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EDITORS' PREFACE 

 
This volume originated at the 11th Granada Seminar organized by the University of 

Granada, Spain, and contains the main lectures, a transcription of the discussions in an open 

round table (of which the book takes its title), and a selection of contributed papers in that 

conference. This is the eleventh of a series of Granada Lectures previously published by: 

 World Scientific (Singapore 1993), 

 Springer Verlag (Lecture Notes in Physics volumes 448 and 493), 

 Elsevier (Computer Physics Communications volume 121-122), and  

 American Institute of Physics (Conference Proceedings Series, volumes 574, 661, 779, 

887 and 1091). 

These books and the successive editions of the Seminar since 1990 are described in detail at 

http://ergodic.ugr.es/cp/. This web also contains updated information on the next edition.  

The Granada Seminar is defined as a small topical conference whose pedagogical effort 

is especially aimed at young researchers. In fact, one interesting aspect of this meeting is the 

opportunity given to the youngest to present their results and to discuss their problems with 

leading specialists. There were in this edition a total of 60 lectures and 42 poster contributions. 

More than one hundred participants came from nearly thirty countries (Spain contributed with 

21%, the rest of Europe including Russia with 48%, North America with 7%, Central and South 

America with 15%, Asia with 7%, and Africa with 2%); most of the participants received partial 

support from the organization.  

The 11th Granada Seminar was organized by the Institute Carlos I for Theoretical and 

Computational Physics of the University of Granada, sponsored by the European Physical 

Society, endorsed by The American Physical Society, and financed by the Spanish Minister for 

Science, project MICINN FIS2009-08191E, by the regional administration Junta de Andalucía, 

and by the University of Granada. We also wish to express gratitude to all those who have 

collaborated in making this event a success. In particular, we mention the remarkably high 

quality and friendly cooperation of invited speakers, among which we should distinguish Joel 

Lebowitz whose (80+⅓)th anniversary we celebrated during the meeting, and other participants, 

whose personal effort enabled us to accomplish the goals of the Seminar, the Steering 

Committee's help in designing format and contents, and further in situ collaboration from 

colleagues and students. This edition of the Seminar was held from 13 to 17 of September 2010 

in the charming village of La Herradura, a remarkable spot of the Tropical Coast of Granada, 

where the participants enjoyed a paradisiacal setting with excellent hotels and restaurants. 

Finally, let us notice that an effort has been made by authors and editors to offer 

pedagogical notes here; in particular, each topic is comprehensively described within its 

scientific context. We try to mold the Granada Lectures into a series of books that help 

introduce the beginner to novel advances in statistical physics and to the creative use of 

computers in scientific research, as well as to serve as a work of reference for teachers, 

students and researchers.  

Granada, 18 November 2010 
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Nonequilibrium Statistical Physics today.
Where shall we go from here?

This is an edited transcription, by Pedro L. Garrido, Joaquín Marro, and Francisco de los
Santos, of the directly recorded sound during an open round table, the third day of the Seminar,
which was chaired by Prof. Joel L. Lebowitz.1

• Joel L. Lebowitz (JLL): This was supposed to be the last slide of my talk on Mon-
day. . . It will serve here to say what I consider important open problems in understanding
nonequilibrium phenomena. These, I think, are very central issues. . . though not the only
ones.

FIGURE 1. The slide from Lebowitz’s talk (not included in the book) which is often referred to within
the discussions. (NESS stands for Nonequilibrium Steady States.)

The first thing is the free energy for a nonequilibrium stationary state. Consider a
system in contact with two reservoirs, one temperature on the left, and one temperature
on the right, in a stationary state. Question: is there a reasonable definition of free energy
for such an open nonequilibrium system? In my talk I was saying that if you start a state,

1 The speakers had a chance to swiftly revise the text. The fresh, informal way of talking during the
discussions, and some eventual references made to the blackboard there have been kept whenever the
meaning is still reasonably evident. A few indecipherable sentences have been replaced by [. . . ].



say a temperature profile, then the large deviation function will decrease to the stationary
one in a monotone way. In other words, the log of the probability of having such a
profile in the stationary state [which is not typical], will as the time evolves (assuming
Fourier’s law is satisfied; we are not talking about anomalous systems here) increase,
with the system eventually coming to the stationary state. I argue that this is analogous
to what you find if you have an isolated macroscopic system with fixed total energy in
a nontypical initial state, then it will eventually come to something that is uniform. So
the final state will be an equilibrium state which, as I argued several times already, is
essentially something which occupies the whole energy surface, but not really the total
full energy surface. There are going to be some regions, more unlikely the larger the
system, this will be exponential with the size of the system. By the way, I’m very much
an individualist that will later ask for someone to defend the ensemblist point of view
that Shelly was saying over there. The microcanonical ensemble gives you a certain
probability, a large deviation, and then the second law says that this large deviation
function which is the difference between the entropy of the actual macroscopic state,
and the equilibrium entropy, (which is equivalent to the Gibbs entropy of a uniform
distribution over the energy surface when the system is large), is going to be monotone.

If you have the same temperature on the two sides, the stationary state will correspond
to a canonical distribution with this temperature. The energy will no longer be constant
but the system will go to a state with a uniform temperature.

What about a nonequilibrium stationary state, when you actually have transport of
energy along the system? Then, I argue again, the large deviation function will be
monotone. This depends on the log of the ratio of the probability of the typical state
to the one you started out with, which is not typical.

In equilibrium, entropy plays more than one role: it is the large deviation function but
in addition if you take the derivative of the entropy with respect to the energy you get
one over the temperature, you can get the pressure by taking the derivative of the entropy
with respect to the volume for a given energy, etc. People have tried for many, many
years to find an equivalent thing for this nonequilibrium stationary ensemble. I have
certainly been trying since when I did my thesis, it was before any of you here were born
probably. In 1956 I was trying to find what the analogous thing to the thermodynamic
free energy is in a nonequilibrium stationary state. That problem has not been solved.
In fact I don’t think much progress has been made on that for the last 60 years. In
particular, Tasaki and his coworkers have tried to develop something, I don’t think very
successfully, maybe there simply isn’t anything like that. It’s an open question.

The second open question is even simpler: it is just to derive macroscopic equations
for realistic Hamiltonian microscopic dynamics. As Roberto [Livi] was saying, let’s say
that equations like Fourier’s law don’t necessarily always hold when you are in low
dimensions (and other things we know don’t hold). But experimentally it seems to be
very, very good for most systems. When you have a metal bar between two temperatures,
or just a metal bar by itself and you start with a nonuniform temperature, Fourier’s law
holds. It would be very, very nice if one could derive that from microscopic dynamics,
classical or quantum mechanical, I mean, quantum mechanical would be even better,
even though I don’t agree at all with Sandu [Popescu] that there is any problem with the
classical understanding. In fact I think there are some problems with the quantum thing,
but I’ll come to that later.



The third issue is really, if you wish, a subset of the first one. This is supposed to be
the energy surface. . . This is what I call Γ1. It’s a region on the energy surface, which
corresponds to some particular macrostate at time t1. I’m thinking again of an isolated
system having an energy density profile corresponding to a macrostate but which has a
very small volume, it’s very unlikely with respect to the microcanonical ensemble. Then
at time t2 you will get a new macrostate, Γ2, which is going to be, let’s say much more
uniform, and will have a much larger region in the phase space. Now you want to predict
what is going to happen next time, let’s say at time t3. Γ2 will very likely go to a state
M3 of much larger region Γ3.

The point is, let me say it again: To have a deterministic macroscopic equation, I
mean that almost all the phase points in the region Γ1 go into Γ2 and the values of
the macrovariables associated to Γ2 are a solution of the deterministic equations like
the Fourier Law. You know, the derivative of the energy density with respect to time is
given by the divergence of some energy flux, and this energy flux is given by minus the
gradient of temperature. So, if I say I have deterministic equations which lead me from
a profile at time t1 to a profile at time t2, according to the solution of the heat equation
for isolated systems, I mean that almost all of the phase points initially in Γ1 end up
in Γ2. By the Liouville theorem, the volume of Γ1 is preserved so the intersection of
the evolved Γ1 and Γ2 will have the same volume, or maybe slightly smaller because
some of the phase points in Γ1 have “leaked out”. So it’s a very, very sparse set. In a
certain respect it’s a very atypical set because if I reverse all the velocities I’ll be going
exactly back over there [Γ1], which is very atypical. Almost any point in Γ2, reversing
the velocities, will go to the bigger set Γ3. Nevertheless, if you are going to have a
deterministic time evolution, it must mean that this set over here [U(t2, t1)Γ1], which is
clearly atypical as far as the past time evolution, behaves typically as far as the future
time evolution goes. And this is really the crux of the mathematical problem of deriving
deterministic macroscopic equations from microscopic dynamics. To show, that the set
[U(t2, t1)Γ1] behaves typically as far as the future goes with respect to all the points in
Γ2.

So, those are the issues I was going to write down at the end of my talk on Monday
which I consider some of the important problems in nonequilibrium statistical mechanics
from a foundational point of view. Let me stop now and start having some comments
from you.
• Giovanni Ciccotti (GC): I understand what you say. However, as you know, the hy-
drodynamic equations are closed, because we add to the conservation law the phe-
nomenological relations that are given by the constitutive equations i.e. empirical re-
lationships. Therefore, although we can trust them practically, they are not completely
founded, being phenomenological equations. Correct? Instead, If I can compute this
property by numerical molecular dynamics, by atomistic dynamics, I can check your
ansatz. It seems to me that what one should do is to find the way in which, without as-
suming anything for the continuum representation, one computes directly the behavior of
the fields involved by microscopic dynamics, and then one can check your hypothesis. I
think this is possible. There are people doing this and, indeed, they find correspondence.
I don’t see, instead, your mathematical problem because you want to give a theoretical
foundation to equations which are intrinsically only phenomenological.



• JLL: Equations that are phenomenological presumably are used because they actu-
ally work. So real systems do behave according to those phenomenological equations.
We also believe that liquids are made up of molecules. These molecules undergo micro-
scopic dynamics, so a given microstate of the liquid which is basically under classical
mechanics would be a state where you have positions and velocities.
• GC: On that we agree completely. Let me try restate my question. I still would like to
understand what your mathematical problem is because if you start from phenomeno-
logical equations I think is very difficult to give to them a deep justification because they
are phenomenological, so sometime they are valid and some other time not. . .
• JLL: I’m totally on your side. I do want to understand the origin of these phenomeno-
logical equations. And I think that to understand the origin I have to go to the micro-
scopic dynamics.
• GC: Absolutely.
• JLL: That’s what I’m saying. Going back to your simulations, suppose you start from
a non-uniform macrostate, so you pick a random point in this region of the phase space.
You would see it evolving, let’s say to the more uniform. Now you start with something
which is more distorted; you see after a while it goes to the previous initial macrostate.
Assuming you do your molecular dynamics perfectly exact, so you have now a new
point in the phase space which has the property, if you reverse all the velocities it will
go backwards, as compared as if you pick simply a point at random here. You will find
that the reverse of the velocities will still make it go over here. It will not change at all.
• GC: OK.
• JLL: So the point in Γ2 that you get from coming from Γ1 is very different with re-
spect to velocity reversal from a point you pick at random in Γ2. Nevertheless the system
behaves macroscopically in a similar way in the future, as you can predict phenomeno-
logically or see in your computer, and that’s what I think to prove mathematically or to
understand mathematically is an essential problem.
• GC: Then I totally agree. Your problem is strictly macroscopic. You start from the
phenomenological equations when you find that they are satisfied. Why is this, it is not
your problem. Fine.
• Lev Shchur (LS): I don’t completely agree with you that it is possible to check in
molecular dynamics with any precision. Typically, in the picture you showed us, you
have some typical time scale, and Lyapunov exponents. Suppose you can make several
mappings of such a kind but at some point you really forgot the initial one because
you need some exponential precision for that. You know, your derivatives should be
exponentially fine in a way.
• JLL: I don’t think Giovanni says that you can do it experimentally, with infinite
precision. But at least in some simulations we have done on integer arithmetic we did
not have that problem, and still have the same answer. And, after all, the real system,
presumably, to the extent that you can make it isolated, which again is not perfect, you
cannot make it isolated, but I don’t think anyone here doubts that if you make a truly
isolated system and you did truly infinitely precise molecular dynamics, that you would
get any different answer.
• LS: Yes, because in your picture you have Lyapunov exponent which is somehow con-
nected with the Kolmogorov-Sinai entropy, which is a different entropy which charac-
terizes the topology of your domains. What is not understandable also from your lecture,



is which domain you keep in your mind. Maybe you speak about some special domain
on which you define your system.
• JLL: Let’s say for the simplest case I would think of a hard sphere system, one with
a Lennard-Jones potential in a given box, conceptually totally isolated, with reflecting
boundary conditions. That’s what I have in mind. As far as one understands, at least in
certain regimes, the phenomenological equations would be just absolutely well.
• Miguel Rubí (MR): I want to make a comment on the first point. The question you
raised is very important, to know under what conditions concepts introduced for systems
in equilibrium such as entropy, free energy or temperature, can also be used in systems
away from equilibrium. I think that this is a crucial point. In my opinion, this question is
very much related to the nature of the noise present in the system. The nature of the noise
may sometimes justify or invalidate the use of equilibrium concepts in non-equilibrium
situations. So, for the particular case of a Gaussian noise, which is common to many
physical systems, one can extend the use of some of these concepts. When the noise
is Gaussian, the stochastic variables vary in a small amount for short time intervals, so
the process is very slow and the probability distribution undergoes a diffusion processes
governed by a Fokker-Planck equation which is simply a diffusion equation, linear in the
probability. In these cases you can establish a connection with the second law and use
the concept of entropy. However, if the noise is not Gaussian one has to use other kinetic
equations the form of which is different from a diffusion equation. In these cases there
is not a clear connection between the dynamics and the second law. To obtain an entropy
functional compatible with these kinetic equations is not obvious. An example is the
case of a multiplicative noise or other noises such as Poisson or Shot noises. When the
distribution function is non-Gaussian, we do not know how to define the temperature.
Sometimes, one may define effective temperatures but these quantities are not robust,
they depend on the particular situation you are considering, on the observables and the
initial conditions. These temperatures are not temperatures in a thermodynamic sense.
When the noise is Gaussian the temperature inferred from the variance of the distribution
coincides with the thermodynamic temperature and everything fits perfectly well. I want
to make a comment on the distinction between the Gaussian nature of the noise and the
Gaussian form of the probability distribution function. In the example I discussed in my
talk on the Brownian motion in a shear-flow, in a stationary flow, the noise is Gaussian
because the particle is immersed in a heat bath. But if you solve the Smoluchowski
equation for a nonlinear velocity profile, for example a Poiseuille flow, you don’t get a
Gaussian form. A Gaussian noise for which the kinetic equation is of the Fokker-Planck
type does not necessarily imply that the probability distribution be a Gaussian. In the
case of a gentle Poisseuille flow in which the system is not far from equilibrium this
distribution function is non-Gaussian. Since the noise is Gaussian you can establish a
connection with the second law and use the concept of entropy. So I insist in the fact that
the nature of the noise is a crucial point in establishing the link between thermodynamics
and stochasticity.
• JLL: You are talking about noise. Presumably, this noise you expect is really internal.
I mean, you don’t think the system would behave differently if it was truly isolated
and followed the laws of the dynamics of classical mechanics. Whatever noise comes
out, I mean, from the dynamics. Of course you don’t want to follow the molecules, you
substitute, you replace it by some kind of noise. But I’m asking the questions at a more



conceptual level. There still will be, I expect, a stationary state but you have the two
different temperatures, inside I take it to be just real dynamics. I’m not pretending I can
solve it, but there is going to be, you know, such a state and I ask, yes it’s a question and
I don’t know the answer. In some cases one can approximate it well enough by means
of some kind of Gaussian distribution and have a kind of thermodynamic local thermal
equilibrium. In other cases you may not, and I think that’s quite likely to be the right
answer.
• MR: The theory of stochastic processes is very useful because if you know the form
of the kinetic equations you can determine the stochastic dynamics of the system, you
can calculate the correlation functions which are related to physical quantities one can
measure. Then you can establish the link between the second law and the stochastic
behavior of the system. In my opinion this is an important point.
• JLL: I am not really worried about the second law. I think the second law can take
care of itself. It is going to do all right. What these people are saying they would like
to have a formalism which is analogous in some sense to the equilibrium formalism
and have some function, in particular Tasaki and his group they say, even if you are in
local equilibrium of course you still have a current flowing so they want to add to the
thermodynamic variables, a local energy density, local particle density, local velocity,
. . . They want to add a current as a hydrodynamic, as a macroscopic thermodynamic
variable, to find a function of these, including the current as a parameter which would
somehow play a role like free energy in equilibrium. If you differentiate it, you get the
specific heat or you get some other things. I mean, that sort of conceptual question. . . I
think it’s important but probably doesn’t have a unique answer. Equilibrium is probably,
really a special case, it’s a very unique case. When you are not in equilibrium you don’t
have any such universal type of things.
• Sandu Popescu (SP): So, coming to your first thing, to the point with all the molecules
starting in a corner, then they expand through the box and you reach a point that is not
critical towards the future, it behaves as any other typical point. I just want to mention
that, just a comment, that in fact any initial condition is not typical if you define it in
a precise way. So suppose you have a situation in which the molecules are uniformly
distributed, but you say, well, this is a particular one in which molecule number one is
here, molecule number two is there, so it is very non-typical. Let it evolve and you say
if I would reverse all the velocities will come back to precisely this point. Most of the
others will not do that, but towards the future they all behave the same. So every single
initial condition gives rise to a non-typical case.
• JLL: Yes, sure. What I’m saying here is on the macroscopic level. [. . . ] I get back
maybe to typicality, what do you mean by typical, Shelly [Goldstein]? I think we give
it in our paper. Or not? Take the unit interval, from zero to one. Everyone knows that if
you take Lebesgue measure all the rational points have measure zero. So every rational
point is atypical. Nevertheless, there are certain theorems about typical points. Almost
all points with respect to Lebesgue measure are so called normal. This means that in
any expansion –decimal expansion or binary expansion– the fraction of times I see
in decimal expansions a seven to occur is exactly one tenth of the time, so fraction
of times that 693 appears is exactly one thousand of the times. That’s normal, that’s
a theorem. For almost all numbers, “almost all” meaning with respect to Lebesgue
measure,. . . almost all numbers are normal. Obviously, no rational number satisfies that.



Still, if I give you a number, pick 677000 at random, random in the usual sense, for the
numerator and a similar type of number for the denominator, and I ask you if I make
an expansion, and go up to 500000 decimal places, am I likely to find equal number of
sevens and equal number of eights? You would say, unless you really pick your number
very specially, “I expect that”. So in that sense I think of typical over here. [somebody
interrupts, almost inaudible] Shelly was saying that. . . almost all the energy, here is your
whole energy surface and almost all of it, I mean, really almost all of it, except up to a
tenth to the minus 20 corresponds to equilibrium. No, he doesn’t disagree with that, I
don’t think at all.
• SP: I would actually disagree with you. From your point of view, you see, there is a
conflict in what you say because, on one hand, you would like to define a point of being
typical just by [. . . ] looking at macroscopic conditions. But if you would be able to view
with infinite precision, then every point would be atypical in some sense towards the
past. But they are all typical towards the future.
• JLL: I don’t think so. I think that in Classical Mechanics and in Quantum Mechanics,
whatever you said for the fraction of time, going from zero to infinity, in an isolated
system I could just as well go from zero to minus infinity and arrive exactly at the
same theorem. As long as the system stays isolated, of course. Why then do we see
this irreversibility in life, in nature? I think that really goes back, you have to go back
to initial conditions. Feynman emphasizes it, and Boltzmann already said it. I forgot
now the exact phrasing of Boltzmann but something when he answers Zermelo. When
Zermelo said, you know, that you have eventually Poincare recurrence, and things like
that. Boltzmann said that what is important to realize is that the behavior of systems is
not determined by dynamics alone. It also involves initial conditions. That’s very crucial.
The dynamics are time symmetric. It’s initial conditions which are not time symmetric.
But if you simply look at the dynamics and pick a point, it is going to be time symmetric.
Is what Shelly was saying, and von Neumann. [. . . ] In reality we don’t see that because
of the initial conditions. Sometimes I have this picture from Roger Penrose where there
is the good lord creating the universe and pointing to some very, very little macrostate
over there. Again, I point to Boltzmann saying in a different way the important part: you
do not have to take a particular microscopic state.
• Roberto Livi (RL): I want to add some comment about what Joel was discussing
before. Well, on the concept of reversibility and trajectories and so on. These are quite
troublesome arguments, but let me give you a piece of information that I know for sure
because I published a paper on this fact. [laughs] These are not just conjectures, these
are results. Take that stuff and put it in contact with two heat baths. With two heat
baths, I mean, the chain I was showing you before. And take it a harmonic chain. Joel
solved that problem many years ago with Rieder and Lieb, and you can work out an
analytical collection, and you know everything about that. In that case you are in a very
anomalous situation. Everybody knows that, you know it follows that [. . . ] there is no
Fourier law, there is nothing about that. But now suppose that you add, and this comes
again as an example of a special kind of noise, a martingale process, which amounts to
add randomly collisions that preserve energy and momentum. So you have the dynamics
but sometimes a couple of particles collide. This can be worked out very easily. [. . . ] The
very important point is that you can compute analytically everything of this problem and
you can compute the nonequilibrium invariant measure. Compute means with analytic



formula, without any approximation or integration scheme. And then you find a very
nice expression, and you find everything that you need to know about this state. The
correlations, spatial correlations appear, you have local thermal equilibrium with the
exception that the tails of these Gaussian distributions certainly have to feel the effect
that you are not in an equilibrium state, so that these tails maintain this memory effect.
So everything here is analytical. Now you take any other model, for instance the FPU
model or any other kind of nonlinear chain, and then in that case your covariance matrix
can be solved numerically, obviously. And then you apply standard molecular dynamics
method. What do you find? Something which in practice is completely in agreement
with the previous analytical solution, concerning the main ingredients. I’m not saying
the same model but the ingredients. The description of this out of equilibrium stationary
measure obtained by the eigenvalues and eigenvectors of this covariance matrix behave
very gently and very close to what you have observed in the analytic solution of that
problem. So it seems that, for any practical purpose, you obtain what you expect to
obtain despite you have a finite system, despite you have round off errors in your
computation and so on and so forth. And even if you have a small system, this works
perfectly. Obviously, as I was saying before in my talk, you must take care if you want
to exploit numerical simulations to integrate things you don’t know how to integrate in
any other way, you must be very careful in order to control any finite size effect, any
time length effect and so on and so forth in measuring this covariance matrix elements.
But once you have done that, I mean, you will know also when this will be violated.
You can really predict it on the basis of analytic argument that if you go too far away
in computing these correlations, you lose the information that you want. And in some
sense this goes back to the fact that if you look at these things in a finite time, there
is a typical finite time which is related to the finite length of the system, but once you
have taken that into account the thermodynamic limit problem does not enter the game.
Now, in any numerical simulation, on the other hand, you know that you have round
off errors. And this will affect how the information propagates. There is no way out of
that. Irreversibility in this kind of simulations doesn’t exist because if you reverse your
process you don’t go back to the initial state.
• JLL: You mean of integer matrix?
• RL: In the case of integer matrix I agree, you can do it. But in that case there are other
technical problems that you have to take into account in order to say over which time
scale you can trust what you observe. [somebody intervenes. Inaudible]
• RL: Yes, I agree. Absolutely if you control and you increase your numerical precision
register to 256 or 512 bits. This is your job at the very end. So, I mean, you make it
correctly. I don’t know if this is sort of miracle, but things work. That’s what I can say,
no more.
• William G. Hoover (WGH): [Going back to Joel’s statements at the beginning] Num-
ber three of your statements looks to me very difficult indeed, but I have a few remarks
on the first two. It seems to me that Helmholtz’ free energy and entropy are not interest-
ing variables away from equilibrium. Certainly they are in the equilibrium case. But it
seems to me from our experience in simulations that kinetic temperature is a perfectly
good variable away from equilibrium. And it seems to me that if you are interested in
constitutive relations you could start out by thinking of the energy and the kinetic tem-
perature rather than free energy and entropy. Similarly, there are perfectly good expres-



