us to the more
general concept of structural stability or robustness. It proves to be essential in
modelling a physical phenomenon, since the phenomenon predicted by the model
should not significantly change if we slightly change the model. In other words, the
results of the model should be robust with respect to negligible influences and small
fluctuations of the parameters. A structurally stable model (with respect to a given
type of perturbations) is equivalent to all the perturbed models. Therefore its robust

6 Take a model depending on a real parameter a and a phase space X . The statement “for a < a0,
the solution . . .” is generic whereas the statements “for a D a0, the solution . . .” or “for a � a0,
the solution . . .” are not generic since a small variation in a changes the hypothesis to another
hypothesis for which the statement is no longer true.



306 9 Dynamical Systems, Chaos and Turbulence

predictions have a chance of being reproduced in the observed reality. Note that
structural stability is implicit in all properties of universality, which is more general
in that any universal phenomenon is structurally stable, but a universality class can
contain systems whose “operating rules” can not be deduced from each other by a
small perturbation.

9.1.4.3 Bifurcation Theory and Catastrophe Theory

The concept of bifurcation is reminiscent of that of catastrophe, introduced and
developed (earlier) by Thom [82]. On one hand, bifurcation theory is more general
because it is not constrained to the dynamics Px D �rV.x/, produced by a potential
V.x/, with only fixed points at which the catastrophe theory applies. Qualitative
changes identified in bifurcation theory are not limited to changes in stability of
one or more fixed points, but also include the appearance of limit cycles and even
chaos. On the other hand, catastrophe theory is more universal, because the space in
which Thom [82] carried out his classification is the product space of phase space
and parameter space f�; �g. It is also a general classification of the singularities
of a surface, applied in particular to the surface representing the fixed points as a
function of the parameters. Catastrophe theory will therefore describe the way in
which bifurcations appear and succeed one another as we move in the f�; �g plane
of control parameters. One result is the demonstration of hysteresis: the bifurcations
actually experienced depends on the path followed in parameter space and on the
starting point of the system in phase space, in other words the whole history of the
system (Fig. 9.5).

Fig. 9.5 Hysteresis
associated with a subcritical
bifurcation, as the control
parameter � is varied. When
� is increased, the passage
from branch I to branch III
occurs at �0; but when � is
decreased, the return from
branch III to branch I occurs
at a value �c < �0

II

I

III
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Fig. 9.6 Lorenz attractor, for � D 10, r D 28 and b D 8=3 (reprinted with permission from
[47]). It is an example of a strange attractor: its structure is fractal and the dynamics on it is
chaotic

9.1.4.4 Bifurcations and Instabilities

Bifurcation is similar to the more general concept of instability. The term bifurcation
is traditionally reserved for temporal evolutions, in a phase space of generally
low dimension, whereas the term instability is used for spatiotemporal evolutions.
However these two concepts cover the same idea of qualitative change of the
asymptotic regime. It is often possible to bring one to the other, in other words to
describe an instability (of an extended system) as a bifurcation of a purely temporal
evolution. The example of secondary instabilities of Rayleigh–Bénard convection
cells can clarify the general idea, which we will return to in Sect. 9.2 to justify the
Lorenz model (Fig. 9.6). This studies the variation of the parameters of a spatial or
spatiotemporal function describing the state of the system before it is destabilised.7

The instability threshold transition therefore corresponds to a bifurcation in the
purely temporal dynamics of these parameters.

9.2 Deterministic Chaos

The term chaos means perfectly deterministic dynamics which is nevertheless
unpredictable in the long term. Familiar examples, which we will come back to
in detail in Sect. 9.2.1, include; atmospheric dynamics from which we try to predict
the weather (Fig. 9.6), making flaky pastry, balls moving on a pool table (Fig. 4.8),

7This boils down to introducing a collective variable that destabilises at the instability threshold
and whose behaviour therefore dominates the dynamics (general result the details of which we will
give in Sect. 9.2.4).
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the solar system, a double pendulum8 (pendulum in which the mass is replaced by a
second pendulum) and again Rayleigh–Bénard convection (Fig. 9.1). Although the
main ideas were already presented in works by Poincaré [69], Lyapounov [53] and
Birkhoff [10], the concept of chaos was not really developed until the 1960s. One of
the reasons is that it was then that it became possible to numerically solve equations
of motion without analytical solutions. In this way strange behaviours were seen,
so strange that up until then they had been considered errors in the method or
observation: the phenomenon had been seen but not looked at!

9.2.1 A Few Remarkable Examples

9.2.1.1 Meteorology

Decades of research in the first half of the twentieth century, achieved what
was hoped to be a conclusive step to weather forecasting: a complete scheme of
mathematical equations describing the motion of the atmosphere was established
and numerical methods to solve them were developed. However, scientific progress
was not made in the direction initially hoped in that long term weather forecasts
remain mediocre and are not reliable. However profound understanding of the
reasons for this failure lead to the key idea of sensitivity to initial conditions and
the intrinsic unpredictability that follows. Initial conditions arbitrarily close to each
other lead to trajectories ending up having no relation to each other [64].

In 1963 Lorenz proposed a purely temporal model in three dimensions obtained
by reducing the spatiotemporal equations describing atmospheric convection9:

8

<

:

dX.t/=dt D �.Y � X/
dY.t/=dt D rX � Y � XZ
dZ.t/=dt D XY � bZ:

(9.3)

where � , r and b are constant parameters related to hydrodynamic properties of the
atmosphere [52]. Solving this reveals an asymptotic object, since baptised Lorenz
attractor and represented on Fig. 9.6. It is a typical example of a strange attractor.
Not only is its structure fractal but also the dynamics restricted to the attractor is
very complicated. In particular, trajectories pass from one “wing” to the other in an
unpredictable way. By denoting the left wing 0 and right wing 1, the sequence of 0
and 1 associated with a typical trajectory follows the same statistics as a sequence
of heads and tails generated by tossing a coin. In this sense a chaotic motion appears

8The oscillations and/or their coupling must be nonlinear; two ideal springs (harmonic oscillators)
in series are equivalent to a single spring whose behaviour is perfectly predictably that of a
harmonic oscillator.
9The derivation of this system of differential equations from the (spatiotemporal) hydrodynamic
equations describing the evolution of the atmosphere can be found in [6].
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random when observed over a long time, although it is deterministic and therefore
perfectly predictable on short times.

9.2.1.2 Chemical Systems

The first example of spontaneous chemical oscillations10 was observed in the
reaction now associated with the name of its “inventors” Belousov (1958) and
then Zhabotinski (1964) who disseminated and confirmed by an experimental
study the work of Belousov [79]. This reaction is quite complicated (it involves
around 15 chemical components) but the origin of the oscillating behaviour can
be understood by a simplistic description. A first, slow, reaction consumes a
species A which blocks a second reaction. This second reaction is auto-catalytic
and faster than the first but produces species A which inhibits it. The second
reaction occurs from the moment when the first reaction has consumed enough A.
After a certain delay, the amount of A produced by this second reaction becomes
high enough again to block it therefore leaving the first reaction to “clean up”
A bringing the cycle back to the start and restarting it. In an open reactor with
high enough concentrations of reagents,11 this scheme leads to chaotic oscillations,
appearing random even though the phenomenon is perfectly described by a system
of kinetic equations [47]. Starting from a steady state and very slowly increasing
the concentration of reagents (in other words increasing the rate at which they are
injected into the reactor), a whole series of bifurcations can be seen: first of all a
Hopf bifurcation, corresponding to the appearance of oscillations, then a succession
of period doubling bifurcations, leading to chaos (the situation is in reality much
richer and more complex). Theoretical aspects of this scenario are addressed in
Sect. 9.2.4.

A biological example which is very similar is the coupling in series of two enzy-
matic reactions that are self-amplifying,12 showing complex asymptotic behaviours,
including chaos [34].

9.2.1.3 The Solar System

Since Poincaré we know that the solar system, as all systems composed of N
interacting bodies for N � 3, is not integrable. In response to the question of the

10They are spontaneous in the sense that observed temporal variations are not simply the reflection
of external temporal variations (for example, a periodically varying rate of injection of reagents).
11Let us emphasise that the reactor here is continuously fed (to maintain the concentrations of
reagents constant) and agitated to ensure spatial homogeneity and avoid the formation of structures
(incidentally very interesting and also much studied).
12By this we mean that the product of the reaction activates the enzyme and increases the reaction
rate and therefore the product formation and so on, if there is no other mechanism capable of
consuming the product.
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stability of the solar system it seemed that the state of the solar system cannot be
predicted beyond a certain duration T0, although the only forces involved come from
the perfectly deterministic law of universal gravitation.13 This unpredictability is an
example of chaos in a conservative system. Observable manifestations are:

• Irregular variations in the angle of Mars’ axis, up to 60ı.
• Saturn’s rings’ complex and very heterogeneous structure.
• Complex and very heterogeneous structure (“Kirkwood gaps”) in the asteroid

belt between Mars and Jupiter’s orbits.
• Hyperon’s (a satellite of Saturn) very rapidly and strongly fluctuating speed of

rotation about itself.
• This satellite’s irregular shape, due to ejection along chaotic trajectories of

fragments detached on collisions with meteorites (without chaos these fragments
would remain close to the satellite and end up joining it restoring its initial
spherical shape).

• Halley’s comet’s trajectory: a deviation of about 5 years between the date
observed for one of its passages (�1403) and the date calculated by numerically
“integrating back” the equations of motion.14

• DeviationD.t/ between possible future trajectories of Earth: taking into account
the uncertainty of the current state, this deviation behaves asD.t0C�/ D 3D.t0/,
with� of the order of 5 million years; for every 5 million years added to the time
of prediction, the uncertainty in Earth’s trajectory around the sun triples. The
same exponential growth of uncertainties is true for the trajectory of Pluto, with
� of the order of 20 million years. We deduce from this that the state of the solar
system is totally unpredictable beyond 100 million years.

Observations show that the motion of celestial bodies cannot be considered as a
model of regularity and perfection. So astronomy has the same limitations as other
domains of physics: for intrinsic reasons the predictability of phenomena in the
future is limited [46, 51].

9.2.1.4 Billiards (Pool) and Lorentz Gas

Figure 4.8 showed the Lorentz gas model accounting for molecular chaos. The
chaotic motion observed in a game of pool (billiards) has the same origin: defocus-
ing collisions (illustrated in Fig. 9.7) reinforced by the confinement of trajectories
in a bounded domain. There is a risk of confusion: here the trajectories are in real
space (the table surface) however the example illustrates in a convincing way the

13It is not relativistic effects that explain this unpredictability. Nevertheless, consequences of
relativistic effects, as well as influences of bodies outside of the solar system, can be amplified
due to the chaotic nature of the motion and the associated sensitivity to perturbations.
14These are reversible so they can be used to “go back” in time.
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Fig. 9.7 Sensitivity to initial conditions. The phase space is here real space (the surface of a
billiard or pool table) but the idea generalises to trajectories in an abstract phase space. Left:
bouncing off a flat surface conserves the difference between the incident trajectories. Right:
bouncing off a convex surface amplifies the difference between incident trajectories by a factor
increasing with the curvature of the obstacle

concept of sensitivity to initial conditions which we will return to in more detail,
quantitatively, for more abstract trajectories, in an arbitrary phase space.

Other examples and an accessible presentation of chaos and its range of
applications can be found in [12, 23, 33, 48].

9.2.2 Statistical Description and Ergodicity

Due to the sensitivity and unpredictability of trajectories in chaotic dynamics, the
only relevant description is a statistical one. Two points of view are then possible:

1. We could try to describe the frequency of visits to a given region of phase
space X . This is a priori15 an observable quantity, obtained by constructing a
histogram from the saved trajectory.

2. We could also describe the existence probability of the system in the phase space
at a given instant. In mathematical terms this weighting of different regions of
X is called a measure (on X ) [38]. If we are only interested in the steady
state regime observed at long times, disregarding transient regimes, we will study
the measures that are invariant with respect to the motion: m is invariant under
the action of � if for all parts A of X , A and its reciprocal images ��1

t .A/

have the same measure: 8t , mŒ��1
t .A/� D m.A/. Such a measure is adapted

to the dynamics, in the sense that the associated weighting does not change
over time, and it will describe in a global manner, one steady state regime of
the system. Generally several invariant measures exist. The problem for the

15This qualification is linked to the fact that the recorded signal Z.t/ is generally scalar, whereas
the phase space X can be of dimension higher than 1. Therefore a procedure has to be used to
reconstruct the trajectory z.t / 2 X from which the signal is derived (Z.t/ D �Œz.t /� where
� is the measure function). The underlying idea is that each variable is affected by the set of
other variables and so contains information about the global dynamics of the system. The most
common procedure used is the method of delays, where the trajectory is reconstructed in n C 1

components: Œz.t /; z.t � �/; : : : ; z.t � n�/�. A discussion of this procedure, in particular of the
choice of parameters � and n is in [1, 21] and the original article [80].
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physicist is then to determine which is the measure that will describe the observed
asymptotic regime, given a set of initial conditions. The statistical description of
the dynamics gives the answer: it is possible to describe how the initial existence
probability (in X ) changes over the course of the evolution and the relevant
invariant measurem1 will be that obtained asymptotically.

The link between these two points of view is formed by the Birkhoff’s ergodic
theorem [11]. This states16 the equality of the temporal average and the statistical
average with respect to the measure m1 in X , on condition that this measure is
invariant and ergodic with respect to the motion. This theorem therefore requires
an additional property, ergodicity of the measure m1. We say that an invariant
measure m1 is ergodic17 (with respect to the flow �t ) if each invariant set A (that
is such that �t .A/ � A for all t) is of measure zero (m1.A/ D 0) or full measure
(m1.X �A/ D 0) [39].

More qualitatively, ergodicity means that X cannot be decomposed into two
invariant disjoint parts of strictly positive measure, in other words that there
exists no two sets of states which evolve separately, without ever communicating.
Almost all trajectories have the same temporal statistical properties, which can be
obtained as ensemble averages with respect to the invariant measurem1. Inversely,
knowing one typical trajectory is enough to reconstruct the invariant measure. Such
a trajectory is therefore representative of any other typical trajectory.

9.2.3 The Basic Ingredients

In practice the details of chaos are quite different depending on whether the system
is conservative or dissipative. The first case is the field of Hamiltonian systems,
which can show chaotic behaviours if they are non integrable (for example N � 3
interacting bodies). The second case reduces to the study of the attractor of the
system, called strange when the system is chaotic due to the complexity of its
structure and the specific properties of the dynamics restricted to the attractor.

9.2.3.1 Baker’s Transformation

One of the simplest models for understanding which are the essential ingredients of
deterministic chaos is the baker’s transformation, so called because it reproduces

16More precisely it is stated: For each trajectory starting from a point x0 belonging to a subset of
X0 of X of full measure (that is to say such that m

1

.X � X0/ D 0) and for each observable F ,
we have: limt!1

1
t

R t

0 F .�s.x0//ds D R

X F.x/dm
1

.x/.
17We emphasize that ergodicity is a property of the pair formed by the motion �t and the invariant
measure m

1

. Nevertheless, we often use the short hand “ergodic measure” or “ergodic motion”
when there is no ambiguity over the partner.
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x

y

x

y

Fig. 9.8 Baker’s transformation illustrating mechanisms underlying chaos. The dynamics dilates
distances by a factor b > 1 along x, contracts them by a factor a < 1 along y, and “folds” the
results. The dynamics conserves areas if ab D 1 (here a D 1=2 and b D 2). If ab < 1, the
dynamics is dissipative and the attractor is fractal (Cantorian type) in the y direction and regular
in the x direction

schematically the topological transformation undergone by bread dough when
kneaded:

.x; y/
B�!
�
.2x; y=2/ if x � 1=2
.2x � 1; .y C 1/=2/ if x > 1=2:

(9.4)

It can be seen straight away that B is bijective within the square Œ0; 1Œ�Œ0; 1Œ, which
corresponds to reversible dynamics. The way in which it transforms the different
regions of this square is depicted in Fig. 9.8. It has three unusual properties, which
prove to be characteristics of all chaotic dynamical systems:

1. It has a dilating (unstable) direction, the x axis, along which the dynamics
doubles the distances. It also has a contracting direction, the y axis, along which
the dynamics decreases the distances by a factor of 2; this directionOy becomes
the dilating one if we reverse the direction of time.

2. It mixes points. Look, for example, at the evolution of points M D .2�n C
; 2�k C �/ and N D .2�n � ; 2�k � �/, for  and � arbitrarily small. After
a long enough time, log.1=/, independent of �, the trajectories of M and N
are completely separated. This mixing property is also used in practice to mix
granular materials.18

3. It has an infinite number of periodic orbits,19 of arbitrarily long periods (and
therefore on infinity of arbitrarily long characteristic times).

18A remarkable property of mixtures of different types of grains is that any vibration or rotation
motion leads to segregation of the different types of grain. The homogeneity of the mixture cannot
be improved by shaking, as we do for a suspension or emulsion. The idea is to include the grains
to be mixed in a neutral paste, which is subjected to the baker’s transformation. The paste is then
removed or a paste that does not interfere with the subsequent use of the granular mixture is used.
19We can always write points .x; y/ in the square Œ0; 1� � Œ0; 1� in the following form (dyadic
expansion): x D P

1

nD0 2
�.nC1/�n and y D P

1

nD1 2
�n�

�n where �n D 0 or 1. It can be shown
that B acting on .x; y/ ends up shifting the indices of the set Œ��. The set Œ� 0� associated with
B.x; y/ is given by � 0

n D �nC1 (shift operator). It then follows that the points .x; y/ for which
�nCN D �n for all integer ratios of n and N (arbitrarily fixed), will have a periodic trajectory of
period N under the action of B .
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A “minimal” model of chaotic dynamics is the projection onto the extending
direction Ox of this Baker’s transformation. The dynamics is thereby reduced20

and written f .x/ D 2x (modulo 1), or f .x/ D Frac.2x/ where Frac denotes the
fractional part. We will often take it as an example in the rest of this chapter.

9.2.3.2 Sensitivity to Initial Conditions

The examples mentioned in Sect. 9.2.1 show that one of the reasons certain
deterministic dynamics are unpredictable in the long term is a sensitivity to
initial conditions, in other words, the dynamics exponentially amplify errors or
perturbations. An uncertainty 0 in the initial state becomes equal to t D 0e�t

after a time t . The real positive exponent � is a global characteristic of the
dynamics called an Lyapounov exponent.21 This exponent gives a characteristic
evolution time: 1=� is the time scale at which two initially neighbouring trajectories
separate (their distance is multiplied by e 	 2:718 every �t D 1=� ) [53]. For
example we mentioned above, without calling them that, the Lyapounov exponent
(� D .log 3/=�) of the solar system. The Lyapounov exponents of the baker’s
transformation are log b > 0 and log a < 0. Let us also look again at the example of
weather forecasting. Expected improvements in instrumentation for meteorological
observations will change the precision with which we can measure the instantaneous
state of the atmosphere by a factor ˛ < 1. Consequently this will increase the
duration over which we can make reliable predictions. This duration becomes T 0

0

where e�T0 D ˛ e�T
0

0 , i.e. T 0
0 � T0 D ��1 log.1=˛/ where � is the maximum

Lyapounov exponent of the atmospheric dynamics. For example, if the number
of quadrangles of the earth’s surface in which meteorological satellites measure
atmospheric parameters is multiplied by 100, i.e. the resolution of initial conditions
is improved by a factor of 10, the reliability of prediction will only be increased over
a duration .log 10/=� .

We have just attributed the unpredictability to the imprecision in perception
of the initial conditions. This appears to reflect only a weakness in our ability to
detect the phenomenon in all its details and not to bring into question Laplace’s
old dream to “calculate the world”. However this is forgetting that as well as the
uncertainty in measuring the finite set of chosen observables to describe the state of
the system, at each time step perturbations due to the influence of all the degrees
of freedom not taken into account in the description are added. This “noise” is

20Note that this projection in the unstable direction is the only one leading to a reduced dynamics
that is deterministic and closed. The projection operation nevertheless transforms the underlying
reversible dynamics into an irreversible reduced dynamics [19].
21This relation t D 0e� t is approximate: it is not valid at short times, due to the influence of
the transient regime and the local characteristics of the dynamics; nor is it valid at long times
if the phase space (or the attractor if there is one) is bounded which “folds” the trajectories. It
cannot therefore be considered as the definition of a Lyapounov exponent, which is a global and
asymptotic quantity, but only as a simple and intuitive interpretation of this quantity.
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small but it is amplified by the chaotic dynamics and contributes significantly to
the unpredictability. Fed by (at least) this source of uncertainty, chaotic dynamics is
seen as an uncontrollable source of stochasticity.

In addition, if the system has several attractors, even their statistical (asymptotic)
properties are unpredictable. In order to make any prediction, we would have to
precisely know the attraction basin (points from which the trajectory asymptotically
joins the attractor) of each attractor, and for each observation the basin to which the
initial condition belongs.

Definition of Lyapounov exponents
First of all, let us imagine an evolution law f . For every point x0 2 X , we
construct:

�.f; x0/D lim inf
n!1 log

�

j.f n/0.x0/j 1n
�

D lim inf
n!1

1

n

X

0�j<n
log jf 0.f j .x0//j:

(9.5)
The scale invariance �.f; x0/ D �Œf; f .x0/� ensures that �.f; :/ is m-almost
everywhere constant, equal to �.f;m/ for all invariant measures m that are
ergodic under the action of f . Birkhoff’s ergodic theorem (Sect 9.2.2) then
proves the existence of the limit and gives its value:

�.f;m/ D
Z

X
log jf 0.x/jdm.x/: (9.6)

We will have as many exponents as invariant ergodic measures under the
action of f . In general, �.f;m/ cannot be expressed simply from f , due
to the fact that �.f;m/ is not a characteristic of f but a global characteristic
of the flow it generates. The dynamics is chaotic if �.f;m/ > 0.

