Punto crítico  —  (Física y Vida, por J. Marro)

·         Los diagramas de fase precisos para el agua y el dióxido de carbono pueden encontrarse en www.chemicalogic.com, y una discusión de las transiciones entre fases en www.chemguide.co.uk.

·         Un experimento mostrando el fenómeno de opalescencia crítica se describe con detalle en www.physicsofmatter.com. Se describen experimentos similares en ciencia.nasa.gov (donde aparece una figura que hemos adaptado para ilustrar en FyV) y en www.cienciahoy.org.ar.

Un fenómeno relacionado con la opalescencia crítica hace que predominen ciertas longitudes de onda en la luz que, proveniente del Sol, es dispersada por la atmósfera, lo que origina el color azul característico del cielo en condiciones normales, el color rojizo en los atardeceres, y el tono amarillento del disco solar. Para una explicación sencilla del color del cielo, puede verse enebro.pntic.mec.es

·         La referencia clásica (y mejor) para una introducción a la teoría de cambios de fase y fenómenos críticos es el libro

Introduction to Phase Transitions and Critical Phenomena de H. Eugene Stanley editado por Clarendon Press (fuera de catálogo, pero pueden encontrase copias en Internet).

El comportamiento de funciones matemáticas en sus puntos críticos, que es relevante para comprender mejor el comportamiento de magnitudes físicas en los puntos críticos de diagramas (termodinámicos) de fase y en otros contextos, como se discute más adelante en este mismo capítulo, se ilustra en descartes.cnice.mecd.es.

El modelo de Ising y su uso en simulaciones está descrito en términos sencillos en “Microscopic observations on a kinetic ising model”, por Raúl Toral y Joaquín Marro, publicado en American Journal of Physics 54, 1114 (1986).

·         Una buena referencia general para el fenómeno de percolación es el libro

Introduction to Percolation Theory de Dietrich Stauffer y Amnon Aharony, publicado por Taylor and Francis, Londres 1994.

Los estudios más interesantes de percolación son numéricos; en este contexto son importantes los algoritmos introducidos por J. Hoshen y R. Kopleman en Physical Review B 14, 3438 (1976) y por P. Leath en Physical Review B 14, 5056 (1976).

Para simulaciones interactivas sobre percolación, referimos a www.physics.buffalo.edu, www.krl.caltech.edu y www.people.nnov.ru, que también incluye cambios de fase magnéticos.

Véase también la paradoja de Fermi (¿por qué no nos han colonizado?) en www.sff.net o en la publicación de T. Kuiper y G.D. Brin en American Journal of Physics 57, 13 (1989).

·        Para una simulación interactiva de fuegos forestales, véase polymer.bu.edu y, sobre modelos de este fenómeno: www.sciencedaily.com

·         Sobre universalidad y renormalización recomendamos el libro de H. Eugene Stanley citado, y el trabajo del mismo autor: “Scaling, universality, and renormalization: Three pillars of modern critical phenomena”, publicado en Reviews of Modern Physics 71, S358 (1999), de donde hemos adaptado una figura.

En otros tomos de esta misma revista se encuentran las descripciones más clásicas de estas interesantes teorías, una debida a Michael E. Fisher, en el volumen 30, página 615 del año 1967, y otra debida a Leo P. Kadanoff y otros, en el volumen 39, página 395 del mismo año.

También recomendamos

“Renormalization group theory: the basis and formulation in statistical physics”, por Michael E. Fisher, Reviews of Modern Physics 70, 653 (1998) y, a un nivel más elemental,

“Problems in Physics with Many Scales”, por Kenneth G. Wilson, en Scientific American 241, 158 (1979), y

“Teaching the renormalization group”, por Humphrey J. Maris y Leo P. Kadanoff, en American Journal of Physics 46, 652 (1978).