sions from kinetic theory, even at high density, for the heat flux vector and the pressure
tensor. So, as long as you are not too fussy about where these quantities are localized,
everybody agrees on how to calculate the momentum flux and the energy flux. Now, if
you would like to define those things at points, and in particular if you would like to
define them at points in such a way that you have spatial derivatives that are continu-
ous everywhere, you can do this by introducing Lucy’s or Monaghan’s smooth-particle
weight functions, which describe the contributions of each particle in space. And if you
do that, which Carol [Hoover] will be talking about tomorrow, you will find that the
pressure tensor at a point and the heat flux vector at a point depend on the details of the
weight function. To me, instead of looking at this as disastrous, it’s actually an oppor-
tunity, in the sense that you can ask yourself which weight function gives the simplest
macroscopic description.
• JLL: When you say wave function, you mean you are talking Quantum Mechanics or
not?
• WGH: Weight function, not wave function! It’s simply the idea that the influence of
each particle on the nearby density is not represented by a delta function but instead by
something like a Gaussian, but compact, with a range of perhaps two or three particle
diameters. Then the fluctuations in the macroscopic description are small with respect
to one percent in a homogeneous fluid. That’s a very easy thing to do. Carol [Hoover]
will be talking about this tomorrow.
• JLL: May I just summarize what you said? You are saying that even if you don’t have
a free energy or a distribution function like a Gibbs distribution for the stationary state,
things are not so bad. You can get along with that. Go ahead. I just wanted to summarize
what you have said.
• WGH: You are right, and I just wanted to say one other thing regarding numerical
simulations of a stationary state. There is always some kind of thermostat, so we would
have a cold one at the left hand side and a hot one at the right hand side, for instance.
You can calculate, as long as the thermostats are deterministic, the Lyapunov spectrum,
so you can see what happens to Gibbs’ entropy as time goes on. After a while, when
one achieves a nonequilibrium steady state, one finds the interesting news that Gibbs’
entropy is diverging to minus infinity, because the system is collapsing onto a [multi]
fractal attractor. In an example that I’ll show tomorrow, the change in the dimensionality
of the steady state with 32 particles is about ten percent. So, instead of having a 192-
dimensional distribution like Gibbs’, the distribution is somewhere between 170 and
180 dimensional. So, if you try to take the logarithm of that fractal distribution, it will
diverge. So that is the physical-conceptual basis of my talk, that the kinetic temperature
tensor is a better thing to look at than entropy.
• JLL: We will wait for your talk tomorrow but another discussion, you know, I mean, if
you use different reservoirs like the one that Roberto was talking about, Langevin type of
thing, then you don’t get any such collapse. But again, as you are saying, the properties
of the system that you are interested in are exactly the same more or less, because we
believe, I think it’s correct, I think that Giovanni [Gallavotti] quoted it from 1959, that
the boundary conditions really should not affect what happens.
• GC: Joel, I’d like to add something to this point, and is that to do statistical mechanics
you need an invariant measure, an invariant measure with time, and you find that
this problem of the degrees in dimension, if you use the Lebesgue measurement, but



the Lebesgue measurement with the dynamics associated to something like the Nosé-
Hoover thermostat, is no more invariant. So I think this is a question really to be clarified,
it is not at all evident that the statistical measurement that you use when you use non
Hamiltonian dynamics is a Lebesgue one. I would take this as possible. . .
• JLL: I agree with that. Maybe let’s hear from some other people.
• Vaclav Spicka (VS): I would like to comment on Joel’s first statements. So, maybe
this derivation of macroscopic equations, I would say that this is the general problem of
correlations between particles, I mean, a many body problem because I’m starting from
some many body problem, I’m writing microscopic equations and then, as everybody
knows, you must do approximations to come out with some macroscopic equation. So,
I’m leaving out some interactions and so on. I’m emerging with irreversible macroscopic
equations. Another addition is that I must define some initial conditions for this. This is
another tricky point because when I’m defining initial conditions I must somehow know
the history of the system. Because then I don’t know how from scratch what means initial
condition and how I neglect or not neglect correlations. So, basically this is tricky and
as soon as I will derive so-called such equations I must compare this with experiment
because I have no other chance basically. So, I must do this because every time I’m
forced to do approximations and irreversibility is emerging as like something like effect
of approximations, in fact.
• JLL: Maybe you do approximations. I do not know that a metal bar does any ap-
proximations. I know perfectly well what I mean when I start with a metal bar with
some temperature profile and it evolves according to the heat equation. I do not think the
metal bar knows about your approximations.
• VS: But the problem is a realistic Hamiltonian. Because realistic Hamiltonian includes
all these interactions and so on.
• JLL: Of course.
• VS: Then I am in trouble with these things and, moreover, I would say that when I
derive some kind of equations from ideal density matrix or Green functions or, there are
many methods, then in fact I have some clue how to calculate observables. And then
I basically don’t care about any free energy or entropy. So basically, I’m in complete
nonequilibrium state, maybe, it depends basically on time scales and interactions in the
system. If some steady state emerges or not, if free energy is good description or not,
it depends. . . Basically, this is question of how far I want to generalize thermodynamics
and if it is reasonable to generalize it. . .
• JLL: I think. . . You talked both about my first and second points. [. . . ] What I wrote
down was just the heat equation. I give you an energy profile, say for a metal bar, a
copper bar, and I look how it changes with time, and I find very accurately, maybe not
absolutely perfectly, that it satisfies the Fourier’s law, its equation. And that’s what I
would like to derive, if it is possible to do it, I mean, mathematically, we certainly have
not succeeded so far. So it’s an open problem. We have not succeeded but we tried.
• JLL: Younger people should speak up. Where are the young people?
• Afshin Montakhab (AM): I’m not sure that I qualify as a young person but at the risk
of not being invited here again I would do the following comment from the information
theoretic point of view. I hold the view that if we had as human beings devices that
actually measured with infinite precision the positions of the particles, or the initial
state of constituents of macroscopic systems with infinite precision, that we measured



the forces between them, then we would never need thermodynamics. We would not
be talking about things like entropy or anything. So, since uncertainty is a part of our
existence, then there is such a thing called entropy, which is the Shannon entropy. And
from the uncertainty or the measure of which is entropy you can actually calculate
quantities that an observer would make, a macroscopic observer with a thermometer,
a barometer and these kind of devices that we normally have in our laboratory, would
make. So I can hold the view that perhaps trying to derive thermodynamics from
Newtonian dynamics is a bit misguided either you have to make approximations, like
Boltzmann made, and you don’t really know where the irreversibility comes from. So I
think these two points are divorced from each other. Either you have precision, exact
precision, in which you can actually answer all kinds of questions you ask, or you
don’t. And the fact is we don’t have those precisions. Therefore we have to deal with
thermodynamics. And that’s all I want to say. Just as a comment.
• JLL: I would say I would strongly disagree philosophically and conceptually with that
point of view. I mean, do you think if I knew exactly the positions and velocities of all
the molecules in the water, and I put in this thermometer I would get a different answer
than what I get when I don’t know?
• AM: Thermometer is a macroscopic. . .
• JLL: Yes, so supposing I know all the atoms and molecules of the water and of the
thermometer, would I get a different reading than I get. . . ?
• AM: No, no; you wouldn’t, but the point is you don’t have that. That’s impossible.
• JLL: Who cares? I mean, I think it’s a conceptual thing. I never know, nobody knows,
what π is exactly, the number π . You can approximate it up to decimals; does that mean
that π does not exist as a number?
• AM: Yeah, but that’s mathematics, it’s a little bit different from physical reality.
• JLL: I think we have a disagreement there. Many people take the point of view. . . like
Roberto. . . I have written an article too with Christian Maes. It’s about this man who is
a very good man, who dies and goes up to heaven and he meets an angel there, and the
angel has a big bowl filled with hard spheres. And the guy asks: Do you know every
position and velocity? The angel says yes. Then the guy asks, what is the entropy of this
system, the thermodynamic entropy?
• AM: It’s zero.
• JLL: Our answer is that it is exactly the same for the angel and us. Does it make any
difference at all as whether you know them or not? The behavior that we have discussed
is the same. So, my own feeling is that information theory is very, very useful but I
don’t think it really should be part of the foundations or of these questions, where it is
irrelevant.
• AM: I would just say the angel would say entropy is zero. Entropy is zero, you have
everything you need to have, therefore you can answer all kind of questions. Once you
have the dynamic questions you can answer any question.
• JLL: Sure, you can answer any questions but that doesn’t mean entropy is zero because
you can answer all the questions. It is still true that if you start with one part hot and the
other part cold, heat will go from the hot to the cold, and as you know, entropy describes
that evolution of going from hot to cold but it doesn’t change at all that angel knows
everything.
• AM: OK. Don’t use this against me and invite me again [laughs].



• Matteo Polettini (MP): I do qualify as a young one, but I’m not really expert on
the arguments. . . I do like the point of view of the information theoretic, but I think
that there’s a little bit problem, is entropic, it’s an anthropic reasoning. It puts man on
a special footing and you say, of course, thermalization occurs in any case but [âĂę]
in any case we are always talking about a piece of the universe, a system, which will
never be isolated from the rest of the universe. So, when we reason about reversible,
Newtonian equations what we are really talking about is the universe itself. It’s a sort of
cosmological problem. And my question is, does it make sense to derive macroscopic
thermodynamics from microscopic dynamics without worrying about the universe on
the whole? The universe has a peculiar behavior, for example, it’s expanding so things
in the universe are diluting and this might be one of the mechanisms for equilibration.
• JLL: I agree totally with you about non-isolation in practice, but do you think really
the Navier-Stokes equations depend on having non-isolation? I don’t think so. I think it
is true that you don’t have isolation but I think the behavior of diffusion equation will
not be affected if you really had the isolated system. That’s what I would think. That’s
my answer.
• AM: I wanted to make a comment about the comment you made about the observer.
That’s the same question Joel responded when I asked the question about the observer
the other day and is that, is the observer a Ph.D. student? The answer to the question is we
have observers in most physics theories; we have an observer in Quantum Mechanics;
we have an observer in special relativity; we have observers in thermodynamics. An
observer in thermodynamics is a device that has a thermometer, a barometer or whatever,
you know, can just do the experiments and measure quantities that are relevant. So that’s
the observer, it’s not me or you, or a given person’s uncertainty.
• JLL: I believe that there is an objective world which behaves totally the same whether
anybody has precise knowledge of it or not. The universe does not depend on observa-
tions. The laws of motion were always there, we don’t know them exactly, they were
there before there were thermometers, before there were dinosaurs. . .
• AM: What about Quantum Mechanics?
• JLL: Just the same. I think we should go, maybe let Shelly answer that.
• AM: Special relativity? I mean, physical theories always have observables.
• JLL: No, no. I totally disagree with you.
• AM: Maybe we should shut up this.
• André Timpanaro (AT): I would like to just make a comment on this discussion about
what I understand as Shannon entropy and what I understand as thermodynamic entropy.
Thermodynamic entropy is a kind of Shannon entropy when your only information are
the thermodynamic variables. Suppose you have a gas. The entropy depends on the tem-
perature, the pressure and the volume. So the thermodynamic entropy of that gas is the
Shannon entropy that you would have if you only had those three informations. Suppose
then you expand your gas, you make a free expansion, the thermodynamic entropy would
increase but the Shannon entropy remains the same. The previous temperature, pressure
and volume are still the same. Now, if you had a new box with the same macroscopic
variables than the expanded box, then you can’t say about it the same things you could
about the first box, because its Shannon entropy is bigger, it is the new thermodynamic
entropy.



• JLL: I think in general. . . What I call the Boltzmann entropy, logarithm of the macro-
scopic phase coincides with your Shannon entropy when your system is in equilibrium.
If it is in equilibrium it coincides. It does not coincide, as you pointed out, when you
go out of equilibrium because the Shannon entropy will not change with time, well the
thermodynamic entropy and the Boltzmann entropy will. I don’t think there is any con-
tradiction there.
• AT: But suppose I got the expanded box and showed it to you. If I ask you what the
Shannon entropy is, you’ll tell me it’s the thermodynamic entropy. You don’t know what
the three macroscopic variables were before expanding the box, so you can’t say the
same things I can say about it.
• JLL: No, for me thermodynamic entropy is what the thermodynamic entropy is. And
if it happens to coincide with the Shannon’s, fine.
• SP: If you allow me to just to make one more comment regarding to this discussion.
I think that the main point is the following. Obviously if you know the position and
velocity of every single molecule in the gas, or in your cup of coffee, will not change
the fact that if you put a thermometer will show the same thing. And that heat goes from
the cold to the hot and so on, well the other way around. So, from that point of view is
good to still continue and have the same notion of entropy because that allows you to
answer all these questions. But the point is that if you actually know the positions and
the velocities, there are new things that you can do. So, for the old thing of putting the
thermometer is the same. But now, if you know. . . , now you can actually extract work
of that thing because you can put mirrors. . . So, it is this difference, that now you can
do other things, that previously you couldn’t do. And for this is good to have a different
notion of entropy that will reflect that.
• JLL: I think I would not disagree that you can do more things if you know more.
I think I would not disagree with that. You can have many, many notions of entropy.
As I mentioned, the Shannon entropy was called entropy, at least according to legend,
because von Neumann said to Shannon “if you call it entropy then it has a resonance, and
then since nobody knows what entropy is nobody can argue with you”. I should mention
just one relevant fact. I showed in my talk on Monday a quotation from Thomson which
I think was the first to clearly raise the question that, if you reverse all the velocities,
everything would go in the other way. Then you go down to say that, an actual fact,
because our sensitivity to initial conditions or perturbations. . . if you really try to . . . you
can make any error, any even slight error in reversing the velocities, you will find that it
behaves just as you expected to behave before. Because any imprecision will lead you
again to, say, the bigger region of the phase space. In order to get into a very small region
you have to be infinitely or very, very precise. The more chaotic the dynamics and the
larger the number of particles, the more precise. To get out from the small region into
the big region you don’t have to be very precise. That answers also the question: why
doesn’t the noise make a big difference? Because if you are going in the direction of the
expanding phase space volume, we would expect if you make a small perturbation it is
not going to change that. However if you are going into something very, very small, any
small perturbation is going to make an effect. It’s like, you know, the situation if you try
to park a car in a very tight space or get out from a very tight space. It is not at all the
same effort. I mean, it is much easier to get out because there is much, much more space
there, so a small error doesn’t matter but getting in you are going to scrape your car on



your neighbor’s car if you are not infinitely precise.
• Harald Posch (HP): I think one can view these things by looking at the blackboard.
The picture you draw there is a bit misleading. You start out with a little blob in phase
space, which presumes that you have a partition in phase space. Then take a little volume.
If we evolve this little blob forward in time, then we know what will happen: the system,
let’s assume it is isolated, will change such that the volume is conserved, and we’ll get a
very fine filament all over the whole phase space. What counts is what Kolmogorov
called mixing in phase space. That’s the key quantity. And this is measured by the
Kolmogorov-Sinai entropy. So the Kolmogorov-Sinai entropy is the key question. If
we compare now the original blob with the filamented situation at a later time, most of
the measure will be spread out over the whole phase space, and only a small part of
it will have remained in the volume of our original blob. When we do a measurement
we are necessarily forced to project down onto such a partition. So, if you put your
thermometer in, it will not be infinitely thin. The projection introduces irreversibility
into this problem.
• JLL: So you think an isolated system following Newtonian laws will not behave in
the way I said?
• HP: No, no. I just wanted to build the bridge between these various view points.
• JLL: Oh, yeah, I think I understand what you are saying and think that it is absolutely
correct, I would agree. That is,. . . things are really much more mixed up over there and,
therefore, despite the fact that they are very atypical, this is a very specific thing [. . . ]. I
agree with that. That’s really a mathematical question, to be able to show, to prove that
is central. I mean, I think we agree entirely. The reason is indeed conceptual; this is very,
very mixed up over there. Yeah.
• HP: If one takes this into account, I mean, then all these different view points can be
seen on the same level, and we do not have difficulties, going from one picture to the
other.
• JLL: I agree. There is only one true picture for a system evolving in time.
• Errico Presutti (EP): It’s a very short comment. I want to say that von Neumann was
terribly wrong, because we don’t know anything about it, but we have been arguing a
lot.
• JLL: So, why was he wrong, in what way?
• EP: Because he says nobody cannot argue.
• JLL: Oh, about the entropy thing! Yes, he was very wrong over there.
• Francisco Pérez-Reche (FPR): This is just in case I qualify as a young person. Well
just to tell my opinion about the second item, derivation of macroscopic equations
for realistic Hamiltonian microscopic dynamics. So, well, based on my experience
in working on complex systems, I would say that it all depends on what you want
to reproduce at the macroscale. I mean, you have to start at the right microscale in
order to reproduce what you want to reproduce at the macroscale. For me is already
challenging to obtain realistic Hamiltonians. It looks to me close to impossible in some
cases, but I think there is some hope if we are able for instance to find the right scale
of description and then we can from this right scale to reproduce the big picture at
the macroscale. So, for instance, there are phase transitions for which you wouldn’t be
able to explain everything at the macroscale if you would be starting with molecular
dynamics, because, first, is a technical problem and, second, maybe you are missing



something some interactions that appear at larger scales. So, I think the challenge is to
start at the right microscale and then, if you are at the right microscale, then hopefully
you can derive something that makes sense at the macroscale. And then (it links to the
first of Joel’s questions), having said that, probably yeah it would be very nice to have
something similar to the free energy for nonequilibrium steady states, but I think that it
looks a bit hopeless. Well, it’s perhaps hopeless in the sense that perhaps it’s not going to
be useful because it will depend on each particular system and probably on the scale you
choose at the microscale to describe it. So, maybe we have to think in a different way,
because we were very lucky that thermodynamics exists. But this is a very particular
situation and maybe life is much more than that and then we shouldn’t try to stand
beyond the limits. Obviously, this is just my opinion.
• JLL: What you are saying is correct and reasonable. Certainly, yes I agree. I think it’s
nice that there’s some universality. . . Almost every substance we know has a liquid, a
gas, and a solid phase, with many other phases also. Almost every substance, I mean, we
don’t go to one-dimensional, pathological systems of something, seems to satisfy a kind
of diffusion equation for the heat conduction. So there’s a very nice universality, and
so what I mean, by realistic, so I mean realistic just in the sense of Lennard-Jones hard
spheres, which are not truly realistic, but sufficiently so that they seem to behave the way
actual systems do behave. We always have to make idealizations and simplifications and,
surprisingly, you can get away with it. Why should we be able to use classical mechanics
at all? I do not know really an answer to that. The world is truly quantum mechanical
and it’s not clear at all why classical mechanics gives not only qualitative, but even
quantitative things in many cases. There is a certain universality which transcends even
the quantum-classical thing. Of course, we do not get superconductivity classically, and
many things are not the same obviously, but still trying to focus on things that are the
same, which are universal.
• Pablo Sartori: I was wondering whether instead of using the free energy as something
to characterize nonequilibrium steady states, it would also be a good choice to use other
quantities such as the entropy production rate. I mean, I know people use that and I don’t
know if it’s more useful or more. . . , yeah using the entropy production rate instead of
the free energy.
• JLL: That’s certainly something which seems to be a useful thing to do. I guess, I don’t
see Gallavotti here but he would argue that probably you should not define any entropy
for such a system for the reason that Bill [Hoover] was saying before that, you really
would get minus infinity or something if you do that. But you can well define entropy
production anyway. I mean, energy production is useful and probably much more useful
than free energy, especially since we don’t have any free energy. So certainly it could be
more useful.
• Marco Ribezzi: I would like to ask a question about the first of Joel’s points; maybe
it is completely nonsense. If I got it right from your lecture you say that a possible can-
didate for free energy in nonequilibrium steady states is the large deviation functional.
Well, this is the case in some systems that have been studied. I know just two examples
in this field which are stochastic differential equations and then the macroscopic fluc-
tuation theorem for lattice gases, and in both of these cases the differences in this free
energy, in the large deviation functional, can be obtained from a variational problem on a
functional on trajectories. Am I clear? I mean, you have a large deviation functional for



trajectories and from that you can derive this free energy. In these two cases, the large
deviation functional for trajectories has, according to me, a very similar form, which is
something like an Ohm’s law, because it is resistance times a current squared integrated
in time, so this is something like a dissipated work along the trajectory. My question
is, if this has any chance to be something more general or if this rests on some specific
features of the system.
• JLL: I think it is general, but it only gives you differences. The large deviation
functional vanishes for the typical state. So it gives you the difference, and the question
is then what happens with the typical state itself? Just like in equilibrium for the
typical state you have an entropy which has properties as a function of energy you can
differentiate, and that’s what the question is here. So that the large deviation functional
is the difference between the typical and the untypical. I think in that case, I believe that,
yes, it does play the same role, but entropy plays a special role even in equilibrium, and
that’s what we are looking in the nonequilibrium stationary state. Is it clear what I mean?
• Giovanni Gallavotti (GG): Since you just mentioned what I would say about en-
tropy. . .
• JLL: Oh, I didn’t know you were here.
• GG: Where could I be? So, I agree that I would say that entropy does not make sense
for nonequilibrium systems, but I also said and wrote in some papers that, even though
entropy probably does not make much sense, I think you still can define for every system
which is evolving a Lyapunov function which will indicate that you are approaching the
equilibrium and will come with zero derivative at that limit. Exactly this function does
not have the characteristics of entropy, of being a function of the state of the system. It
is a function which depends on the parameters, and on the precision you use to describe
your system itself. That’s what I have said and written.
• JLL: So, I did not totally misquote you. Giovanni says, this is his point of view,
he would not call what I call the Boltzmann entropy for a macrostate which is not in
equilibrium, he does not want to call that an entropy. But he does agree that if we take
the difference between that function and the equilibrium entropy then, it shows that the
logarithm of it shows up as a Lyapunov functional for time evolution of a macroscopic
system, an isolated microscopic system. Is that correct?
• GG: I just wanted to make a comment.
• Carol Hoover (CH): Since we are talking about entropy production, let me remind
you that [in 1984] Nosé introduced temperature into a Hamiltonian, and in mid-July of
1996, at CECAM/Lyon, Carl Dettmann generated a Hamiltonian similar to, but better
than, Nosé’s, that included the temperature and gave directly the Nosé-Hoover equations
of motion. So I think there is some work done on Joel’s second point because Nosé did
show that you could get Gibbs’ ensembles for equilibrium. And so I thought that was
a very nice piece of work done in 1984, by Nosé. For the nonequilibrium steady state
you really do have the option of computing thermodynamic and hydrodynamic variables
except for the entropy and free energies. You get entropy production instead. So, to me,
this is a real step forward for nonequilibrium steady states.
• JLL: Did you say Dettmann?
• CH: Well, [Shuichi] Nosé was the first to put temperature in. Bill [Hoover] and I
met up with [Carl] Dettmann in July 1996 and wanted to generate a Hamiltonian that
would give us Nosé’s feedback equations that are used for the thermostats and the proper