For a continuous flow �t.x/ in X � R, the Lyapounov exponent is defined
by: �.�;m/ D limT!1 log j�0

T .x/j, for all x 2Xm, where m is an invariant
ergodic measure and Xm �X is of full measure (i.e. m.X �Xm/ D 0).

We briefly describe the generalisation to a discrete dynamical system of
dimension d > 1. Osedelec’s theorem ensures that q � d Lyapounov
exponents �1 � : : : � �q exist22 (in total d if we count the repeated ones),
defined as the eigenvalues of the limit limn!1ŒDf n.x/�Df n.x/�1=2n where
� indicates the transpose. This limit matrix is (in general) independent of x
according to the ergodic theorem. The dynamics is chaotic if at least �1 is
strictly positive. The situation can be described more precisely: for almost all

22We should add a technical condition requiring that the law of motion f is continuously
differentiable and Hölder-continuous.
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x, there exists a family ŒEi .x/�1�i�q of sub-spaces nested within each other
(EiC1 � Ei ), such that [21, 36]:

lim
n!1

1

n
log jjDf n.x/:ujj D �i if u 2 Ei.x/ �EiC1.x/: (9.7)

E1 is the space (of dimension d ) that is tangent in x to the phase space. The
take home message is that after n steps (n � 1=�1), the deviation initially
equal to u (i.e. x0 � y0 D u) behaves generically as en�1 (i.e. jjxn � ynjj �
en�1). It is only if u 2 E2 that we observe �2, and to observe the subsequent
exponents more and more special initial deviations u are required. If we are
only interested in generic behaviour, it is the maximal Lyapounov exponent
�1, and only this one, which describes the property of sensitivity to the initial
conditions.

9.2.3.3 Mixtures

The amplification of initial deviations and perturbations is not sufficient to generate
chaos; a mixing mechanisms must be added, as we will see by comparing three
discrete dynamical systems.

• The transformation x ! 2x on R amplifies perturbations by a factor of 2 at
each step, but there is no mechanism mixing the trajectories. The order of initial
conditions is preserved at each subsequent time, as is the relative distances .zt �
yt /=.xt � yt / D .z0 � y0/=.x0 � y0/. Therefore the dynamics remains perfectly
predictable.

• On the other hand, the evolution generated by x ! x C ˛ (modulus 1) has
a mechanism of reinjection in Œ0; 1� but does not amplify errors. Even though
successive images of a point are mixed, the deviation between two trajectories
remains unchanged over time: for all t , xt � yt D x0 � y0. This transformation,
associated with a rotation of angle 2�˛ on the unit circle, is therefore not chaotic.

• Finally let us consider the transformation x �! 2x (modulus 1), which can also
be written x �! Frac.2x/ where Frac means the fractional part. On the unit
circle, this transformation corresponds to doubling the angle. It can also be seen
as the projection of the baker’s transformation on the expanding direction Ox.
The evolution causes both a gain and a loss of information. On one hand, at each
step, each trajectory merges with another since f .x/ D f .x C 1=2/. On the
other hand, at fixed resolution , neighbouring initial conditions are separated:
x0 and x0 C  are indistinguishable at t D 0, but are distinguishable at t D 1.
The combination of these two opposing effects induces a mechanism mixing the
trajectories and such resulting dynamics is chaotic.
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2x

2x
(mod. 1)

xt = 0

t = 1

Fig. 9.9 Expansion by a factor of 2 and folding superimposing images of x and xC1=2, which is
the root of the chaotic nature of the dynamics generated by the transformation x ! 2x (modulus 1)

Fig. 9.10 Inhomogeneous
expansion (by a factor
ja.1� 2x/j) and folding
superimposing images of x
and 1� x, at the root of the
chaotic nature of the
dynamics generated by the
logistic map ax.1� x/ for
a > ac D 3:58 (thick line)

To summarise, it is the combination of expansion in certain directions of phase
space and a folding mechanism causing reinjection of trajectories in a bounded
region of phase space which produces the mixing characteristic associated with
chaotic dynamics and reconciles their deterministic nature and random features.
This principle is illustrated in Figs. 9.9 and 9.10.

9.2.3.4 Strange Attractors and Unstable Periodic Orbits

In the case of dissipative systems, an attractor in which the dynamics has mixing
properties and is sensitive to initial conditions is called a strange attractor 23 [65].

However to be comprehensive, we should mention a third ingredient necessary to
obtain chaos: the dynamics must have an infinite number of unstable periodic orbits.
They contribute to the chaotic nature by favouring the succession of regimes with
very different characteristic times, the periods of trajectories within which being

23The exact definition of a strange attractor is a compact attractor containing a “homocline”
trajectory (or orbit), that is to say a trajectory emerging from a point called a “homocline point”
situated at the intersection of the stable manifold and the unstable manifold of a saddle type fixed
point [36]. The dynamical complexity of such trajectories, in which it can be easily shown that all
the points are homocline, had been already highlighted by Poincaré [23].
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able to take arbitrarily large values. Consequently the dynamics has no characteristic
scale: the smallest fluctuation can cause the system to pass from the neighbourhood
of one unstable periodic orbit to that of another orbit of very different period. This
explains why the system reacts to perturbations in an unpredictable way and at all
time scales [66]. In particular, a strange attractor contains an infinite number of these
unstable periodic trajectories.

Control of chaos:
In certain practical situations we might want to avoid having a chaotic
behaviour. For dissipative systems in which the asymptotic dynamics is the
dynamics restricted to an attractor, a method introduced by Grebogi et al. [35]
under the name of “control of chaos” achieved this objective. Its principle
rests on the fact that a strange attractor contains not only dense chaotic
trajectories, but also an infinite number of closed trajectories, so periodic
but unstable. These researchers showed that it is possible to stabilise any of
these unstable periodic orbits, by applying a particular perturbation, adjusted
to each time step (in practice, a succession of modifications of the control
parameter, calculated from one time step to another). Once this technique is
mastered, chaos, that is the existence of a strange attractor, is beneficial due
to the existence of these periodic trajectories. Since they have very different
characteristics, it is possible to choose the one having a desired shape and
period and to stabilise it by the adapted perturbation. The control of chaos
therefore not only enables a chaotic behaviour to be replaced by a periodic
behaviour, but also to change the characteristics of the obtained periodic
regime in a very flexible and fast way.

9.2.4 Transition to Chaos

A remarkable set of results shows that the onset of chaos occurs following universal
scenarios. These results can be summarised by the fact that the transition from
a regular behaviour to a chaotic one is produced following a well determined
succession of qualitative changes (bifurcations in the case of dissipative systems)
[9]. In this section we will present the transition to chaos in Hamiltonian systems
(KAM theorem), Ruelle and Takens’ scenario associated with the appearance of
strange attractors and period doubling scenario. Intermittent behaviours and the
temporal scaling laws they show will be described in Sect. 9.4.

9.2.4.1 Transition to Chaos in Hamiltonian Systems

Let us start with the case of conservative systems with Hamiltonian dynamics
(therefore of even dimension 2n). We start from a regular situation, with dynamics
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associated with an integrable Hamiltonian H0, that is for which the system has n
constants of motion I1 : : : In (“first integrals”). Transferring to action-angle coordi-
nates .I1; : : : ; In; 
1; : : : ; 
n/ puts the equations of motion in the set Œ PIj D 0; P
j D
!j .I1; : : : ; In/ D cte�. This shows that in this case the motion is quasiperiodic: the
trajectories are described by functions of the form t ! ˚.!1t C'1; : : : ; !nt C'n/.
They lie on invariant tori of dimension n, parametrised by the invariants I1, . . . , In
and on which they “circulate” with angular velocities !1; : : : ; !n, in other words
with periods 2�=!1, . . . , 2�=!n. We can study the appearance of more complex
dynamics by adding a non integrable perturbation to the Hamiltonian H0, i.e.
H D H0C V . A series of theorems by Kolmogorov, Arnold and Moser rigorously
describe what we observe when  is increased: the invariant tori will be deformed
and little by little disappear, in a well established universal order, depending on the
arithmetic properties of the ratios !1=!n, . . . , !n�1=!n but independent of the form
of the perturbation V [36]. The tori for which these ratios are rational disappear as
soon as  > 0. The more irrational24 these ratio are, the more the associated invariant
torus persists (although deformed) for large values of . In this way a remarkable
link exists between the dynamic stability properties of the motion and the arithmetic
properties of its eigen frequencies. If n D 2, the final invariant surface to disappear
is that for which !1=!2 D � D .

p
5�1/=2, one of the properties of the golden ratio

� being it is the “most irrational” real number [48]. The invariant tori behave like
barriers that cannot pass over other trajectories and they will therefore partition the
phase space. Their progressive disappearance is accompanied by the appearance of
complex trajectories, which are able to erratically explore larger and larger regions
of phase space and are characterised by a positive Lyapounov exponent. For small
, these chaotic regions are very localised because they are trapped between the
invariant surfaces on which the movement remains quasiperiodic. These regions
spread as  increases, which increases the chaotic nature of the observed dynamics
since the trajectories are less and less localised. The region becomes totally chaotic
once the final invariant torus has disappeared. This type of “Hamiltonian chaos”
is that observed in the solar system. Even though it has the same sensitivity to
initial conditions and mixing properties, it is very different from the chaos observed
in dissipative systems from the point of view of its localisation and geometry in
phase space. In dissipative systems, describing the asymptotic regime boils down to
describing the dynamics restricted to the attractor and it is in the geometry of this
attractor that the chaotic nature of the motion is reflected. In contrast, the concept of

24The degree of irrationality of a real number r 2 Œ0; 1� can be quantified by studying its rational
approximations. For each integer q, we denote by pq;r =q the best approximation of r by a rational
number of denominator q. We can then define the subsets F˛ of Œ0; 1�, containing the real numbers
r such that jr � pq;r =qj � q�˛ for an infinite number of integers q. It can be shown (Dirichlet’s
theorem) that F2 D Œ0; 1� and that for all ˛ > 2, F˛ is a fractal of dimension 2=˛ (Jarnik’s
theorem). These sets are nested: F˛2 � F˛1 if ˛1 < ˛2. The larger ˛, the more the elements of
F˛ are “well approximated” by the rational numbers. By determining which sets F˛ the ratios
!1=!n, . . . , !n�1=!n belong to, we determine the order in which the associated invariant tori will
disappear [24].
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an attractor does not exist in conservative systems and the invariant measure remains
the natural volume of phase space. The picture to remember for the transition to
chaos in conservative systems is that of a growth of regions of phase space where
trajectories have chaotic behaviour.

9.2.4.2 Ruelle and Takens’ Scenario

This scenario concerns dissipative dynamical systems and it describes the conditions
under which a strange attractor appears. Ruelle and Takens showed that a general
mechanism is a succession of three Hopf bifurcations with incommensurable
frequencies (irrational ratios of each other). At the first bifurcation the system
passes from an equilibrium state to a limit cycle, at the second a quasiperiodic
regime appears at two frequencies and after the third the asymptotic regime is in
general25 a strange attractor. More precisely, Ruelle and Takens’ result reveals that
a quasiperiodic regime with three incommensurable frequencies is not a generic
situation in the sense that the smallest perturbation destabilises it. In contrast,
the existence of a strange attractor is a robust (structurally stable) property in
the sense that it is not destroyed by adding an additional term, in other words
by the introduction of a new influence in the law of motion [63, 77]. We retain
that it is sufficient that a system passes three Hopf bifurcations when its control
parameter is increased for it to be able to have chaotic behaviour associated with
a strange attractor. This scenario can be shown experimentally in experiments of
convection in confined geometries [55] or in the Belousov–Zhabotinski reaction
[4]. Characterisation can be made by a spectral analysis of the phenomenon: the
first Hopf bifurcation is seen by a peak in !1 (and smaller peaks corresponding to
the harmonics); the second Hopf bifurcation is manifested by the appearance of a
peak in !0 (and the harmonics) and the third Hopf bifurcation, leading to chaos, will
be seen by the transformation of the line spectrum to a chaotic spectrum, which is
a broad band spectrum stretching to the lowest frequencies and no longer showing
any significant peaks.

This scenario, even though not quantitative, was a major conceptual breakthrough
because it shattered the picture we had of turbulent regimes. The old view, due
to Landau, consisted of the destabilisation of infinitely many modes such that the
motion looked erratic and was impossible to predict on the long term. Consequently
it was thought that chaos could only appear in systems with an infinite number of
degrees of freedom. Ruelle and Takens’ scenario shattered this dogma by showing

25The mathematical difficulty of the theorem is to define the term “in general” which requires
considering a space of dynamical systems and endow it with a topology [20]. The structural
stability of a quasiperiodic motion t ! ˚.!1t C '1; : : : ; !nt C 'n/ with n periods depends on
the perturbations considered. There is a structural instability from n D 3 if the perturbations are
only constrained to be continually differentiable twice (class C 2), whereas the instability appears
from n D 4, if only perturbations that are infinitely differentiable are allowed (class C 1). The
quasiperiodic regime can therefore be replaced by a strange attractor.
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that the nonlinear coupling of three incommensurable modes is sufficient to obtain
such behaviour [77]. Deterministic chaos, in this way, was proposed by these
authors as a possible explanation of “weakly turbulent” regimes observed just after
destabilisation of the laminar regime. Today we talk of chaos when the system is of
low dimension (or the essential dynamics brings the system to low dimension) and
of turbulence (fully developed) when the system has a large number of fundamental
unstable modes (Sect 9.5).

Chaos, three dimensions and Ruelle and Takens’ theorem
Ruelle and Takens’ result is often formulated incorrectly by invoking the
dimension of phase space d . Its exact (but simplified) statement is: in a
dissipative system, 3 (incommensurable) unstable modes generically lead
to chaos (i.e. existence of a strange attractor). The example of the Lorenz
attractor shows in addition that we can observe chaos in a phase space of
dimension d D 3. On the other hand, in a phase space of dimension d D 2

the whole dynamics is predictable, because each trajectory behaves as an
impenetrable barrier for the others. A dimension of d � 3 is therefore a
necessary condition for observing chaos, but this condition has nothing to do
with Ruelle and Takens’ result. No condition in the dimension d is required
for discrete dynamical systems: the logistical map shows chaos from d D 1.
This is not incoherent if we remember that a discrete dynamical system is
typically obtained by Poincaré section of a continuous dynamical system in
a larger dimension. The order in which successive images of x ! 1 � �x2
(� > �c) are placed on Œ�1; 1� shows that they cannot come from a planar
trajectory (since it would intersect itself, which is prohibited) and hence any
associated continuous dynamical systems have a dimension at least equal to
three.

9.2.4.3 Period Doubling Scenario

This period doubling scenario, also called subharmonic cascade, is the most
impressive due to its universality and therefore its predictive power. It is widely
treated in the literature, so we will mention just the main ideas [48, 55, 66].

In this scenario, the transition from a situation in which the physical system
is stabilised in an equilibrium state (stable fixed point) to a situation in which
the asymptotic regime is chaotic is made by a succession of “period doublings”
(period doubling bifurcations). As we increase the control parameter �, at � D �0
the stable fixed point will give way to a cycle with a certain period T (the fixed
point still exists for � > �0 but it is unstable). Then, at � D �1, this cycle will
in its turn destabilise and be replaced by another stable cycle of period 2T . The
sequence therefore follows in this way: the stable cycle of period 2j�1T observed



322 9 Dynamical Systems, Chaos and Turbulence

for � < �j will destabilise at � D �j and simultaneously a stable cycle of double
the period, 2j T , will appear which becomes the attractor for � > �j . The first
point to note is the fact that the sequence of period doublings continues indefinitely.
The monotonously increasing sequence of bifurcation points .�j /j	0 tends to a
limit �c . At � D �c , the onset of a chaotic regime is observed [58]. The second
point, even more remarkable, is the universality of this scenario. The values of the
bifurcation points .�j /j	0 are specific to the system considered, as well as their
limit �c . However, the accumulation of these values up to �c follows a geometric
progression:

lim
j!1

�jC1 � �j
�jC2 � �jC1

D ı ” �c � �j � ı�j

where ı is a universal number: ı D 4:66920 : : : [25]. This indicates that it is
identical for all systems in which this accumulation of period doublings leading
to chaos is observed. Here a qualitative analogy between the behaviours involves
a quantitative analogy. This scenario is particularly popular for the following
reasons:

• It is easily observed numerically, for example in the discrete dynamical system
of evolution law f�.x/ D 1 � �x2 or the equivalent system ga.x/ D ax.1 � x/
[44]. The corresponding bifurcation diagram is represented in Fig. 9.11.

• It is also called subharmonic cascade because in frequency space, each bifur-
cation corresponds to the appearance of a peak at half frequency (subharmonic).
It is also the simplest and most reliable experimental criterion to implement.
For �j < � < �jC1, the spectrum is composed of peaks at ! D !0,
!1 D !0=2; : : : ; !j D !0=2

j . At � D �jC1, spectral lines !jC1 D !j =2
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Fig. 9.11 Bifurcation diagram of the logistic map f .x/ D 1��x2. The parameter � is placed on
the abscissa and the attractor on the ordinate. We clearly see the accumulation of period doublings
leading to chaos at �c � 1:4011550. This structure is often called “Feigenbaum tree”
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reflecting the period doubling of the asymptotic regime appear. The spectrum
observed at the chaos threshold, at � D �c , is a broad spectrum reflecting the
random nature of chaotic dynamics.

• It is observed in many experimental systems (for example in Rayleigh–Bénard
[50] or the Belousov–Zhabotinski reaction [47]) and measurements tend to
confirm the universality of the scenario and the value of ı.

• It is completely described and understood analytically. The characterisation
by a parameter .f�/� of the families of dynamical systems which will show an
accumulation of period doublings is known and the universality of the exponent
ı can be shown by an renormalisation method and its value calculated. These
families form the universality class of the scenario [15, 83]. Other universality
class can be shown, determined by the regularity of the family at the critical point
x D 0: if the behaviour is jxj1C in the vicinity of 0 (and the family satisfies the
conditions necessary for the observation of an accumulation of period doublings),
an exponent ı is observed, which we know how to determine perturbatively for
small enough .

If we replace the spatial variables by the temporal variable, we can see a fruitful
analogy between the transition to chaos and critical phase transitions, leading to
the application of renormalisation methods to access envisaged scale invariance
properties [48].

9.2.5 Range and Limits of the Concept of Chaos

9.2.5.1 Abundance of Chaotic Behaviours

The ingredients of chaos are present in all dynamics in which the underlying
action is composed of an stretching in certain direction and a folding (Figs. 9.9 and
9.10). This qualitative argument, completed in the dissipative case by the structural
stability of strange attractors demonstrated by Ruelle and Takens (Sect. 9.2.4),
explains the omnipresence of chaotic behaviours. In addition to the physical
examples that we have mentioned in this section, we can cite other examples in
the domain of biology [49]:

• A historical example is that formed by logistic maps and resulting more refined
models in population dynamics [58].

• The normal heart rate is chaotic and the disappearance of chaos is pathological.
More generally, this led to the introduction of the concept of “dynamical disease”
[54].

• Enzyme reactions and resulting biochemical oscillations can show chaotic
components (e.g. glycolytic oscillations, calcium oscillations) [34].

Note however that chaotic behaviour may be less common in reality than in models.
Actually, while chaos is robust to weak deterministic perturbations, it is more
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sensitive to stochastic perturbations. Noise, by destroying the structure of flow in
phase space, destroys the chaotic properties.

9.2.5.2 Analysis of Chaotic Signals

Possibly the most fruitful consequence of chaos theory is the set of “nonlinear signal
analysis” methods, exploiting the concepts introduced to describe chaos, in order to
obtain quantitative information about observed dynamics [42]. The indices resulting
from chaos theory (for example Lyapounov exponents or the fractal dimension of the
attractor) reveal changes in the underlying dynamics. They are for example used in
the analysis of electrocardiograms (ECGs) and electroencephalograms (EEGs) [5].

However, exploiting temporal data with the help of this nonlinear analysis to
interpret the phenomenon and its origin, beyond a simple quantitative diagnosis,
is more problematic. Implementing deterministic chaos in a real phenomenon is
actually a sensitive question, often seeming to be a “ill posed problem” and it
is difficult to give a clear response. For example, the question of discriminating
between chaos and stochastic dynamics has the prerequisite of determining the
scale at which the motion is to be considered: a deterministic chaos model and
a stochastic model could easily coexist at different levels of description. For a
deterministic description, we must be able to ensure that a low dimensional model
is acceptable. To do so, we have to extract information about the global dynamics,
of unknown dimension, from a temporal recording, most often scalar, which we call
a reconstruction of the dynamics. Finally, we need a rigorous statistical analysis to
estimate the reliability and accuracy of the values determined for the different chaos
indices considered. We refer the reader to [1, 21] and [41] for the methodological
aspects and to [72,73] for a discussion of the precautions to take in using the concept
of chaos.

9.2.5.3 Chaos: An Internal Source of Randomness

A final, more conceptual, conclusion is that chaos provides an internal source of
stochasticity. A deterministic motion can generate an identical trajectory, in terms
of statistical properties, as that due to a stochastic process, but the resulting random
behaviour is contained in the law of motion itself. In this way stochastic behaviour
is taken into account without the need to invoke an external cause. Chaos involves
a fast temporal decorrelation along each trajectory, which leads to the use of a
statistical description in terms of invariant measure. In modern terms, this is the
idea that encompasses Boltzmann’s hypothesis of molecular chaos, which we will
develop below in Sect. 9.3.
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9.3 Chaos as the Foundation of Statistical Mechanics

9.3.1 Boltzmann’s Ergodic Hypothesis

Even though the concepts of ergodicity and chaos were formulated long after
Boltzmann’s work, they nevertheless play an essential role in the approach he used,
and afterwards that of Gibbs, to build the foundations of statistical mechanics.
Remember that the aim of statistical mechanics is to constructively connect theories
and knowledge available at about the mechanisms at microscopic scales (usually
molecular), and macroscopic phenomena, that is the behaviour of the same system
observed at much larger scales. The idea that we will develop here is the following:
chaos present at the microscopic scale leads to reproducible, regular and robust
behaviours observed at our scale. We refer the reader to the work of Dorfman [19]
and [13] for a deeper discussion.