equations of motion. Working just over one night –Dettmann was then an astrophysicist–
he came up with his new Hamiltonian the very next day. He does have a publication on it
with Gary Morriss. So, I mean, at least for the nonequilibrium steady states you do have
some connection between macroscopic variables and the variables you would measure
in the steady state with molecular dynamics. And Bill [Hoover] mentioned that to get a
point function for the pressure tensor you do have to use some smooth-particle averaging
technique and the one I’ll describe tomorrow [Lucy’s] is reasonably good, as I’ll show
in our calculations.
• JLL: Thank you. I’m not familiar with the theory of that paper. Seems interesting,
certainly.
• Félix Ritort (FR): I want to make a comment about the first question, this free energy
in steady states. Actually, there are many nonequilibrium steady states and it is always
difficult to know what you really mean by a free energy in a nonequilibrium steady
state. Then, as far as I know, I mean, there are some reasonable results, always on some
phenomenological models, based on some approximations like Gaussian noise, where
you can prove that there is a fluctuation-dissipation theorem in the steady state. I think
there is a recent paper by Prost, Johanny and Parrondo, I think it’s a nice paper.
• JLL: Say the names again.
• FR: Jacques Prost, Jean François Johanny, and Juan Parrondo. They prove that by
defining some kind of observables it’s possible to prove the validity of a fluctuation-
dissipation theorem in a steady state. Related results, I think, have also been produced by
Udo Seifert, maybe he would talk in these days, and this proves that you don’t have a free
energy, but you have something that resembles what you expect an equilibrium state-like
should have. And, well, we have been working in these experiments pulling molecules,
in which you move an optical trap and you have a bit and you make transitions between
steady states. In an optical trap experiment, a transition between steady states means that
you have your trap moving at a velocity, and you accelerate the trap and you change the
velocity. We have a paper published a few years ago in PNAS where we test one equality
derived by Hatano and Sasha which of course it is also based on approximations and so
on, and it tells you that there is a W function that always increases between transitions
between nonequilibrium steady states. So, if you accelerate very fast, the average W
is big. But if the transition is very slow, if you don’t accelerate, the transition between
the two speeds of the trap, so you do a quasistatic transition between the steady states,
then this W is zero. And then it turns out that you can define in this simple case a
state function. The equivalent of a free energy, the equivalent of a reversible work, the
equivalent of basically, well, you can define the state function of this transition. The
caveat is that in this formulation of Hatano and Sasha, which is also related to the result
by Prost, Johanny, and Parrondo, the caveat is that you need to know for constructing this
W function, you need to know the steady state solution for all intermediate states through
this transition, in these experiments. So if you change from one speed to another speed
you need to know the steady state distribution for all intermediate, let’s say, conditions,
OK? So, it’s not practical because either you have to measure experimentally before
the steady state and then you can evaluate the W function. But still, if you have an
experiment, you can do that. Of course, we cannot do that from calculations because
we should solve the equations exactly, but there is a procedure to measure this thing.
And this has not been done in other nonequilibrium steady states, but I think it would be



very nice to do experiments because it’s very clear this W function what it means, and I
think it would be nice to see more experiments on measuring these state functions [. . . ]
experimentally.
• JLL: I guess that’s a joint work with Tasaki also.
• FR: Yes, well this Tasaki you mention, I think is slightly bit different, because I’m not
sure they are the same people. I think they are Japanese but not the same. It’s a different
work.
• JLL: I think it is certainly a very interesting work.
• SP: It is just my ignorance. What do you define to be a steady state? Because,
obviously, may have a bit of fluctuations. How big the fluctuations do you allow?
• JLL: It’s like in an equilibrium state. I mean, in the region which Shelly [Goldstein]
showed, or I showed also, we do include fluctuations of square root of N type of thing.
In the steady state they might be different, but normal fluctuations I would include in.
• SP: So, for example, if instead of the metal bar you just have a cube with water and a
bit of carbon and hydrogen, eventually you will get a fish. So, if instead of being a metal
bar you have a cube that is filled with a homogeneous solution of water, and carbon and
hydrogen, after a long time you will get a fish swimming. That is a too big fluctuation.
• JLL: I think so. I think that is a too big fluctuation. I would consider that as different
macrostates.
• SP: So although are on average, say, a thousand fish swimming, that would not be a
steady state.
• JLL: Yes, I mean, let’s stick to the metal bar. Or let’s take still water where there is not
going to be any fish swimming over there. I you have got a fish swimming, presumably
you have put in something besides just water. [. . . ]
• SP: Some Carbon, some Hydrogen, and it’s homogeneous but eventually there will be
a fluctuation that will lead you to. . .
• JLL: Wouldn’t that be true in equilibrium also? You also have a fluctuation that will
lead you to something like that?
• SP: Suppose that this will be maintained for a long time. Suppose this situation will
be. . . Well, the other interesting question is obviously whether there is a limit to the
complexity that may arise in such a system.
• JLL: I don’t know the answer to that. But I think somebody asked me again in
connection with your question on Monday. What is the steady. . . ? Who is that? Julio
[Fernández]? was asking me the question: what is the steady state of us on Earth
assuming that the sun doesn’t give out on us, or other thing. What’s going to happen?
My private opinion maybe I don’t want to tell you [laughs]. But, I don’t know. I mean,
things can be very, very complex as you say, and specially in nonequilibrium situations.
It’s a good point.
• Anonymous: You can find it through the hydrodynamic equations. So you start with
the hydrodynamic equations, and you set the time derivative equal to zero. This is the
way, one of the ways, in which you can identify these states.
• JLL: Macroscopic, but still it doesn’t include everything. Anybody else?
• Sergey Apenko: I have a kind of a technical question because I’m not an expert in the
field. I feel that the whole discussion is somehow predetermined by these three questions
put forward. They are certainly very fundamental and very difficult to solve. But it’s
written here that these are only some of important open problems. I have a question: do



you have some other open problems which are more easy to solve, probably?
• JLL: Well, one problem I would like to understand, maybe Roberto [Livi] can say,
in one dimensional systems you get this anomalous heat conduction, apparently as long
as you have momentum conservation. Even if you have nonlinear harmonic things, as
long as you have momentum conservation you simply get anomalous things. If you
don’t have momentum conservation, then if you also have nonlinearities and typical
things, you seem to get Fourier’s law, so ordinary conduction. Now, there is a claim of
a theorem to that effect, that for systems with momentum conservation you have infinite
heat conductivity. But it is not really a theorem because the proof is not correct. I mean,
the theorem may be correct, but the proof is not correct at all. So one question is really:
are there any systems which do conserve momentum in one dimension which might still
have normal heat conductivity?
• RL: The answer is yes, I know perfectly the model, One example, there are many class
of models, is the rotator model.
• JLL: You are conserving some quantity. I’m thinking of real linear momentum.
• RL: Ah, linear momentum! No, the answer is no. In that case you have a special
situation.
• JLL: Are there any special situation even with conservation of linear momentum?
• RL: No. The general outcome is the one that you know.
• JLL: There is no real proof for that and I think that is an interesting open question
both in one and two dimensions. Well, it sort of included on derivation of macroscopic
equations. Somebody wants to say something?
• MP: I think one interesting question would be to find variational principles for
nonequilibrium steady states. We have maximum entropy at equilibrium. Jaynes talked
about a minimum entropy production out of equilibrium or near equilibrium, and in great
generality, I think variational principles would be interesting to learn.
• JLL: Very, very much so. I guess for diffusive systems, stochastic diffusive systems,
macroscopic diffusive systems, the work of Bertini et al. is relevant. Well, there are large
deviation functions which can be seen in some way as a sort of variational thing. But
certainly I would like to have a more general thing. Absolutely, very much so.
• CH: We’ve done a Rayleigh-Bénard calculation which is, you know, conduction rolls,
and we actually did not find an entropy production minimization principle or an entropy
maximization. So there are problems for which, at least we haven’t found any kind of
optimization principle.
• JLL: Yeah, I guess there are no reasons why there should be one, I mean, you are not
very close to equilibrium.
• CH: I should add the point that we can have multiple solutions for the same boundary
conditions. That is certainly one difference.
• JLL: [. . . ] That’s exactly what we would like to have, such a free energy functional. To
be able to derive these different possible steady states for the Rayleigh-Bénard problem.
I mean, that’s a very specific case where it would be nice to have. . . , but it might not
exist. Yeah, but you could have multiple things even with free energy functional. Of
course, there are many, multiple equilibrium states.
• Reinaldo García: I refer to the first point. I think that the recent developments
or approaches related to fluctuation theorems and thermodynamics are, in a certain
way, as you have already said here, just trying to fill this gap between equilibrium



and nonequilibrium steady states. But there is a wide class of nonequilibrium systems
that cannot be included in this effort trying to fill this gap. It seems to me that all
these theoretical approaches to fluctuation theorems and entropy production and so on
demand, at least in the examples I’ve seen in the literature, a sort of Markovianity in
the dynamics. So, all these fluctuation theorems have been proved mainly in Markovian
systems. But there is a class of systems related to, for example, systems undergoing a
glass transition, systems with quenched disorder or even selfgenerated disorder, where
these theorems are difficult to prove because of the lack of Markovianity, I mean, the
gap in this kind of systems is even broader. So I think that, for example, it is known that
if you have in a random landscape a set of particles, in the vicinity of certain depinning
transition you can measure a fluctuation theorem. But these kinds of things are not
understood well. So I think that it is an important or open question to try to fill this
other gap because there is a wide class of systems which fall out of Markovian systems.
• JLL: I agree fully. Certain glassy systems are very much an open problem which we
don’t understand.
• JLL: I think it is time for us to go to lunch. So, thank you all very, very much for your
contribution.
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THERMODYNAMICS, STATISTICAL MECHANICS, AND NEMD

Introduction and Goals

Most interesting systems are nonequilibrium ones, with gradients in velocity, pres-
sure, and temperature causing flows of mass, momentum, and energy. Systems with
large gradients, so that nonlinear transport is involved, are the most challenging. The
fundamental method for simulating such systems at the particle level is nonequilibrium
molecular dynamics (NEMD) [1, 2, 3]. Nonequilibrium molecular dynamics couples to-
gether Newtonian, Hamiltonian, and Nosé-Hoover mechanics with thermodynamics and
continuum mechanics, with the help of Gibbs’ statistical mechanics, and Maxwell and
Boltzmann’s kinetic theory. Impulsive hard-sphere collisions or continuous interactions
can both be treated.

NEMD necessarily includes microscopic representations of the macroscopic thermo-
dynamic energy E, pressure and temperature tensors P and T , and heat-flux vector Q.
The underlying microscopic-to-macroscopic connection is made by applying Boltzmann
and Gibbs’ statistical phase-space theories, generalized to include Green and Kubo’s
approach to the evaluation of transport coefficients, together with Nosé’s approach to
introducing thermostats, ergostats, and barostats into particle motion equations.

These temperature, energy, and pressure controls make it possible to simulate the



behavior of a wide variety of nonequilibrium flows with generalized mechanics. The
nonequilibrium phase-space distributions which result are typically multifractal, as is il-
lustrated here with a few examples taken from our website, [ http://williamhoover.info ].
These ideas are summarized in more detail in the books “Molecular Dynamics”, “Com-
putational Statistical Mechanics” and “Time Reversibility, Computer Simulation, and
Chaos”. The one-particle “Galton Board” (with impulsive forces) and the “thermostated
nonequilibrium oscillator” problem (with continuous forces) are simple enough for
thorough phase-space analyses. Macroscopic problems, like the steady shockwave and
Rayleigh-Bénard flow, can be analyzed locally in phase space by computing local growth
rates and nonlocal Lyapunov exponents.

The main goal of all this computational work is “understanding”, developing simpli-
fying pictures of manybody systems. The manybody systems themselves are primarily
computational entities, solutions of ordinary or partial differential equations for model
systems. Quantum mechanics and manybody forces are typically omitted, mostly for
lack of compelling and realistic computer algorithms. There is an enduring gap between
microscopic simulations and realworld engineering. The uncertainties in methods for
predicting catastrophic failures will continue to surprise us, no matter the complexity of
the computer models we use to “understand” systems of interest.

Number-dependence in atomistic simulations is typically small: 1/N for the thermo-
dynamic properties of periodic N-body systems, perhaps 1/

√
N or even 1/ lnN in prob-

lems better treated with continuum mechanics. So far we have come to understand the
equilibrium equation of state, the linear transport coefficients, the Lyapunov instability
of manybody trajectories, and the irreversibility underlying the Second Law. Improved
understanding of relatively-simple hydrodynamic flows, like the Rayleigh-Bénard flow
treated here, will follow from the special computational techniques developed to con-
nect different length scales. Smooth Particle Applied Mechanics, “SPAM” [4, 5, 6], has
proved itself as not only a useful simulation technique for continuum systems, but also
as a powerful interpolation tool for all point-particle systems, as is illustrated here for
the shockwave problem [7, 8, 9].

Development of Molecular Dynamics at and Away from Equilibrium

In the early days of expensive vacuum-tube computing the hardware and software
were largely controlled by the Federal Government and located at the various weapons
and energy laboratories at Argonne, Brookhaven, Livermore, Los Alamos and Oak
Ridge. Fermi developed molecular dynamics at the Los Alamos Laboratory in the
summers of 1952-1953, discovering many of the interesting nonergodic recurrence
features characterizing the low-energy behavior of one-dimensional anharmonic “Fermi-
Pasta-Ulam chains”. The Los Alamos Report summarizing his work was prepared a
few months after his death [10, 11, 12]. At sufficiently low energies the anharmonic
chains showed no tendency toward equilibration while (it was discovered much later
that) at higher energies they did. Figure 1 shows time-averaged “mode energies” for a
six-particle chain with two different initial conditions. In both cases the nearest-neighbor
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FIGURE 1. The time averages of the six harmonic mode energies (calculated just as was done by
Benettin [12]) are shown as functions of time for two different initial conditions, with total energies of 0.5
and 2.0. The six-particle chain of unit mass particles with least-energy coordinates of ±0.5,±1.5, and ±
2.5 is bounded by two additional fixed particles at ±3.5.

potential generates both linear and cubic forces:

φ(r) = (1/2)(r−1)2 +(1/4)(r−1)4 .

Initially we choose the particles equally spaced and give all the energy to Particle 1,
E = p2

1/2. The left side of the Figure corresponds to an initial momentum of 1 while
the right side follows a similarly long trajectory (100 million Runge-Kutta timesteps)
starting with the initial momentum p1 = 2. Fermi was surprised to find that at moderate
energies there was no real tendency toward equilibration despite the anharmonic forces.
Thus the averaging techniques of statistical mechanics can’t usefully be applied to such
oversimplified systems.

Fermi also carried out some groundbreaking two-dimensional work. He solved New-
ton’s equations of motion,

{ mr̈ = F(r) } ,
and didn’t bother to describe the integration algorithm. A likely choice would be the
time-reversible centered second-difference “Leapfrog” algorithm,

{ rt+dt = 2rt− rt−dt +(F/m)t(dt)2 } ,

where the timestep dt is a few percent of a typical vibrational period. The dominant error
in this method is a “phase error”, with the orbit completing prematurely. A harmonic
oscillator with unit mass and force constant has a vibrational period of 2π . The second-
difference Leapfrog algorithm’s period is 6, rather than 6.2832, for a relatively large
timestep, dt = 1. A typical set of six (repeating) coordinate values for this timestep
choice is:

{ +2,+1,−1,−2,−1,+1, . . . }



The Leapfrog algorithm diverges, with a period of 2
√

2, as dt approaches
√

2.
Vineyard used the Leapfrog algorithm at the Brookhaven Laboratory, including irre-

versible viscous quiet-boundary forces designed to minimize the effect of surface reflec-
tions on his simulations of radiation damage [13]. Alder and Wainwright, at the Liver-
more Laboratory, studied hard disks and spheres in parallel with Wood and Jacobsen’s
Monte Carlo work at the Los Alamos laboratory, finding a melting/freezing transition
for spheres [14, 15]. The disks and spheres required different techniques, with impulsive
instantaneous momentum changes at discrete collision times. All these early simula-
tions gave rise to a new discipline, “molecular dynamics”, which could be used to solve
a wide variety of dynamical problems for gases, liquids, and solids, either at, or away
from, equilibrium. By the late 1960s the results of computer simulation supported a suc-
cessful semiquantitative approach to the equilibrium thermodynamics of simple fluids
[16].

In the 1970s Ashurst [17] (United States), Dremin [18] (Union of Soviet Socialist Re-
publics), Verlet [19] (France), and Woodcock [20] (United Kingdom), were among those
adapting molecular dynamics to the solution of nonequilibrium problems. Shockwaves,
the subject of our third lecture, were among the first phenomena treated in the effort to
understand the challenging problems of far-from-equilibrium many-body systems.

Temperature Control à la Nosé

Shuichi Nosé made a major advance in 1984 [21, 22], developing a dynamics, “Nosé-
Hoover dynamics”, which provides sample isothermal configurations from Gibbs’ and
Boltzmann’s canonical distribution,

f (q, p) ∝ e−H (q,p)/kT ; H (q, p) = Φ(q)+K(p) .

The motion equations contain one or more friction coefficients {ζ} which influence the
motion, forcing the longtime average of one or more of the p2

i to be mkTi:

{ mr̈i = Fi−ζi pi ; ζ̇i = [(p2
i /mkTi)−1]/τ

2
i } .

The thermostat variable ζ can introduce or extract heat. The adjustable parameter τ is
the characteristic time governing the response of the thermostat variable ζ . A useful
special case that follows from Nosé’s work in the limit τ → 0 is “Gaussian” isokinetic
dynamics, a dynamics with fixed, rather than fluctuating, kinetic energy K(p) = K0,

In 1996 Dettmann showed that the Nosé-Hoover equations of motion follow generally
from a special Hamiltonian, without the need for the time scaling Nosé used in his
original work:

HDettmann = s[Φ(q)+K(p/s)+#kT lns+#kT (psτ)
2/2]≡ 0 .

Here the friction coefficient is ζ ≡ #kT τ2 ps, where ps is the Hamiltonian momentum
conjugate to s. The trick of setting the Hamiltonian equal to a special value, 0, is essential
to Dettmann’s derivation [23].



Consider the simplest interesting case, a harmonic oscillator with unit mass, force
constant, temperature, and relaxation time:

H = s[q2 +(p/s)2 + lns2 + p2
s ]/2 = 0→

q̇ = (p/s) ; ṗ =−sq ; ṡ = sps ; ṗs =−[0]+ (p/s)2−1 →

q̈ = (1/s)ṗ− (p/s)(ṡ/s) =−q−ζ q̇ ; ṗs ≡ ζ̇ = q̇2−1 .

The time average of the ζ̇ equation shows that the longtime average of q̇2 is unity. In
particular applications τ should be chosen to maximize the efficiency of the simulation
by minimizing the necessary computer time.

Runge-Kutta integration is a particularly convenient method for solving such sets of
coupled first-order differential equations. The fourth-order method is the most useful.
The time derivative is an average from four evaluations, { ẏ0, ẏ1, ẏ2, ẏ3 }, of the righthand
sides of all the differential equations, here collected in the form of a single differential
equation for the vector y:

y1 = y0 +(dt/2)ẏ0 ; y2 = y0 +(dt/2)ẏ1 ; y3 = y0 +dtẏ2 ;

ydt = y0 +(dt/6)[ẏ0 +2ẏ1 +2ẏ2 + ẏ3] .

The Runge-Kutta energy decays with time as dt5 at a fixed time for a chosen timestep
dt. Here the vector y is (q, p) so that

ẏ≡ (q̇, ṗ)≡ (+p,−q) .

For small dt the Runge-Kutta trajectory for a harmonic oscillator with the exact
trajectory q = cos(t) has an error δq = +dt4t sin(t)/120. The corresponding Leapfrog
error is δq = −dt2t sin(t)/24. The two methods should give equally good solutions
(where the two curves in the Figure cross) when

dtLF ' dtRK/4 =
√

5/256' 0.14 ,

corresponding to about 45 force evaluations per oscillator period [24].
For a 14-digit-accurate trajectory calculation, with dtRK = 0.001 and dtLF = 0.00025,

the Runge-Kutta error would be smaller than the Leapfrog error by seven orders of
magnitude. At the cost of additional programming complexity choosing one of the
fourth-order Gear integrators can reduce the integration error by an additional factor
of ' 60 [25].

Connecting Microscopic Dynamics to Macroscopic Physics

To connect the microscopic dynamics to macroscopic thermodynamics and contin-
uum mechanics is quite easy for a homogeneous system confined to the volume V . A
numerical solution of the equations of motion for the coordinates and momenta, { q, p },
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FIGURE 2. Comparison of the maximum error (which occurs near a time of 3π/2), in a harmonic
oscillator coordinate for the Leapfrog and Fourth-Order-Runge-Kutta integrators. The abscissa shows the
logarithm of the number of force evaluations (which varies from about 20 to about 400) used during a full
vibrational period, 2π . The oscillator equations of motion are q̇ = p ; q̈ = ṗ =−q.

makes it possible to compute the energy E, the temperature tensor T , the pressure tensor
P, and the heat-flux vector Q:

E = Φ(q)+K(p) = ∑
i< j

φi j +∑
i

p2
i /(2m) ;

Txx = 〈p2
x/mk〉= ∑

i
(p2

x/mk)i/N ; Tyy = 〈p2
y/mk〉 ;

PV = ∑
i< j

Fi jri j +∑
i
(pp/m)i ;

QV = ∑
i< j

Fi j · pi jri j +∑
i
(ep/m)i .

These expressions can be derived directly from the dynamics, by computing the mean
momentum and energy fluxes (flows per unit area and time) in the volume V . Alterna-
tively they can be derived by multiplying the Newtonian equations of motion by (p/m)
(giving the “Virial Theorem”) or by e (giving the “Heat Theorem”) and time averaging
[1]. We will see that local versions of these definitions lead to practical implementations
of numerical hydrodynamics at atomistic length and time scales.

The thermomechanical bases of these relations are statistical mechanics and kinetic
theory. Hamilton’s mechanics yields Liouville’s theorem for the time derivative of the
many-body phase-space probability density following the motion:

ḟ/ f = d ln f/dt = 0 [Hamiltonian Mechanics] ;



Nosé-Hoover mechanics opens up the possibility for f to change:

ḟ/ f = d ln f/dt = ζ =−Ė/kT = Ṡext/k [Nosé−Hoover Mechanics] .

The primary distinction between nonequilibrium and equilibrium systems lies in the fric-
tion coefficients { ζ }. At equilibrium (ordinary Newtonian or Hamiltonian dynamics)
the average friction vanishes while in nonequilibrium steady states 〈∑kζ 〉 = Ṡext > 0 it
is equal to the time-averaged entropy production rate.

In any stationary nonequilibrium state the sum of the friction coefficients is necessar-
ily positive – a negative sum would correspond to phase-space instability incompatible
with a steady state. An important consequence of the positive friction is that the prob-
ability density for these states diverges as time goes on, indicating the collapse of the
probability density onto a fractal strange attractor. Fractals differ from Gibbs’ smooth
distributions in that the density is singular, and varies as a fractional power of the coor-
dinates and momenta in phase space [2, 26, 27, 28, 29].

Fractal Phase-Space Distributions

The harmonic oscillator problem is not ergodic with Nosé-Hoover dynamics. One
way to make it so is to fix the fourth moment of the velocity distribution as well as the
second. This improvement also makes it possible to study interesting nonequilibrium
oscillator-based problems, such as the conduction of energy from hot to cold through
the oscillator motion. Figure 3 shows the time development of (the two-dimensional
projection of) such a problem. The isothermal oscillator, along with two friction co-
efficients, {ζ ,ξ}, fixing the second and fourth moments, 〈(p2, p4)〉 has a Gaussian
distribution in its four-dimensional phase space. A special nonisothermal case, with a
coordinate-dependent temperature leading to heat flow, generates a 2.56-dimensional
fractal in the four-dimensional {q, p,ζ ,ξ} phase space. The dynamics governing this
continuous nonequilibrium motion is as follows:

q̇ = p ; ṗ =−q−ζ p−ξ p3 ;

ζ̇ = [p2−T ] ; ξ̇ = [p4−3p2T ] ; T = T (q) = 1+ tanh(q) .

Here time averages of the control-variable equations show that the second and fourth
moments satisfy the usual thermometric definitions:

〈p2〉= 〈T 〉 ; 〈p4〉= 3〈p2T 〉 .

The phase-space distribution for this oscillator has an interesting fractal nature [26, 27].
Figure 3 shows how the continuous trajectory comes to give a fractal distribution, as is
typical of thermostated nonequilibrium problems. Besides the æsthetic interest that this
model provides, it illustrates the possibilities for controlling moments of the velocity
distribution beyond the first and second, as well as the possibility of introducing a
coordinate-dependent temperature directly into the motion equations.

Figure 4 shows a more typical textbook fractal, the Sierpinski sponge, in which the
probability density is concentrated on a set of dimension 2.727. In almost all of the



FIGURE 3. This (ζ ,ξ ) projection of the doubly-thermostated oscillator fractal is shown at five suc-
cessive stages of temporal resolution. The time intervals between successive points range from 0.001, the
Runge-Kutta timestep, to 10.0, showing how a continuous trajectory can lead to a fractal object.

FIGURE 4. Sierpinski Sponge, constructed by removing 7 of the 27 equal cubes contained in the unit
cube, leaving 20 smaller cubes, and then iterating this process ad infinitum leaving a 2.727-dimensional
fractal of zero volume.

largest cube the density vanishes. Unlike the multifractal of Figure 3, the Sierpinski
sponge is homogeneous, so that an n-fold enlarged view of a small part of the sponge,
with an overall volume 1/27n of the total, looks precisely like the entire object.



FIGURE 5. A series of 200,000 Galton Board collisions are plotted as separate points, with ordinate
−1 < sin(β )< 1 and abscissa 0 < α < π , where α is measured relative to the field direction, as shown in
Figure 6.

The Galton Board

The situation with impulsive forces is quite different. Whenever impulsive collisions
occur the phase-space trajectory makes a jump in momentum space, from one phase
point to another. Consider the simplest interesting case: a single point mass, passing
through a triangular lattice of hard scatterers [2, 30, 31]. That model generates exactly
the same ergodic dynamics as does a periodic two-hard-disk system with no center-of-
mass motion:

r1 + r2 = 0 ; v1 + v2 = 0 .

By adding a constant field and an isokinetic thermostat to the field-dependent motion,
the trajectory tends smoothly toward the field direction until a collisional jump occurs.
Over long times (Figure 5 is based on 200,000 collisions) an extremely interesting
nonequilibrium stationary state results, with a fractal phase-space distribution. The
example shown in the Figure has an information dimension of 1.832. As a consequence,
the coarse-grained entropy, −k〈 f ln f 〉, when evaluated with phase-space cells of size δ ,
diverges as δ−0.168, approaching minus infinity as a limiting case.

The probability densities for nonequilibrium steady states, such as the Galton Board,
shown in Figure 5, are qualitatively different to the sponge, where the probability density



FIGURE 6. The Galton Board geometry is shown, defining the angles α and β identifying each
collision. The unit cell shown here, extended periodically, is sufficient to describe the problem of a moving
particle in an infinite lattice of scatterers.

is equally singular wherever it is nonzero. The Galton Board’s nonequilibrium probabil-
ity density is nonzero for any configuration consistent with the initial conditions on the
dynamics. Further, the (multi)fractal dimension of these inhomogeneous distributions
varies throughout the phase space.

The concentrated nature of the nonequilibrium probability density shows first of all
that nonequilibrium states are very rare in phase space. Finding one by accident has
probability zero. The time reversibility of the equations of motion additionally shows
that the probability density going forward in time contracts (onto a strange attractor), and
so is necessarily stable relative to a hypothetical reversed trajectory going backward in
time, which would expand in an unstable way. This symmetry breaking is a microscopic
equivalent of the Second Law of Thermodynamics, a topic to which we’ll return. It
is evidently closely related to the many “fluctuation theorems” [32, 33] which seek to
give the relative probabilities of forward and backward nonequilibrium trajectories as
calculated from Liouville’s Theorem.

Determination of Transport Coefficients via NEMD

With measurement comes the possibility of control. Feedback forces, based on the
results of measurement, can be used to increase or decrease a “control variable” (such
as the friction coefficient ζ which controls the kinetic temperature through a “thermo-
stating” force). Equations of motion controlling the energy, or the temperature, or the
pressure, or the heat flux, can all be developed in such a way that they are exactly
consistent with Green and Kubo’s perturbation-theory of transport [2, 3]. That theory
is a first-order perturbation theory of Gibbs’ statistical mechanics. It expresses linear-
response transport coefficients in terms of the decay of equilibrium correlation func-
tions. For instance, the shear viscosity η can be computed from the decay of the stress



FIGURE 7. A Four Chamber viscous flow. Solid blocks (filled circles), move antisymmetrically to the
left and right, so as to shear the two chambers containing Newtonian fluid (open circles). This geometry
makes it possible to characterize the nonlinear differences among the diagonal components of the pressure
and temperature tensors.

autocorrelation function:

η = (V/kT )
∫

∞

0
〈Pxy(0)Pxy(t)〉eqdt ,

and the heat conductivity κ can be computed from the decay of the heat flux autocorre-
lation function:

κ = (V/kT 2)
∫

∞

0
〈Qx(0)Qx(t)〉eqdt .

Nosé’s ideas have made it possible to simulate and interpret a host of controlled nonequi-
librium situations. A Google search for “Nosé-Hoover” in midJuly of 2010 produced
over eight million separate hits.

Figure 7 shows a relatively-simple way to obtain transport coefficients using nonequi-
librium molecular dynamics. Ashurst [17], in his thesis work at the University of Califor-
nia, “Dense Fluid Shear Viscosity and Thermal Conductivity via Molecular Dynamics”,
introduced two “fluid walls”, with different specified velocities and/or temperatures, in
order to simulate Newtonian viscosity and Fourier heat flow. Figure 7, a fully periodic
variation of Ashurst’s idea, shows two “reservoir” regions, actually “solid walls”, sep-
arating two Newtonian regions. In both the Newtonian regions momentum and energy



fluxes react to the different velocities and temperatures imposed in the “wall” reservoirs.
This four-chamber technique produces two separate nonequilibrium profiles [34, 35, 36].

In the Newtonian chambers, where no thermostat forces are exerted, the velocity or
temperature gradients are nearly constant, so that accurate values of the viscosity and
heat conductivity can be determined by measuring the (necessarily constant) shear stress
or the heat flux:

η =−Pxy/[(dvy/dx)+(dvx/dy)] ; κ =−Qx/(dT/dx) .

Nonlinear Transport

This same “solid-wall” or “four-chamber” method has been used to study a more com-
plicated aspect of nonequilibrium systems, the nonlinear contributions to the fluxes. Be-
cause the underlying phase-space distributions are necessarily fractal it is to be expected
that there is no analytic expansion of the transport properties analogous to the virial
(powers of the density) expansion of the equilibrium pressure. Periodic shear flows,
with the mean x velocity increasing linearly with y,

{ ẋ = (px/m)+ ε̇y ; ẏ = (py/m) } ;

can be generated with any one member of the family of motion equations:

{ ṗx = Fx− ε̇αx py−ζ px ; ṗy = Fy− ε̇αy px−ζ py } ,

so long as the sum αx +αy is unity and ζ is chosen to control the overall energy or
temperature. Careful comparisons of the two limiting approaches,

αx = 0 ; αy = 1 [Doll′s] ;

αx = 1 ; αy = 0 [s′lloD] ,

with corresponding boundary-driven four-chamber flows show that though both of the
algorithms satisfy the nonequilibrium energy requirement:

Ė ≡−ε̇PxyV ,

exactly, neither of them provides the correct “normal stress” difference, Pxx−Pyy.
This same problem highlights another interesting parallel feature of nonequilibrium

systems, the tensor nature of temperature [7, 8, 9, 37, 38, 39, 40]. In a boundary-driven
shearflow with the repulsive pair potential,

φ(r < 1) = 100(1− r2)4 ,

the temperature tensors in the Newtonian regions show the orderings

〈p2
x〉> 〈p2

z 〉> 〈p2
y〉 ←→ Txx > Tzz > Tyy [Boundary Driven] .



FIGURE 8. Rayleigh-Bénard problem, simulated with 5000 particles. The fluid-wall image particles
which enforce the thermal and velocity boundary conditions are shown as circles above and below the
main flow.

The homogeneous periodic shear flows generated with the Doll’s and s’lloD algorithms
show instead two other orderings:

Txx > Tyy > Tzz [s′lloD] and Tyy > Txx > Tzz [Doll′s] ,

so that neither the Doll’s nor the s’lloD algorithm correctly accounts for the nonlinear
properties of stationary shear flows [35]. Nonequilibrium molecular dynamics provides
an extremely versatile tool for determining nonlinear as will as linear transport. We
will come back to tensor temperature in the third lecture, on shockwaves. Nonlinear
transport problems can require the definition of local hydrodynamic variables whenever
the system is inhomogeneous, as it is in boundary-driven shear and heat flows.

Thermostats, ergostats, barostats, and many other kinds of constraints and controls
simplify the treatment of complex failure problems with molecular dynamics. Using the
Doll’s and s’lloD ideas it is quite feasible to study the stationary nonequilibrium flow
of solids, “plastic flow”, in order to interpret nonsteady failure problems like fracture
and indentation. Nonequilibrium molecular dynamics makes it possible to remove the
irreversible heat generated by strongly nonequilibrium processes such as the machining
of metals. The basic idea of control can be implemented from the standpoint of Gauss’
Principle, which states that the smallest possible constraint force should be used to
accomplish control [41]. Near equilibrium a more reliable basis is Green and Kubo’s
linear-response theory. This can be used to formulate controls consistent with exact
statistical mechanics in the linear regime, just as was done in deriving the Doll’s and
s’lloD approaches to simulating shear flow.

A slightly more complex problem is illustrated in Figure 8. A nonequilibrium system
with fixed mass is contained within two thermal “fluid wall” boundaries, hot on the
bottom and cold on the top, with a gravitational field acting downward. If the gradients



are small the fluid is stationary, and conducts heat according to Fourier’s Law. When the
Rayleigh Number,

R = gL4(d lnT/dy)/(νκ) ; ν ≡ η/ρ ,

exceeds a critical value (which can be approximated by carrying out a linear stability
analysis of the hydrodynamic equations) two rolls, one clockwise and the other counter-
clockwise provide another, faster, mode of heat transfer. At higher values of R the rolls
oscillate vertically; at higher values still the rolls are replaced by chaotic heat plumes,
which move horizontally. With several thousand particles molecular dynamics provides
solutions in good agreement with the predictions of the Navier-Stokes-Fourier equations.

This problem [42, 43, 44] is specially interesting in that several topologically different
solutions can exist for exactly the same applied boundary conditions. Carol will talk
more about this problem in her exposition of Smooth Particle Applied Mechanics,
“SPAM”. SPAM provides a useful numerical technique for interpolating the particle
properties of nonequilibrium molecular dynamics onto convenient spatial grids.

PARTICLE-BASED CONTINUUM MECHANICS & SPAM

Introduction and Goals

Smooth Particle Applied Mechanics, “SPAM”, was invented at Cambridge, somewhat
independently, by Lucy and by Monaghan in 1977 [4, 5, 6]. The particles both men con-
sidered were astrophysical in size as their method was designed to treat clusters of stars.
SPAM can be used on smaller scales too. SPAM provides a simple and versatile parti-
cle method for solving the continuum equations numerically with a twice-differentiable
interpolation method for the various space-and-time-dependent field variables (density,
velocity, energy, ...) . SPAM looks very much like “Dissipative Particle Dynamics” [45],
though, unlike DPD, it is typically fully deterministic, with no stochastic ingredients.
Three pedagogical problems are discussed here using SPAM: the free expansion of a
compressed fluid; the collapse of a water column under the influence of gravity; and
thermally driven convection, the Rayleigh-Bénard problem. Research areas well-suited
to graduate research (tensile instability, angular momentum conservation, phase separa-
tion, and surface tension) are also described.

SPAM provides an extremely simple particle-based solution method for solving the
conservation equations of continuum mechanics. For a system without external fields
the basic partial differential equations we aim to solve are:

ρ̇ =−ρ∇ · v ;

ρ v̇ =−∇ ·P ;

ρ ė =−∇v : P−∇ ·Q .

SPAM solves the equations by providing a particle interpretation for each of the con-
tinuum variables occurring in these conservation laws. The main difficulty in applying
the method involves the choice and implementation of boundary conditions, which vary
from problem to problem.



SPAM Algorithms and the Continuity Equation

The fluid dynamics notation here, {ρ,v,e,P,Q}, with each of these variables depen-
dent on location r and time t, is standard but the SPAM particle interpretation of them
is novel. The density ρ and momentum density (ρv) at any location r are local sums of
nearby individual particle contributions,

ρ(r)≡∑
j

m jw(r− r j) ; ρ(ri) = ∑
j

m jw(ri− r j) ; ρ(r)v(r)≡∑
j

m jv jw(r− r j) ,

where particles have an extent h, the “range” of the weight function w, so that only those
particles within h of the location r contribute to the averages there.

In the second expression (for the density at the particle location ri) the “self” term
(ri = r j) is included so that the two definitions coincide at the particle locations. The
weight function w, which describes the spatial distribution of particle mass, or region of
influence for particle j, is normalized, has a smooth maximum at the origin, and a finite
range h, at which both w′ and w′′ vanish. The simplest polynomial filling all these needs
is Lucy’s [4, 6], here normalized for two-dimensional calculations:

w2D(r < h) = (5/πh2)[1−6x2 +8x3−3x4] ; x≡ r/h .

Monaghan’s weight function, shown for comparison in the Figure, uses two different
polynomials in the region where w is nonzero. The range h of w(r < h) is typically
a scalar, chosen so that a few dozen smooth particles contribute to the various field-
point averages at a point. As shown in Figure 9 Lucy’s function looks much like a
Gaussian, but vanishes very smoothly as r→ h. By systematically introducing the weight
function into expressions for the instantaneous spatial averages of the density, velocity,
energy, pressure, and heat flux, the continuum equations at the particle locations become
ordinary differential equations much like those of molecular dynamics. The method has
the desirable characteristic that the continuum variables have continuous first and second
spatial derivatives.

The continuity equation (conservation of mass) is satisfied automatically. At a fixed
point r in space, the time derivative of the density depends upon the velocities of all
those particles within the range h of r:

(∂ρ/∂ t)r ≡∑
j

m jv j ·∇ jwr j ≡−∑
j

m jv j ·∇rwr j ,

where v j is the velocity of particle j. On the other hand, the divergence of the quantity
(ρv) at r is:

∇r · (ρvr) = ∇r ·∑
j

m jwr jv j ,

establishing the Eulerian and Lagrangian forms of the continuity equation:

(∂ρ/∂ t)r ≡−∇r · (ρv) ←→ ρ̇ =−ρ∇ · v .

These fundamental identities linking the density and velocity definitions establish the
smooth-particle method as the most “natural” for expressing continuous field variables
in terms of particle properties.



FIGURE 9. Lucy’s and Monaghan’s weight functions. Both functions are normalized for two space
dimensions and h = 3. The weight function w(r < h) describes the spatial influence of particles to
properties in their neighborhood, as explained in the text.

The smooth-particle equations of motion have a form closely resembling the equations
of motion for classical molecular dynamics:

{ m jv̇ j =−∑
k

m jmk[(P/ρ
2) j +(P/ρ

2)k] ·∇ jw jk } .

It is noteworthy that the field velocity at the location of particle i

v(r = ri) = ∑
j

v jwi j/∑
j

wi j = ∑
j

m jv jwi j/ρ(r = ri) ,

(where the “self” term is again included) is usually different to the particle velocity vi,
opening up the possibility for computing velocity fluctuations at a point, as we do in the
next Section.

Notice that the simple adiabatic equation of state P ∝ ρ2/2 gives exactly the same
motion equations for SPAM as does molecular dynamics. That isomorphism pictures the
weight function w(r) as the equivalent of a short-ranged purely-repulsive pair potential.
Thus the continuum dynamics of a special two-dimensional fluid become identical to
the molecular dynamics of a dense fluid with smooth short-ranged repulsive forces [6].
We consider this case further in applying SPAM to the free expansion problem in the
next Section.

Free Expansion Problem

Figure 10 shows snapshots from a free expansion problem in which 16,384 particles,
obeying the adiabatic equation of state P ∝ (ρ2/2), expand to fill a space four times that



FIGURE 10. Contours of average density (middle row) and average temperature (bottom row) calcu-
lated from the instantaneous 16,384-particle snapshots (top row) taken during a free expansion simulation.
The last picture in each row corresponds to two sound traversal times.

of the initial compressed gas. This problem provides a resolution of Gibbs’ Paradox (that
the entropy increases by Nk ln4 while Gibbs’ Liouville-based entropy,−k〈ln f 〉, remains
unchanged) [46, 47]. Detailed calculations show that the missing Liouville entropy is
embodied in the kinetic-energy fluctuations. When these fluctuations are computed in a
frame moving at the local average velocity,

v(r) = ∑
j

wr jv j/∑
j

wr j ,

the corresponding velocity fluctuations, (〈v2〉−〈v〉2) are just large enough to reproduce
the thermal entropy. Most of the spatial equilibration occurs very quickly, in just a few
sound traversal times. The contours of average density and average kinetic energy shown
here illustrate another advantage of the SPAM averaging algorithm. The field variables
are defined everywhere in the system, so that evaluating them on a regular grid, for
plotting or analyses, is easy to do.

These local velocity fluctuations begin to be important only when the adiabatic expan-
sion stretches all the way across the periodic confining box so that rightward-moving
fluid collides with its leftward-moving periodic image and vice versa. The thermody-
namic irreversibility of that collision process, reproduced in the thermal entropy, is just
sufficient for the reversible dynamics to reflect the irreversible entropy increase, Nk ln4.



FIGURE 11. Equilibrated column for two system sizes. Five density contours are indicated by changes
in plotting symbols. The arrows corresponding to the contours were calculated analytically from the
continuum force-balance equation, dP/dy =−ρg.

A dense-fluid version of this dilute-gas free expansion problem appears in Bill’s lecture
on shockwaves.

Collapse of a Fluid Column

Figure 11 shows the distribution of smooth particles in an equilibrated periodic water
column in a gravitational field [6]. Figure 12 shows snapshots from the subsequent
collapse of the water column when the vertical periodic boundaries are released. Both
the equilibration shown in Figure 11 and the collapse shown in Figure 12 use the
simple equation of state P = ρ3 − ρ2, chosen to give zero pressure at unit density.
Here the gravitational field strength has been chosen to give a maximum density of 2 at
the reflecting lower boundary. Initially, the vertical boundaries are periodic, preventing
horizontal motion. After a brief equilibration period, the SPAM density profile can be
compared to its analytic analog, derived by integrating the static version of the equation
of motion:

dP/dy =−ρg .

The arrows in Figure 11, computed from the analytic static density profile, show excel-
lent agreement with the numerical SPAM simulation.

In smooth particle applied mechanics (SPAM) the boundary conditions are invariably
the most difficult aspect of carrying out a simulation [6, 48]. Here we have used a simple
mirror boundary condition at the bottom of the column and a periodic boundary at



FIGURE 12. Water Column collapse for three system sizes, with 640, 2560, and 10,240 particles. The
computational time for this two-dimensional problem varies as the three-halves power of the number of
particles used because corresponding times increase as

√
N while the number of interactions varies as N.

the sides, in the vertical direction. When the vertical periodic boundary constraint is
released, rarefaction waves create a tensile region inside the falling column. By varying
the size of the smooth particles the resolution of the motion can be enhanced, as Figure
12 shows. With “mirror boundaries”, elaborated in the next Section, more complicated
situations can be treated. With mirrors there is an image particle across the boundary,
opposite to each SPAM particle, with the mirror particle’s velocity and temperature both
chosen to satisfy the corresponding boundary conditions.

Rayleigh-Bénard Convection

Figure 13 shows a typical snapshot for a slightly more complicated problem, the
Rayleigh-Bénard problem, the convective flow of a compressible fluid in a gravitational
field with the temperature specified at both the bottom (hot) and top (cold) boundaries.
The velocities at both these boundaries must vanish, and can be imposed by using mirror
particles resembling the image charges of electricity and magnetism. A particularly in-
teresting aspect of the Rayleigh-Bénard problem is that multiple solutions of the contin-
uum equations can coexist, for instance two rolls or four, with exactly the same boundary
conditions [42, 43, 44, 49]. Such work has been used to show that neither the entropy nor
the entropy production rate allows one to choose “the solution”. Which solution is ob-
served in practice can depend sensitively on the initial conditions. The Rayleigh-Bénard
problem illustrates the need for local hydrodynamic averages describing the anisotropies
of two- and three-dimensional flows.

SPAM provides an extremely useful interpolation method for generating twice-
differentiable averages from particle data. In the following lecture this method will be
used to analyze a dense-fluid molecular dynamics shockwave problem, where all of



FIGURE 13. Instantaneous temperature (below) and density (above) contours for the two-roll Rayleigh-
Bénard problem. The stationary continuum solution (left) is compared to a SPAM snapshot with 5000
particles (right).

the thermomechanical variables make near-discontinuous changes linking an incoming
cold state to an outgoing hot one. The continuous differentiable field variables provided
by SPAM make it possible to analyze the relatively subtle nonlinear properties of such
strongly nonequilibrium flow fields.

SPAM is a particularly promising field for graduate research. In addition to the many
possible treatments of boundaries (including boundaries between different phases), the
conservation of angular momentum (when shear stresses are present) and the tensile
instability (where w acts as an attractive rather than repulsive force) and the treatment of
surface tension all merit more investigation. For a summary of the current State of the
Art see our recent book [6].

TENSOR-TEMPERATURE SHOCKWAVES VIA MOLECULAR
DYNAMICS

Introduction and Goals

Shockwaves are an ideal nonlinear nonequilibrium application of molecular dynam-
ics. The boundary conditions are purely equilibrium and the gradients are quite large.
The shockwave process is a practical method for obtaining high-pressure thermody-
namic data. There are some paradoxical aspects too. Just as in the free expansion prob-
lem, time-reversible motion, with constant Gibbs’ entropy, describes a macroscopically
irreversible process in which entropy increases. The increase is third-order in the com-
pression, for weak shocks [50]. The shockwave problem is a compelling example of
Loschmidt’s reversibility paradox.