For example, let us imagine a system of particles of low enough density to be
in the gaseous state.26 We can get a qualitative idea of its microscopic dynamics by
considering a gas of hard spheres in a box, subjected to elastic collisions between
each other and the walls of the container. As shown schematically in Fig. 4.8,
such dynamics is very sensitive to initial conditions and to perturbations and the
presence of walls makes the dynamics mixing [44]. The chaotic nature,27 whose
experimental reality is known today [31], insures a fast decorrelation: the molecular
environments encountered by a particle at times t and t C dt can be effectively
considered independent. It is this property of decorrelation that was introduced by
Boltzmann under the name of molecular chaos. He then used it to justify a more
directly exploitable mathematical hypothesis, the ergodic hypothesis.

In the case of an isolated system, with fixed total energy E , this ergodic
hypothesis boils down to assuming that all the microscopic configurations of the
system of energy E will be visited with the same frequency over the microscopic
evolution. This particular case is also called the microcanonical hypothesis. It is
then generalised to systems in thermal equilibrium. The reasoning rests on the
fact that the combination of the system and the thermostat is isolated, validating
the microcanonical ergodic hypothesis for this combination. We then exploit the
fact that the evolution of the state of the system affects the thermostat only
infinitesimally, by definition of a thermostat. Therefore the ergodic hypothesis is

26The arguments remain qualitatively valid for simple liquids but their technical implementation
will be different, since the approximations allowed by the low density of gases could no longer be
made.
27Note however that it behaves with a type of chaos a bit different from that presented in Sect. 9.2:
the number of degrees of freedom is very large, whereas a characteristic of deterministic chaos
is that it takes place in systems in low dimension. However this characteristic is not exclusive
and molecular chaos seems to be an example of spatiotemporal extension of low dimensional
chaos, involving the same ingredients: sensitivity to initial conditions, mixing and the existence of
periodic trajectories of all periods [30].
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reformulated by saying that the configurations Œs� of the system will be visited
with a frequency equal to their probability at equilibrium P.Œs�/ � e�ˇE.Œs�/ where
ˇ D 1=kT (Boltzmann distribution), which identifies temporal averages (averages
along the evolution of a configuration of the system) with statistical averages
(averages over all possible instantaneous configurations of the system, weighted
by the probability distribution at equilibrium).28

In this way Boltzmann’s hypothesis seems to be an ergodicity hypothesis of the
microscopic dynamics governing the evolution of the system with respect to its
invariant measure (natural volume for a conservative system, Boltzmann distribution
for a system at thermal equilibrium). This precise mathematical formulation of
a qualitative, and even sometimes approximate, property29 makes it functional.
In what now appears to be a simple application of Birkhoff’s ergodic theorem
(Sect. 9.2.2), it enables the observable quantities to be expressed in the form of
statistical averages and the relationships between these quantities to be deduced.
The implicit idea is that these relationships are robust and remain valid beyond
the restricted framework in which they were obtained, in other words, even if the
ergodic hypothesis is not exactly valid.

9.3.2 Chaotic Hypothesis and Nonequilibrium Statistical
Mechanics

An approach was recently proposed by Cohen, Gallavotti and Ruelle as a foundation
of a statistical mechanics of systems far from equilibrium30 [29, 74–76]. Called
chaotic hypothesis, it can be summarised as follows:

28Another way of formulating the same point involves the concept of statistical ensemble: the
temporal average is equal to the average over a large number of independent systems, constructed
identically to the original system. This formulation, introduced by Gibbs, corresponds exactly
to the actual concept of statistical sampling. In practice, what we call a “statistical ensemble”
is an ensemble of microscopic configurations weighted by a probability distribution such that
the statistical averages hAi correctly estimate the observed quantities Aobs in the system under
consideration. The situations presented above correspond to the microcanonical ensemble and the
canonical ensemble respectively.
29This hypothesis is rarely explicitly justified for two reasons: it leads to theoretical results in
agreement with experiments and it is not known how to prove this ergodicity in general.
30The term “out of equilibrium” is ambiguous and we should distinguish:

• Systems relaxing towards their equilibrium state, sometimes slowly and in a complex way if
metastable states exist.

• Systems that have reached a steady state that is out of equilibrium, in the sense that there non
zero flows (of material, energy etc) across them. We use the term “far from equilibrium” for
these systems to distinguish them from the previous case.
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1. There exists fundamental mechanisms, still not well understood or even ignored,
that produce mixing properties at the microscopic scale (chaotic nature of
microscopic motion) and an irreversibility at the macroscopic scale.

2. A class of mathematical models, of hyperbolic dynamical systems, possesses
these mixing properties. By definition (in discrete time for simplicity), these
dynamical systems possess an invariant compact set, such that at each point
the stable and unstable directions are transverse, depending continuously on
the point. In addition, in these models, the rates of contraction (in the stable
directions) are bounded above by a<1 and the rates of expansion (in the unstable
directions) are bounded below by b >1. The nonequilibrium steady state is
described by an invariant measure having special properties, in particular of
mixing due to the hyperbolicity of the dynamics (SRB measures, from the names
Sinai, Ruelle and Bowen).

3. We know how to describe the asymptotic behaviour of this ideal model, in
particular quantifying its macroscopic irreversibility, for example the rate of
entropy production, as a function of the indices quantifying its chaotic properties
(typically the Lyapounov exponents).

4. We suppose that these expressions describing the macroscopic irreversibility as
a function of the microscopic chaos are universal, robust and that they reflect
the fundamental mechanism (1) and not the particular models (2), which they
go far beyond. The class of models introduced in (2) is only a mathematical
intermediary having the advantage of proposing an illustrative case where
calculations are possible. This approach therefore seems to be the nonequilibrium
analogue of Boltzmann’s ergodic hypothesis.

It should be noted that we have asymptotic irreversibility and dissipation (reflected
for example in the production of entropy) in both temporal directions. For t ! C1,
it is the unstable directions and associated Lyapounov exponents � � log b > 0

that control the dynamics. For t ! �1, it is the stable directions and associated
Lyapounov exponents � � log a < 0 that determine the dominant behaviour, which
we immediately see after a time reversal t ! �t . However, it must be noted that
irreversibility persists after this reversal (see e.g. the discussion in [13]).

A simplistic example, that nevertheless clarifies the fundamental ideas, is that
of the baker’s transformation B . The long term behaviour is dominated by what
happens in the unstable direction Ox since the distances along Oy are contracted
by a factor of 2 at each time step. The component alongOx is therefore interpreted
as a macroscopic observable of the system. If this reversible evolution generated by
B is projected on the unstable directionOx, the obtained dynamics, associated with
the transformation x ! 2x (modulus 1) becomes irreversible: at each time step,
the trajectory merges with another (given xn, there are therefore 2n possible starting
points x0). In reverse, the evolution is described by B�1 and it is its projection on
Oy that becomes irreversible.

The irreversibility associated with hyperbolic evolutions is expressed in the same
way: over time information about the initial state of the system along the stable
directions becomes more and more inaccessible at macroscopic scales (due to the
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contraction of distances in these directions) and the only knowledge, that of the
unstable component, is not enough to return to the initial state.

9.3.3 Chaos and Transport Phenomena

In a uniting of chaos theory and nonequilibrium statistical mechanics, current
research seeks to obtain empirical transport laws and associated coefficients (for
example coefficient of diffusion, thermal and electrical conductivity) from simpli-
fied but realistic deterministic microscopic models [14]. We have already mentioned
a deterministic model, in Sect. 4.4.1, called Lorentz gas, in which a particle
moves at constant velocity in a lattice of obstacles with which it is subjected to
elastic collisions (Fig. 4.8). Analysis of this model fixes diffusion in the equations
of motion of the molecules (we can therefore relate the coefficient of diffusion
to the chaotic characteristics of molecular motion) and reconciles explicitly its
determinism and reversibility with the irreversibility and stochasticity of diffusion
[30]. Another example is that of a one dimensional chain of anharmonic oscillators
coupled nonlinearly and in contact at its extremities with two thermostats at different
temperatures. In this case we recover Fourier’s law and associated linear temperature
profile, explaining the origin of the familiar irreversibility of this system at our scale
[13, 19, 22].

In these examples, we see the reappearance of real space, absent in the theory
of (low dimensional) dynamical systems presented in this chapter. The justification
for this absence is that in the situations considered, for example in the vicinity of a
bifurcation point, the evolution is dominated by the dynamics of a few modes, the
others playing no role asymptotically [37]. The reduction is not always valid and
we must therefore turn to the theory of extended dynamical systems and clarify the
concept of spatiotemporal chaos.

9.4 Intermittency

Dynamic behaviours covered by the term intermittency are characterised by brief
phases of intense and irregular activity alternating randomly with rest phases of
varying length, also called “laminar phases”. Different mechanisms are invoked
according to the context and the statistical properties of the intermittent signal
observed. Far from entering into a review of the different models of dynamic
intermittency (for that we recommend [20] or [9]), we will limit ourselves to
describing what connects intermittency to this book, namely the existence of
temporal scaling laws describing the laminar phases.
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9.4.1 Intermittency After a Saddle-Node Bifurcation

First identified theoretically by Manneville and Pomeau [56] then experimentally
in Rayleigh–Bénard convection [8], one mechanism is associated with saddle-node
bifurcations (Sect. 9.3.1, Fig. 9.3). To simplify the expressions, we will consider the
case of an evolution g� in discrete time, typically obtained by Poincaré section of
a continuous flow (Fig. 9.2) and dependent on a control parameter �. A necessary
condition for observing a saddle-node bifurcation when � passes a certain value
�c is that g�c has a fixed point X� where the stability matrix Dxg�c .X

�/ has
one eigenvalue equal to 1, all the other eigenvalues being of modulus strictly less
than 1. We will not specify the other two, more technical, necessary conditions,31 but
we will highlight that they only involve strict inequalities, which therefore remain
satisfied if we slightly change the transformation g� . The saddle-node bifurcation
is therefore a generic bifurcation and the associated intermittency mechanism will
be robust (it will not be destroyed by a small perturbation of g�) and consequently
universal (it will not depend on the details of g� , provided that the conditions for
bifurcation are satisfied).

A significant simplification in the analysis is made by reducing the transforma-
tion g� to the normal form of the bifurcation (Sect. 9.1.4) [37]: by conjugacy,32

transformation of the control parameter � (which becomes � D �.�/) and
then projection on the direction that becomes unstable at the bifurcation point,
it is possible to reduce a family of transformations .g�/� satisfying the above
conditions33 to the family f�.x/ D �� C x � Ax2, in one dimension, A > 0

being a fixed parameter.
Plotting the graph of the transformation x ! ��C x � Ax2 gives an intuitive

understanding of the origin of the intermittent behaviour (Fig. 9.12): beyond the
bifurcation point (� > �c), there is no longer a fixed point but the dynamics remains
slowed down in the vicinity of x�. It can be shown that the average duration of
laminar phases varies as �.�/ � ��1=2. This result, obtained by renormalisation,
guarantees its universality. The idea is to consider the renormalised transformation
Rf .x/ D 	�1 f ı f .	x/ where 	 is adjusted to make Rf as close to f as
possible, here by putting the monomial x coefficient as 1 in Rf .x/. The exact proof
follows by determining the fixed points of R and the eigenvalues of the linearised
operator in the vicinity of these fixed points, following the standard procedure
presented in Chap. 3 [48]. The argument is well understood for the typical family
.�� C x � Ax2/�: the optimal choice is 	 D 1=2, leading to the approximate
relation Rf� � f4�. Moreover, by construction of R, the number of steps taken
in the “ditch” separating the graph of f� from the bisector, in other words the

31If w is the linear form associated with the eigenvalue 1 of the stability matrix, it is necessary that
wŒD�g�c .X

�/� > 0 and wŒD2
xg�c .X

�/� > 0.
32A conjugacy is the replacement of g� by � ı g� ı ��1 and x by �.x/ where � is an adequate
diffeomorphism.
33It is even the key to the demonstration of bifurcation theory.
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Fig. 9.12 Graph (bold line) of a map g� parametrised by � and conjugated to the normal form
f�.x/ D �� C x � x2. The figure explains how slow and monotonous the discrete evolution
xnC1 D g�.xn/ is if � is slightly above a value �c associated with a saddle-note bifurcation at a
fixed point x� (here placed at the origin) characterised by g0

�c
.x�/ D C1

duration of the laminar phase (see Fig. latexfig), obeys N.Rf�/ D N.f�/=2 since
renormalisation amounts to taking the steps two at a time. From this we extract:

N.f�/ � �.�/ � ��1=2: (9.8)

In conclusion, all dynamics with a saddle-node bifurcation with respect to one of
the parameters will have a behaviour not only qualitatively but also quantitatively
(same exponent�1=2) identical to the family .��Cx�Ax2/�. As we anticipated,
intermittent behaviour is universal,34 and the family .�� C x � Ax2/� is seen
as the typical representative of the associated universality class. Note that we can
say nothing about the chaotic interludes because the ingredients of the chaotic
dynamics, in particular the mechanisms of mixing and reinjection in the bounded
region containing the fixed point X�, are no longer described correctly after the
local reduction to the normal form.

9.4.2 On-Off Intermittency

A second intermittency situation is encountered for example35 in ecology, when
considering the population dynamics of a species called “resident” in competition

34The exponent �1=2 is associated with the quadratic form of the evolution law. The family .��C
x � Ax1C/� has a similar behaviour, with in this case �.�/ 
 ��=.1C/. It represents another
universality class (where  D 1 corresponds to the class of the classic saddle-node bifurcation).
35On-off intermittency is also encountered in a system of two coupled chaotic oscillators passing
in an irregular manner from a synchronous motion, where the difference x D X1 � X2 between
the states of the two oscillators cancels out, to an asynchronous motion where x ¤ 0 [28,68]. Here
we observe self-similarity of the signal x.t/ and the behaviour P.�/ 
 ��3=2 of the distribution
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Fig. 9.13 Randomness and scale invariance of alternating phases of rarity and abundance of
Pacific sardines Sardinops sagax (after [26]), from analysis of the density of scales in stratified
marine sediments. A similar histogram is observed over a shorter duration (data from trade during
the last century) or a longer duration (throughout the Holocene, roughly 12,000 years)

with an invading closely related species (a mutant form for example). Sometimes for
long periods the population of the intruding species remains at very low levels, close
to extinction. These “scarce phases” are punctuated by periods, of irregular duration
and frequency, where this species is abundant. This phenomenon is observed, at least
qualitatively, for many very different species, for example fish,36 insects and viruses
(epidemics). It is important from an ecological point of view because it shows that
the rarity of a species is not necessarily followed by its extinction and can on the
contrary form part of its survival strategy. We can retrospectively observe this type
of dynamics in marine sediments by measuring the density of scales of a species
of sardine along a sample core, that is to say over time (Fig. 9.13) Early studies
showed that this spontaneous intermittency of rarity did not result from a variable
change imposed by the environment but rather was the outcome of the population
dynamics of the ecosystem and competition between species. The intermittent rarity
is observed experimentally, on different time scales (century, millennium, era). We
are particularly interested in the scale invariance shown by the experimental data.
The probability distribution of the duration � of phases of rarity is a power law:
P.�/ � ��a with a 	 3=2. To specify the value of this exponent, study its
possible universality properties and understand the origin of scale invariance, it was
necessary to resort to modelling.

of the duration � of the synchronous phases (state “off” x D 0, analogue of the scarce phases)
characterising this type of intermittency.
36As for the historical example of the Lotka–Volterra model, observation of fish in particular could
be made for “practical” reasons: fishing by trawling provides representative sampling and accurate
data are available over long periods of time from auction sale records.
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A very simple model, minimal in the sense that it only keeps the most basic
ingredients for this intermittency, is the following [26]:

8

<

:

x.t C 1/ D f .x.t/; y.t// 
 x.t/ expŒr1 � a1x.t/ � a2y.t/�

y.t C 1/ D g.x.t/; y.t// 
 y.t/ expŒr2 � a2x.t/ � a1y.t/�;
(9.9)

where x.t/ describes the intruding population and y.t/ the resident population. r1
is the rate of characteristic intrinsic growth of species x (and r2 that of species y),
which would be observed if the species was alone and had unlimited resources;
a1 describes the intra-species competition (assuming that this coefficient takes the
same value for each species x and y, which is justified if they are very close, for
example if x is a mutant of y); a2 describes the inter-species competition, which
we assume here is symmetric. This model describes species in which individuals
die after reproduction such that at each instant in time there is only one generation
present, as is the case for insects, for example.37 Let us start from a situation in
which x is very weak (very few invaders, resident species by far the majority). We
study the stability of this asymmetric state using a linear analysis, i.e. we study the
dynamics of the population x keeping only the lowest order terms. In other words,
we adopt a perturbative approach with respect to the dynamics y0.t/ of the resident
species alone, which is written y0.t C 1/ D g.0; y0.t//. The stability index is then
the invasion exponent:

� D lim
T!1

1

T

T�1X

tD0
log j@f=@x.0; y0.t//j: (9.10)

It consists of the temporal average of the instantaneous invasion exponents:

�.t/ D log j@f=@x.0; y0.t//j;

describing the “ease” with which the intruding species can expand (starting from
the state in which it is absent). This quantity � is therefore a global index, analogue
to a Lyapounov exponent38 (Sect 9.2.3).

37To take into account the case where individuals survive after reproduction, the model can be
modified by introducing survival rates s1 and s2 of the two species:

�
x.t C 1/ D x.t/.s1 C expŒr1 � a1x.t/� a2y.t/�/

y.t C 1/ D y.t/.s2 C expŒr2 � a2x.t/� a1y.t/�/:

The results obtained with this second model prove to be qualitatively and even quantitatively (same
exponent �3=2) identical to those presented for the first model.
38It consists exactly of a transverse Lyapounov exponent describing the stability within the
global attractor of the solution y0.t/ corresponding to the resident species alone with respect to
a transverse perturbation.
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Studying the dynamics shows that this invasion exponent � provides an invasi-
bility criterion. If � < 0, the intrusive species cannot establish itself. If � > 0 large
enough, it rapidly overpowers the resident species (and linear analysis soon becomes
meaningless). Intermittent rarity is produced when y has random dynamics, due for
example to chaotic dynamics, with � > 0 very small. The instantaneous invasion
exponent, fluctuating around its average weakly positive value, will alternately
take negative values, during which time the intruding population cannot expand
(scarce phases), and positive values, during which time the exponential growth of
x means the intruding population will reach a high level. This will then oscillate
between phases of quasi-extinction and phases of prosperity, in a manner essentially
governed by the dynamics of the resident species. In the limit where � ! 0C,
a scaling law appears in the statistics of the duration � of the quasi-extinction
phases. Its distribution P.�/ behaves as: P.�/ � ��3=2 where the exponent�3=2 is
characteristic of this mechanism of intermittency, called on-off intermittency [40].
This exponent is in particular independent of the threshold chosen to define the
phases of rarity and the duration over which the phenomenon is observed, which
simply reflects the scale invariance of the phenomenon. From the moment when the
phenomenon is manifested, it is universal, in the sense that it does not depend on
the parameters of the dynamics nor the ecosystem considered. The existence of a
scaling law signifies that the dynamics does not have a characteristic time scale and
that we have universal critical dynamics. This is confirmed experimentally by the
similarity (after normalisation) of data recorded over very different periods of time:
century, millennium, era.

One correction to the power law predicted for P.�/ comes from noise due to the
external environment. During rarity phases, this could accidentally induce extinction
of the intrusive population (the weak value of its level makes it more vulnerable to
environmental fluctuations), with a larger probability the longer the duration of the
rarity phase. We therefore see a truncation of the power law at large values of � .

As we move away from the critical point � D 0C, that is to say as � increases,
the critical character disappears and we recover an exponential decay:

P.�/ � ��3=2 e��=�0 with �0 � 1

�2
<1: (9.11)

We also recover the usual deviations from critical behaviour when the size of the
ecosystem is finite. The model where the variables x and y take continuous values
is only a valid approximation in the limit of an infinite medium; when the size L of
the system is taken into account (the exact definition depends on the way in which
limitations due to the finite size of the environment and populations will change the
continuous dynamical model), it can be shown that �0 follows a scaling law �0 � La.
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9.5 Fully Developed Turbulence

A very complex but nevertheless familiar spatiotemporal behaviour is hydrody-
namic or atmospheric turbulence. To have an intuitive idea of the phenomenon
and its richness, just look at the movement of water in a river in flood around
the pillars of a bridge. This phenomenon captures our attention here because it
shows remarkable spatiotemporal scaling properties. They can be compared to
dynamical critical phenomena (relaxation or response properties at the critical point,
Chap. 4, or certain growth phenomena, Chap. 8). However we will see that the scale
invariance here is much more complex, involving a continuum of critical exponents,
which we will talk of as multifractal invariance [60].

9.5.1 Scale Invariance of Hydrodynamic Equations

The spatiotemporal behaviour of a fluid is described by the Navier–Stokes equation,
governing the dynamics of its velocity field v.r; t/:

@tvC .v:r/v D � ��1 rP C ��vC g; (9.12)

where � is the kinetic viscosity of the fluid (in m2/s), � its density,P its pressure and
g the resultant of the external accelerations (force field per unit mass). The equation
must be satisfied at every point in the domain accessible to the fluid or delimited
by the observer (for example banks, obstacles and limits of the observed section in
the case of a river). It is therefore completed by boundary conditions describing the
behaviour of the velocity field at the limits of this domain. To this the equation for
conservation of fluid is also added (@t� C r.�v/ D 0), which takes the following
form, of the “incompressibility equation”, when the density � can be considered
constant:

r � v D 0: (9.13)

These two (vector) equations are invariant by the scaling transformation with two
parameters� > 0 and 	 > 0:

r ! 	r P ! 	2Cd��2P
t ! �t � ! 	�d �
v! 	��1v g ! 	��2g
� ! 	2��1�:

(9.14)

Let us introduce the typical dimension L of the system an the typical velocity V of
the fluid, usually prescribed by the boundary conditions, for example the river flow
or the speed of blades stirring the fluid. The choice 	 D 1=L and� D V=L leads to
dimensionless variables. This reduction shows that the quantity 	2��1� D �=VL
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is the only real parameter of the problem. This introduces a dimensionless number,
the Reynolds number:

Re D LV

�
: (9.15)

So the dynamic behaviour of the fluid will be controlled by the value of Re
following to almost universal criteria, only depending on the system via its geometry
and boundary conditions (value of velocity field at the walls or at other boundaries of
the system). This scale invariance is the principle behind wind tunnel testing, i.e. to
experimentally test the behaviour of a system of size Lwhen it is subjected to winds
of velocity V , it is sufficient to study a smaller system of size L=k but keeping the
same Reynolds number (and of course a similar geometry). This condition is realised
by imposing reduced velocities kV on the system.

9.5.2 Turbulence Threshold

We have just seen that the Reynolds number is the only parameter controlling fluid
dynamics. In addition, this number can be interpreted as the ratio of the nonlinear
amplification term .v:r/v, which tends to destabilise the movement amplifying local
arbitrarily small fluctuations in velocity, over the viscous dissipation term ��v,
which tends to dampen these fluctuations. In other words, this number expresses the
ratio between the kinetic energy of the fluid and the energy dissipated by viscous
friction. From this we can intuitively understand what is experimentally confirmed:
turbulence appears in a fluid flow above an instability threshold Re�. At small
Reynolds numbers (Re � Re�), the nonlinearities play a negligible role and we
observe a laminar regime, with all the symmetries of the Navier–Stokes equation.
As Re increases, the nonlinear amplification of fluctuations in the velocity field
dominate more and more over their damping and the fluid develops instabilities
which deviate qualitatively from the laminar regime. More specifically, a succession
of (bifurcation) thresholds is shown experimentally. On passing each threshold, a
new symmetry of the Navier–Stokes equation is broken such that the velocity field
no longer has this symmetry. Above the final threshold, the nonlinearities totally
dominate the fluid behaviour. The exact value Re� of this turbulence threshold
depends on the geometry of the problem, the boundary conditions and the definition
we take for the beginning of turbulence but it always stays around the same order
of magnitude, of 100. So the Reynolds number quantifies the degree of turbulence
of the system, admittedly roughly but on an absolute scale. The expression for Re
shows that three factors control the behaviour of the fluid: the turbulent regime will
be reached faster the smaller the viscosity, the larger the dimensions of the system or
the higher the average macroscopic velocity of the fluid. These last two are seen for
example in a river that is turbulent when in flood but laminar normally. Finally let
us highlight that turbulence only takes place permanently in open systems that are
given an energy supply. For example, the turbulent motion created by the movement
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of blades in a tank is quickly dampened by viscous dissipation if we stop stirring
the fluid.

We will not describe further the sequence of events39 marking the transition from
a laminar to a turbulent regime (for this see for example [55] and [27]). Because it
shows scaling properties, we are only interested in the “fully developed turbulence”
regime observed way above the thresholdRe�, typically forRe > 10 Re� 	 1;000
(for example,Re reaches about 1010 in the atmosphere). We should highlight, unlike
deterministic chaos presented in Sect. 9.2 and sometimes called weak turbulence,
fully developed turbulence (or strong turbulence) brings into play a large number
of coupled unstable modes. Furthermore, only a statistical description, namely that
of the fluid velocity field, will be meaningful. We will study average quantities,
denoted h i, in particular the static structure functions (or factors), defined as the
moments of the variation in the longitudinal velocity:

Sp.l/ 
 hıv.l; r; u; t/pi (9.16)

where

ıv.l; r; u; t/ D Œv.r C lu; t/ � v.r; t/�:u .u unit vector/ (9.17)

and the dynamic structure functions (or factors):

˙p.l; �/ 
 hŒıv.l; r; u; t C �/ıv.l; r; u; t/�p=2i: (9.18)

These functions are the equivalents of the static and dynamic correlation functions
introduced to describe critical phenomena and we will see that they show analogous
scaling behaviours.

9.5.3 A Qualitative Picture: Richardson’s Cascade

The first fundamental step was to relate turbulence to the transfer of kinetic energy
across a vast range of scales. Energy is introduced at a large scale L. The fluid then
develops eddies at all scales, as a cascade, each one feeding relative40 eddies of
smaller scale, until the scale l� where viscous dissipation is effective.

39Such a sequence leading first to chaos then to fully developed turbulence is also observed, in an
exemplary way, in Rayleigh–Bénard’s experiment described in Fig. 9.1. However the phenomenon
is different because in this case the density of the fluid varies as a function of its temperature. The
dimensionless number controlling the fluid dynamics is no longer the Reynolds number but the
Rayleigh number, involving the vertical gradient of temperature imposed on the system.
40Note that it consists of relative eddies, whose motion is described with respect to eddies of larger
size in which they are embedded.
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More specifically, we can define local Reynolds numbers. The number charac-
terising an eddy of size l and relative velocity v (with respect to the motion of the
fluid as a whole at a larger scale) will be Reloc D lv=�. When this number is large
compared to 1, the energy dissipated by viscous friction is negligible and the eddy
kinetic energy will fuel relative eddies at smaller scales. On the other hand, when
this number reaches values close to 1, the eddy becomes a dissipative structure,
degrading the coherent kinetic energy in molecular mechanisms. l� is the typical
size of the first (largest) dissipative eddies.

This picture is called Richardson’s cascade [70]. This cascade can be widely
observed, for example in a river in flood where we see small eddies superimposed
on swirling movements on a larger scale. Turbulence therefore comes from the
necessity to reconcile the energy injection mechanism at the macroscopic scale
(e.g. movement of blades or injection of fluid at a given velocity) and the energy
dissipation mechanism at the molecular scale. The larger Re, the greater the
difference between the scaleL at which energy is injected and the scale l� of viscous
dissipation, so the more room for many interlocked levels of organisation. The
constant energy transfer between successive levels, before dissipation effectively
comes into play, suggests that the Richardson cascade is self-similar in the domain
l� � l � L. Experimental results supporting this hypothesis are the subject of the
next section.

9.5.4 Empirical Scaling Laws

Experimental studies of fully developed turbulence have led to three empirical laws,
valid a very large Reynolds number (Re� Re�) and confirming quantitatively the
qualitative self-similarity of Richardson’s cascade:

• If we let the viscosity � tend to 0, all other characteristics of the system (L, V ,
geometry, boundary conditions) remaining unchanged, the energy " dissipated
per unit mass and time tends to a finite value:

" � V 3

L
.� ! 0/: (9.19)

• The quadratic mean S2.r; l; u; t/ 
 hıv.l; r; u; t/2i is independent of the point
r , the unit vector u and time t if the turbulence is homogeneous, isotropic and
stationary; so we call it simply S2.l/ or hıv.l/2i. In a range of scales l� � l � L
called the inertial domain, it obeys the scaling law (2/3 law):

S2.l/ 
 hıv.l/2i � l2=3: (9.20)

This law is replaced by hıv.l/2i � l2 at very small scales (l < l�), in agreement
with the regularity of the velocity field. However the behaviour l2=3 observed
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in the inertial domain shows that the spatial derivative of the velocity field is
not uniformly bounded, otherwise we would have hıv.l/2i � l2 at all scales.
Therefore this law reflects the existence of anomalies in the velocity field in the
turbulent regime, numerous and large enough with respect to the motion of the
fluid to affect the behaviour of the average scale. Note that the value l� marking
the transition between the two scaling behaviours of hıv.l/2i, is at this stage
empirical. We will see below its physical interpretation and how it can be related
to L and Re.

• We often describe the turbulent regime by its power spectrum E.k/. It is a
function of the modulus of the wavevector k such that E.k/dk is equal to the
energy of the modes with wavevector modulus dk around k [81]. Therefore, by
definition, we have: Z 1

0

E.k/dk D 1

2
hv2i: (9.21)

It can then be shown41 that if E.k/ follows a scaling law E.k/ � k�˛ , then
hjv.r C lu/ � v.r/j2i � l˛�1 (in the statistically stationary, homogeneous and
isotropic regime). Experimentally we observe the scaling law:

E.k/ � k�5=3 .2�=L � k � 2�=l�/: (9.22)

This law, the equivalent to the 2/3 law in conjugate space, is only observed in
a certain window of wave vectors. Its upper limit is the size of the system and
lower limit the viscous dissipation taking place at small spatial scales.

The scale invariance of the Navier–Stokes equation is actually quite trivial. We
have seen in Sect. 9.5.1 that it arises from a simple dimensional analysis. The
exponents obtained are all as natural as that for example in the “scaling law” V � a3
relating the volume V of a cube to the length a of its sides and expressing its “self-
similarity”. The scale invariance that appears in the context of turbulence and is
expressed in particular in the laws S2.l/ � l2=3 and E.k/ � k�5=3, is less trivial.
It reflects the complex spatiotemporal organisation of a turbulent flow. It is to the
invariance of the Navier–Stokes equation what the scale invariance of a fractal is to
the cube we have just mentioned.

9.5.5 Kolmogorov’s Theory (1941)

The first quantitative analysis, due to Kolmogorov, is today a standard theory of
scaling, based on three hypotheses of scale invariance [43].

41An intermediate result, the Wiener–Khinchine theorem, relates the spectrum E.k/ to the
spatial correlation function of the velocity field according to the following formula: E.k/ D
R

1

0 kr sin.kr/ hv.r C r0/v.r0/i dr=� where hv.r C r0/v.r0/i only depends on r through the
statistical isotropy and homogeneity of turbulence.
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• The first hypothesis is that the transfer of energy is constant all along the
cascade. This hypothesis, coming from experiments (Sect. 9.5.3), is justified by
the fact that the energy starts to dissipate only at small scales l� where the viscous
dissipation becomes effective. The quantity " of energy per unit mass and time
given by the eddies of scale li to the set of those at the smaller scale liC1 is
therefore independent of i . The cascade stops at eddies of size l� and relative
velocity v� giving a Reynolds number around 1, i.e. l�v�=� 	 1. The energy of
these eddies is totally dissipated by viscosity and is therefore no longer available
to fuel movements on a smaller scale. We obtain:

l� � L.Re/�3=4: (9.23)

• The second hypothesis is to assume that in the inertial domain l��l�L, statisti-
cal properties of turbulence are stationary, homogeneous, isotropic, independent
of injection of the material or energy creating the turbulence (scale L) and
the viscosity (which just fixes the lower bound l�). We therefore assume that
the symmetries of the Navier–Stokes equation, broken when Re crosses the
turbulence threshold, are restored but in a statistical sense at high values of Re.
Under this hypothesis, taking the statistical average h i eliminates the dependence
on r , u and t , so the moments Sp.l/ only depend on l .

• The third hypothesis is to assume a universal form for hıv.l/2i, which, by
dimensional analysis and the fact that " is constant, is written:

hıv.l/2i � "2=3l2=3: (9.24)

In the same way Kolmogorov’s law is obtained:

E.k/ � "2=3k�5=3: (9.25)

The theory also predicts that:

S3.l/ 
 h.ıv.l/3i D � 4
5
"l et Sp.l/ 
 h.ıv.l/pi � ."l/p=3: (9.26)

9.5.6 Multifractal Analysis

More advanced experimental studies effectively demonstrate scaling laws Sp.l/ �
l zp , but the dependence of zp on p appearing here is nonlinear, contradicting the
prediction zp D p=3 of Kolmogorov’s theory. The difference comes from the
fact that turbulence is far from being homogeneous and isotropic, which limits
the range of validity of Kolmogorov’s theory and makes it not very useful to
finely characterise or control a turbulent regime. It gives a global framework and
illuminates the fundamental principles at work in fully developed turbulence but it
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is not sufficient to account for all the complexity of the phenomenon. In fact, local
rare but acute singularities can have a crucial influence on the behaviour of the fluid.
We will see that they are enough to induce anormal scaling laws Sp.l/ � l zp where
zp ¤ p=3. A local singularity of the velocity field can be described by a local
exponent ıv.r; l/ � l˛.r/ (at small values l � L). More rigorously, it should be
written:

ıv.r; 	l; u/ � 	˛.r/ ıv.r; l; u/; (9.27)

where the symbol � means equal distributions: both terms have the same moments
and the same joint distributions (i.e. at several times and components). Kol-
mogorov’s theory corresponds to the perfectly homogeneous case where ˛.r/ 

1=3.

The first extension is a bifractal mode where ˛.r/ D ˛1 on a set of fractal
dimension f1 and ˛.r/ D ˛2 < ˛1 on a set of fractal dimension f2 < f1. The
behaviours of the structure functions Sp.l/ result from the superposition of two
scaling laws with exponents ˛1 and ˛2 respectively. It is found that Sp.l/ � l zp

where zp D inf.p˛1 C 3 � f1; p˛2 C 3 � f2/. This model therefore predicts two
different exponents depending on the order p of the structure function Sp. The
interpretation of this is that, depending on the order p, it is not the same set of
singularities that dominates and controls the behaviour of Sp. Consequently, the
profile of p ! zp has a discontinuity in the gradient (a crossover) passing from
a line of slope ˛1 at small values of p to a line of slope ˛2 at large values of p.
However, when this model is compared with experimental data, we observe that this
graph is actually a concave curve and not the expected broken line, let alone the 1/3
slope predicted by Kolmogorov’s theory.

This nonlinear dependence on p of the exponent zp of the structure functions
Sp.l/ reflects the existence of a continuum of exponents ˛.r/, which leads to
a generalisation of the bifractal model to a multifractal model [7]. A method
inspired by the fractal geometry, multifractal analysis, provides both a theoretical
framework to describe the spatial distribution of exponents ˛.r/ and singularities of
the associated velocity field and a way of experimentally accessing characteristics
of this distribution.

What is a multifractal structure? In short, it is a “doubly fractal” structure. It has,
first of all, local singularities described by a local exponent ˛.r/. In the case we are
considering the exponent describes the local singularity of the velocity field. Then,
the place of points r where the exponent ˛.r/ takes a given value ˛ is itself a fractal
structure, of fractal dimension f .˛/. The curve ˛! f .˛/ is called the multifractal
spectrum of the velocity field. Typically, the smaller ˛ the stronger the associated
singularities and the more likely they are to have significant consequences, but also
the rarer the points where this value ˛ is observed, or in quantitative terms, the lower
f .˛/. By substituting these ingredients into the expression for the moments and
using the saddle method to evaluate the integral Sp.l/ �

R

l˛pl3�f .˛/d˛ obtained,
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we obtain42 the behaviour at small values of l [27]:

Sp.l/ � lzp with zp D inf
˛
Œp˛ C 3 � f .˛/�: (9.28)

9.5.7 An Open Field Today

Turbulence is a classic example of complex spatiotemporal dynamics. As well as
that presented here of an incompressible fluid violently agitated or arriving at an
obstacle at high velocity, it appears in many other systems for example, atmospheric
turbulence (Lorenz model Fig. 9.6 describes the “weak” version of the strong
turbulence described here) or the Rayleigh–Bénard experiment, to mention just two
examples already encountered in this chapter. More ingredients, and therefore more
parameters (notably temperature) could come into play, but the qualitative ideas
remain the same.

Understanding fully developed turbulence is a arduous problem because it
involves a large number of space and time scales. The phenomenon must be
addressed globally, giving due weight to singular events that are spatially localised
(as we did in Sect. 9.5.6) but also transient (loss of statistical stationarity). This
intermittence of turbulence (not to be confused with intermittency described in
Sect. 9.4) at small scales will break the scale invariance observed in the inertial
domain and consequently invalidate all the models and tools that rely on this
invariance, in particular Kolmogorov’s theory [27].

The problem also occurs in obtaining and processing experimental data since
it is difficult to design sensors covering the whole range of the phenomenon
without disturbing it. We usually adopt Taylor’s hypothesis according to which
instantaneous spatial averages (and static averages) coincide with temporal averages
calculated from the recorded signal. To eliminate noise the analysis methods used
are generally spectral methods. It not so easy to extract information on local and
transient spatiotemporal structures. New tools, such as wavelet transform have
been developed for this (Sect. 11.3.2) [62]. Methods developed for turbulence, for
example multifractal analysis, are already widespread. No doubt it will be possible
to establish fruitful analogies and applications, in terms of concepts as well as tools,
in other contexts.

42To be more rigorous, multifractal analysis should be done on the cumulative probability
distribution: ProbŒıv.r; l; u/ > l˛�. We can also develop a multifractal analysis of the dissipation
l .r/, as it happens related to that of the velocity field because ıv.l/ 
 .ll /

1=3, so that
l .r/ 
 l3˛.r/�1 [27].
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Boston, 1980)
16. M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65,

851 (1993)
17. M. Demazure, Bifurcations and Catastrophes (Springer, Berlin, 1999)
18. R.J. Donnelly, Taylor-Couette flow: The early days. Phys. Today, 32–39 (1991)
19. J.R. Dorfman, An Introduction to Chaos in Non Equilibrium Statistical Mechanics (Cambridge

University Press, Cambridge, 1999)
20. J.P. Eckmann, Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53, 643

(1981)
21. J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57,

617 (1985)
22. J.P. Eckmann, C.A. Pillet, L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic

chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657
(1999)
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Chapter 10
Self-Organised Criticality

During this book we have encountered many examples of critical phenomenon and
have highlighted their common characteristics of divergence of the range of corre-
lations, absence of characteristic scales,1 fluctuations of all sizes and anomalous
response (at all scales in amplitude, spatial extent and duration) to even a tiny
perturbation. These characteristics are reflected in many scaling laws, expressing
quantitatively the scale invariance of the phenomena. Typically, criticality occurs for
a particular value of the control parameter which is adjusted externally, for example
the critical temperature in second order phase transitions, percolation threshold pc
or bifurcation point in a dynamic system. However, it turns out that certain systems,
maintained in a nonequilibrium state by a continuous supply of material or energy,
can evolve spontaneously to a critical state, without external regulation. This is
the concept of self-organised criticality, which we will present in this chapter,
discussing various examples.

10.1 A New Concept: Self-Organised Criticality

10.1.1 Sandpile

10.1.1.1 A Familiar Experience

One of the emblematic examples of self-organised criticality is that of a pile of sand.
If we add new sand to the top of the pile, excess sand flows to the bottom of the pile.
In this way it behaves as an open system. For the system to reach a fixed regime, it
is necessary to remove sand. Despite being statistically in a steady state, this regime

1Other than the “trivial” scales of system size, duration of observation and, at the other extreme,
the scales of the constitutive elements.

A. Lesne and M. Laguës, Scale Invariance, DOI 10.1007/978-3-642-15123-1 10,
© Springer-Verlag Berlin Heidelberg 2012
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is an out of equilibrium state. Unlike in a true equilibrium state, the flow of sand
along the slopes of the pile is not zero. The slope of the sides of the pile takes a
value that is independent of the size of the pile. The actual situation is a bit more
complicated: the slope oscillates between two values, �m and �M , a few degrees
apart. �M is a critical value since all higher values correspond to an unstable pile
shape and therefore cause an avalanche. This sudden and complex relaxation in
general overshoots the strict condition required for static stability of the pile. More
sand than necessary is removed, bringing the slope to a value of � < �M , from
which it starts to increase again as we continue to add sand. The rate of injection
will be chosen to be small enough that avalanches are separated from each other in
time. Once the slope reaches a value close to �M , the moment at which the avalanche
occurs is random. The size of the avalanche (number of grains involved) as well as
its lifetime are also random. Avalanches are seen at all scales, from very localised
avalanches that only locally readjust the slope to global subsidence in which the
whole side of the pile is renewed.

10.1.1.2 Numerical Simulations

This familiar experience was reproduced numerically by Bak et al. [3], using the
model explained in Fig. 10.1. When we analyse the distribution of sizes A of these
avalanches, we find that the histogram N.A/ follows a power law (Fig. 10.2):

N.A/ � A��: (10.1)
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Fig. 10.1 Cellular automaton simulation of the critical behaviour of a sandpile. Space is divided
horizontally into cells (or “sites”). Numbers indicate the local slope at each site (i.e. the slope in
the sandpile region whose horizontal projection corresponds to that site). As soon as the slope at a
particular site exceeds a threshold, here chosen to be 4, the state is updated such that the value of
the slope at this point decreases by 4 and that of each of the 4 neighbouring sites increases by one.
This modification may bring the slope of one of these sites above the threshold, in which case the
network is rearranged again, and so on. The size of the avalanche is equal to the number of grains
that leave the network (here 6) and its duration is the number of steps necessary to complete the
rearrangement (here 3) such that each slope is below the threshold. The system is maintained out
of equilibrium by a continuous supply of sand to the central site, the rate of which is very slow
compared with the timescale of avalanches
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Fig. 10.2 Log-log plots showing the behaviour of a simulated sandpile (after [3]). Left: distribu-
tion of avalanches as a function of their size: P.A/ � A�� with � � 1:03. Right: distribution of
avalanches as a function of their lifetime weighted by the average response hA.T /i=T (see text):
it scales as D.T / � T ��0

with �0 � 0:43, corresponding to a spectral density S.f / � f �1;57

Numerical models of sandpiles give an exponent� slightly larger than 1 (� � 1:03).
The average time lapse �.A/ between two successive avalanches of size A grows
with the size as �.A/ � A2. Finally, the distribution P.T / of the lifetime T of
avalanches also follows a power law. We actually plot (Fig. 10.2) the distribution
D.T / weighted by the average response hA.T /i=T (conditional average taken over
avalanches with lifetime T ):

D.T / � P.T / hA.T /i
T

� T ��0

: (10.2)

It can therefore be shown that the spectral density S.f / (or power spectrum, equal
to the Fourier transform of the temporal correlation function) is related to P.T /
according to the formula [2]:

S.f / D
Z 1=f

0

TD.T /dT where S.f / � f �2C�0 � f �ˇ: (10.3)

10.1.1.3 Self-Organised Criticality and Marginal Stability

Bak et ak, [2] described the behaviour of their simulated sandpile as self-organised
criticality. The word “self” reflects the intrinsic nature of �M , which is not fixed
from outside but is “found” by the dynamics itself.