We touch on all these aspects of the shockwave problem here. We generate and
analyze the pair of shockwaves which results from the collision of two stress-free
blocks [8, 9]. The blocks are given initial velocities just sufficient to compress the
two cold blocks to a hot one, at twice the initial density. Further evolution of this



FIGURE 14. Stationary shockwave in the comoving frame. Cold material enters at the left, with velocity
+us, and is decelerated by the denser hotter material which exits at the right, with velocity us−up. It is in
this coordinate frame that the fluxes given in the text are constant.

atomistic system, with the initial kinetic energy of the blocks converted to internal
energy, leads to a dense-fluid version of the free expansion problem discussed earlier
for an adiabatic gas. Here we emphasize the dynamical reversibility and mechanical
instability of this system, show the shortcomings of the usual Navier-Stokes-Fourier
description of shockwaves, and introduce a two-temperature continuum model which
describes the strong shockwave process quite well.

Shockwave Geometry

There is an excellent treatment of shockwaves in Chapter IX of Landau and Lifshitz’
“Fluid Mechanics” text [50]. A stationary shockwave, with steady flow in the x direction,
obeys three equations for the fluxes of mass, momentum, and energy derived from the
three continuum equations expressing the conservation of mass, momentum, and energy:

ρv = ρCus = ρH(us−up) ;

Pxx +ρv2 = PC +ρCu2
s = PH +ρH(us−up)

2 ;

ρv[e+(Pxx/ρ)+(v2/2)]+Qx =

[e+(Pxx/ρ)]C +(u2
s/2) = [e+(Pxx/ρ)]H +(us−up)

2/2 .

Figure 14 illustrates the shockwave geometry in a special coordinate frame. In this frame
the shockwave is stationary. Cold material enters from the left at the “shock speed”
us and hot material exits at the right, at speed us− up, where up is the “particle” or
“piston” velocity. The terminology comes from an alternative coordinate system, in
which motionless cold material is compressed by a piston (moving at up), launching
a shockwave (moving at us).

Eliminating the two speeds from the three conservation equations gives the Hugoniot
equation,

eH− eC = (PH +PC)(VC−VH)/2 ,

which relates the equilibrium pressures, volumes, and energies of the cold and hot
states. Evidently purely equilibrium thermodynamic equation of state information can
be obtained by applying the conservations laws to optical or electrical velocity measure-
ments in the highly-nonequilibrium shockwave compression process. Ragan described



FIGURE 15. A series of snapshots showing the stability of a planar shockwave. Note that the decay
of the initial sinewave profile is slightly underdamped. Here Dt = 2000dt is the time required for a
shockwave to traverse the width shown here, 2000 Runge-Kutta timesteps with dt = 0.02/us ' 0.01.

the threefold compression of a variety of materials (using an atomic bomb explosion to
provide the pressure) at pressures up to 60 Megabars, about 15 times the pressure at the
center of the earth [51].

Hoover carried out simulations of the shockwave compression process for a repulsive
potential, φ(r) = r−12, in 1967 [52], but put off completing the project for several
years, until computer storage capacity and execution speeds allowed for more accurate
work [53]. Comparison of Klimenko and Dremin’s computer simulations [18] using the
Lennard-Jones potential, φ(r) = r−12− 2r−6, showed that relatively weak shockwaves
(30 kilobars for argon, 1.5-fold compression) could be described quite well [53, 54] with
the three-dimensional Navier-Stokes equations, using Newtonian viscosity and Fourier
heat conduction:

P = Peq−λ∇ · v−η [∇v+∇vt ] ;

λ2D = ηv−η ; λ3D = ηV − (2/3)η ;

Q =−κ∇T .

Here λ is the “second viscosity”, defined in such a way that the excess hydrostatic pres-
sure due to a finite strain rate is−ηV ∇ ·v. The shear viscosity η and heat conductivity κ

were determined independently using molecular dynamics simulations. The small scale
of the waves [54], just a few atomic diameters, was welcomed by high-pressure ex-
perimentalists weary of arguing that their explosively-generated shockwaves measured
equilibrium properties.

It is necessary to verify the one-dimensional nature of the waves too. It turns out that
shockwaves do become planar very rapidly, at nearly the sound velocity. The rate at



FIGURE 16. Snapshots near the beginning (upper) and end (lower) of an inelastic collision between
two 1600-particle blocks. The initial velocities, ±0.965, are just sufficient for a twofold compression of
the cold material. The unit-mass particles interact with a short-ranged potential (10/π)(1− r)3 and have
an initial density

√
4/3.

which sinusoidal perturbations are damped out has been used to determine the plastic
viscosity of a variety of metals at high pressure [55]. Figure 15 shows the rapid approach
to planarity of a dense-fluid shockwave [9].

Stronger shockwaves, where the bulk viscosity is more important (400 kilobars for
argon, twofold compression), showed that the Navier-Stokes description needs improve-
ment at higher pressures. In particular, within strong shockwaves temperature becomes
a symmetric tensor, with Txx >> Tyy, where x is again the propagation direction. In ad-
dition, the Navier-Stokes-Fourier shockwidth, using linear transport coefficients, is too
narrow. The tensor character of temperature in dilute-gas shockwaves had been carefully
discussed in the 1950s by Mott-Smith [37].

Analysis of Instantaneous Shockwave Profiles using SPAM Averaging

Data for systems with impulsive forces, like hard spheres, require both time and
space averaging for a comparison with traditional continuum mechanics. Analyses
of molecular dynamics data with continuous potentials need no time averaging, but



still require a spatial smoothing operation to convert instantaneous particle data,
{x,y, px, py}i, including {P,Q,T,e}i, to equivalent continuous continuum profiles,
{ρ(r, t),v(r, t),e(r, t),P(r, t),T (r, t),Q(r, t)}.

The potential parts of the virial-theorem and heat-theorem expressions for the pressure
tensor P and the heat-flux vector Q,

PV = ∑
i< j

Fi jri j +∑
i
(pp/m)i ;

QV = ∑
i< j

Fi j · pi jri j +∑
i
(ep/m)i ,

can be apportioned in at least three “natural” ways between pairs of interacting particles
[7, 56].

Consider the potential energy of two particles, φ(|r12|). This contribution to the
system’s energy can be split equally between the two particle locations, r1 and r2, or
located at the midpoint between them, (r1 + r2)/2, or distributed uniformly [56] along
the line r1− r2 joining them. These three possibilities can be augmented considerably
in systems with manybody forces between particles of different masses. It is fortunate
that for the short-ranged forces we study here the differences among the three simpler
approaches are numerically insignificant. Once a choice has been made, so as to define
particle pressures and heat fluxes, these can in turn be used to define the corresponding
continuum field variables at any location r by using the weight-function approach of
smooth particle applied mechanics:

P(r)≡∑
j

Pjwr j/∑
j

wr j ; Q(r)≡∑
j

Q jwr j/∑
j

wr j .

By using this approach our own simulations have characterized another constitutive
complication of dense-fluid shockwaves – the time delays between [1] the maximum
shear stress and the maximum strainrate and [2] the maximum heat flux and and the
maxima of the two temperature gradients (dTxx/dx) and (dTyy/dx) [8, 57]. The study of
such delays goes back to Maxwell. The “Maxwell relaxation” of a viscoelastic fluid can
be described by the model [7, 8, 57]:

σ + τσ̇ = ηε̇ .

so that stress reacts to a changing strainrate after a time of order τ . Cattaneo considered
the same effect for the propagation of heat. The phenomenological delays, found in
the dynamical results, are a reminder that the irreversible nature of fluid mechanics is
fundamentally different to the purely-reversible dynamics underlying it.

The irreversible shock process is particularly interesting from the pedagogical stand-
point. The increase in entropy stems from the conversion of the fluid’s kinetic energy
density, ρv2/2 to heat. To avoid the need for discussing the work done by the moving
pistons of Figure 14, we choose here to investigate shockwaves generated by symmetric
collisions of two stressfree blocks, periodic in the direction parallel to the shockfront.
The entropy increase is large here (a zero-temperature classical system has an entropy of
minus infinity). Figure 16 shows two snapshots for a strong shockwave yielding twofold



FIGURE 17. Shock Thermal and Mechanical Profiles from molecular dynamics are shown at the top.
Corresponding numerical solutions of the generalized continuum equations are shown at the bottom.
This rough comparison suggests that the generalized equations can be fitted to particle simulations. The
generalized equations use tensor temperature and apportion heat and work between the two temperatures
Txx and Tyy. They also include delay times for shear stress, for heat flux, and for thermal equilibration.

compression of the initial cold zero-pressure lattice. The mechanical and thermal vari-
ables in a strong dense-fluid shockwave are shown in Figure 17. In order to model these
results two generalizations of traditional hydrodynamics need to be made: the tensor
nature of temperature and the delayed response of stress and heat flux both need to be
treated. A successful approach is described next.

Macroscopic Generalizations of the Navier-Stokes-Fourier Approach

By generalizing continuum mechanics to include tensor temperature and the time
delays for stress and heat flux,

σ + τσ̇ = ηε̇ ; Q+ τQ̇ =−κ∇T ,

with an additional relaxation time describing the joint thermal equilibration of Txx and
Tyy to a common temperature TH the continuum and dynamical results can be made
consistent [7, 8, 9, 37, 38, 40]. In doing this we partition the work done and the heat



FIGURE 18. Shear Stress lags behind the strainrate. The molecular dynamics gradients, using smooth-
particle interpolation, are much more sensitive to the range of the weighting function than are the fluxes.
The results here are shown for h = 2,3,4, with line widths corresponding to h.

FIGURE 19. Heat Flux lags behind the temperature gradients. The molecular dynamics gradients, using
smooth-particle interpolation, are much more sensitive to the range of the weighting function than are the
fluxes. The results here are shown for h = 2,3,4, with line widths corresponding to h.

gained into separate longitudinal (x) and transverse (y) parts:

ρṪxx ∝−α∇v : P−β∇ ·Q+ρ(Tyy−Txx)/τ ;

ρṪyy ∝−(1−α)∇v : P− (1−β )∇ ·Q+ρ(Txx−Tyy)/τ .



Solving the time-dependent continuum equations for such shockwave problems is not
difficult [9, 42]. If all the spatial derivatives in the continuum equations are expressed as
centered differences, with density defined in the center of a grid of cells, and all the other
variables (velocity, energy, stress, heat flux, ...) at the nodes defining the cell vertices,
fourth-order Runge-Kutta integration converges nicely to solutions of the kind shown in
Figure 17.

Shockwaves from Two Colliding Blocks are Nearly Reversible

To highlight the reversibility of the irreversible shockwave process let us consider the
collision of two blocks of two-dimensional zero-pressure material, at a density of

√
4/3

(nearest-neighbor distance is unity, as is also the particle mass). Measurement of the
equation of state with ordinary Newtonian mechanics, using the pair potential,

φ(r < 1) = (10/π)(1− r)3 ,

indicates (and simulation confirms) that the two velocities us and up,

us = 2up = 1.930 ,

correspond to twofold compression with a density change
√

4/3→ 2
√

4/3. To intro-
duce a little chaos into the initial conditions random initial velocities, corresponding to
a temperature 10−10 were chosen. Because the initial pressure is zero the conservation
relations are as follows:

ρv =
√

4/3×1.930 = 2.229 ;

Pxx +ρv2 =
√

4/3×1.9302 = 4.301 ;

ρv[e+(Pxx/ρ)+ρv2/2)]+Qx =
√

4/3×1.9303/2 = 4.151 .

Although the reversibility of the dynamics cannot be perfect, the shockwave prop-
agates so rapidly that a visual inspection of the reversed dynamics shows no discrep-
ancies over thousands of Runge-Kutta timesteps. To assess the mechanical instability
of the shock compression process we explore the effects of small perturbations to the
reversible dynamics in the following Sections. We begin by illustrating phase-space in-
stability [26, 58] for a simpler problem, the harmonic chain.

Linear Growth Rates for a Harmonic Chain

Even the one-dimensional harmonic chain, though not chaotic, exhibits linear phase-
volume growth in certain phase-space directions. Consider the equations of motion for
a periodic chain incorporating an arbitrary scalefactor s+2:

{ q̇ = ps+2 ; ṗ = (q+−2q+q−)s−2 } ;



the subscripts indicate nearest-neighbor particles to the left and right. The motion equa-
tions for a 2N-dimensional perturbation vector δ = (δq,δ p) follow by differentiation:

{ δ q̇ = δ ps+2 ; δ ṗ = (δq+−2δq+δq−)s−2 } .

If we choose the length of the perturbation vector equal to unity, the logarithmic growth
rate, Λ = (d lnδ/dt)q,p, is a sum of the individual particle contributions:

Λ(δ ) = ∑[δqδ p(s+2−2s−2)+δ p(δq++δq−)s−2] .

For a large scale factor s+2 it is evident that choosing equal components of the vector
provides the maximum growth rate,

{δq = δ p =
√

1/2N} → Λmax = 2−1s+2 .

For s2 small, rather than large, alternating signs give the largest growth rate, with

{ +δqeven =+δ podd =−δqodd =−δ peven } ,

the growth rate is
Λmax = 2+1s−2−2−1s+2 .

The growth rate is 2−1/2 at the transition between the two regions, where s2 <
> 21/2.

These same growth-rate results can be found numerically by applying “singular value
decomposition” to the dynamical matrix D [26, 58]. This analysis details the deformation
of an infinitesimal phase-space hypersphere for a short time dt. During this time the
hypersphere has its components δq,δ p changed by the equations of motion:

δ
dt−→ (I +Ddt) ·δ ,

so that the growth and decay rates can be found from the diagonal elements of the
singular value decomposition

I +Ddt =U ·W ·V t →{Λ = (1/dt) lnW} .

Numerical evaluation gives the complete spectrum of the growth and decay rates. The
maximum matches the analytic results given above. Although locally the growth rates
{Λ(r, t)} are nonzero, the harmonic chain is not at all chaotic and the long-time-averaged
Lyapunov exponents {λ = 〈λ (r, t)〉}, all vanish. Let us now apply the concepts of phase-
space growth rates {Λ} and the Lyapunov exponents {λ} to the shockwave problem.

Linear Instability in Many Body Systems, Λ for Shockwaves

The time reversibility of the Hamiltonian equations of motion guarantees that any
stationary situation shows both a long-time-averaged and a local symmetry between the
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FIGURE 20. Phase-space Growth Rates {Λ} during the collision of two 240-particle blocks of length
20. The collision leads to twofold compression of the original cold material at a time of order 20/1.93'
10.4. At time = 12 the velocities were reversed, so that the configurations at times 2, 4, and 6 correspond
closely to those at 22, 20, and 18 respectively. Those particles making above average contributions to
the largest phase-space growth direction are indicated with open circles. The fourth-order Runge-Kutta
timestep is dt = 0.002.

forward and reversed directions of time. In such a case the N nonzero time-averaged
Lyapunov exponents as well as the local growth rates, obey the relations

{ λN+1−k +λk}= 0 ; { ΛN+1−k +Λk}= 0 .

The instantaneous Lyapunov exponents {λ (t)} depend on the dynamical history, while
the instantaneous diagonalized phase-space growth rates, which we indicate with Λ(t)
rather than λ (t), do not.

The rates {Λ(t)} for different directions in phase space can be calculated efficiently
from the dynamical matrix D, by using singular value decomposition, just as we did for
the harmonic chain:

D =

(
∂ q̇/∂q ∂ q̇/∂ p
∂ ṗ/∂q ∂ ṗ/∂ p

)
=

(
0 1/m

∂F/∂q 0

)
.

Here we analyze a 480-particle shockwave problem, the collision of two blocks with
x velocity components ±0.965. Figure 20 shows those particles making above-average



contributions to the maximum phase-space growth rate at times 2, 4, and 6. At time
12 the particle velocities are all reversed, so that the configurations at times 22, 20 and
18 closely match those at times 2, 4, and 6. Generally there is six-figure agreement
between the coordinates going forward in time and those in the reversed trajectory
at corresponding times. Note this symmetry in Figure 20, where the most sensitive
particles going forward and backward are exactly the same at corresponding times.
The forward-backward agreement could be made perfect by following Levesque and
Verlet’s suggestion [59] to use integer arithmetic in evaluating a time-reversible (even
bit-reversible!) algorithm such as

Int[qt+dt−2qt +qt−dt ] = Int[Ftdt2/m] or

Int[qt+2dt−qt+dt−qt−dt +qt−2dt ] = Int[(dt2/4m)(5Ft+dt +2Ft +5Ft−dt)] .

Evidently, as would be expected, from their definition, the point-function growth rates
{Λ(r(t))} can show no “arrow of time” distinguishing the backward trajectory from the
forward one. We turn next to the Lyapunov exponents, which can and do show such an
arrow.

Lyapunov Spectrum in a Strong Shockwave

Most manybody dynamics is Lyapunov unstable, in the sense that the length of the
phase-space vector joining two nearby trajectories has a tendency to grow at a (time-
dependent) rate λ1(t) (with the time-averaged result λ1 ≡ 〈λ1(t)〉 > 0). Likewise, the
area of a moving phase-space triangle, with its vertices at three nearby trajectories, grows
at λ1(t)+λ2(t), with a time-averaged rate λ1 +λ2. The volume of a tetrahedron defined
by four trajectories grows as λ1(t) + λ2(t) + λ3(t), and so on. By changing the scale
factor linking coordinates to momenta – the s+2 of the last Section – these exponents
can be determined separately in either coordinate or momentum space.

Posch and Hoover, and independently Goldhirsch, Sulem, and Orszag, discovered a
thought-provoking representation of local Lyapunov exponents [60, 61]. If an array of
Lagrange multipliers is chosen to propagate a comoving corotating orthonormal set of
basis vectors centered on a phase space trajectory, the diagonal elements express local
growth and decay rates. These are typically quite different (and unrelated) in the forward
and backward directions of time.

Let us apply the Lyapunov spectrum [59, 60, 61] to the phase-space instability of
a strong shockwave. Because the Lyapunov exponents, {λ (t)}, are evaluated so as to
reflect only the past, times less than t, we expect to find that the Lyapunov vector cor-
responding to maximum growth soon becomes localized near the shock front. Starting
out with randomly oriented vectors the time required for this localization is about 1/2.
The time-linked disparities between the forward and backward motions suggest that the
Lyapunov exponents can provide an “Arrow of Time” because the stability properties
forward in time differ from those in the backward (reversed) direction of time [62].

Figure 21 shows the particles making above-average contributions to the largest of the
local Lyapunov exponents, λ1(t). There are many more of these particles than the few
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FIGURE 21. Phase-space Growth Rates {λ} during the collision of two similar blocks which lead to
the twofold compression of the original cold material. At time = 12 the velocities were reversed, so that
the configurations at times 2 and 4 correspond to those at 22 and 20, respectively. The particles making
above average contributions to the largest Lyapunov exponent are indicated with open circles.

which contribute to the largest of the phase-space growth rates, Λ1(t). The shockwave
simulation was run forward in time for 6000 timesteps, after which the velocities were
reversed. The phase-space offset vectors, chosen randomly at time 0 and again at time
12, became localized near the shockfront at a time of order 0.5. The particles to which
the motion is most sensitive, as described by the Lyapunov exponent λ1(t) are more
localized in space in the forward direction of time than in the backward direction.
Evidently the Lyapunov vectors are more useful than the vectors corresponding to local
growth rates in describing the irreversibility of Hamiltonian systems.

CONCLUSION

Particle dynamics, both NEMD and SPAM, provides a flexible approach to the simula-
tion, representation, and analysis of nonequilibrium problems. The two particle methods
are closely related, making it possible to infer constitutive relations directly from atom-
istic simulations. These useful tools provide opportunities for steady progress in under-
standing far-from-equilibrium states. It is our hope that these tools will become widely
adopted.
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Stochastic thermodynamics: An introduction
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Abstract. These seminar notes contain a brief introduction into the principles of stochastic ther-
modynamics and some of its recent ramifications from a personal perspective. Thermodynamic
concepts like work, exchanged heat and entropy production can consistently be defined on the level
of individual fluctuating trajectories taken from either a time-dependent or a non-equilibrium steady
state ensemble. Fluctuation theorems constrain the probability distributions for these thermody-
namic quantities. For systems containing fast internal degrees of freedom the crucial distinction
between internal and free energy for a correct identification of both dissipated heat and system
entropy is emphasized. For non-equilibrium steady states, a generalized fluctuation-dissipation the-
orem relates the response to a small perturbation to correlation functions in the steady state involving
observables expressing the various contributions to entropy production along the trajectory.
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CLASSICAL VS. STOCHASTIC THERMODYNAMICS

Stochastic thermodynamics provides a conceptual framework for describing a large
class of soft and bio matter systems under well specified but still fairly general non-
equilibrium conditions [1, 2, 3]. Typical examples comprise colloidal particles driven by
time-dependent laser traps and polymers or biomolecules like RNA, DNA or proteins
manipulated by optical tweezers, micropipets or AFM tips [4]. Three features are char-
acteristic for such systems: (i) the source of non-equilibrium are external mechanical
forces or unbalanced chemical potentials; (ii) these small systems are inevitably embed-
ded in an aqueous solution which serves as a heat bath of well defined temperature T ;
(iii) fluctuations play a prominent role.

As the main idea behind stochastic thermodynamics, notions like applied work, ex-
changed heat and entropy developed in classical thermodynamics about 200 years ago
are adapted to this micro- or nano-world. Specifically, the stochastic energetics approach
introduced a decade ago by Sekimoto [5] is combined with the observation that entropy
can consistently be assigned to an individual fluctuating trajectory [6].

For a juxtaposition of classical and stochastic thermodynamics we consider for each a
paradigmatic experiment. For the classical compression of a gas or fluid in contact with
a heat reservoir of temperature T (see Fig. 1), the first law

W = ∆E +Q (1)

expresses energy conservation. The work W applied to the system either increases the
internal energy E of the system or is dissipated as heat Q = T ∆Sm in the surrounding
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FIGURE 1. Typical experiment in classical thermodynamics: Starting from an initial position at λ0, an
external control parameter is changed according to a protocol λ (τ) during time 0≤ τ ≤ t to a final position
λt . This process requires work W while the system remains in contact with a heat bath at temperature T .

medium, where ∆Sm is the entropy change of the medium. The second law

∆Stot ≡ ∆S+∆Sm ≥ 0 (2)

combined with the first law leads to an inequality

Wdiss ≡W −∆F ≥ 0 (3)

expressing the fact that the work put in is never smaller than the free energy difference
∆F between final and initial state. Their difference, the dissipated work Wdiss, is zero
only if the process takes place quasistatically.

A similar experiment on a nano-scale, the stretching of RNA, is shown in Fig. 2.
Two conceptual issues must be faced if one wants to use the same macroscopic notions
to describe such an experiment. First, how should work, exchanged heat and internal
energy be defined on this scale. Second, these quantities do not acquire sharp values but
rather lead to distributions, as shown in Fig. 3.