348 10 Self-Organised Criticality

Capacitor

Ω

t = 0

Ω

S
(f

)

2

0

– 2

– 4

f

– 2– 3 – 1 0 1

Fig. 10.3 Turning cylinder experiment. The rotation speed is very slow (˝ � 1:3ı/min) such
that avalanches are well separated in time. Sand that falls passes between the plates of a capacitor,
which allows a quantitative analysis. Right: spectral density S.f / profile obtained (log-log plot).
For comparison the dotted line corresponds to S.f / � 1=f (after [21])

Starting from this numerical model and assuming that a single quantity X is
enough to describe the local state of the system, a fundamental characteristic of self-
organised criticality can be very systematically extracted: The system spontaneously
tends to remain around an intrinsic stability threshold Xc . As long as X < Xc and
there is a supply of energy or material the system will evolve in such a way that X
increases. As soon as X exceeds Xc , a relaxation phenomenon (an “avalanche”) is
suddenly produced bringing X back to values below Xc . In this way the value Xc
corresponds to the least stable of the stable positions of the system, in the absence
of external influences.2 This is referred to as marginal stability, i.e. the smallest
influence causing a growth ıX is the “last straw”.

10.1.1.4 Experimental Results

Quantitative experiments have been carried out by very slowly turning a filled half
closed half cylinder (Fig. 10.3).

Here it is the rotation that maintains the system out of equilibrium. Avalanches
are indeed seen, but the behaviour is far from the almost perfect power law
observed numerically. In particular, a characteristic frequency appears (peak in the
spectrum S.f /) and no convincing scale invariance emerges (Fig. 10.3). This can

2In this preliminary statement, we have deliberately omitted to take into account the spatial
extension of the system. The quantity X is actually a function X.r/ and will therefore evolve
differently at each spatial point r. Self-organised criticality appears when, in addition, spatial
correlations develop as local values of X approach the threshold Xc . We will return to this point in
Sect. 10.1.3.
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be explained by the particular properties of real granular media: grains of sand exert
sold friction forces on each other and the sand behaves both as a solid (if � < �M )
and a liquid (if � > �M ). In conclusion, although the analysis of simulated sandpiles
brought forth the paradigm of self-organised criticality, it seems that real sand piles
do not provide the best example of this type of behaviour, far from it.

10.1.2 Forest Fires

A second example, maybe more convincing, is the model called “forest fires”. It
better connects self-organised criticality to critical phenomena encountered in this
book, namely percolation (Chap. 5).

The surface of the ground is discretised into cells, i.e. represented by a square
lattice. The slow growth of trees is modelled by a random filling of empty squares,
with a rate a1. At time t , there are on average a1t planted cells (equivalently we
can fix a time interval �t1 D 1=a1 between each replanting of a cell). The average
density of trees, defined here as the average fraction of occupied cells, will therefore
be a function p.t/ that grows over time. Since cells are filled randomly, filling
will not be regular and homogeneous, but instead form clusters. The statistics of
these clusters as time t is known, it is that of a percolation network of parameter
p.t/. With a much lower frequency a2, we light a fire in a lattice cell (the average
time between two ignition events is therefore �t2 D 1=a2 � �t1). If the sparks
fall on a planted cell, the tree catches alight and the fire rapidly propagates to all
neighbouring planted cells and so on until the whole cluster they are part of is ablaze.
In one time step, the whole cluster burns and then becomes bare land. The range of
the fire is simply measured by the number of burnt sites. We will therefore observe
long periods of reforestation, during which the densityp.t/ grows, separated by fires
of comparatively short duration, during which the average density dramatically falls.

If p.t/ is low at the moment of ignition, far below the percolation threshold pc ,
the cluster that burns will typically be of a small size s.p/, so that p will be very
little affected by the fire and will quickly continue spreading. If on the other hand
p.t/ > pc , a cell will have a probability P Œp.t/� > 0 of belonging to the infinite
cluster. The fire will therefore typically burn a sizable fraction of trees, so that p.t/
will significantly drop. If we let the system evolve, it will stabilise in an intermediate
state between the two unstable extremes we have just described. It is numerically
observed that p tends to pc . So the system spontaneously self-organises in such a
way that its average density is equal to the percolation threshold pc . We therefore
clearly have self-organised criticality situation. This affirmation can be specified
quantitatively by showing that the size distribution P.A/ of fires follows a power
law [4, 10]:

P.A/ � A�� with � � 1:3: (10.4)
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The density fluctuations are scale invariant, they have the form of a power law
reflecting the absence of a characteristic size in this phenomenon (apart from, of
course, effects related to the finite size of the simulation lattice, which will truncate
the power laws). A variant of the model is to burn, in one time step, only cells
that are nearest neighbours to inflamed cells. In this case, the lifetime T of the fire
becomes another way to measure its magnitude and we similarly observe a power
law distribution for the lifetimes. Here the simulation correctly reproduces real data.
Analysis of data recorded for forest fires produced in large forests in America or
Australia show a power law behaviour P.A/ � A�1:3 [30].

To conclude, we highlight two important characteristics of this model, which we
will find again in other examples of self-organised criticality:

• The large separation between the reforestation timescale and the very fast
relaxation time (fire lifetime).

• The global stability of the critical point, i.e. the global dynamics spontaneously
leads the system to this point.

10.1.3 The Basic Ingredients

The behaviour of sandpiles and forest fires have been taken as reference models
to address other problems such as avalanches and landslides, volcanic eruptions
and earthquakes, ecosystems, financial and economic markets, traffic flow, diffusion
and growth fronts. Before presenting these different situations and to be better
prepared to discus their (potential) similarity, we can already summarise the
main points of the concept of self-organised criticality introduced by Bak and
collaborators. It applies to systems that are out of equilibrium and spontaneously
evolving to a critical state, critical in that it does not have any characteristic scales
but instead has a self-similar spatiotemporal organisation [3, 7]. The critical nature
of these systems is clearer in their response to small external perturbations: a very
small influence can have arbitrarily large consequences, on arbitrarily long space
and time scales. Quantitatively this criticality results in the divergence of correlation
lengths and times. The zone and lifetime of the influence of a very localised event
(e.g. addition of a grain of sand, ignition of a tree) are not bounded. The most
characteristic signature is the 1=f noise. We mean by this that the spectrum S.f /

of correlations observed in these systems follows a power law S.f / � 1=f ˇ with
ˇ close to 1 (different from the value ˇ D 0 corresponding to white noise and
the value ˇ D 2 corresponding to the Wiener process). As we have mentioned in
Sect. 10.1.1, it can be shown that such scaling behaviour comes from the existence
of many different relaxation times following a power law distribution. We will see,
in Sect. 11.3, that it reflects the existence of temporal correlations at all scales.

Self-organised criticality is a fundamentally collective phenomenon. Many
simple (but nonlinear because they have a stability threshold) interactions gradually
organise by developing long range correlations. The system then arrives in a state
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where many correlated regions are near to breaking point. It is therefore sensitive
to respond to the smallest perturbation in an extremely amplified way. We observe
an event whose magnitude is incomparable to that which triggered it. This critical
state, which is marginally stable with respect to local perturbations, seems to be a
stable state of the global dynamics, such that the system returns to it spontaneously,
without being a result of regulation of a control parameter. Self-organised criticality
then has no control parameter. For example, changing the injection rate of material
or energy, which maintains the system far from equilibrium, does not at all affect
the observed behaviours (as long as this rate remains small). The concept of
self-organised criticality highlights that it is the same causes and mechanisms of
initiation or nucleation underlying small events and major catastrophes, so that both
types of event are equally unpredictable.

Self-organised critical systems are necessarily open and dissipative systems.
However, the existence of a local stability threshold implies that the timescale of
relaxation of the stored energy is very short compared to that of injection. The
associated mechanism is schematically represented in Fig. 10.4. The system slowly
accumulates energy in the form of stresses or strains and suddenly releases it with an
uncontrolled amplitude once a tolerance threshold has been crossed. Note that this
relaxation occurs randomly (and not as soon as the threshold is crossed) due to the
large number of coupled degrees of freedom of the system under consideration. Of
course, the more stress accumulated in the system above the threshold the higher
the probability of a catastrophe releasing these stresses. Nevertheless, the only
prediction possible will be of a statistical nature.

Time 1 Time 3 Time n

Time 1 Time 3 Time n

Fig. 10.4 Temporal asymmetry of flows entering and leaving in self-organised criticality (lower
section of figure). Even though the average values of these flows on very large timescales are
equal, there is a slow accumulation of energy or constraints, over n� 1 time steps, and very fast
relaxation in a single time step. This mechanism, related to the existence of a stability threshold
in the local dynamics, contrasts with the case of “dynamic equilibrium” (upper section of figure)
where flows equilibrate in short timescales and produce a “normal” steady state
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10.1.4 In Practice

The simplest way to show a self-organised criticality is to construct the histogram
of the number of events as a function of their amplitude or lifetime. This gives
the size distribution P.A/ of events. A signature of self-organised criticality is that
this distribution follows a power law P.A/ � A��. From experimental data, it is
easier and more reliable to consider the probability P.A > A0/ that events have
an amplitude larger than A0, called “cumulative distribution”. The signature of self-
organised criticality is again a power law behaviour P.A > A0/ � A

1��
0 (with

� > 1). We can also determine the distribution P.T / of events of duration T , or the
numberN.�/ of events of duration � . These also follow power laws in the case of a
self-organised critical system. A more detailed analysis is obtained by determining
the spatio-temporal correlations. The power spectrum S.f / (Fourier transform of
the temporal correlation function) is studied, whose form of 1=f ˇ with ˇ close to 1
seems to be the clearest signature of self-organised criticality.

10.2 Examples

Having discussed the, now classic, examples of sandpiles and forest fires, we
will next give a glimpse of different phenomena related (often in a debated and
sometimes questionable way) to self-organised criticality. This presentation will
help the reader better understand the issues, limits and relevance of the concept.

10.2.1 Diffusion Fronts

Diffusion fronts can be seen as self-organised critical phenomena associated with
percolation. Let us consider the diffusion, in two dimensions, of a population of
particles whose only interactions are hard core interactions.3 In a numerical lattice
model, this corresponds to disallowing double occupancy of sites. The typical
example, effectively two dimensional (and also naturally on a lattice), is that of
a rare gas adsorbed on a crystal. Unlike the systems considered in Chap. 4, for
example in Fig. 4.3, here we will consider the case of a semi-infinite medium that
is continuously supplied with gas. In other words, the concentration satisfies the
constant boundary condition c.x D 0; y; t/ � c0, which we can always normalise to
1 by adjusting the mesh size of the lattice. Therefore here we no longer have a
relaxation phenomena but a system maintained out of equilibrium.

3We call hard core interaction a short ranged quasi-infinite repulsion, modelled by a hard core of
radius equal to the range of this repulsive interaction.
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The distribution of particles in this case is the same as that which would be
obtained by locally filling the lattice like a percolation network, with probability
p.x; t/ D c.x; t/, which is the solution of the diffusion equation. This model,
in which the probability varies in space is called gradient percolation. At the
numerically accessible microscopic scale, the diffusion front is defined as the exter-
nal border of the cloud of particles, which in two dimensions corresponds to the
forwardmost connected path.4 We therefore observe that at every moment in time
the front is localised around xc.t/ such that p.xc.t/; t/ D pc . In other words, the
diffusion front localises in the region where the concentration is near the percolation
threshold, the critical properties of which we have described in Chap. 5 [13].

10.2.2 Traffic Flow and Traffic Jams

Traffic jams and other annoying characteristics of traffic circulation are studied very
scientifically under the name of “traffic theory” making use of different concepts
developed in other domains, which at first glance seem nothing to do with the
problem, e.g. granular media, phase transitions, kinetic theory of gases and self-
organised critical phenomena. It is an example of a phenomenon at the interface
of statistical mechanics and nonlinear physics [16]. The theoretical approach dates
back to Nagel and Schreckenberg, in 1992, and their simulation of traffic flow using
a cellular automaton model.5

Many studies of more realistic traffic models have been carried out [31] (see also
Sect. 4.6). It can then be shown that traffic spontaneously evolves to the dynamic
state in which transport is most efficient and that, unexpectedly, this optimal state is
also critical from the point of view of transport. On one hand, it is more sensitive
to obstacles, which can lead to massive and sudden congestion. On the other hand,
it is also sensitive to the smallest internal fluctuations and spontaneously produces
traffic jams of all sizes, without any external cause. The power spectrum of the
intermittent dynamics associated with this critical regime is exactly 1=f , indicating
the existence of long range correlations and a broad distribution of characteristic
times, in good agreement with both numerical simulations and observations of real
traffic flow [19, 25]. More complex regimes are observed if several parallel routes

4In three dimensions a percolating path no longer makes a border and the front will extend over a
whole range of concentrations. However, its foremost part will still be spontaneously localised in
the region where p D pc .
5A cellular automaton is a model in which time, space but also state variables take only discrete
values. Such a model is therefore particularly suitable for numerical studies. Typically, particles
are moved from site to site according to very simple probabilistic rules. Cellular automata are
used to study many transport phenomena, for example reaction-diffusion phenomena or those
encountered in hydrodynamics and population dynamics [8]. In the context of self-organised
criticality, sandpiles, forest fires and traffic flow are numerically studied using this type of
simulation [20].
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are considered (e.g. motorway lanes) with transfer of vehicles from one to the other,
entrance and exit sliproads and several types of vehicles.

10.2.3 Earthquakes

When the deformation of the earth’s crust caused by slow movements of tectonic
plates exceeds a certain threshold, a rupture is produced, in other words an earth-
quake. Energy is then released in the form of seismic waves. The magnitude M of
an earthquake is measured on a logarithmic scale. By definition an earthquake of
magnitudeM is of amplitude S.M/ � 10M . The experimental Gutenberg–Richter
law expresses the cumulative frequency N.M > M0/ of earthquakes of magnitude
M above M0 as N.M > M0/ � 10�bM0 . It is valid over a large range of scales,
specifically for 2 � M � 6:5, with a universal exponent b where 0:8 � b � 1:1

[14, 15]. Using the frequency N.S/ derived from the cumulative frequency, it can
be written as a function of S :

N.S/ � S�� with � D 1C b � 2: (10.5)

If we record the surface A affected by each earthquake in a given region over a
period long enough to get many points and plot the results as a histogram N.A/,
we also obtain a power law N.A/ � A��0

with �0 � � � 2. So it seems that
earthquakes show self-organised criticality. Here we find a great disparity between
mechanisms of injection of energy and its release since stresses accumulate over
very long timescales, set by the movement of tectonic plates, while the events in
which the stored energy is released occur over a range of very short timescales
(although very variable from one event to another). Earthquakes depend on the
organisation of the earth’s surface which they change themselves. This feedback
is the cause of the observed self-organised criticality.

A simple model was proposed to quantitatively study the consequences of this
basic mechanism. Blocks of massm are placed on a horizontal plate, on which they
move with solid friction (coefficient of static friction Fs higher than the coefficient
of dynamic frictionFd ). They are connected together by springs (harmonic restoring
force, stiffness kc) and connected, also by a spring (of stiffness kp), to a higher
horizontal plate moving with uniform velocity v. The control parameters of this
model are m, v, and ratios ˚ D Fs=Fd and a D kc=kp (see Fig. 10.5). For a small
number of blocks, the purely deterministic system will show a chaotic behaviour.
However, when there are N � 1 blocks, it shows self-organised criticality
characterised by a scaling law N.A/ � A��0

analogous to that observed in seismic
data, but with �0th � 1:3, smaller than the measured exponent �0 � 2 [30].

Earthquakes are actually the manifestation of complex spatiotemporal dynamics
and not isolated events. This is reflected in Omori’s law describing the decay over
time T of the frequency with which aftershocks are detected after an earthquake
(where T is counted from the main earthquake):
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Fig. 10.5 Model of tectonic plates and resulting earthquakes. The figure shows a transverse cross-
section of the two dimensional model: imagine rows of blocks each connected by elastic springs
to its four neighbours

N.T / � T �˛ ˛ � 1: (10.6)

It is also observed that the distribution of epicentres is fractal, with fractal dimension
df D 1:2. A global law, unifying the Gutenberg–Richter law, Omori’s law and
the fractal nature of the seismically active regions has been recently proposed [9].
It describes the distribution of intervals T separating earthquakes with amplitude
larger than S (i.e. magnitude larger than log10 S ) in a region of linear size L:

PS;L.t/ � T �˛ f .T Ldf S�b/: (10.7)

Its experimental validation supports the idea that all earthquakes or seismic activity,
whatever their magnitude and whether or not they are aftershocks of a bigger
earthquake, result from the same mechanisms and are involved in the same complex
multiscale dynamics.

10.2.4 Inflation of the Lungs

The first studies on lung inflation simply measured the duration T of inspiration
(intake of breath). The resulting histogram P.T / seems to follow a power law or,
equivalently, the spectral density seems to obey the scaling law S.f / � f �0:7. But
the small range of values observed for T means we cannot see these results as more
than an encouragement to conduct a more detailed experimental study on how air
fills the lungs.

The end branches of the lungs close during expiration and gradually reopen
during inspiration. The dynamics of their (aerodynamic) resistance whilst the lungs
fill at constant flux has been precisely measured (locally at the scale of an alveolus).
It is observed that discrete variations superimpose on the continuous decrease of this
resistance. The probability distribution P.�/ of the time � separating two jumps, as
well as the distribution P.A/ of jumps show power law behaviour [29]:

P.�/ � ��˛ where ˛ D 2:5˙0:2; P.A/ � A�� where � D 1:8˙0:2: (10.8)
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A theoretical model, based on the hierarchical structure of the pulmonary system
and describing the cascade of opening of its branches (analogue of avalanches on a
sand pile) explains these scaling laws [6]. Changes in their exponents is a signature
of certain respiratory diseases.

10.2.5 Ecosystems and Evolution

Fossil studies have yielded some information about the extinction of ancestral
species [24]. These have shown that extinctions do not occur continuously but in the
form of events lasting very short times on the evolutionary timescale. In the context
of ecosystems, criticality means that species are highly interdependent, for example
via food chains or mutualism (interaction between organisms in which each gains
a fitness benefit). From the fact that all coupled species disappear at the same time,
we understand that major extinction events can occur [22].

A model, by Bak and Sneppen [5], was designed to try to capture the basic
mechanisms behind this feature of evolution.6 This model, which does not try
to describe reality but only to suggest a plausible mechanism, is as follows. We
place species on a virtual lattice (that is to say without an inherent physical
space) representing the network of interactions. Neighbouring species on the lattice
are those that are coupled, for example by a trophic relationship (pertaining to food).
The value of the fitness f .i/ of a species i is a number between 0 and 1 such that the
characteristic lifetime of this species, if it was isolated, would be:

�i D eb.fi�fref/: (10.9)

A species whose fitness value becomes less than the fixed threshold fref dies out.
The fact that species are interdependent causes changes in the fitness of one to have
repercussions on the fitness of others and leads to a reorganisation of the ecosystem,
first locally and then, little by little, globally. The evolutionary algorithm consists in
taking the species i with the lowest fitness and replacing it with a random value ri .
The neighbours are also modified by replacing fi˙1 by .fi˙1C ri˙1/=2. Extinction
cascades and a spontaneous evolution of fitness values towards a value fc are
observed. One this global steady state has been reached, we observe an alternating
series of extinctions and rest phases, in which the lifetime T follows the statistics
N.T / � 1=T . We call this “punctuated equilibrium” to describe the intermittency
of extinction observed in the histogram reconstructed from fossil records. More
sophisticated models have been developed since taking the basic idea that we have
just presented but taking into account better the evolution and adaptive dynamics of
ecosystems [18, 23].

6We do not discuss here the reliability of observations or how real the phenomenon the model
intends to reproduce and explain actually is.
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10.2.6 Other Examples

In some ways fully developed turbulence (Sect. 9.5) is a self-organised critical
phenomenon since at large Reynolds numbers Re � 1, there is a large separation
between the (macroscopic) scale at which energy is injected and the (microscopic)
scale at which viscous dissipation takes place. The connection between these
two scales is spontaneously established by a spatiotemporal fractal organisation,
ensuring optimal energy transfer from the injection scale to the dissipation scale.

The concept of self-organised criticality has also been invoked with more or less
relevance in social sciences. For example, Richardson (who we have already come
across in the context of his work on turbulence) showed that the frequency of wars
follows a power law as a function of their intensity, measured by the number of
people killed [26]. More recent studies, relating the number of deaths to the total
population involved in the conflict, again gives a power law with exponent�1:39. A
general reason for caution in this type of analysis is firstly that there is far less data
compared to sample sizes available in physics and biology, and secondly that the
experiments are not reproducible. From one observation to another the context has
changed and this non-stationary can greatly affect the phenomenon being studied (in
a way that is impossible to assess quantitatively), not to mention the affect of actual
causes of historical events. Finally it is difficult to determine relevant quantitative
and absolute indices. The cited example is significant in the sense that is it the
“right” way to measure the intensity of a war? Taking into account the advancement
of weaponry, population dynamics and even the change in “targets”, the number of
deaths is questionable, to say the least.

We can therefore question the relevance and potentially even danger of extrapo-
lating a concept rooted in simple dynamical laws to domains in which the existence
of universal and fixed organising principles is by no means established.

10.3 Conclusion

10.3.1 Towards an Explanatory Picture: Feedback Loops
and Marginal Stability

The first studies and even the emergence of the concept of self-organised criticality
were done from numerical simulations face to face with experimental observations.
They were done with the focus on the relevant observables and the hallmarks
of self-organised criticality detectable in the data, namely a power law form of
the distribution P.A/ of amplitude A of events (“avalanches”) as well as the
distribution P.T / of their characteristic times T . This scale invariance is also seen
in a dependenceS.f / � f �ˇ of the spectral density, called “1=f noise”, although it
should not be seen as noise but as the expression of long range temporal correlations



358 10 Self-Organised Criticality

(see also Sect. 11.3). In each context, numerical studies of minimal models have
identified the essential ingredients of the phenomenon.

The question that remains to be addressed is that of the mechanisms at work in
self-organised criticality. The example of forest fires is perhaps the most instructive.
Let us put the conclusions reached in Sect. 10.1.2 in dynamic terms:

• The local response of the system shows a threshold (here the local density of
trees). Below this threshold an external perturbation has no noticeable effect. A
step function response is a necessary ingredient, in other words there can be no
self-organised criticality if the local response is gradual.

• The timescale on which energy or material is injected is very slow compared to
that of the local dynamics. Due to this, the evolution of the state of the system
and that of the control parameter do not take place over the same timescale. At
each moment in time the state of the system rapidly adapts to the value p.t/ as if
it was a fixed value of the parameter.

• The global state, quantified by the order parameter P.p/, controls the response
of the system to spontaneous ignition. The key mechanism is then a feedback of
the order parameter on the control parameter, which controls the local state and
consequently the local response properties of the system.

• The value p D pc is stable for the global dynamics.

The take home message of all this is that the collective dynamics feeds back on the
local dynamics in such a way that the critical state is found to be the attractor of
the system [12]. This idea can be checked experimentally by artificially introducing
a coupling between the order parameter and the control parameter in various phase
transitions, for example liquid–vapour transitions, superfluidic transition of helium 4
or superconductivity. The idea is to design an apparatus sensitive to the correlation
length � and be able to tune the temperature to increase this length �. In the case
of the liquid–vapour transition, this objective is realised using light diffraction,
sensitive to the isothermal compressibility, itself related to �; the result is then
coupled to the thermostat regulating the temperature of the medium [11, 27].

10.3.2 Success and Reservations

Very schematically, the term self-organised criticality applies to dissipative systems
spontaneously exhibiting a spatiotemporal scale invariance, in particular a dissi-
pation of energy on all scales. This phenomenon is “complex” in the sense that
it involves a large number of elements whose collective global behaviour cannot
be simply deduced from individual components. We find here concepts described
throughout this book, which could be summarised under the name of “physics
of exponents”. Justifying “self-organised criticality” in a given concrete situation
would require having a definition that has a consensus and above all is usable.
The different aspects highlighted in the examples in previous sections show that
such a definition does not yet exist (and might never exist). There are precedents,
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for example the concept of fractal is not strictly defined either, except via the scaling
law characterising the fractal dimension. Here, the scaling law relating the size of
observed events to their probability could play the same role.

The reservation that we can express is that, at the moment, this concept is not
accompanied by a working methodological framework. Self-organised criticality as
it is observed in numerical models (cellular automata) is therefore not very fertile,
at best purely descriptive, since it is not associated with scientific tools that would
help to explain the underlying mechanisms of the phenomenon. So identifying
self-organised criticality in a phenomenon could be seen as simply a summary,
admittedly a concise and elegant one, of a set of striking scaling properties.

More positively, self-organised criticality is an interesting phenomenon to detect
in so far as it reveals a universality in the mechanisms at work in the system
and shows that it is useless to look for one explanation for “normal” events and
another one specific to “catastrophes”. It puts the emphasis on the hierarchical
organisation of correlations and stresses. The interest of the concept is to unify a
category of critical phenomena and to build an intuitive picture by offering some
models which are both striking and familiar. As for deterministic chaos, it is a
new paradigm but has not yet reached the same conceptual or functional maturity.
Quantitative analysis of the models presented in this chapter is an initial step and
many others remain to be gone through in this still little explored field of complex
systems. We emphasize the importance of the ideas of marginal stability, which
explains the random nature of response to a perturbation, and of feedback loops (or
“control circuits”), explaining the possibility of cascade amplification and response
on all scales. It seems clear that only a global multiscale view could further the
study of complex systems. Therefore we should seek to understand multiscale
organisation, global control of flows, frustrations and competition present in the
system in order to determine the different trade-offs each giving a possible version
of the spatiotemporal behaviour of the system.

For more examples and more extensive discussions we refer to the many existing
articles and works on the subject, for example among the seminal ones [1, 17]
and [28].
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Chapter 11
Scale Invariance in Biology

11.1 Introduction

In this chapter we will show that biology cannot escape the omnipresence of scaling
laws and self-similar structures underlying them. Some authors go as far as to
suggest that there are scaling laws that could be specific to living systems and their
particular multiscale organisation due to the result of evolution.

The most obvious scaling properties are those associated with the numerous
fractal structures seen in living organisms, such as the branched structure of vascular
systems and neurones, alveolar structure of lungs, porous structure of bones etc. We
should not forget the plant kingdom, with plant root networks and branches of leaf
veins, flowering of a cauliflower or leaves of a fern. The purpose of these fractal
structures, established by successive trials over the course of evolution, is that they
optimise exchange surfaces (either internal or with the environment) for a given
volume (of material that has to be constructed and maintained so is costly) and
maximise currents and metabolic flows.

Other, less obvious scale invariances exist. We will mainly present allometric
scaling laws describing the observed similarity, after changes in scale, between
shapes but also metabolisms of different organisms belonging to sometimes very dif-
ferent species. Although their origin, or even their exponents, remain controversial,
if correct they would reflect a definite structural as well as functional universality in
the organisation of living creatures [12, 51].

Other scaling laws are observed inside living organisms themselves, appearing
in the form of long range correlations and reflecting the existence of collective
phenomena. We will present a few typical examples known by biologists, namely
DNA sequences, heat beat and brain activity as observed by electroencephalography
(EEG). We will describe in detail in these particular cases a few general meth-
ods, namely spectral analysis, detrended fluctuation analysis (fluctuation analysis
after correction for non-stationarity) and wavelet transforms. If positive, long
range correlations reflect the emergence of collective behaviour, leading to rad-
ically new properties on larger scales. As for negative long range correlations
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(anti-correlations), they are crucial for homeostasis, i.e. the stability and robustness
of physiological processes. It is therefore highly likely that long range correlations
will be found in many biological functions. We suggest that they result from a
delicate balance between on the one hand local dynamics and on the other hand
constraints on resources or regulation mechanisms taking place at a much larger
scale.

Turning finally from the level of an organism to that of an ecosystem, we again
find scaling properties reflecting quantitatively the complexity of their spatiotem-
poral dynamics. We saw an example in Sect. 9.4.2 with intermittent rarity of some
species.

Themes in this chapter connect with those covered in Chap. 10. The concept of
self-organised criticality and life share major ingredients of self-organisation and
the open dissipative and multiscale nature of systems under consideration. Relying
on scaling properties of living systems and using tools developed in physics in
this context, may be relevant in describing, measuring and understanding their
complexity.

11.2 Universality in the Metabolism of Living Systems

11.2.1 Observation of Allometric Scaling Laws

The first family of scaling laws we will consider expresses a scale invariance
called allometric, which is observed when animals (different species or individuals
within a species) of different masses M are compared. The scaling laws are of the
form Y D Y0 M

b, for various observables Y . Such laws are brought to light by
experimental data .M; Y / represented on a log-log plot. Since Y0 is not universal or
robust we will rather write Y �Mb.

The most studied quantity is the metabolic rate B at rest, that is the quantity of
energy the organisms needs each day simply to remain alive. As this is to do with
the metabolism at rest, we could think that this metabolic rate is proportional to
thermal dissipation. We then intuitively expect B �M2=3, due to the argument that
heat dissipates through the body’s surface, which goes as V 2=3, taking the density
as constant in a first approximation. Since the founding work of Kleiber, this idea
has been superseded by that of an “anomalous” scaling law [34, 35]:

B �M3=4 (Kleiber’s law) (11.1)

which now carries his name. The energy required per day, per unit mass (specific
metabolic rate) therefore behaves as M�1=4, meaning that the larger the organism
the less it costs to keep a kilogram of itself alive [36]. This idea had been
pointed out earlier by d’Arcy Thompson [15] who said that no mammal smaller
than a shrew exists. This limitation is stronger the more dissipative the external
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environment, for example, there are no small marine mammals. A large organism
still consumes more in absolute terms, requiring abundant resources, as well as
other constraints enforcing an upper limit on the size, for example skeletal strength
or blood pressure. An unconventional example is that given by Rothen [47] of the
Lilliputians described in Gulliver’s Travels. Using Kleiber’s law, the amount of food
needed for a Lilliputian can be calculated to be more than that given by Jonathan
Swift, who did not know this M3=4 law.

Allometric scaling laws extend to biological clocks and characteristic times such
as lifetime (�M�1=4), time for an embryo to develop (gestation time in mammals)
and heart rate (�M1=4). Large animals live longer and at a slower pace. Observation
of these other power laws, whose exponents are also simple multiples of 1=4
(integers or half integers), reinforces the plausibility of this relation to metabolism.

The rise of the concept of fractals and scaling theories has resurfaced the question
of the origin of the universality of Kleiber’s law, initially observed in mammals.
Scientists claim (maybe exaggerating) that this law for metabolism can be extended
to not only plants but also single celled organisms and even organelles involved in
the control of energy flux, for example mitochondria (site of cellular respiration in
animals and plants) and chloroplasts (site of photosynthesis in plants), which are
sort of basic units of the “metabolic factory” (see Fig. 11.1) [54]. The idea is that
the same principles of transport and energy transformation are at work at the level
of organs (to feed the cells) and inside cells (to feed mitochondria or chloroplasts).

These scaling laws do not include the prefactors and therefore cannot in any
case be used to determine the value of the quantities Y considered above knowing
the typical mass M of the organisms, but only to describe or predict how these
quantities vary when M changes. These laws are also interesting not so much
for their, as it happens limited, predictive power, but since they indicate universal

Fig. 11.1 Kleiber’s generalised law expressing a M3=4 dependence of resting metabolism,
observed at different scales and in different species (after [54])
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principles in the structure and function of living systems. Via the value of their
exponent they are a quantitative intermediary between experimental measurements
and more theoretical schemes of the organisation of living beings. Let us emphasise
now, before looking at explanations, that these laws must be prudently considered
and maybe their experimental validity discussed or at least limits to their validity
carefully defined (Sect. 11.2.3).

11.2.2 Proposed Explanations

The first explanations of Kleiber’s law simply rest on dimensional analysis of
materials, physiological times and diffusion in the system. They involve many
specific hypotheses and therefore cannot make up a valid explanation if the law
proves to be as universal as some results let us think [8].

• Among the most recent advances, one explanation rests on the fact that the
metabolism of living beings depends on the transport of substances (nutrients,
oxygen etc.) through branched (fractal1) networks, filling all space and therefore
the hierarchical structure ends with tiny branches (capillaries) that have the same
size in all species. It then rests on a hydrodynamic (quite rudimentary, or even
unrealistic) description of transport and dissipation in these networks [55].

• A second explanation was then proposed by the same authors drawing on their
first arguments in a simpler and more general way [56]. The major difference
is that it no longer explicitly makes reference to nutrient fluid transport (blood,
sap, etc.) through a network, making it applicable to single celled organisms.
However, it remains based on the existence of a universal (identical in all species)
minimal scale a and a hierarchical organisation for metabolism, starting from
this elementary scale a and shaped over the course of evolution2 to optimise the
efficiency of metabolism. This scale a is typically a molecular scale (that of an
enzyme involved in absorbing oxygen or in photosynthesis) or a cellular scale
(for example, a red blood cell). Note that this explanation actually coincides with
the first since the existence and architecture of transport networks is a product of
evolution. So this explanation is simply one that is further up the chain of causes.
These first two explanations are presented in more detail below.

• An alternative explanation has also been suggested [7], which does not assume
that the supply network is fractal. Very briefly the argument is as follows. Let L

1They are not strictly fractal in that they have a minimal scale and a maximum scale (the size of
the organism).
2 The term evolution, associated with Darwin, refers to series of mutations and selections that have
produced the diversity of living species today. We talk of “natural selection” in the sense in which
species that reproduce most effectively in the long term “arithmetically” spontaneously emerge.
It is important to spot that evolution only provides an optimisation criterion a posteriori and there
is no anticipation nor finality in evolution. Nevertheless, looking back retrospectively, everything
happens as if living systems have an additional organising principle that inert systems do not have.
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be the average distance travelled by a nutrient or gas molecule before reaching
the site where it will be “consumed”. As the network serves the whole volume
of the organism, the number of sites goes as L3. The total amount of nutrients
then behaves as L4, since at a given moment in time we should count the
fraction being transported to active sites. This total amount, directly related to
the volume of transporter fluid (blood or sap), is proportional to the mass M
of the organism, hence L � M1=4 and B � M3=4 since the metabolism is
controlled by the number of consummation sites. This argument, generalised
to river systems,3 shows that these non Euclidean anomalous power laws are a
general feature of optimal network architecture, optimal in that they ensure the
most efficient transport possible.

Opinion remains very divided on the validity of one or another of these explanations.
The question is far from being resolved! In addition, an argument to reject
approaches of this type4 is that, in these models, the quantity of blood contained
in large vessels (and therefore not useful for exchange of oxygen or metabolites) is
much larger than that contained in capillaries.

Hydrodynamics in a network or metabolism optimisation
Here we enter into details of the quantitative arguments put forward by
West, Brown and Enquist. Their first explanation is based on the following
assumptions:

1. Energy dissipation controlling B occurs during transport through nutrient
supply networks.

2. These networks fill all space such that all cells are supplied.
3. Terminal branches (capillaries) of these networks have the same geometric

and hydrodynamic features in all species.
4. They are self-similar in a bounded range of scales, with the upper bound

being the size of the organism and lower bound the universal size of
terminal branches.

5. Organisms have evolved to minimise the energy necessary for their
survival, i.e. energy dissipated during fluid (blood or sap) transport through
the network.

We will see that the combination of these geometric, dynamic, and energetic
constraints is sufficient to explain empirical scaling laws, in particular
Kleiber’s law. We will use the vocabulary of the cardiovascular system, but
the reasoning stays valid for the respiratory system (where the fluid is gas) or
the plant vascular system (where the fluid is sap).

3These networks are written in a plane (d D 2) so it explains the existence of scaling laws with
exponents that are multiple of 1=.d C 1/ D 1=3.
4We thank Pierre–Gilles de Gennes for suggesting this argument to us.
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We denote network “levels” by indices k D 0; : : : ; K , k being also the
number of branch points encountered since the aorta (k D 0). A branch of
level k�1 splits into nk branches.5So we haveNk D n0n1 : : : nk (with n0 D 1
so N0 D 1) and consequently nk D NkC1=Nk . The self-similarity of the
network (assumption 4) ensures that nk D n is independent of k, so that
Nk � nk . A level k blood vessel has a radius rk and length lk . The blood in it
flows with velocity uk (averaged over the tube cross section) and the pressure
drop between its ends is �pk . We define �k D lkC1= lk and ˇk D rkC1=rk.
The flow rate in the branch is �k D �r2kuk . The total flow rate in the system
being constant (no accumulation of fluid, steady state regime), we have:

Nk�k � �Nkr2kuk D constant D �0 � B �Ma so
ukC1
uk
D nˇ2k:

(11.2)
Here the scaling form B � Ma is assumed from experimental results, the
aim being to determine the value of its exponent a. According to assumption
3 the final level (k D K) is universal, which means that lK , rK and uK are
independent of M and therefore also of �K as well as B � NK . As this total
numberNK of branches behaves as nK , we deduce that the numberK of levels
varies with the mass M of the organism as K � a logM= logn. Assuming
the network is space filling (assumption 2), its fractal dimension is equal to 3
so Nk � l3k . Also, since Nk � nk , we have �k D � � n�1=3.

One way to continue is to rely on the self-similarity (assumption 4) of the
structure to assume that the total area at a given level k is independent of k.
It then follows that ˇk D ˇ � n�1=2 is independent of k and therefore the
velocity uk D u is independent of k. As n�ˇ2 � n�1=3 < 1 and K � 1, the
total volume of fluid, proportional to the mass, is written:

VK � .�ˇ2/�K

1 � n�ˇ2 � M; (11.3)

where K � � logM= log.�ˇ2/. Comparing this with the previous expression
of K , we see6a D � logn= log.�ˇ2/. Substituting in the values � � n�1=3
and ˇ � n�1=2, we finally find a D 3=4. This reasoning, relying on the
assumption of conservation of total network cross section when we change

5To implement the fundamental hypotheses of the model simply, we add an assumption of network
uniformity: branches starting at a given level k � 1 are all identical and characterised by a single
branching number nk . In the same way, branches of the same level k are described by the same
parameters rk , lk , uk . This assumption can be relaxed by introducing a statistical dispersion,
without fundamentally changing the result. In this case the network is fractal in a statistical sense.
6This formula is true when nk , �k and ˇk do not depend on k.
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levels, is correct for plants, where the result uk D u D constant is actually
observed. However it is incorrect for cardio-vascular systems in mammals
as it is in disagreement with experimental observations showing the slowing
down of blood at the level of capillaries, thereby allowing the absorption of
nutrients and gases.

Therefore we should abandon the hypothesis of conservation of total
area and rely on the constraint of minimisation of dissipated energy
(assumption 5). This boils down to minimising the total hydrodynamic
resistance of the system.7In this way we obtain ˇk � n�1=3, which gives an
incorrect exponent a D 1.

The answer to this problem adopted by West, Brown and Enquist is to
resort to a hybrid model, in which the dependence of ˇk on k takes the simple
form of a crossover. We still have ˇk � n�1=2 in the first levels (conservation
of total area for small values of k). However the expression for ˇk in the later
levels is determined by minimising the hydrodynamic resistance (which is
actually essentially due to the capillaries). This then gives ˇk � n�1=3 at large
values of k. In this way a ratio u0=uK � 250 agreeing with reality can be
reproduced and a value of a D 3=4 obtained for the exponent. It can similarly
be shown that the diameter 2r0 of the aorta grows with mass as M3=8.

Criticisms of this explanation concern on one hand the ad hoc nature
of this hybrid model, increasing the number of arguments and hypotheses
to match experimental reality, and on the other hand the assumption (4) of
self-similarity, from which it was deduced that nk D n did not depend on
k. This is completely unnecessary and optimised networks can actually be
constructed with nk dependent on k [7, 16].

The second explanation, introduced to avoid appealing to (contested)
hydrodynamic arguments, is more abstract. The reasoning is as follows. The
metabolic system has scales l1 : : : ln, varying with the size of the organism
and a universal minimal scale l0 (e.g. cross section of capillaries). The area
of gas or nutrient exchange is written by simple dimensional analysis:

A.l0; l1; : : : ; ln/ D l21
eA

�
l0

l1
; : : : ;

ln

l1

�

: (11.4)

7The hydrodynamic resistance of a branch of level k is given by Poiseuille’s formula: Rk D
8�lk=�r

4
k where � is the viscosity of the fluid. The resistances of each level add in series, whereas

within a level branches are parallel and it is the inverse of their resistances which add, giving
Rtot DPK

kD0 Rk=Nk � RK=ŒNK.1�nˇ4/�. However we note that this reasoning is questionable
in the case of blood, which does not behave at all like a simple liquid (its circulation in capillaries
that are adapted to the size of red blood cells is much faster).
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Imagine a scaling transformation, which transforms li to �li , unless i D 0
as l0 does not change. Consequently,

A.�/ � A.l0; �l1; : : : ; �ln/ D �2l21 eA
�
l0

�l1
; : : : ;

ln

l1

�

: (11.5)

In contrast to what we would have in a scale invariant network, A.�/ ¤
�2A.1/, i.e. there remains an explicit dependence on � in eA. The hierarchical
nature of metabolic systems (in the broad sense in that there may not
necessarily be an actual distribution network) justifies a power law form foreA:

eA.x0; x1; : : : ; xn/ � x�	A0 with0 � 	A � 1: (11.6)

Therefore,
A.�/ � �2C	A A.1/: (11.7)

The biological volume V involved in metabolism is written V �AL�M .
For the characteristic length L we follow the same reasoning as for the
exchange area A, leading to:

L.�/ � �1C	LL.1/ (11.8)

where:
M.�/ � �3C	LC	A M.1/ (11.9)

and therefore:
A � M.2C	A/ = .3C	LC	A/: (11.10)

The exponents 	A and 	L are determined by writing that the metabolism is
optimal (as a result of evolution). At fixed M , maximising A with respect to
	A and 	L leads to 	A D 1 and 	L D 0 from which we deduce that:

B � A �M3=4: (11.11)

The exponent of the exchange area is 2C 	A D 3, showing that the network
is space filling and does involve all the cells of the organism.

11.2.3 Objections to the Reliability of the Scaling Law

However, the origin of allometric scaling laws, not to mention their validity, remains
controversial. A statistical re-analysis of experimental data from Kleiber and his
contemporaries seems to show that we cannot reject the intuitive value ˛ D 2=3
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in favor of the more surprising value ˛ D 3=4 [16]. We suggest readers look at
the original articles [11, 34] to form their own opinion. We draw out a few points
that we consider to be indicative of the difficulty in experimentally establishing
reliable scaling laws and hence of the need to at the same time rely on theoretical
arguments to construct a coherent, solid and productive set of laws. First of all,
the exponent obtained varies with how the data is separated a priori into groups
(e.g. mammals/birds, large mammals/small mammals). It also varies if we exclude
a priori data assumed to show a deviation from the law due to a specific anatomical
reason or the nature of a particular environment. Finally, data points are few and
far between and are obtained in different, sometimes indirect, ways, introducing a
systematic bias with respect to the metabolic rate B found theoretically.