The occurrence of negative values of the dissipated work Wdiss in such distributions
seems to be in conflict with too narrow an interpretation of the second law. Two orig-
inally independent discoveries have led to profound statements not only constraining
such distributions but also requiring such negative values. First, the (detailed) fluctua-
tion theorem dealing with non-equilibrium steady states provides a symmetry between
the probability for observing asymptotically a certain entropy production and the prob-
ability for the corresponding entropy annihilation [8, 9, 10, 11]. Second, the Jarzynski
relation expresses the free energy difference between two equilibrium states as a non-
linear average over the non-equilibrium work required to drive the system from one state
to the other in a finite time [12, 13]. Similarly, the Crooks relation compares the distri-
butions for this work for forward and backward processes [14, 15]. The Hatano-Sasa
relation constrains the "excess heat" associated with driving one non-equilibrium steady
state to another [16].

The purpose of these seminar notes is to introduce the principles of stochastic thermo-
dynamics from a personal perspective using first a driven colloidal particle as paradigm
and later generalizing to systems with interacting degrees of freedom obeying coupled
Langevin equations. For lack of space, the easily possible generalization of these con-
cepts to Markovian dynamics on a set of discrete states as applicable to many biophys-
ical and biochemical systems like molecular motors must be left out. Neither has any



FIGURE 2. Typical experiment in stochastic thermodynamics: The two ends of an RNA molecule are
attached to two beads which can be manipulated by micropipets. By pulling these beads, the hairpin
structure of the RNA can be unfolded leading to force extension curves. For slow pulling (middle panel:
left trace) these curves are almost reversible whereas for large pulling speed the curves show pronounced
hysteresis (U,R) which is a signature of non-equilibrium. For all pulling speeds, the overlay of several
traces shows the role of fluctuation; adapted from [7].

FIGURE 3. Measured distributions for dissipative work Wdiss for the experiment shown Fig 2. The three
panels correspond to different extensions. In each, the three distributions refer to different pulling speeds;
adapted from [7].

attempt been made to achieve a comprehensive historical presentation. The monograph
[3] and several (mostly) review articles can provide such complementary and occasion-
ally broader perspectives [1, 2, 4, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

THERMODYNAMICS ALONG AN INDIVIDUAL TRAJECTORY

Stochastic dynamics

In this section, three equivalent but complementary descriptions of stochastic dynam-
ics, the Langevin equation, the Fokker-Planck equation, and the path integral, are re-
called [28, 29, 30] using a driven colloidal particle as paradigm.



The Langevin equation for the overdamped motion x(τ) in one dimension reads

ẋ = µF(x,λ )+ζ = µ(−∂xV (x,λ )+ f (x,λ ))+ζ . (4)

The systematic force F(x,λ ) can arise from a conservative potential V (x,λ ) and/or be
applied to the particle directly as f (x,λ ). Both sources may be time-dependent through
an external control parameter λ (τ) varied from λ (0) ≡ λ0 to λ (t) ≡ λt according to
some prescribed experimental protocol. The thermal noise has correlations

⟨ζ (τ)ζ (τ ′)⟩= 2Dδ (τ− τ ′) (5)

where D is the diffusion constant. In equilibrium, D and the mobility µ are related by
the Einstein relation

D = T µ (6)

where T is the temperature of the surrounding medium with Boltzmann’s constant kB
set to unity throughout the paper to make entropy dimensionless. In stochastic thermo-
dynamics, one assumes that the strength of the noise is not affected by the presence of
a time-dependent force. The range of validity of this crucial assumption can be tested
experimentally or in simulations by comparing with theoretical results derived on the
basis of this assumption.

The Fokker-Planck equation equivalent to the Langevin equation for the probability
p(x,τ) to find the particle at x at time τ is

∂τ p(x,τ) = −∂x j(x,τ)
= −∂x (µF(x,λ )p(x,τ)−D∂x p(x,τ)) (7)

where j(x,τ) is the probability current. This partial differential equation must be aug-
mented by a normalized initial distribution p(x,0) ≡ p0(x). It will become crucial to
distinguish the dynamical solution p(x,τ) of this Fokker-Planck equation, which de-
pends on this given initial condition, from the solution ps(x,λ ) for which the right hand
side of (7) vanishes at any fixed λ . The latter corresponds either to a steady state for
a non-vanishing non-conservative force or to equilibrium for f ̸= 0 and f = 0, respec-
tively.

A third equivalent description of the dynamics is given by assigning a weight

p[x(τ)|x0] = N exp
[
−
∫ t

0
dτ[(ẋ−µF)2/4D+µ∂xF/2]

]
(8)

to each path or trajectory where the last term arises from the Stratonovich convention for
the discretization. Path dependent observables can then be averaged using this weight in
a path integral which requires a path-independent normalization N such that summing
the weight (8) over all paths is 1.

More technical background concerning these three equivalent descriptions is provided
in the monographs [28, 29, 30].



FIGURE 4. Experimental illustration of the first law. A colloidal particle is pushed by a laser towards a
repulsive substrate. The (almost) linear attractive part of the potential depends linearly (see insert) on the
laser intensity. For fixed laser intensity, the potential can be extracted by inverting the Boltzmann factor.
If the laser intensity is modulated periodically, the potential becomes time-dependent. For each period
(or pulse) the work W , heat Q and change in internal energy ∆V can be inferred from the trajectory using
(10-11). Ideally, these quantities should add up to zero for each pulse, while the histogram shows the small
(δ <∼ 1kBT ) experimental error; adapted from [31].

FIGURE 5. Work distribution for a fixed trajectory length for the experiment shown in Fig. 4. The
histogram are experimental data, the full curve shows the theoretical prediction with no free fit parameters.
The non-Gaussian shape proves that the experimental conditions probe the regime beyond linear response.
The insert shows that the work distribution obeys the detailed fluctuation theorem; adapted from [31].

First law

Following Sekimoto who introduced the stochastic energetics approach [3], we first
identify the first-law-like energy balance

dw = dE +dq (9)



for the Langevin equation (4). The increment in work applied to the system, i.e., here
the colloidal particle,

dw = (∂V/∂λ ) λ̇ dτ + f dx (10)

consists of two contributions. The first term arises from changing the potential (at fixed
particle position) and the second from applying a non-conservative force to the particle
directly. The internal energy for a simple colloidal particle can be identified with the
potential, i.e. dE ≡ dV .

If one accepts these quite natural definitions, for the first law to hold along a trajectory,
the heat dissipated into the medium must be identified with

dq = Fdx. (11)

This relation is quite physical since in an overdamped system the total force times the
displacement corresponds to dissipation. Integrated over a time interval t one obtains the
expressions

w[x(τ)] =
∫ t

0
[(∂V/∂λ )λ̇ + f ẋ]dτ and q[x(τ)] =

∫ t

0
Fẋdτ (12)

and the first law

w[x(τ)] = q[x(τ)]+∆V = q[x(τ)]+V (xt ,λt)−V (x0,λ0) (13)

on the level of an individual trajectory.
In the experiment [31], the three quantities applied work, exchanged heat and internal

energy were inferred from the trajectory of a colloidal particle pushed periodically by a
laser trap against a repulsive substrate, see Fig. 4.

The measured non-Gaussian distribution for the applied work shown in Fig. 5 in-
dicates that this system is driven beyond the linear response regime since it has been
proven that within the linear response regime the work distribution is always Gaussian
[32]. Moreover, the good agreement between the experimentally measured distribution
and the theoretically calculated one indicates that the assumption of noise correlations
being unaffected by the driving is still valid in this regime beyond linear response.

Stochastic Entropy

For a refinement of the second law on the level of individual trajectories, we need to
define the corresponding entropy as well which, for this simple colloid, turns out to have
two contributions. First, the heat dissipated into the environment should be identified
with an increase in entropy of the medium

∆sm[x(τ)]≡ q[x(τ)]/T. (14)

Second, one defines as a stochastic or trajectory dependent entropy of the system the
quantity [6]

s(τ)≡− ln p(x(τ),τ) (15)



where the probability p(x,τ) obtained by first solving the Fokker-Planck equation is
evaluated along the stochastic trajectory x(τ). This stochastic entropy has the following
properties.

• Dependence on the ensemble
The stochastic entropy depends not only on the individual trajectory but also on
the ensemble. If the same trajectory x(τ) is taken from an ensemble generated by
another initial condition p(x,0), it will lead to a different value for s(τ).

• Relation to non-equilibrium ensemble entropy
Upon averaging with the given ensemble p(x,τ), this trajectory-dependent entropy
becomes the usual ensemble entropy

S(τ)≡−
∫

dx p(x,τ) ln p(x,τ) = ⟨s(τ)⟩. (16)

Here and throughout these notes the brackets ⟨...⟩ denote the non-equilibrium
average generated by the Langevin dynamics from some given initial distribution
p(x,0) = p0(x).

• Relation to thermodynamics in equilibrium
It is interesting to note that in equilibrium, i.e. for f ≡ 0 and constant λ , the
stochastic entropy s(τ) obeys the well-known thermodynamic relation between
entropy, internal energy and free energy

s(τ) = (V (x(τ),λ )−F (λ ))/T, (17)

along the fluctuating trajectory at any time with the free energy

F (λ )≡−T ln
∫

dx exp[−V (x,λ )/T ]. (18)

• Equations of motion
The rate of change of the entropy of the system (15) is given by [6]

ṡ(τ) = −∂τ p(x,τ)
p(x,τ)

∣∣∣∣
x(τ)
− ∂x p(x,τ)

p(x,τ)

∣∣∣∣
x(τ)

ẋ (19)

= −∂τ p(x,τ)
p(x,τ)

∣∣∣∣
x(τ)

+
j(x,τ)

Dp(x,τ)

∣∣∣∣
x(τ)

ẋ− µF(x,λ )
D

∣∣∣∣
x(τ)

ẋ.

The first equality identifies the explicit and the implicit time-dependence. The
second one uses the Fokker-Planck equation (7) for the current. The third term
in the second line can be related to the rate of heat dissipation in the medium (14)

q̇(τ) = F(x,λ )ẋ = T ṡm(τ) (20)

using the Einstein relation D = T µ . Then (19) can be written as a balance equation
for the trajectory-dependent total entropy production

ṡtot(τ)≡ ṡm(τ)+ ṡ(τ) =− ∂τ p(x,τ)
p(x,τ)

∣∣∣∣
x(τ)

+
j(x,τ)

Dp(x,τ)

∣∣∣∣
x(τ)

ẋ. (21)



The first term on the right hand side signifies a change in p(x,τ) which can be due to
a time-dependent λ (τ) or, even at fixed λ , due to relaxation from a non-stationary
initial state p0(x) ̸= ps(x,λ0).
Upon averaging, the total entropy production rate ṡtot(τ) has to become positive as
required by the second law. This ensemble average proceeds in two steps. First, we
conditionally average over all trajectories which are at time τ at a given x leading
to

⟨ẋ|x,τ⟩= j(x,τ)/p(x,τ). (22)

Second, with
∫

dx∂τ p(x,τ) = 0 due to probability conservation, averaging over all
x with p(x,τ) leads to

Ṡtot(τ)≡ ⟨ṡtot(τ)⟩=
∫

dx
j(x,τ)2

Dp(x,τ)
≥ 0, (23)

where equality holds in equilibrium only. Averaging the increase in entropy of the
medium along similar lines leads to

Ṡm(τ) ≡ ⟨ṡm(τ)⟩= ⟨F(x,τ)ẋ⟩/T (24)

=
∫

dxF(x,τ) j(x,τ)/T. (25)

Hence upon averaging, the increase in entropy of the system itself becomes Ṡ(τ)≡
⟨ṡ(τ)⟩ = Ṡtot(τ)− Ṡm(τ). On the ensemble level, this balance equation for the
averaged quantities can also be derived directly from the ensemble definition (16)
[33].

• Integral fluctuation theorem (IFT)
The total entropy change along a trajectory follows from (14) and (15)

∆stot ≡ ∆sm +∆s (26)

with
∆s≡− ln p(xt ,λt)+ ln p(x0,λ0) . (27)

It obeys a remarkable integral fluctuation theorem (IFT) [6]

⟨e−∆stot⟩= 1 (28)

which can be interpreted as a refinement of the second law ⟨∆stot⟩ ≥ 0. The latter
follows from (28) by Jensen’s inequality ⟨expx⟩ ≥ exp⟨x⟩. This integral fluctuation
theorem for ∆stot is quite universal since it holds for any kind of initial condition
(not only for p0(x0) = ps(x0,λ0)), any time-dependence of force and potential, with
(for f = 0) and without (for f ̸= 0) detailed balance at fixed λ , and any length of
trajectory t.



INTEGRAL FLUCTUATION AND WORK THEOREMS

A general IFT

The IFT for entropy production (28) follows from a more general fluctuation theorem
which unifies several relations previously derived independently. Based on the concept
of time-reversed trajectories and time-reversed protocol [10, 15, 20], it is easy to prove
the relation [6]

⟨exp[−∆sm] p1(xt)/p0(x0)⟩= 1 (29)

for any function p1(x) with normalization
∫

dx p1(x) = 1. Here, the initial distribution
p0(x) is arbitrary. This relation can also be written in the form

⟨exp[−(w−∆V )/T ] p1(xt)/p0(x0)⟩= 1 (30)

with no reference to an entropy change.
The arguably most natural choice for the function p1(x) is to take the solution p(x,τ)

of the Fokker-Planck equation at time t which leads to the IFT (28) for the total entropy
production. Other choices lead to similar relations originally derived differently among
which the Jarzynski relation is the most prominent one. Further relations that can be
obtained from the IFT (29) can be found in Ref. [2].

Jarzynski relation

The Jarzynski relation (JR) originally derived using Hamiltonian dynamics [12]

⟨exp[−w/T ]⟩= exp[−∆F/T ] (31)

expresses the free energy difference ∆F ≡ F (λt)−F (λ0) between two equilibrium
states characterized by the initial value λ0 and the final value λt of the control parameter,
respectively, as a non-linear average over the work required to drive the system from
one equilibrium state to another. At first sight, this is a surprising relation since on the
left hand side there is a non-equilibrium average which should in principle depend on
the protocol λ (τ), whereas the free energy difference on the right hand side is a pure
equilibrium quantity.

Within stochastic thermodynamics the JR follows, a posteriori, from the more general
relation (30), by specializing to the following conditions: (i) There is only a time-
dependent potential V (x,λ (τ)) and no non-conservative force ( f ≡ 0), (ii) initially the
system is in thermal equilibrium with the distribution

p0(x) = exp[−(V (x,λ0)−F (λ0))/T ]. (32)

Plugging this expression with the free choice p1(x) = exp[−(V (x,λt)−F (λt))/T ] into
(30), the JR indeed follows within two lines. It is crucial to note that its validity does not
require that the system has relaxed at time t into the new equilibrium. In fact, the actual
distribution at the end will be p(x, t).



As an important application, based on a slight generalization discussed below [34], the
Jarzynski relation can be used to reconstruct the free energy landscape of a biomolecule
G(x) where x denotes a “reaction coordinate” like the end-to-end distance in forced
protein folding as reviewed in [4].

Bochkov-Kuzolev relation

The Jarzynski relation should be distinguished from an earlier relation derived
by Bochkov and Kuzolev [35, 36]. For a system initially in equilibrium in a time-
independent potential V0(x) and for 0 ≤ τ ≤ t subject to an additional space and
time-dependent force f (x,τ), one obtains from (30) the Bochkov-Kuzolev relation
(BKR)

⟨exp[−w̃/T ]⟩= 1 (33)

with
w̃≡

∫ xt

x0

f (x,λ (τ))dx (34)

by choosing p1(x) = p0(x) = exp[−(V0(x)−F0)/T ]. Under these conditions, w̃ is the
work performed at the system. Since this relation looks almost like the Jarzynski relation
there have been both claims that the two are the same and some confusion around the
apparent contradiction that ⟨exp[−w/T ]⟩ seems to be both exp[−∆F/T ] or 1. The
present derivation shows that the two relations are different since they apply a priori
to somewhat different situations. The JR as discussed above applies to processes in a
time-dependent potential, whereas the BKR as discussed here applies to a process in a
constant potential with some additional force. If, however, in the latter case, this explicit
force arises from a potential as well, f (x,τ) = −V ′1(x,τ), there still seems to be an
ambiguity. It can be resolved by recognizing that in this case the work entering the BKR
(33)

w̃ =
∫

dx f =−
∫

dxV ′1(x,τ) =−∆V1 +w (35)

differs by a boundary term from the definition of work w given in eq. (10) and used
throughout this paper. Thus, if the force arises from a time-dependent but conservative
potential both the BKR in the form ⟨exp[−w̃/T ]⟩ = 1 and the JR (31) hold. The con-
nection between the two relations can also be discussed within a Hamiltonian dynamics
approach [37].

BEYOND THE COLLOIDAL PARADIGM

Heat and system entropy

The theory developed so far has been described using a single driven colloidal particle.
The general concepts, however, are applicable to a much wider class of systems. An
obvious generalization is to a system with several or many slow degrees of freedom {x}
obeying coupled Langevin equations or the corresponding Fokker-Planck equation or



path integral. Formally, if one keeps the definitions as introduced so far, the general
relations, being based on mathematical identities, remain true apart from the trivial
change of notation replacing some of the scalar quantities for a colloidal particle with
vectors (like, e.g., for the force and the current) or tensors (for mobility and diffusion
constants).To keep the notation simple, we will stick to the scalar notation even for this
more general case understood to be discussed from now on in these notes.

Such a simple extension, while mathematically correct, however, would miss one
physically essential point which has to do with the proper identification of heat as
pointed out by Sekimoto [38]. In consequence, the identification of a physically mean-
ingful entropy for the system requires a slight modification as well. Its origin lies in the
crucial difference between internal energy and free energy. The former should show up
in the first law, whereas the latter belongs to the realm of the second law.

Consider a system like a polymer or protein with a few slow degrees of freedom
{xi} collectively labeled by x which obey a Langevin equation (4) in a time-dependent
potential V (x,λ ) where λ refers to an external control parameter like the position of
a laser trap or of the base of an AFM cantilever [4], see Fig. 6. If there are no non-
conservative forces f , the system is in equilibrium for any fixed λ . Then the probability
to find the system at positions x is given by p(x,λ ) = exp[−(V (x,λ )−F (λ ))/T ]. The
crucial point is that V (x,λ ) now corresponds to an effective free energy (constrained
to the slow variables x). This constrained free energy is temperature dependent since
it is obtained by integrating out in a microscopic Hamiltonian both the fast degrees
of freedom of the biopolymer and the degrees of freedom of the solutes and solvent
molecules interacting with the slow degrees of freedom x. Hence, a state characterized
by only the slow variable x carries some intrinsic entropy sint(x,λ ) and also some internal
energy E(x,λ ). These three quantities are related via the usual relation for a free energy
as

V (x,λ ) = E(x,λ )−T sint(x,λ ) = E(x,λ )+T ∂TV (x,λ ). (36)

This distinction between free energy and internal energy implies a modification of the
heat compared to the case without internal degrees of freedom discussed above. While
the work showing up in the first law is still given by (10), the increment in internal
energy is given by

dE = dV +T dsint. (37)

Consequently, the correct identification of the heat follows as

dq = T dsm = dw−dE = [ f −∂xV (x,λ )]dx−T dsint, (38)

where we allow for full generality for non-conservative forces f as well. Thus, in
contrast to the simpler colloidal case, the expression for heat now acquires a contribution
from the intrinsic entropy.

Likewise, to characterize the full entropy ssys of the system along an individual
trajectory x(τ), we have to add this intrinsic entropy to the stochastic one (introduced in
(15)) leading to

ssys(τ)≡ s(τ)+ sint(x(τ)). (39)

In the total entropy balance,

ṡtot = ṡsys + q̇/T = ṡ+[ f −∂xV ]ẋ/T, (40)



FIGURE 6. Sketch of protein unfolding experiment. The {xi} denote the position of selected slow
degrees of freedom of the protein attached on one end to a bead subject to an optical trap. For a simple
description, one considers only the (projected) end-to-end distance x. The time-dependent position λ of
the center of the trap can be controlled externally.

the contributions of the intrinsic entropy cancel. Therefore, the expression for the total
entropy change as given by the right-hand side of (21) remains unchanged.

Energy and entropy landscape of a protein

For an example illustrating this subtlety, consider the forced unfolding of a protein
for which x now labels the end to end distance, considered to be the only slow variable,
as sketched in Fig. 6. For simplicity we ignore the linkers between the polymer and the
bead in the trap and rather assume one end of the protein being directly joined with the
bead. The total potential then reads

V (x,λ ) = G(x)+ k(λ − x)2/2 (41)

with the first term being the free energy landscape of the protein and the second one the
elastic energy associated with the trap of stiffness k centered at λ (τ).

The increment in work reads

dw = ∂λV (x,λ )dλ = k(λ − x)dλ (42)

which corresponds to force times displacement of the center of trap. Clearly, if that
position is not moved there is no external work applied to the total system comprising
the protein and the bead. The increment in heat (38) becomes

dq = dw−dV (x,λ )−T dsint(x) = [−∂xG(x)+ k(λ − x)]dx−T dsint(x) (43)

where we exploit the fact that the intrinsic entropy is independent of the position λ
of the center of the trap. The dissipated heat not only comprises the force appearing



in the Langevin equation times displacement but in addition acquires a contribution
from the “intrinsic entropy landscape” sint(x). The latter is in general not known. It
could, however, be obtained by measuring the temperature dependence of the free energy
landscape sint(x) = −∂T G(x). If such data became accessible, one could still infer the
exchanged heat from measuring the trajectory x(τ) just as in the colloidal case.

The free energy landscape G(z) can be reconstructed using

e−G(z)/T = ⟨δ [z− x(t)]e−w(t)/T ⟩e(k/2)(z−λt)
2/T e−F (λ0)/T (44)

This expression follows from the general IFT (30) by plugging the initial distribution
p0(x) = exp[−(V (x,λ0)−F (λ0))/T ] and the choice p1(x) = δ (x− z) into it [2]. It has
first been derived by Hummer and Szabo [34] using a Feynman-Kac approach. Thus to
get the potential G(z) it is sufficient to select those trajectories that have reached z after
time t and record the corresponding work w(t) = k

∫ t
0 dτ(λ (τ)−x(τ))λ̇ accumulated up

to time t . The experiment on unfolding RNA mentioned in the Introduction has been
one of the first real-world tests of this z-resolved Jarzynski relation [7].

NON-EQUILIBRIUM STEADY STATES

Characterization

Non-equilibrium does not necessarily require that the system is driven by time-
dependent potentials or forces as discussed so far. A non-equilibrium steady state
(NESS) is generated if time-independent but non-conservative forces f (x) act on the
system. Such systems are characterized by a time-independent or stationary distribution

ps(x)≡ exp[−ϕ(x)]. (45)

As a fundamental difficulty, there is no simple way to calculate ps(x) or, equivalently, as
it is sometimes called the “non-equilibrium potential” ϕ(x). In one dimension, it follows
from quadratures [30] but for more degrees of freedom, setting the right hand side of the
Fokker-Plank equation (7) to zero represents a formidable partial differential equation.
Physically, the complexity arises from the fact that detailed balance is broken. Then a
non-zero stationary current arises given by

js(x) = µF(x)ps(x)−D∂x ps(x) = vs(x)ps(x) (46)

with the mean local velocity [6]
vs(x)≡ ⟨ẋ|x⟩. (47)

This local mean velocity vs(x) is the average of the stochastic velocity ẋ over the subset
of trajectories passing through x. This current leads to a mean entropy production rate
(23)

σ ≡ ⟨∆stot⟩/t =
∫

dx js(x)D−1 js(x)/ps(x). (48)

Even though the stationary distribution and current can not be calculated in general, an
exact relation concerning entropy production can be derived for any NESS.



Detailed fluctuation theorem

In a NESS, the (detailed) fluctuation theorem

p(−∆stot)/p(∆stot) = exp[−∆stot] (49)

expresses a symmetry of the probability distribution p(∆stot) for the total entropy pro-
duction accumulated after time t in the steady state. This relation has first been found
in simulations of two-dimensional sheared fluids [8] and then been proven by Gallavotti
and Cohen [9] using assumptions about chaotic dynamics. For a stochastic dynamics, it
has been proven by Kurchan [10] and Lebowitz and Spohn [11]. Strictly speaking, in all
these works the relation holds only asymptotically in the long-time limit since entropy
production had been associated with what in our approach is called entropy production
in the medium. If one includes the entropy change of the system (27), the DFT holds
even for finite times in the steady state [6]. This fact shows another benefit of defining
an entropy along an individual trajectory.

For an experimental test including the system entropy, a colloidal particle has been
driven by a constant force along a periodic potential, see Fig. 7 [39]. This experimental
set-up constitutes the simplest realization of a genuine NESS. The same set-up has been
used to test other recent aspects of stochastic thermodynamics like the possibility to
infer the potential V (x) from the measured stationary distribution and current [40] or
a generalization of the Einstein relation beyond the linear response regime [41, 42]
discussed below. For experimental illustration of the DFT using Brownian particles in a
harmonic trap, electric circuits and a torsion pendulum, see [43, 44, 45].

The DFT for total entropy production holds even under the more general situation
of periodic driving F(x,τ) = F(x,τ + τp), where τp is the period, if (i) the system has
settled into a periodic distribution p(x,τ) = p(x,τ + τp), and (ii) the trajectory length t
is an integer multiple of τp. For the distribution of work p(W ), a similar DFT can be
proven provided the protocol is symmetric λ (τ) = λ (t− τ), the non-conservative force
zero, and the systems starts in equilibrium initially. For such conditions, the DFT for
work was tested experimentally using a colloidal particle pushed periodically by a laser
trap against a repulsive substrate [31], as shown in the insert of Fig. 5 above.

Generalized Einstein relation

In a NESS, the relation between fluctuation, response to an external perturbation and
dissipation is more involved than in equilibrium. The well-known Einstein relation can
here serve as a paradigm. First, for a free particle in a thermal environment, the diffusion
constant D0 and the mobility µ0 are related by

D0 = T µ0 . (50)

If this diffusion is modelled by a Langevin equation the strength of the noise becomes
also D0 as introduced above. For notational simplicity, we have ignored the subscript
“0” in all but the present section of these notes. Second, if the particle is not free but
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FIGURE 7. Left: Colloidal particle driven by a non-conservative force f (λ ) along a potential V (x,λ ) to
generate a NESS. Right: Corresponding histograms of the total entropy production p(∆stot) for different
lengths of trajectories and two different strengths of the applied force f . The inserts show the total potential
V (x)− f x in the two cases; adapted from [39].

rather diffuses in a potential V (x), the diffusion coefficient

D≡ lim
t→∞

[⟨x2(t)⟩−⟨x(t)⟩2]/2t, (51)

and the effective mobility

µ ≡ ∂ ⟨ẋ⟩
∂ f

(52)

which quantifies the response of the mean velocity ⟨ẋ⟩ to a small external force f still
obey D = T µ for any potential V (x). Note that with this notation D < D0 for any non-
zero potential, since it is more difficult to surmount barriers by thermal excitation. Third,
one can ask how the relation between the diffusion coefficient and mobility changes in a
genuine NESS as shown in the set-up of Fig. 7. The definitions (51) and (52) are then still
applicable if in the latter the derivative is taken at non-zero force. Using path-integral
techniques, one can derive a generalized Einstein relation of the form [41]

D = T µ +
∫ ∞

0
dτ I(τ), (53)

with
I(τ)≡ ⟨[ẋ(t + τ)−⟨ẋ⟩][vs(x(t))−⟨ẋ⟩]⟩. (54)

The “violation” function I(τ) correlates the actual velocity ẋ(t +τ) with the local mean
velocity vs(x) introduced in (47) after subtracting from both the global mean velocity
⟨ẋ⟩=

∫
vs(x)ps(x)= 2πR js that is given by the net particle flux js along the ring of radius
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FIGURE 8. Experimental test of the generalized Einstein relation (53) for different driving forces f ,
using the set up shown in Fig. 7. The open bars show the measured diffusion coefficients D. The stacked
bars are mobility µ (grey bar) and integrated violation I (hatched bar); adapted from [42].

R. In one dimension for a steady state, the current must be the same everywhere and
hence js is a constant. The offset t is arbitrary because of time-translational invariance
in a steady state. In equilibrium, detailed balance holds and therefore vs(x) = ⟨ẋ⟩ = 0.
Then, the violation (54) vanishes and (53) reduces to the equilibrium relation (50).

For an experimental test of the non-equilibrium Einstein relation (53), trajectories of a
single colloidal particle for different driving forces f were measured and evaluated [42].
Fig. 8 shows the three terms appearing in (53) for five different values of the driving force
in the set-up shown in Fig. 7. Their sum is in good agreement with the independently
measured diffusion coefficient directly obtained from the particles trajectory using (51).
For very small driving forces, the bead is close to equilibrium and its motion can be
described using linear response theory. As a result, the violation integral is negligible.
Experimentally, this regime is difficult to access since D and µ become exponentially
small and cannot be measured at reasonable time scales for small forces and potentials as
deep as 40 T . For very large driving forces, the relative magnitude of the violation term
becomes smaller as well. In this limit, the imposed potential becomes irrelevant and the
spatial dependence of the local mean velocity, which is the source of the violation term,
vanishes. The fact that the violation term is about four times larger than the mobility
proves that this experiment indeed probes the regime beyond linear response. Still, the
description of the colloidal motion by a Markovian (memory-less) Brownian motion
with drift as implicit in the analysis remains obviously a faithful representation since the
theoretical results are derived from such a framework.



Generalized FDT for a driven particle

The generalized Einstein relation just discussed is in fact the time-integrated version
of a generalized fluctuation-dissipation-theorem (FDT) of the form [41]

T
∂ ⟨ẋ(τ2)⟩
∂ f (τ1)

= ⟨ẋ(τ2)ẋ(τ1)⟩−⟨ẋ(τ2)vs(x(τ1))⟩. (55)

The left hand side quantifies the response of the mean velocity at time τ2 to an additional
force pulse at the earlier time τ1. In equilibrium, i.e., more strictly speaking in the linear
response regime, this response function is given by the velocity-velocity correlation
function which is the first term on the right hand side. In non-equilibrium, an additive
second term on the right hand side contributes which involves again the crucial mean
velocity vs. Both correlation functions on the right-hand side are taken in the NESS.

The equilibrium form of the FDT can be restored by referring the velocity to the local
mean velocity according to

v(τ2)≡ ẋ(τ2)− vs(x(τ2)) (56)

for which the form

T
∂ ⟨v(τ2)⟩
∂ f (τ1)

= ⟨v(τ2)v(τ1)⟩ (57)

holds even in non-equilibrium [41].
This form can be interpreted physically as an extension of the Onsager regression

principle to NESSs. Observed in the locally comoving frame, the decay of a spontaneous
fluctuation can not be distinguished from the decay of an externally generated one. A
comprehensive mathematical formulation of this concept has been given in [46, 47].

Generalized FDT for an arbitrary NESS

These results for the response of the velocity to a force can in fact be generalized to
the response of any observable to any perturbation in an arbitrary NESS. Remarkably,
in such a generalized FDT, the stochastic entropy and its splitting into two contributions
plays a prominent role.

For the general setting, consider a set of coupled Langevin equations (4) (with vector
indices suppressed). The non-conservative forces f allow for a genuine NESS. If this
NESS is perturbed by some small “field” h in a delta-like fashion at time τ1, one can
ask for the effect of this perturbation on a measurement of an observable A(x) at the
later time τ2. The field h can enter the potential, the non-conservative force f or even the
mobility µ . In any case, the response can be expressed by a correlation function in the
unperturbed NESS according to

δ ⟨A(τ2)⟩
δh(τ1)

= ⟨A(τ2)B(τ1)⟩. (58)



At first sight, one might not have expected that the response can be expressed by such
a correlation function let alone that the “conjugate” observable B(x) depends only on
the perturbation and is the same for all observables A(x) and time-differences τ2−τ1. In
fact, a general expression for B(x) follows from naive perturbation theory for the Fokker-
Planck equation corresponding to (7) as shown in [30], for a comprehensive review see
also [48].

It is instructive first to recall the familiar linear response result around genuine equi-
librium ( f ≡ 0) in this setting. Suppose that the perturbation h affects the potential ac-
cording to V (x)→V (x,h). In this case, B is given by

T B(x) =−∂τ∂hV (x,h)|h=0. (59)

If, e.g., the perturbation h is a genuine force, h= f , then the potential becomes V (x, f ) =
V (x)− f x leading to the conjugate variable B = ẋ as discussed above.

In a NESS, the conjugate variable can be expressed as [49]

B(x) =−∂τ∂hs(x,h)|h=0 (60)

where s(x,h) = ϕ(x) = − ln ps(x,h) is given by the non-equilibrium potential (45),
which, in a time-independent NESS, is identical to the observable yielding the stochastic
entropy along the trajectory. Note that this expression covers the equilibrium FDT as
well, since with peq(x,h) = exp[−(V (x,h)−F (h))/T ] we have s(x,h) = (V (x,h)−
F (h))/T . Since the free energy F (h) is time-independent, (59) and (60) lead to the
same observable.

In a NESS, by expressing the stochastic entropy through medium, intrinsic (as intro-
duced in (36)) and total entropy, we can split B(x) into two contributions

B(x) =−∂τ∂hs(x, f ) = ∂h[ṡm(x,h)+ ṡint(x,h)]−∂hṡtot(x,h). (61)

If the NESS has been generated by applying a finite perturbation h0 to an equilibrium
state and is now further perturbed by a small perturbation δh in the same “direction”,
one can show that the first term in (61) corresponds to the conjugate observable in the
corresponding equilibrium FDT for a small perturbation applied in h direction. Thus, in
this situation, the FDT for a NESS is obtained by taking the equilibrium FDT, evaluating
the right hand side under NESS conditions, and then subtracting a term which involves a
variable associated with total entropy production. Such an additive structure is physically
more transparent than the often used phenomenological description of a FDT in a NESS
using an effective temperature [50].

Finally, it is interesting to observe that the conjugate variable B(x) is not unique, i.e.,
there exists an equivalence class (denoted by ∼=) of such variables which can be used
as equivalent observables when appearing at the earlier time in a correlation function in
a NESS [49]. For the paradigmatic case of the colloidal particle driven along the ring
and perturbed by an additional small force, e. g., it turns out that B(x) = ẋ− vs(x) ∼=
vs(x)−µF(x). Both expressions are thus equivalent when used in a correlation function
in a NESS at the earlier time τ1, i.e.

⟨A(x(τ2))[ẋ(τ1)− vs(x(τ1))]⟩= ⟨A(x(τ2))[vs(x(τ1))−µF(x(τ1))]⟩ (62)



holds for any observable A(x) in this NESS. The conjugate variable becomes unique only
by imposing additional conditions like that it should not contain a time-derivative as it
holds for the second choice. Whether there is some deeper significance hidden behind
this non-uniqueness remains to be explored.

In two recent experiments, this generalized FDT has been tested for a driven colloidal
particle [51, 52]. In the second experiment, the non-uniqueness of the conjugate observ-
able has been exploited to choose the observable leading to the best statistics for the
corresponding correlation function.

For related interpretation of the generalized FDT, compare also [53, 54, 55] and for
applications to interacting many body systems like sheared suspensions, see [56, 57].

CONCLUDING PERSPECTIVE

Within the last decade, stochastic thermodynamics has developed into a comprehensive
framework for describing systems which, despite being embedded in an aqueous solu-
tion of well-defined temperature, are still in non-equilibrium due to external forces or
fields. This theory can best be introduced using a driven colloidal particle as paradigm.
The generalization to many interacting degrees of freedom is then straightforward if the
crucial distinction between internal and free energy is kept in mind. The exact relations
derived within stochastic thermodynamics quantify what previously has sometimes been
called events “violating the second law”. Apart from serving as consistency checks, be-
ing so universal, the genuine fluctuation theorems – whether integral or detailed – are
unlikely to reveal peculiarities of any specific system. From a more practical perspec-
tive, the Jarzynski relation might be the most useful one since it provides access to free
energy differences from non-equilibrium measurements. Likewise, with the generalized
FDTs it becomes possible to predict the response of a NESS to a perturbation by just
monitoring an appropriate correlation function.

For a perspective, we close with three research problems drawn again from a personal
point of view with selected references that could serve as guide to earlier and related
work.

The detailed fluctuation theorem expresses a universal symmetry of the distribution
of entropy production valid for any NESS. A classification of NESSs, however, may
arise from investigating this distribution in the long-term limit where it obeys a large
deviation principle [58]. Are there “universality classes” based on the behavior of the
corresponding rate function? What is the origin of the almost singular behavior of the
rate function at zero entropy production even for very simple systems [59, 60]? Why
does a system even deep in a NESS seem to “remember” where equilibrium was?

Thermodynamics has originally been developed for understanding the rules of how
to convert heat into work. With stochastic thermodynamics providing the same concepts
for micro and nano scales, it should help finding the optimal design of such machines
in these ranges. Establishing and controlling temperature differences on these scales re-
mains a challenge. Chemical gradients, in contrast, can easily be maintained as the ubiq-
uitous molecular motors in cell biology prove. Calculating the efficiency of biological
motors and optimizing the one of artificial machines becomes possible if the framework
described here for Langevin dynamics is generalized to a Markovian dynamics on a set



of internal states of the machine or motor [61, 62, 63, 64, 65, 66, 67, 68]. The first ex-
perimental studies of a rotary enzyme, the F1-ATPase, using the concept of stochastic
thermodynamics for data analysis have just appeared [69, 70].

Finally, in a sense coming back to the origins, the so far unmentioned zeroth law of
thermodynamics states the transitivity of the concept of two states being in equilibrium.
One could wonder whether a similar relation holds for NESS in contact. In general, cer-
tainly not. Quite surprisingly, however, a numerical study of driven lattice gases weakly
coupled to another to allow for particle exchange has shown that for these systems an
effective zeroth law almost holds [71]. The challenge to quantitatively understand the
coupling between NESS in general still remains a significant one [72, 73].
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Abstract. We review a dynamical approach to non-equilibrium MD (D-NEMD). We show how,
using a proper simulation setup, is possible to treat interesting cases in which the initial condition is a
stationary non-equilibrium state produced by a suitable dynamical system. We then extend the class
of non-equilibrium phenomena that can be studied by atomistic simulations to the case of complex
initial conditions consisting in assigning a macroscopic value of a scalar or vector observable or a
field. We illustrate the functioning of this method by applying it to the relaxation of an interface
between two immiscible liquids. We have shown that our method generate unbiased results while
this might not be the case for the often used short time average approach.
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INTRODUCTION

By time averages, the macroscopic properties, that are the object of equilibrium statis-
tical mechanics, emerge from the microscopic interactions among the elementary con-
stituents of a macroscopic body in a natural way. This is the Boltzmann point of view put
in practice by molecular dynamics (MD) simulations. The situation is much less settled
in the case of non-equilibrium statistical mechanics, except for the linear response to an
external field [1, 2] and for stationary non-equilibrium situations [3, 4, 5, 6] (where the
use of time averages is still justified). In the first case, the Kubo formula reduces the
determination of the linear response to the calculation of equilibrium time correlation
functions, which are easy to sample accurately by MD simulations; in the second case,
time averages can still be used to replace ensemble averages over the unknown ensemble
corresponding to the steady state (provide the system remains ergodic). Thus, for both
cases, with a proper setup the physical properties of the system can be computed.

A MD method to compute the statistical properties of a non-equilibrium non-
stationary systems has been proposed quite some time ago [7]. with this method

1 To whom correspondence should be addressed: s.meloni@caspur.it



rigorous ensemble averages can be obtained by following the so called dynamical
approach to non-equilibrium molecular dynamics (D-NEMD) [7, 8, 9]. This method,
which is just the generalization and the numerical implementation of the Onsager princi-
ple of regressive fluctuations [10, 11], tells that the time dependent statistical average of
a microscopic observable is computed by taking an average over the initial ensemble of
the observable evolved in time under a perturbed dynamics. When the initial ensemble
corresponds either to a system in equilibrium or to the stationary non-equilibrium state
of a given perturbation, it can be easily sampled by MD. The Onsager-Kubo relation
(see below) is thus exploited to perform non-equilibrium MD ensemble averages.
That involves choosing independent configurations of the system in a steady state,
performing the perturbed time evolution of every independent initial configuration and
computing averages over the set of these different trajectories [7, 8, 9]. However, when
the initial distribution corresponds to the equilibrium distribution of a system submitted
to a macroscopic constraint, the prescription above must be complemented by a method
which allows to sample the conditional Probability Density Function (PDF) associated
with this condition. In this paper we shall illustrate how to deal with both cases: i) initial
conditions corresponding to a stationary non-equilibrium distribution [12], and ii) initial
conditions corresponding to the conditional equilibrium distribution of a system subject
to an external macroscopic constraint, be it of scalar, vectorial or field nature [13]. This
latter method allows to treat constraint of both scalar or field nature. We will achieve this
objective by combining D-NEMD with restrained MD. The latter is used to perform the
conditional average satisfying the macroscopic constraint mentioned above then, like
in standard D-NEMD, the Onsager-Kubo relation is used to compute time-dependent
statistical average of the relaxation from this state. It is worth to mention that the scalar
and vectorial cases have been already implicitly solved by the Blue Moon approach in
Ref. [14]. However, using the Blue Moon approach for vector or, even worse, field-like
constraints, especially in molecular systems in which constraints are also used for
imposing the molecular geometry, might result inconvenient in practice.

As an illustration of the case of stationary non-equilibrium initial conditions we will
study the transient hydrodynamical behavior in the formation of convective cells within
a two-dimensional fluid system subject to orthogonal thermal gradient and gravity field.
We follow the time-dependence of the density ρ(x; t), velocity v(x; t) and temperature
T (x; t) fields induced adding a gravity to a system in stationary conditions under the
thermal gradient.

To illustrate our method to sample from a microscopic system under macroscopic
constraints, we study the hydrodynamic relaxation to the equilibrium of the interface
between two immiscible liquids. We compute the time evolution of the difference of
density fields of the species A and B (∆ρ(x; t) = ρA(x; t)−ρB(x; t)) and the associated
velocity field (vA(x; t)) and show the usefulness of our approach that does not rely on the
separation of timescale of atomistic and hydrodynamical processes, as it is the case for
the often used method of local time average.

The paper is organized as follows. In Sec. we describe the theoretical background
of D-NEMD and our method for sampling complex initial conditions. In Sec. we
present an application of D-NEMD to the study of the formation of convective cells in a
system subject to thermal gradient and gravity field. In Sec. we discuss an application
of our combined restrained MD + D-NEMD method. Finally, in Sec. we draw some



conclusions.

THEORETICAL BACKGROUND

In D-NEMD we consider a classical system with N particles in d spatial dimensions.
Let ri and pi be the position and the momentum of the i-th particle, respectively, and
Γ = {ri,pi} be a point in phase space. The Hamiltonian governing the system is H(Γ, t),
which we assume to be explicitly time dependent (the generalization to non-Hamiltonian
systems could be easily worked out [16, 17, 18]).

In statistical mechanics an observable, including a macroscopic field (see below for
its definition), is obtained as an ensemble average in phase space of the corresponding
microscopic observable:

O(t) =
∫

dΓÔ(Γ)w(Γ, t)≡
〈
Ô(Γ)w(Γ, t)

〉
(1)

where O(t) is the macroscopic observable and Ô(Γ) is the corresponding microscopic
observable. w(Γ, t) is the (time dependent) phase-space PDF. As a consequence of the
conservation of probability, w(Γ, t) obeys the Liouville equation:

∂w(Γ, t)
∂ t

= −∇Γ[Γ̇w(Γ, t)] (2)

{w(Γ, t),H(Γ, t)}=−iL(t)w(Γ, t)

where {·, ·} is the Poisson bracket and L(t) is the Liouville operator. A formal solution
of Eq.(2) is:

w(Γ, t) = S†(t)w(Γ,0) (3)

where S†(t) is the adjoint time evolution operator of the dynamical system.
We now consider the time-evolution of a non-time-dependent phase-space observable:

dÔ(Γ)

dt
= {Ô(Γ),H(Γ, t)}= iL(t)Ô(Γ) (4)

which has the following formal solution

Ô(Γ(t)) = S(t)Ô(Γ(0)) (5)

where S(t) is the time-evolution operator.
By combining Eq.(1) with Eq. (3) and (5) we get the Onsager-Kubo relation:



O(t) = < Ô(Γ)S†(t)w(Γ,0)> (6)
< S(t)Ô(Γ)w(Γ,0)>

The meaning of the above equation is that the ensemble average of the microscopic
observable Ô(Γ) over the time-dependent PDF w(Γ, t) at time t is the same as the
ensemble average of the microscopic observable at the point Γ(t), corresponding to the
evolution in time of the initial phase-space point Γ(0), averaged over the PDF at time
t = 0 (w(Γ,0)).

In the standard D-NEMD approach we assume that w(Γ,0) corresponds to a stationary
condition, then can be sampled via an MD simulation possibly governed by the Hamil-
tonian H0(Γ) (more general stationary conditions can be constructed, see below and in
Ref. [12]). Then we can evolve initial configurations taken from that trajectory with the
dynamics generated by H(Γ, t). Along these paths we compute the microscopic observ-
able Ô(Γ(t)). The time-dependent behavior of the macroscopic observable O(t) is the
ensemble average of Ô(Γ(t)) over all the trajectories originated from each of the initial
states (see Eq. (6)). An example of how to generate stationary non-equilibrium condi-
tions might be by putting the sample in contact with two thermal reservoirs at different
temperature at the border of the simulation box. Using this setup it is possible by MD to
sample an initial stationary PDF corresponding to a system under thermal gradient.