There are too many and contradictory models and theoretical justifications too
settle the debate. Each rests on a set of more or less restrictive assumptions, which
are more or less unfounded and can often be questioned [16]. Nevertheless, even
if this idea of anomalous scaling laws arising from the hierarchical structure of
metabolic networks is not as simple as the arguments detailed above claim, it
remains an interesting paradigm to analyse living systems and even more to identify
organising principles of their own. This, now famous, example shows how rigorous
we must be in the experimental demonstration of a scaling law. We will return to
this point in Chap. 12. For comparison, let us just recall the time and work spent by
physicists to be convinced that the exponent ˇ of the liquid–vapour transition was
not 1=3 but 0:322.

11.2.4 Other Examples

In the same vein, a simple mechanical model of the skeleton, taking into account the
weight and elastic forces acting on bones subjected to constraints, predicts that the
length L and diameterD of bones should vary as L �M1=3 and D �M3=8 [10].

Another example is observed in the cortex of mammals. Anatomy studies show
that the proportion of grey matterG (the highly convoluted surface layer where local
processes take place) and white matter (the innermost part, in particular containing
fibres providing long distance connections through the cortex) follows a scaling law:

B � G1:23: (11.12)

One explanation proposed is the constraint of minimisation of average length of
axons crossing the white matter. It agrees with the similarity in anatomy of mammals
brains in terms of the organisation of white and grey matter [57].

A final example, in this case a counter example, is encephalisation (the amount
of brain mass exceeding that related to the organism’s total body mass). A statistical
model determines (in vertebrates) the scaling relation between the mass mth of the
brain and the total mass M of the animal:

mth �M0:76: (11.13)
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AA GCA T AAA GT GT AAA GC C T GGGT GC C T AA

Fig. 11.2 Random walk representing a DNA sequence. In this example (of a real sequence) we
see the necessity to correct the walk by locally eliminating the trend (drift) for sequences that have
strong inhomogeneities in the proportion of base types (purines A and G or pyrimidines T and C)

It describes the way in which the size of the brain increases simply because the
animal is larger [20]. The deviation from this law, more precisely the ratio m=mth

between the mass mth estimated in this way and the true mass is the measure of
the encephalisation, that is to say the relative development of the brain that can be
interpreted in terms of increased cognitive abilities.

11.3 Long Range Correlations

Complex and hierarchical structures result in anomalies in correlation functions in
general. The divergence of the range 
 of correlations (e.g. spatial) is reflected in
the transition from an exponential decay C.r/ � e�r=
 to a power law decrease
C.r/ � r�˛ . So the presence of such long range correlations in observations related
to the functioning of a living creature is nothing surprising [49, 51].

11.3.1 Coding and Non Coding DNA Sequences

As we have already mentioned in Sect. 8.1, a technique to read the four letter (A,
C, G, T) “text” a DNA molecule is made up of makes it possible to not only detect
long range correlations but also to associate them with non coding regions, that is
regions whose sequence is never translated into proteins [27].

The idea is to interpret the genetic sequence as a random walk in one dimension.
The purines A and G correspond to a step up whereas their complementary bases
(pyrimidines) T and C correspond to a step down. Starting from 0, the position of
this fictitious walker is y.N / after having read theN th letter8 (see Fig. 11.2). So we

8A being paired with T and G with C in the DNA double helix, the two complementary strands
making up the molecule will give walks with y$�y symmetry, which is satisfying (and justifies
the choice of the displacement rule!).
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Table 11.1 Analysis of correlations in a signal u. Remember that the three exponents are related
by ˇ D 1 � ˛ D � � 1. The exponent � of increments w of u is �w D � � 2 and that for the
integrated system y is �y D � C 2

Long range anti-correlations 0 < � < 1 1 < ˛ < 2 *

White noise � D 1 ˛ D 1 ˇ D 0

Power law correlations 1 < � < 2 0 < ˛ < 1 0 < ˇ < 1

Long range correlations 2 � � < 3 * 1 � ˇ < 2
Wiener process � D 3 * ˇ D 2

determine the diffusion law hy2.N /i � N� for the sequence under consideration.
In the absence of correlations between successive steps, or if correlations are short
ranged, we have � D 1 (Sect. 4.3.1). A value of � ¤ 1 with � < 2 reveals the
presence of persistent long range correlations9 if � > 1. So correlations between
steps, i.e. between bases, decay with a power law C.t/ � t�˛ with ˛ D 2 � �
(see Table 11.1). The remarkable point, whose biological meaning is still not well
understood, is that the exponent � observed here depends on whether the sequence
considered is coding (when it is � � 1) or non coding (when it is clearly � > 1).
Coding sequences only have very short ranged correlations (<10 base pairs).

A preliminary explanation is that selection pressure (natural selection over the
course of evolution) is much weaker in non coding regions, allowing repeated and
abnormally correlated sequences to be present. In support of this, it was shown
that � grew over evolution by adding non coding sequences and several models
of sequence evolution have been proposed along these lines. One direction, which
is very interesting but still very much a debated hypothesis, is that non coding
sequences could contribute to controlling the tertiary structure of DNA in the
cell nucleus. The correlations would then reflect their role at this higher level of
organisation [4, 6].

Many studies are currently in progress to clarify this property, its origins and
possible biological interpretations. For example, statistical methods are used to
eliminate bias and non-stationarity (drift) in the walk (see below). Other procedures,
coming directly from physics, are also proving fruitful, namely multifractal analysis
(Sect. 9.5.6), wavelet transform and local spectral decomposition carried out at an
adjustable scale (see Sect. 11.3.2) [3, 4].

Detrended fluctuation analysis
Usual statistical analysis of fluctuations of a temporal signal u.t/ assumes that
this signal is stationary, that is to say statistically invariant to transformations
in time. The autocorrelation function is estimated according to the formula:

9Other potential causes of anomalous diffusion (broad step distributions, trapping etc.) are absent
here.



372 11 Scale Invariance in Biology
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N � 1
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sD0
u.s/

!2
3

5 : (11.14)

Equivalently, the spectrum S.f / of fluctuations (Fourier transform of the
autocorrelation function C.t/), known by the name of power spectrum, can
be studied. But the assumption of stationarity sometimes turns out to be very
wrong. To overcome this difficulty, a correction method has been developed
consisting of removing the drift or trend (that is to say the movement of the
mean). It is known by the name detrended fluctuation analysis (DFA). The
novelty and power of this method is to correct the signal by subtracting its
instantaneous mean (average signal) calculated at an adjustable scale [28,44].

The elementary time step is fixed once for all, usually prescribed by
the experimental device (or even by the system itself in the case of DNA
sequences). Let u be the signal, recorded over a time N . First of all its
integral y.k/ D Pk

iD1 ui is calculated. Then the observation time interval
N is subdivided into time windows of duration n where n is adjustable. In
each time window, the local trend of the time series y.k/ is calculated, i.e.
the straight line that best fits the series y.k/ (found by a method of least
squares, Fig. 11.3). In this way a series of segments representing the local
“deterministic” (linear with respect to time) trend of the signal is constructed.
At each moment in time k, the point on the corresponding segment is yn.k/.
This local trend will be used to correct the non-stationarity of the integrated
signal (note that if the signal u is actually stationary, with average hui, the
series of segments reduces to a single line yn.k/ D khui for any n large
enough that fluctuations from the local mean are negligible). We will then
analyse the standard deviation of this integrated and “detrended” signal:

Fig. 11.3 Analysis of non-stationary signal fluctuations. Thin lines represent the local linear trend
yn.k/, obtained for each window of the integrated signal y.k/ by a method of least squares fit. The
length of the windows n is an adjustable variable which will affect the standard deviation F.n/ of
fluctuations y.k/� yn.k/ [44]
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F.n/ D
v
u
u
t
1

N

NX

kD1
Œy.k/ � yn.k/�2 � n�=2: (11.15)

This standard deviation depends on the scale n at which the average is calcu-
lated (it grows with n). Fractal fluctuations lead to a power law dependence
of F.n/, with exponent �=2. To better understand this quantity F.n/, let
us imagine a stationary signal x for which it makes sense to calculate the
temporal autocorrelation functionC.t/ and power spectrum S.f /. In the case
of a signal with long range correlations, we would have:

8

ˆ̂
<

ˆ̂
:

C.t/ � t�˛
S.f / � 1=f ˇ
F.n/ � n�=2

with ˇ D 1 � ˛ D � � 1: (11.16)

We have long range correlations following a power law only if ˛ > 0,
or equivalently if � < 2. This criterion � < 2 is what will be used in
the more general case of a non-stationary signal, where only the function
F.n/ calculated from the “corrected” signal has any meaning. We have
seen in Sect. 4.5.3 that typical self-similar processes 10producing long range
correlations are fractal Brownian motions. Their characteristic exponent H
(Hurst exponent) is identified with the exponent �=2 of the “diffusion law”
F.n/ � n�=2. The value of the exponents can be understood with reference
to the case where y is such a process, in which case � > 1 corresponds
to a persistent motion whereas � < 1 corresponds to anticorrelations.
The borderline case � D 1 corresponds to the case where y is a Wiener
process (simple Brownian motion). The signal x is then a white noise and its
correlation function is identically zero. The limiting case ˛ D 0 corresponds
to a 1=f noise and therefore ˇ D 1 and � D 2. If 2 < � � 3, we still have
long range correlations but they no longer follow a power law. In particular,
if the signal x is a Wiener process (also called “Brownian noise”) we have
� D 3 and ˇ D 2 and it is correlations of the increments that asymptotically
follow a power law. These different cases are summarised in Table 11.1. The
exponent � can also be seen as a roughness exponent of the line making
up the integrated signal y (see Sect. 8.1.2), i.e. the larger � , the “smoother”
this curve.

10More specifically, these are the exactly self-similar representatives (fixed points of renormali-
sation transformations) of the universality classes associated with different anomalous diffusion
laws.
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11.3.2 Heart Rate

A question with obvious medical applications is to extract the maximum amount
of information about the functioning of the heart just from a recording of the heart
rate (electrocardiogram). One method to analyse this signal is to consider the time
interval u.j / between the j th and the .jC1/th beat. Note that here the discretisation
is intrinsic to the system and so takes the basal heart rate as the (discrete) reference
time. The series of intervals is extremely irregular and looks like a very noisy signal.
To go beyond this observation quantitatively, we analyse the fluctuations of u or
the fluctuations of its increments w.n/ D u.n C 1/ � u.n/ [5]. The DFA method
presented in the previous section is used to correct potential non-stationarity in the
recorded signal [14]. It shows long range correlations in u as well as in w. Their
correlation functions are scale invariant, following a power law: C.t/ � t�˛ . The
exponents corresponding to w are related to those characterising u according to �w D
� � 2, ˛w D ˛ C 2 and ˇw D ˇ � 2 (with ˇ D 1 � ˛ D � � 1 for both sets of
exponents). As in the context of DNA sequences, better quality results are obtained
by multifractal analysis (Sect. 9.5.6) or by wavelet transform (see below).

The remarkable point for the biologist is that these quantitative characteristics
show significant differences with age, activity level (awake or asleep, e.g. [33])
and various pathologies. The disappearance of anti-correlations observed in w
is associated with a pathological functioning (although it is still not possible to
establish a causal link). For example, the exponent � is 2:10 in a waking state,
1:7 during sleep and 2:40 in a heart attack, whereas we would find � D 3 if u was
a Wiener process (w being then white noise). From a physiological point of view,
u and w give information about heart rate regulation. Identification of these long
range correlations in a healthy individual indicates that this rhythm is regulated over
a large range of temporal scales.

It was recently shown that heart rate was multifractal [30, 31]. It seems then
that the collective dynamics of the set of cardiac cells and nerve cells controlling
their activity is very complex and shows, as well as their (vital!) property of global
synchronisation, a hierarchical spatiotemporal structure involving many temporal
scales and responsible for the scale invariance observed in the fluctuations. The loss
of this complexity is associated with heart diseases.

Wavelet transform
The basic tool to carry out a spectral analysis is the Fourier transform. It
decomposes the signal u.t/, for example a sound signal, into purely sinusoidal
components Ou.!/ei!t . The Fourier transform Ou of u therefore indicates which
frequencies ! are present in the signal and with what weight Ou.!/ they
contribute. It therefore proposes a completely transverse view of the signal
and we also talk about “conjugate” space to designate the frequency space (or
wavevector space in the spatial case).
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Fig. 11.4 An example of a
wavelet g. It is even and
integrates to zero

t

g(t)

The aim of wavelet transform is to carry out a local spectral decomposition,
keeping track of the temporal sequence. For a sound signal it consists
in reconstructing the musical score. We want to determine not only the
notes (frequencies) involved but also the moment when they are played
(their position in the music) and their duration (minims, crotchets, quavers
etc.). This objective is achieved by carefully choosing the kernel of the
transformation. The trigonometric function (sin!t and cos!t , or ei!t ) is
replaced by a function g that is localised (zero outside an interval) and
integrates to zero (for example a function in the form of a “Mexican hat”,
see Fig. 11.4). The result will depend on this “wavelet” g, the time t0 around
which we are placed and an adjustable scale factor �, enabling signal analysis
at an appropriate scale, as you would do with a microscope of adjustable
magnification:

U.g; t0; b/ � 1

�

Z

u.t/ g

�
t � t0
�

�

dt: (11.17)

This transformation is commonly used in signal processing in very diverse
contexts when the phenomenon observed has a multiscale structure, for
example turbulence, fractal structure and signals from complex dynamics.

11.3.3 Electroencephalography (EEG)

Analysis of electroencephalograms (EEG) can be done following statistical methods
analogous to those presented in the context of DNA sequences and heart rate [37].
Here also, long range temporal correlations have been shown. For example, in
spontaneous activity of the brain (when the eyes are closed), certain recordings
show a power law spectrum S.f / � 1=f ˇ with ˇ D 1:52, corresponding to an
exponent � D 2:52 (using the same notation as the previous section) [52, 53]. This
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corresponds to long range correlations but decreasing faster than a power law (for
comparison we had � D 3 if the signal is Brownian noise i.e. a Wiener process).
It is therefore the increments of the signal that show power law correlations (with
exponent ˛ D 1:48 in the case considered). Other recordings, focused on analysis
of the component11 ˛, have shown power law correlations C.t/ � t�0;6, where the
exponent is independent of the subject and the recording method (EEG or MEG –
magnetoencephalography) [39]. Long range correlations have also been detected in
the wave ˇ and their exponent increases with the level of vigilance [46].

The generality and interpretation of long range correlations observed in EEG are
still debated. Their observation suggests that the brain functions around a critical
state [25]. A more certain conclusion is that the existence of such correlations
strongly calls into questions many statistical methods of EEG analysis founded
on the assumption that no such correlations exist. For example, representing EEG
as a linear superposition of white or coloured12 (� D 1) noise is invalid. Either
it involves fractal Brownian motions, or we must abandon the linear approach.
From a dynamic perspective, the interpretation of long range correlations is that the
observed signal reflects collective dynamics of the underlying network of neurons,
in which emergent properties have a large range of time and most probably spatial
scales. A spatiotemporal exploration is therefore necessary to support this view.

11.4 Biological Networks: Complex Networks

11.4.1 A New Statistical Mechanics

Determining the “macroscopic” behaviours arising from the assembly of a large
number of known and well described “microscopic” elements is the very heart
of statistical physics. However, in the systems we have seen treated successfully
by statistical physics methods, interactions between elements remained relatively
simple and in any case fully determined, including at critical points. These systems
include ferromagnetic interactions (Chap. 1) and excluded volume interactions
between monomers in a polymer (Chap. 6). In such systems, interaction networks
are simple and regular, being square or cubic networks (or triangular or hexagonal
variants) where each element is connected to its nearest neighbours, or “infinite
dimensional” networks where each element is connected to all the others. Often,
they are simply the result of a discretisation of the physical space in which the
phenomenon takes place.

11The EEG signal is traditionally subdivided into 7 components whose frequencies lie in separate
well determined bands, which we call the waves ı, � , ˛1, ˛2, ˇ1, ˇ2 and � (in order of increasing
frequency). The component ˛ lies between 8 and 13 Hz and ˇ between 13 and 20 Hz.
12Noise whose amplitude depends on time but always without temporal correlations.
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However, interactions are not always as basic and can form networks of irregular
architecture. This is often the case outside of the realm of physics, for example gene
networks, metabolic networks inside a cell [32], neural networks [2], ecological
networks [45], communication networks and social networks [50].

Statistical theory of networks is a way of approaching the study of these systems.
It extends percolation models to much more complex topologies and in which
physical space and the associated concept of proximity may be absent. The main
aim is to formulate quantities to quantitatively describe the topological properties
of a (model or real) network and to define statistical ensembles of networks sharing
the same features, thus providing simple and robust models to represent natural
networks. We suggest [43] for a complete review. As in the case of percolation,
knowing and modelling the network structure is crucial to predict and quantify
transport properties (e.g. propagation of information and viruses by the Internet,
infectious diseases in a population structured by social connections, drugs in a
metabolic system, etc.) and understand all phenomena in which local dynamics of a
node is coupled to that of neighbouring nodes in the network.

11.4.2 Real Networks: Random Graphs?

The simplest model, developed by Erdös and Rényi [19], consists of randomly
establishing, with a probability p, a bond between any two sites. It is therefore
an extension of the bond percolation model (Sect. 5.1) where bonds only connect
nearest neighbour sites, with probability p. Here, there is no longer an underlying
real space. The topology of the network is entirely determined by the set of
connections, i.e. the neighbourhood of site i is defined by the sites directly
connected to it. The distance between two sites is given by the number of bonds in
the shortest path connecting them. The diameter of the network will be the average
distance between two sites.

A real network of N nodes (sites) and K bonds may be compared to a random
graph having on average the same number of bonds, that is to say the graph defined
by the probabilityp D 2K=N.N�1/. Unlike regular grids, the Erdös–Renyi model
reproduces well a feature common to many real networks: their small diameter.
We talk about “small world” networks in reference to the experiment conducted
by the sociologist Milgram in 1967, showing that, on average, only 6 links of
acquaintance connected any two people living in the United States of America
(sometimes referred to the “six degrees of separation”). More specifically, it can
be shown that the diameter of a random graph of N nodes grows only as logN ,
whereas it grows as N1=d for a regular grid of dimension d . Due to this, the Erdös–
Renyi model has long been used to model real networks. However, over the past
decade or so the arrival of experimental data on large networks (communication
networks, biological networks, etc.) has shown that it did not at all reproduce
several other basic properties of real networks, primarily their degree distribution
P.k/ (probability that a site is connected to k other sites). It can be shown that the



378 11 Scale Invariance in Biology

k

P(k)

k

P(k)

<k>

k
−γ

Fig. 11.5 Comparison between random graphs (left) and scale-free networks (right). Random
graphs are relatively homogeneous, whereas in scale-free networks there exist “hub” sites with a
large number of connections. Random graphs have a degree distribution P.k/ peaked at hki and
decaying exponentially, whereas scale-free networks have a power law distribution P.k/ � k��

Erdös–Renyi model leads to a Poisson distribution peaked at k D hki and decaying
faster than exponential at large values of k:

P.k/ D �ke��

kŠ
with � D hki: (11.18)

In contrast, observed networks have a very broad distribution P.k/ decaying much
more slowly, typically as a power law (Fig. 11.5):

P.k/ � k�� .k large/: (11.19)

In such networks, there is no typical degree.13 We therefore call them scale-free
networks. The power law decay of P.k/ reflects the large heterogeneity of degrees
(their variance diverges if � < 3) and consequently the non negligible probability
that highly connected nodes exist. Another feature of real networks that is not shared
with random graphs is the strong clustering coefficient, that is to say the fraction of

13The average number of bonds per node can be infinite (if � < 2) but even if it is finite, it does
not correspond to the typical degree.
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links present between the neighbouring sites of a given site (it measures to what
extent “my friends are friends with each other”).

11.4.3 Scale-Free Networks

The correct paradigm to describe real networks then seems to be that of scale-
free networks with a very broad degree distribution, or even the narrower class
of networks in which the degree distribution follows a power law P.k/ � k��
at large k. When the connections are directed we must distinguish between Pin.k/
(probability that k connections enter a given site) and Pout .k/ (probability that k
connections leave a given site), defining two exponents �in and �out . For example,
metabolic networks (observed on 43 species belonging to three kingdoms [32])
show this power law, with �in D 2:4 and �out D 2:0. This is also the case for
the Internet and the World Wide Web (with different exponents) [43].

Differences observed between properties of these networks and those of random
graphs suggest that real complex networks are not constructed at random but by
following organisational principles and that the topological differences reflect this
different creation. What realistic mechanism of self-organisation can account for
this absence of characteristic scale and the form observed for P.k/? The simplest
model, known by the name of “preferential attachment model” supposes that
connections are created preferentially towards sites that are already very connected:
“the rich get richer” [1]. This process of growth actually leads to a power law degree
distribution with � D 3. The number of publications on the subject has grown and is
still growing exponentially and many variations and extensions have been proposed,
which can be found in [18] and [43].

Another property of scale-free networks is the existence of key nodes that
are extremely well connected (called hubs). Their presence significantly increases
the efficiency of communication in the network and contributes to decreasing the
diameter. Network properties are greatly affected by the distribution of such hubs.
On the other hand, these networks are very robust to random loss of nodes. Ninety
percent of nodes chosen at random can be dammaged without significantly affecting
communication in the network [43]. In this model we reproduce the ambivalent
behaviour of real networks, which are robust to random failures but fragile with
respect to targeted attacks on hubs.

However in many real networks (food chain, metabolic networks, etc.), due to the
limited number of nodes and the relatively small maximum number of connections
they can establish, their degrees are intrinsically and so irredeemably bounded and
their distribution only extends over a limited span, often less than two decades [26].
It is therefore impossible to reliably show, certainly not definitively, a power law
behaviour of the degree distribution (a power law over two decades can easily be
reproduced by a superposition of two or three exponentials). We should therefore
only keep the features of the ideal model that remain significant, namely the large
heterogeneity of degrees, reflected in a very broad distribution, as opposed to the
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very peaked law of regular networks and the exponential decay of random graphs.
A critical and historical analysis of this concept of scale-free network is presented
in [21].

11.4.4 In Practice: Reconstruction of a Complex Network

A major problem is that of the reconstruction of interaction networks from
experimental data, for example gene networks (a connection i ! j meaning that
the protein coded for by gene i is involved in the regulation of the expression of
gene j ) or protein networks (a link i ! j meaning that the proteins i and j
bind to each other). This issue is central in biology today and it motivates two
types of difficult and costly experiments. The first is to record in parallel a large
number of variables intended to describe the state of all the nodes (for example
the transcriptome, which is the expression level of all genes in a genome, or the
proteome, which is the set of all proteins expressed at a given instant). The second
is a series of separate experiments determining for each pair of nodes whether or
not there is an interaction.

The first type of approach has the advantage of giving a global picture of the
system, but it can only access correlations between nodes (by comparing data
obtained at different moments in time or under different conditions) resulting in a
correlation matrix Cij . It could be represented by a network by placing with weight
Cij a connection between nodes i and j , but this must not be confused with the
network of direct interactions between nodes i and j . In particular, a path has no
meaning in the network representing the correlation matrix.

Pairwise reconstruction methods will give the set of possible connections,
however the network actually active at a given instant in time will only be a subset of
this. It will then be necessary to determining the “true” configuration of the network
and how it varies during functional activity. Many experimental and theoretical
efforts are underway today to develop reconstruction and analysis methods for
biological networks. The difficulty is even greater in that it is not only to obtain the
statistical properties of the network but also to describe and understand its functional
dynamics. The impact of network topology on spatiotemporal phenomena taking
place in it is then a crucial but still wide open question [9, 13, 29, 40].

11.4.5 Avenues to Explore the Multiscale Structure of Networks

One way to describe and exploit the possible multiscale structure of a network
is to identify modules, defined as sub-networks in which the nodes are more
densely interconnected than they are with the rest of the network. They are also
referred to as communities in the context of social networks. Many algorithms have
been developed to identify these communities, based for example on methods of
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hierarchical clustering [41] or using an auxiliary random walk remaining trapped
for long durations in different communities [24,38]. In biological contexts, modules
are often interpreted as functional units, but this identification is a bit hasty. Since
biological processes are essentially out of equilibrium and active, a definition of
function based on flow through the network seems more relevant [42].

A concept of self-similarity was defined for networks by Gallos et al. [23]
according to a simple extension of the concept of self-similarity introduced in fractal
geometry (Chap. 2). However, its scope is limited to networks written naturally in
a metric space (that is to say provided with a distance), typically a plane or three
dimensional physical space. But we have already pointed out that for many networks
such as the food chain, metabolic networks or biochemical regulation networks, the
only intrinsic distance is that associated with the connectivity [48].

The generalisation to complex networks of renormalisation methods developed
for percolation networks will hit the major difficulty of defining super nodes and
super links.14 By adapting a coarse-graining procedure identifying the super nodes
with modules, we expect three typical behaviours: (i) convergence under the action
of renormalisation towards a complete network in which each node is connected
to all the others; (ii) convergence towards a regular fractal network for example a
tree or linear network (i.e. P.k/ D ı.k � k0/ with k0 equal to a few units); (iii)
convergence towards a network with a broad degree distribution, the typical (but
ideal) case being a power law distribution P.k/ � k�� .

As in the case of percolation, the aim of renormalisation will be to accentuate
and purify the large scale features of the network to better discriminate different
categories of behaviour. The objective is to justify the use of very simple hierarchical
and exactly self-similar reference models and to adjust their parameters by applying
the renormalisation operator to networks reconstructed from experimental data (if
there are enough nodes). Then we will be able to more fully exploit renormalisation
transformation in the study of dynamic properties, for example to determine the
statistical and topological properties of a network that will influence the scaling laws
describing transport phenomena and change the value of their exponents compared
to those observed in a regular or random network [22].

11.5 Conclusion: A Multiscale Approach for Living Systems

Living organisms, even the simplest, are complex systems in the sense that new
global behaviour emerges from the assembly of simple elements and feeds back
on the properties of these elements giving the system the capacity for adaptation.
Scaling laws that can be satisfied by this global behaviour provide access to

14We must be careful not to limit the study to network models intrinsically adapted to a
renormalisation process [17]. The action of the renormalisation operator would then be clearly
defined only on this particular network and be therefore difficult to exploit.
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valuable quantitative information on the organisation of the system and on the way
in which the whole and the parts are connected structurally and functionally. A
good indication of the possible existence of such scaling laws is the presence of
underlying fractal structures, themselves resulting from an optimisation process,
typically optimisation of exchange surface areas or fixed volume interactions (e.g.
lungs, vascular system or nervous system). Structural and dynamical aspects can
rarely be separated and scaling laws can also be detected in the analysis of temporal
data that can be obtained on various aspects of function of a living being (as
we have seen in the case of electrocardiograms and EEG) or even at the scale
of populations. Multiscale approaches are essential to understand the functional
connections between different levels of organisation of a living creature, from the
molecular scale to that of the organism. Such approaches are particularly needed to
explain the emergence and persistence of the creatures over the course of evolution.
The scale invariances we have just met provide an initial pointer to set out on
this path crossing different levels of observation and ultimately leading to a global
description of living systems.
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Chapter 12
Power and Limits of Scaling Approaches

12.1 Criticality and Scaling Laws

After the wide panorama presented in this book, we can draw a few general
conclusions on scaling approaches. We have seen that they apply in situations when
the system no longer has a characteristic scale, as for example observed for a
temperature T ! Tc in the case of phase transitions, for a number of monomers
N ! 1 in polymers, for a filling density p ! pc in percolation, for a time span
t ! 1 in growth or diffusion, at the onset of chaos in the transition to chaos by
period doubling or for a Reynolds number Re ! 1 in turbulence. This absence
of characteristic scale is quantitatively reflected in the divergence of the range � of
correlations. So we have scale invariance generically. A signature, which is both
fundamental theoretically and exploitable experimentally (or numerically), is the
behaviour of correlation functions, i.e. the exponential decay (C.r/ � e�r=� in the
spatial case) observed away from critical points becomes a slow power law decay
(C.r/ � r�˛ with ˛ > 0) at points where � D 1, which are called critical points.
We should however point out that there are at least three types of criticality:

• Criticality crossing a threshold, related to a marginal stability that allows fluc-
tuations and responses at all scales. This is the case of percolation, bifurcations
and critical phase transitions. The system is only exactly critical at infinite size
(or infinite duration if it is a dynamical system) and when the control parameter
takes its threshold value.

• “Constitutive” criticality met in polymers (self-avoiding random walks), anoma-
lous diffusion taking place on a fractal structure, or more generally in systems
with highly connected elements. The system is then exactly critical when its
size (duration for dynamical phenomena) is infinite, in a wide range of values
of control parameters.

• Self-organised criticality where feedback mechanisms from the global state on
the local dynamics spontaneously bring the system to a marginally stable state
that is critical in the first sense stated above.
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Beyond this distinction, signatures of criticality are always the same, namely that
phenomena have a large number of characteristic scales which do not decouple.
One observable consequence of this is the presence of fluctuations on all scales
such that the distribution of fluctuations follows a power law and not an exponential
law. For the same reason, criticality accompanies anomalous response properties
since the system is extremely sensitive and an infinitesimal perturbation can be
followed by effects on all scales, bringing about a complete reorganisation of the
state of the system. Therefore, only a global approach can help to understand
such systems. More than that, the crux of the phenomenon is contained in the
connection between scales, typically in the way in which the flow of material,
energy and information is organised hierarchically between different levels and not
in the details at any particular scale. It is this that explains the existence of scaling
laws, self-similar structures and universal properties. Anomalous exponents are the
signature of emergent phenomena, in which properties are not directly visible in the
constituents nor in the basic laws of construction or evolution. These properties
emerge, at a larger scale, from the particular organisation of a large number of
elements.1

12.2 Experimental Determination of Scaling Laws

Scaling approaches most often begin by experimental demonstration of scaling laws.
This does not seem to pose any methodological difficulty a priori. Two observables
X and Y , suspected of scaling, are plotted on a log-log plot, which gives a straight
line in the case of a scaling law Y � Xa. This procedure both shows the existence of
a scaling law and determines its exponent. But, in practice difficulties arise, which
are not apparent in this ideal description and these should be kept in mind to avoid
artifacts and misinterpretations.

The first caveat is that it is quite easy to produce a reasonably linear section of a
curve formed by a few experimental points, or from a scattered cluster of points,
even more so on a log-log plot which “squashes” deviations. It is therefore not
enough to show an exponent, we should also carefully estimate its accuracy and
reliability. A necessary condition is that the data .Xi ; Yi / actually cover different
scales, in other words that Xmax=Xmin � 1, in practice several orders of magnitude.

An important problem arises: should the data be represented by one scaling law
Y � Xa, or by two different scaling laws depending on the region of the scale of X ,
typically Y � Xa1 for small values of X connected by a crossover to another scaling
law Y � Xa2 for large values of X (something we have already encountered in the
experimental determination of fractal dimensions)? This is particularly dangerous if
the second regime is not developed or sampled enough to be detected (it only gives
a few “aberrant” points with respect to the single scaling law Y � Xa1 ). This leads

1P.W. Anderson, More is different. Science, 177, 393–396 (1973).
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Fig. 12.1 Wrong estimation
of the exponent ˛ of a scaling
law Y � X˛ (thick black
line) if a crossover in the
scaling law is not detected

log X

lo
g 

Y

to a wrong estimation of the exponent and the law Y � Xa, where a is actually
an effective exponent resulting from the two “real” scaling laws and is between a1

and a2 (Fig. 12.1). The risk of making this mistake can be increased if the accuracy
and reliability of measurements varies with the scale. This effective exponent a has
no real meaning in terms of the hierarchical organisation of the system observed
and does not even have phenomenological interest for example in extrapolating the
data or comparing several systems. On the other hand, it is even more impossible to
reliably extract two exponents of this type and thereby identify a crossover.

In the same vein, scaling laws can only exist in a certain range of values of X

and we must choose a priori how to truncate the experimental data. Also, data may
belong to different independent families and the determination of scaling laws needs
to be done separately for each (see Fig. 12.2). The prior classification, whether it
has been done by statistical methods or according to arguments from an additional
qualitative understanding we have of the system under consideration, can greatly
affect the exponents obtained in the scaling analysis (see for example Sect. 11.2.3).
There is then clearly a risk of using an ad hoc classification to obtain a desired result
or show an ideal scale invariance.

Other difficulties can crop up such as the system has finite size effects or more
generally we may have to consider more complex scaling laws with more than one
variable.

Finally, there are situations in which the scaling behaviour has fluctuations
around the deterministic scaling law Y � Xa . To correctly describe such behaviour,
the fact that the observable Y is random must be taken into account and it is now
the probability distribution of Y which will show a scale invariance:

P.Y jX/ � X�a f .YX�a/: (12.1)
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Fig. 12.2 Wrong estimation
of the exponent ˛ of a scaling
law Y � X˛ (thick black
line) if the presence of two
sub-populations, satisfying
the same scaling law but with
different prefactors, is not
detected

log X
lo

g 
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In practice, such scale invariance is confirmed by showing that the histograms
obtained for various values of X superimpose when they are multiplied by Xa (after
normalisation) and plotted as a function of YX�a. The universal curve obtained
in this way gives the experimental scaling function f . It is clear that this kind of
approach requires a large amount of data and that its statistical validity must be
carefully established.

With these precautions, experimentally determined scaling laws provide signif-
icant information about the organisation of the system. They are guides towards
a global approach to multiscale systems. They open up powerful theoretical
approaches, namely those of scaling theories and renormalisation methods. The-
oretical developments in return provide support to analyse experimental data and
test the assumptions of scale invariance made in the first place.

12.3 Renormalisation and Status of Models

We have seen throughout this book that critical phenomena can be grouped into
universality classes, within which critical exponents take well determined values
which are identical for each member of the class. The very existence of these
universality classes reflects the fact that the critical exponents do not depend on
the microscopic details of the system but only on the geometric properties of the
space and the type of order. For example we have seen that universality classes of
critical phase transitions are categorised according to the spatial dimension d and
the number of components of the order parameter. Microscopic physical properties
are only involved insofar as they control these geometric properties. In this sense,
a scale invariant phenomenon is robust in that the scaling laws describing it are
not affected by changes in the microscopic details, provided that this change does
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not push it into another universality class (in other words provided that it is not an
essential perturbation inducing a crossover). For the same reason, its model will be
equally robust (if of course we are only interested in its scaling properties). All we
need to do it associate the phenomenon with any model belonging to its universality
class. In particular, we can just analyse the simplest representative model of the
universality class as this minimal model will give access to the scaling properties as
well as, if not better than, a model incorporating all the microscopic details.

The renormalisation approach rigorously establishes the features of this min-
imal model, by classifying the components as a function of their “relevance” or
“irrelevance”. It leads to a classification of models, dividing the space of models
into universality classes and thereby demonstrating the very unspecific nature
of asymptotic scaling properties vis-à-vis the small scale constitutive properties.
Finally, by focusing on the hierarchical organisation of phenomena, renormalisation
quantitatively reveals the scale invariance and the value of the associated exponents.
Renormalisation therefore has a demonstrative and predictive power far beyond
those of phenomenological scaling theories. However it is not always possible to
implement technically and construction of the renormalisation transformation itself
comes with some reservations, as we have discussed in Chap. 3.

We hold onto the fact that scaling approaches encapsulate and exploit the idea
that in the case of a scale invariant phenomenon, describing the connection between
observations at different scales is enough to explain and predict statistical laws that
describe their global behaviour (collective or asymptotic). To do so, models that are
simplified to the extreme, even abstract in the case of percolation and self-avoiding
chains, are sufficient. It is even precisely because it is legitimate to use such, we
could say “skeletal”, models, that it is possible to access, at least numerically, global
properties, which are inaccessible to an exhaustive model due to the number of
degrees of freedom.

In conclusion, the universality of critical phenomena has changed the way we
think of, construct and use a model, in particular giving an unexpected interest to
models as rudimentary as the Ising model, percolation or logistic maps.

12.4 Open Perspectives

The panorama presented in this book is far from being exhaustive and we finish
by mentioning a few perspectives emerging from scaling approaches, criticality and
more generally, identification of systems whose hierarchical multiscale organisation
is enough to determine the macroscopic behaviour without having to consider
the details of the constituents and their interactions. Generalisation of scaling
approaches developed for critical phenomena to these more general systems called
complex systems faces several challenges:

• The elementary constituents are not necessarily identical, which is the case in
disordered systems and even more so in living systems.



390 12 Power and Limits of Scaling Approaches

• The systems are usually maintained far from equilibrium by their interaction
with their environment (e.g. flow of material and energy) and tools from
statistical mechanics no longer apply. This is the field of dissipative systems,
addressed in Sect. 9.5 with the example of turbulence. The transfer of energy
between the scale at which it is injected and that where dissipation mechanisms
become significant generates a complex spatiotemporal organisation, which in
this case is hierarchical and even self-similar. Other examples are found in certain
chemical reactions taking place in vessels continually supplied with reactants
(e.g. Belousov–Zhabotinski, Sect. 9.2.1) and in living systems. We also mention
one dimensional models, studied under the name of traffic theories and used to
model real situations as well as to develop in model system the new concepts and
tools demanded by these systems far from equilibrium (Sect. 4.6).

• If the systems are isolated, their complexity can give rise to metastable and aging
phenomena. They are out of equilibrium because their dynamics is too slow for
a steady state to be reached over the observation timescale. These phenomena
are observed in glasses, spin glasses and more generally in all systems in which
a combination of conflicting influences (we talk of frustration) generates energy
landscapes with very rich topology and many local minima.

• The systems are generally extended in space and dynamical systems tools must
be generalised and adapted to spatiotemporal dynamics. A preferred model,
coming from a cross between chaotic dynamical systems and the Ising model,
is that of networks of coupled oscillators. Here a rich variety of behaviours are
observed including local and regional synchronisation, global synchronisation,
spatiotemporal chaos and turbulence. They are used to address all sorts of
spatiotemporal pattern formation problems encountered in physics, chemistry or
biology, for example to model neural networks.

• The presence of feedback loops between different levels brings an element of
circular causality and leads to self-organised phenomena, or even self-organised
critical phenomena.

Throughout this book we have emphasized the qualitative role of correlations
and in particular their range, compared on different scales of space and time in the
system. We have seen that this opened up questions of universality, importance (or
not) of specific microscopic details and the role and status of models. The focus was
then put on the connection between different scales of observation and description
and, more generally, on the hierarchical and dynamical organisation of the system.
In all the fields we have referred to, these same, still very open, questions arise.
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Meteorology 308, 314
Micelle 153
Microwave components 238
Mixture 313

binary 11, 29
conductor–insulator 167

Mobility 140
Model

discrete 261
Heisenberg 29
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Ising 18, 28, 29, 70, 71, 75, 94
random growth 265
S4 91
spheric 70
Terrace ledge kink (TLK) 278
worm-like chain 202
XY 16, 29, 70, 95

Modules 380
Modulus

elastic 188
Young’s (gel) 191

Molecule 19
Monomers 18
MRI 232, 238
Multifractal (analysis) 340, 371

N

Néel (Louis) 3
Néel temperature 238
Navier-Stokes (equation) 334
Neural network 123
Noise 315, 324
Nonequilibrium 116, 161, 346
Normal form 304, 329

O

On-off (intermittency) 333
Onnes (Kammerling) 3, 24
Onsager (Lars) 3, 21, 28
Order (magnetic) 3
Ornstein-Zernike 229
Osedelec (theorem) 315
Osmotic pressure 18, 228

P

Pair
Cooper 232, 240
dislocation/anti-dislocation 284
non condensed 232
of charges 232
vortex/antivortex 97, 284

Parameter
effective 77, 80
order 35, 59, 70

Partition function 81

Peclet (number) 118
Percolation 126, 377, 385

correlated 173
driven 173
gradient 353
stirred 173
threshold 171

Period doubling (bifurcation) 305, 321
Persistence (length) 200, 201
Phonons (density) 190
Pitchfork (bifurcation) 304
Poincaré section 296
Point

� 198, 205, 206, 213, 217
fixed 68, 69, 82, 180, 297
hyperbolic fixed 82
tricritical 217

Poise 140
Polyelectrolyte 198, 208
Polymer 18, 197

gelification 167
melt 227

Porosity 124
Porous (media) 48
Porous media 124, 126, 127, 153
Power spectrum 338, 347, 352, 372

Q

Quasiperiodic 319, 320

R

Radius of gyration 175, 204
Random walk 128, 136, 198, 202
Rational (approximation) 319
Rayleigh (flight) 148
Rayleigh (number) 294
Rayleigh-Bénard (convection) 293, 294,

299, 301, 307, 308, 323, 329, 336
Reaction-diffusion 123
Renormalisation 59, 62, 126, 132, 179, 303,

323, 329
dynamic 261, 282, 288
flow of 80
group 31, 56
invariance by 80
operator 77, 80

Resistance (hydrodynamic) 367
Reynolds (number) 335
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Robustness 305
Root mean square displacement 111, 155
RSFQ logic 238

S

Saddle-node (bifurcation) 300, 304, 329
Sandpile 345
Scale

change of 79
cut off 175
invariance 47, 122, 345, 387

Scaling 62, 66, 176
Scaling law 63, 65

Fisher 65, 68
Griffith 65, 68
Josephson 65
Rushbrooke 64, 68
Widom 64

Scenarios (to chaos) 318
Schrieffer 234

wavefunction 235
Second law 1
Section (Poincaré) 296
Self-avoiding walk 214
Self-diffusion 10
Self-organised criticality 345, 347, 350
Self-similarity 46, 47, 118, 133, 150, 386
Semidilute (solution) 228
Semiflexible (polymer) 201
Sensitivity to initial conditions 311
Sierpinski (gasket) 44
Similarity 154
Skeleton 369
Small world 377
Solar system 309
Solvent 198, 207, 213
Space

of models 81
phase 295

Spectral density 347
Spin 18, 21, 58

super-spin 58
waves 96

Spin glass 152
Spinodal decomposition 100
SRB measure 162, 327
Statistical self-similarity 259
Statistical mechanics 325
Stochasticity 315, 324
Stokes (formula) 140

Strange attractor 308, 317, 318, 320
Subharmonic (cascade) 322
Superconductivity 12, 41, 231, 232
Superconductors

type I 233
type II 233

Suramorti (regime) 144
Surveying 46
Susceptibility 141, 218
Symmetry (breaking) 5, 8

T

Tap (dripping) 299
Taylor (hypothesis) 341
Temperature 110
Theorem

H-theorem 146
Theory

BCS 234, 235
kinetic 137

Thermal conductivity 11
Thermal energy 109
Thermal fluctuations 110
Thermal velocity 110
Thermodynamic (limit) 162, 197, 219, 302
Three body term 213
Tomonaga 235
Tortuosity 125
Traffic (theory) 159, 353
Transcritical (bifurcation) 304
Transfer matrix 72
Transition

conformational 198
ferroelectric 3, 29
ferromagnetic–paramagnetic 3, 29, 56
Kosterlitz-Thouless (KT) 95, 98
liquid–vapour 3, 29
percolation 167, 174
phase 5, 103
quantum 29, 231, 249
roughening 99, 283
sol-gel 173
superconductor–insulator 3, 245, 253
superconductor–metal 245
superfluid 15

Tricritical (point) 207
Turbulence 321

U

Universality 330, 386
class 27, 84, 288, 323, 389
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V

Van der Waals 23, 24, 26, 27, 59
Viscosity 140
Vortex 97, 233

W

Walk
Lévy 151
random (ideal/Brownian) 128, 136
self-avoiding 214

Wavelet (transform) 374
Weiss (Pierre) 4, 23, 24, 26, 27
Wiener process 131, 133, 373
Wiener-Khinchine (theorem) 338
Wilson (Kenneth) 31, 59, 107
Worm-like chain model 202

Z

Zoom 58
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