We will now generalize the standard D-NEMD approach to the case of an initial PDF
associated with a macroscopic constraint, i.e. the conditional PDF to find the system at
the point Γ in phase space given that a microscopic field F̂(x|r), function of the atomic
position only, at the time t = 0 is equal to F∗(x) (F̂(x|r) = F∗(x)). Our method a fortiori
applies to the case in which the observable F is a scalar. For sake of clarity we first
introduce our method assuming that F is scalar and then explain how to extend it to the
case of space-dependent fields. Let us start recalling that the conditional PDF mentioned
above reads:

w(Γ|F = F∗) =
w(Γ)δ (F̂(r)−F∗)

Z PF(F∗)
(7)

where F̂(r) is the microscopic observable associated with the macroscopic observable
F , Z is the partition function associated with w(Γ) and PF(F∗) =

∫
dΓw(Γ)δ (F̂(r)−

F∗)/Z is the PDF to find the system in the state F = F∗.
We propose to sample this conditional PDF by the biased MD simulation governed

by the following Hamiltonian:

H̃(Γ) = H0(Γ)+
k
2
(F̂(r)−F∗)2 (8)

where k is a tunable parameter. The PDF sampled by this biased MD is:

wk(Γ) =
exp[−β H̃(Γ)]∫

dΓexp[−β H̃(Γ)]
(9)



=
exp[−β (H0(Γ)+

k
2(F̂(r)−F∗)2)]∫

dΓexp[−β (H(Γ,0)+ k
2(F̂(r)−F∗)2)]

By recalling that exp(−(y−µ)2/2σ2)/
√

2πσ → δ (y−µ), in the limit of k→ ∞, we
see that Eq. (9) goes to

wk(Γ)→
exp[−β (H0(Γ)]δ (F̂(r)−F∗)∫

dΓexp[−β (H0(Γ)]δ (F̂(r)−F∗)
(10)

Multiplying and dividing by Z it is apparent that wk(Γ)→ w(Γ|F = F∗).
We now extend our discussion to the case in which the condition (and the observ-

ables of interest) is with respect to a macroscopic field, rather than to a scalar. Generally
speaking, in statistical mechanics the microscopic observable associated to a macro-
scopic field is defined as [21]:

F̂(x,Γ) =
N

∑
i=1

Fi(Γ)δ (x− ri) (11)

where Fi(Γ) is the microscopic property under consideration relative to the particle i
and x is a point in the ordinary ℜ3 space. Eq. (11) means that only atoms at the point
ri = x contribute to the field at that point. Examples of fields of interest for the problem
presented in Sec. and are the fields density (ρ(x, t)), velocity (v(x, t)) and temperature
(T (x, t)). These fields at time t are given by:

ρ(x, t) =<
N

∑
i=1

µiδ (x− ri)w(Γ, t)> (12)

v(x, t) =
< ∑

N
i=1 piδ (x− ri)w(Γ, t)>

ρ(x, t)
(13)

T (x, t) =
1

3kB

< ∑
N
i=1 δ (x− ri)[pi−µiv(x, t)]2w(Γ, t)>

ρ(x, t)
(14)

where µi is the mass of the i-th atom.
Eq. (7) can be easily extended to the case in which the condition is a field:

w[Γ|F̂(x,Γ) = F∗(x)] =
w(Γ)δ (F̂(x,Γ)−F∗(x))

Z PF [F∗(x)]
(15)

Now w[Γ|F̂(x)] is functional of the field F(x) and the notation δ (F̂(x|Γ)−F∗(x)) ≡
∏x∈ℜ3 δ (F̂(x,Γ)−F∗(x)) indicates that the delta function is considered acting all over



the x space. Of course, this definition of the conditional probability density functional
is of no practical use in simulations. We overcome this problem by introducing a
discretization {xα}α=1,m of the ℜ3 space, where m is the number of points over which
the space is discretized. Consistently with this discretization the microscopic observable
fields is defined as the average over the cells around around each point xα :

F̂(xα ,Γ) =
1

Ωα

∫
Ωα

dx
N

∑
i=1

Fi(Γ)δ (x− ri) =
1

Ωα

Nα

∑
l=1

Fl(Γ) (16)

where the sum in the r.h.s. runs over the atoms belonging to the cell around the point xα .
However, this definition is not suitable for our restrained MD method as it might produce
impulsive forces on the atoms moving from one cell to another (see below). Therefore
we smooth the central term of Eq. (16) by replacing δ (x− ri) with the (normalized)
Gaussian g(x;ri,σ) = exp[−(x− ri)

2/2σ2]/
√

2πσ . With this approximation, Eq. (16)
becomes:

F̂(xα ,Γ) = (17)
1

Ωα

∑
N
i=1 Fi(Γ)Π

3
χ=1

[
er f (xα,χ − ri,χ ,σ)− er f (xα,χ − ri,χ ,σ)

]
where er f (c,σ) =

∫ c
−∞

dx g(x;0,σ) is the error function, and xα,χ and xα,χ is the χ

component of the upper and lower limit of the orthorhombic cell around the point xα .
The conditional PDF associated to the field F(x) on the discrete representation of the

ℜ3 space is:

w
(
Γ|{F̂(xα ,Γ) = F∗(xα)}α=1,m

)
=

w(Γ)Πm
α=1δ (F̂(xα ,Γ)−F∗(xα))

Z PF({F∗(xα)}α=1,m)
(18)

where PF({F∗(xα)}α=1,m) is the joint probability that F̂(x1,Γ)=F∗(x1), . . . , F̂(xm,Γ)=
F∗(xm). This conditional PDF can be sampled by a MD governed by the following
Hamiltonian

H̃(Γ) = H0(Γ)+
m

∑
α=1

k
2
(F̂(xα ,r)−F∗(xα))

2 (19)

which is the straightforward extension of the Hamiltonian of Eq. (19) to the case of a
macroscopic field in the discrete space approximation. Then, as in standard D-NEMD
approach, we evolve a set of initial configurations taken from the trajectory above with
the dynamics generated by H(Γ, t). Along these paths we can compute the microscopic
observables and calculate the ensemble average over all the trajectories originated from
each initial state (Eq. (6)).

Before closing this section it is worth to mention that the problem of sampling
initial conditions consistent with a macroscopic constraint was already implicitly solved



by the Blue Moon ensemble (see Refs. [14] and [15]). Blue Moon does not sample
directly the conditional PDF w(Γ|F = F∗) (or w

(
Γ|{F̂(xα ,Γ) = F∗(xα)}α=1,m

)
for the

vectorial case) but rather it samples the constrained PDF in configurational space wF∗(r).
The relation between the Blue Moon ensemble average and conditional average in the
configurational space is given by (see Ref. [15]):

< Ô(r)>F=F∗=
< Ô(r)1/

√
|det[C(r)]|>BM

< 1/
√
|det[C(r)]|>BM

(20)

where Ô(r) is a microscopic observable and Ci j(r)=∇σi(r)M−1∇σ j(r), being σi(r) the
(vectorial) condition F̂(r) = F∗ or any other constraint imposed on the system, in par-
ticular constraints imposed for modeling (partly) rigid molecules [19], and M the mass
matrix (Mi j = µiδi j). The F = F∗ and BM indexes denote that the ensemble averages are
taken according to the conditional or constrained (Blue Moon) PDF, respectively. If the
observable of interest depends on the phase space (Ô(Γ)) rather than on the configura-
tional space it is possible to extend the validity of Eq. 20 by generating the momentum
component of the PDF from a suitable Maxwellian distribution.

Two comments are in order concerning the restraint method for sampling the complex
initial condition described in this paper versus the approach based on the Blue Moon
ensemble. First of all, depending on the macroscopic condition and the molecular con-
straints, calculating the unbiasing term 1/

√
|det[C(r)]|/ < 1/

√
|det[C(r)]| >BM might

be complex. Moreover, while the restraint approach can be combined with Monte Carlo
simulation when the microscopic observable connected to the macroscopic condition is
not analytical (see Ref. [20] for a detailed description of this approach), the same cannot
be done with the Blue Moon approach.

In the following two sections we show two applications of the D-NEMD described
above. We first present the case of an initial condition corresponding to a stationary non-
equilibrium system. In particular we study the transient state of formation of convection
cells when a gravity force is added to a system subject to a thermal gradient (Sec. ).
Then we illustrate an application of the restrained method to sample initial conditions
corresponding to a system subject to macroscopic constraints by studying the relaxation
to the equilibrium of the interface between two immiscible liquids (Sec. ).

FORMATION OF CONVECTIVE CELLS

Computational Model and Setup.

A fluid system consisting of N = 5041 particles is contained in a two- dimensional
box in the {xz} plane, with the gravity force directed along the negative verse of the z
axis. The particles interact via a WCA (Weeks-Chandler-Andersen) potential

u(r) =
{

4ε
[
(σ/r)12− (σ/r)6] ,∀ r ≤ 21/6σ

0,∀ r ≥ 21/6σ
(21)



where ε and σ are the usual Lennard-Jones parameters. This potential is a purely repul-
sive potential obtained from the Lennard-Jones 12-6 potential, truncated in its minimum
(so that the force is continuous), and shifted (so that the potential is continuous). Each
particle has mass µ . Hereafter, we will use reduced units putting the typical scale of
energy, mass, and length equal to unity, i.e., ε = 1, µ = 1, and σ = 1. Times are then
measured in units of

√
µσ2/ε .

We want to study the system in physical conditions that allow the formation of a
convective cell, i.e., when gravity and a thermal gradient are present. Moreover, we want
to analyze the transient evolution to the formation of the steady-state roll. For this we
can take as initial condition of the system the steady state under the effect of a thermal
gradient and then study the dynamical response of the system to the ignition of gravity.
As far as the physical setting is concerned, we take the thermal gradient orthogonal to
the gravity force. This allows a straightforward application of the D-NEMD technique.
At the top and at the bottom of the box there are repulsive walls to avoid particles from
drifting downwards under the effect of the gravity force. The thermal reservoirs which
produce the thermal gradient are realized as two stripes such that the components of the
velocity of each particle located in one of these stripes are sampled from a Maxwellian
distribution at the temperature of the wall. We assume periodic boundary conditions at
the thermal walls located at the two lateral sides of the box, i.e., a particle can move from
the hotter to the colder reservoir. To avoid that particles near a thermal reservoir interact
simultaneously with both reservoirs, we chose the thickness of the reservoir xT = 1.68,
larger than the cutoff of the WCA interaction. When the system is in equilibrium, each
reservoir contains roughly 100 particles on average. We chose the temperature of the
colder reservoir as T1 = 1.5 and a theoretical thermal gradient |∇T | = 0.1, so that the
hotter reservoir has a temperature T2 = |∇T |L + T1 = 9.9. The gravity force used is
g = 0.1 in Lennard-Jones units. In SI units, taking Ar as a reference fluid, we have
g= 7×1012 m/s2, T2 = 1196 K, and T1 = 179.7 K. The box length is L= 2.89×10−8 m,
so that the thermal gradient is |∇T |= (T2−T1)/L = 3.52×1010 K/m. External fields of
this strength are necessary to reach a sufficient signal to noise ratio in a small system. The
density, velocity and temperature fields are computed on a 15×15 discretization of the
ℜ2 space. Finally, The averages for these simulations are performed over an ensemble
made of 1000 copies of the system

Results and discussion.

We follow the evolution of the system after the ignition of the gravity field by mon-
itoring the time evolution of the temperature and density fields in some characteristic
cells (see Fig. 1). These fields become stationary at t = 250. During the transient, both
temperature and density oscillate with nearly the same period τ = 18 in all cells. The
phase of these oscillation is constant in all cells at the bottom of the box, and it is the
same for ρ and T . The same feature holds for the phase in the cells at the top of the box,
which is, however, opposite to the phase in the cells at the bottom. During the transient,
an increase (decrease) in T corresponds to an increase (decrease) in ρ in the same cell,
while, in the stationary state at large time, a temperature lower (higher) than the initial



value is associated with a density higher (lower) than the initial value, as expected.

same period !!18 in all cells. The phase of these oscillation
is constant in all cells at the bottom of the box, and it is the
same for " and T. The same feature holds for the phase in the
cells at the top of the box, which is, however, opposite to the
phase in the cells at the bottom. During the transient, an
increase "decrease# in T corresponds to an increase "de-
crease# in " in the same cell, while, in the stationary state at
large time, a temperature lower "higher# than the initial value
is associated with a density higher "lower# than the initial
value, as expected. This behavior can be followed by plotting
the transient velocity field at every quarter period of the den-
sity and temperature oscillations "Fig. 4#.

At t=! /4 $Fig. 4"a#% the velocity field points downwards
as a consequence of the ignition of gravity at t=0. At t
=! /2 $Fig. 4"b#%, the velocity field is almost null, and the
fluid is almost at rest on average. At t=3! /4 $Fig. 4"c#% the

fluid is expanding against the gravity force and the velocity
field is directed upward, as a reaction to compression. Once
again, in correspondence to the subsequent relative maxima
or minima $Fig. 4"d#% the fluid is nearly at rest. During the
following compressions and expansions "see Fig. 5# the flux
becomes localized, respectively, near the cold and near the
hot reservoirs. In correspondence of the next relative maxima
and minima the fluid is no longer at rest, and instead it be-
gins to support a convective flow. The sequence of compres-
sions and expansions strengthens the flux, which becomes
stable at t&250.

The final shape of the convective pattern is symmetric
"see Fig. 6#. Symmetric patterns were also found in simula-
tions with g=0.1 and #T /L=0.05 and g=0.05 and #T /L
=0.1.

The stationary velocity field allows us to discuss the ef-
fect of the boundary conditions. As can be seen from Fig.
7"a#, the vertical component of the velocity field as a func-
tion of the horizontal coordinate at the midheight of the box
has a sinusoidal shape. In fact, the average momentum of the
fluid in each reservoir is zero, so the friction between the

(a)

(b)

(c)

FIG. 2. Setting "A#, case "i#: Temperature computed in nine different cells as
a function of time. "a# Three cells near the hot reservoir "nx=3#, "b# three
cells at midlength "nx=8#, and "c# three cells near the cold reservoir "nx
=13#. The value of nz corresponding to each symbol is reported on the right
of the figure.

(a)

(b)

(c)

FIG. 3. Setting "A#, case "i#: Density computed in nine different cells as a
function of time. Symbols and cell locations are the same as in Fig. 2. Error
bars are smaller than the symbol size.
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has a sinusoidal shape. In fact, the average momentum of the
fluid in each reservoir is zero, so the friction between the

(a)

(b)

(c)

FIG. 2. Setting "A#, case "i#: Temperature computed in nine different cells as
a function of time. "a# Three cells near the hot reservoir "nx=3#, "b# three
cells at midlength "nx=8#, and "c# three cells near the cold reservoir "nx
=13#. The value of nz corresponding to each symbol is reported on the right
of the figure.

(a)

(b)

(c)

FIG. 3. Setting "A#, case "i#: Density computed in nine different cells as a
function of time. Symbols and cell locations are the same as in Fig. 2. Error
bars are smaller than the symbol size.
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FIGURE 1. Density (left) and temperature (right) fields as a function of time in selected cells near the
hot reservoir (top panel), in the middle (middle panel) and near the cold reservoir (bottom panel). For a
given distance from the reservoirs, three cells at different height are shown.

This behavior can be followed by plotting the transient velocity field at every quarter
period of the density and temperature oscillations (Fig. 2). At t = τ/4 (Fig. 2/a) the
velocity field points downwards as a consequence of the ignition of gravity at t = 0.
At t = τ/2 (Fig. 2/b), the velocity field is almost null, and the fluid is almost at rest
on average. At t = 3τ/4 (Fig. 2/c) the fluid is expanding against the gravity force



and the velocity field is directed upward, as a reaction to compression. Once again,
in correspondence to the subsequent relative maxima or minima (Fig. 2/d) the fluid
is nearly at rest. During the following compressions and expansions the flux becomes
localized, respectively, near the cold the hot reservoirs (see Fig. 3). In correspondence
of the next relative maxima and minima the fluid is no longer at rest, and instead it begins
to support a convective flow. The sequence of compressions and expansions strengthens
the flux, which becomes stable at t = 250. The final shape of the convective pattern is
symmetric (see Fig. 4).

(a)

(b)

(c)

(d)

FIG. 4. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations during the first oscillation of temperature
and density fields, i.e., at !a" t=4.5#! /4, !b" t=9#! /2, !c" t=13#3! /4,
and !d" t=18#!.

(a)

(b)

(c)

(d)

FIG. 5. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations during the second oscillation of tempera-
ture and density fields, i.e., at !a" t=22.5#5 /4!, !b" t=27#3 /2!, !c" t
=31.5#7 /4!, and !d" t=36#2!.

FIG. 6. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations at t=250.

(a)

(b)

FIG. 7. !a" Setting !A", case !i": Horizontal profile of the vertical component
of the velocity field vz!x" !red symbols" and vertical profile of the horizontal
component of the velocity field vx!z" !green symbols". The red symbols refer
to values in a row of cells at the midheight of the simulation box !nz=8".
The green symbols refer to a column of cells at the midlength of the simu-
lation box !nx=8". The values of the velocity are sampled in the final steady
state, at t#250, and averaged over 1000 independent initial configurations.
!b" Setting !B", case !i": Horizontal profile of the vertical component of the
velocity field vz!x" !red symbols" and vertical profile of the horizontal com-
ponent of the velocity field vx!z" !green symbols". The red symbols refer to
values in a row of cells at nz=8. The green symbols refer to a column of
cells at nx=6. The values of the velocity are sampled in the final steady
state, at t#2500, and averaged over 480 independent initial configurations.
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FIGURE 2. Local velocity field averaged over 1000 independent initial configurations during the first
oscillation of temperature and density fields, i.e., at (a) t = 4.5∼ τ/4, (b) t = 9∼ τ/2, (c) t = 13∼ 3τ/4,
and (d) t = 18∼ τ . Hot reservoir on the left side of the box, cold reservoir on the right side of the box.



(a)

(b)

(c)

(d)

FIG. 4. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations during the first oscillation of temperature
and density fields, i.e., at !a" t=4.5#! /4, !b" t=9#! /2, !c" t=13#3! /4,
and !d" t=18#!.

(a)

(b)

(c)

(d)

FIG. 5. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations during the second oscillation of tempera-
ture and density fields, i.e., at !a" t=22.5#5 /4!, !b" t=27#3 /2!, !c" t
=31.5#7 /4!, and !d" t=36#2!.

FIG. 6. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations at t=250.

(a)

(b)

FIG. 7. !a" Setting !A", case !i": Horizontal profile of the vertical component
of the velocity field vz!x" !red symbols" and vertical profile of the horizontal
component of the velocity field vx!z" !green symbols". The red symbols refer
to values in a row of cells at the midheight of the simulation box !nz=8".
The green symbols refer to a column of cells at the midlength of the simu-
lation box !nx=8". The values of the velocity are sampled in the final steady
state, at t#250, and averaged over 1000 independent initial configurations.
!b" Setting !B", case !i": Horizontal profile of the vertical component of the
velocity field vz!x" !red symbols" and vertical profile of the horizontal com-
ponent of the velocity field vx!z" !green symbols". The red symbols refer to
values in a row of cells at nz=8. The green symbols refer to a column of
cells at nx=6. The values of the velocity are sampled in the final steady
state, at t#2500, and averaged over 480 independent initial configurations.
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FIGURE 3. Local velocity field averaged over 1000 independent initial configurations during the
first oscillation of temperature and density fields, i.e., at (a) t = 22.5 ∼ 5τ/4, (b) t = 27 ∼ 3τ/2, (c)
t = 31.5∼ 7τ/4, and (d) t = 36∼ 2τ . Same conditions as in Fig. 2

RELAXATION OF THE INTERFACE BETWEEN TWO
IMMISCIBLE LIQUIDS

Computational Model and Setup.

We now illustrate the method described in Sec. for sampling complex initial con-
ditions by studying the relaxation to equilibrium of the interface between two immis-



(a)

(b)

(c)

(d)

FIG. 4. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations during the first oscillation of temperature
and density fields, i.e., at !a" t=4.5#! /4, !b" t=9#! /2, !c" t=13#3! /4,
and !d" t=18#!.

(a)

(b)

(c)

(d)

FIG. 5. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations during the second oscillation of tempera-
ture and density fields, i.e., at !a" t=22.5#5 /4!, !b" t=27#3 /2!, !c" t
=31.5#7 /4!, and !d" t=36#2!.

FIG. 6. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations at t=250.

(a)

(b)

FIG. 7. !a" Setting !A", case !i": Horizontal profile of the vertical component
of the velocity field vz!x" !red symbols" and vertical profile of the horizontal
component of the velocity field vx!z" !green symbols". The red symbols refer
to values in a row of cells at the midheight of the simulation box !nz=8".
The green symbols refer to a column of cells at the midlength of the simu-
lation box !nx=8". The values of the velocity are sampled in the final steady
state, at t#250, and averaged over 1000 independent initial configurations.
!b" Setting !B", case !i": Horizontal profile of the vertical component of the
velocity field vz!x" !red symbols" and vertical profile of the horizontal com-
ponent of the velocity field vx!z" !green symbols". The red symbols refer to
values in a row of cells at nz=8. The green symbols refer to a column of
cells at nx=6. The values of the velocity are sampled in the final steady
state, at t#2500, and averaged over 480 independent initial configurations.
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FIGURE 4. Local velocity field averaged over 1000 independent initial configurations at t = 250, i. e.
at the end of simulation. Same conditions as in Fig. 2

cible liquids. We define the interface between the two liquids as the surface at which
∆ρ(x) = ρA(x)−ρB(x) = 0, where ρA(x) and ρB(x) are the densities of the liquids A
and B (see Eq. (12)), respectively. We start from the interface defined below and follow
the isosurface S(t) = {x : ∆ρ(x, t) = 0} of the fields ∆ρ(x, t) and vA(x, t) till equilib-
rium. The initial conditional PDF is sampled using the method described in Sec. with
the restraint that ∆ρ(xα) = 0 in the cells, centered around the points xα , through which
passes the following surface:

S =

{
x : x3 = A sin

(
πx1

L1

)
+

L3

2
− A

2

}
(22)

where A is the amplitude of the curved surface and {Lχ}χ=1,3 is the length of the



simulation box along the χ-th Cartesian direction. The terms L3
2 and −A

2 are added to
place the interface at the centre of the simulation box. The condition above is the discrete
counterpart of the continuous condition ∆ρ(x) = 0,∀ x ∈ S. We do not impose any other
condition on the density. However, we prepare the system such that all the particles on
one side of the interface are of one kind, say A, and of the other kind on the other side,
say B. Since we apply periodic boundary conditions along all the Cartesian directions,
we have a second flat interface at the beginning/end of the simulation box.

The sample used in our simulation consists of 171,500 particles: 88,889 of type
A and 82,611 of type B. Two particles of the same type interact via Lennard-Jones
potential uAA(r)≡ uBB(r) = 4ε

[
(σ/r)12− (σ/r)6], while two particles of different type

interact via the repulsive potential uAB(r) = 4ε
[
(σ/r)12], where ε and σ are the usual

Lennard-Jones parameters. The simulation box is a parallelepiped of size∼ 45×45×90
in reduced units (average density ρ = 1.024particles/σ3). In the restrained MD the
temperature of the sample is kept fixed at 1.5ε/kB (kB Boltzmann constant). This density
and temperature are in the fluid domain of a pure Lennard-Jones system. The ordinary
space is discretized in 5488 points (a 14× 14× 28 grid) and each cell contains, on
average, ∼ 30 particles.

The system is prepared by thermalizing a sample of pure type A Lennard-Jones
particles at the target temperature and density, and then transforming those particles
belonging to the cells on one side of the interface in type B particles (see Fig. (5)). In
the cells belonging to the interface S(x) only half of the particles are transformed from
A to B, so as to have ∆ρ(x) = 0 in these cells. The system is then thermalized with
the restraint on the ∆ρ(x) for 1.6× 106 timesteps. Such a very long run is needed to
relax the gradient of temperature formed when the nature of particles on one side of
the interface is changed from A to B (immediately after the A-to-B transformation the
interfaces - the curved one and the flat one due to the periodic boundary conditions -
due to the strong repulsive forces among particles of different type, are warmer than the
bulk). The timestep used in this and the next phase (restrained MD runs) is 4.56×10−4

LJ time units, which is one order of magnitude smaller than the typical timestep for
simulation of Lennard-Jones systems. This very short timestep is required by the stiff
force associated to the restraint. After this relaxation, a 106 timestep long restrained MD
is performed along which, at regular intervals of 25,000 timesteps, we collect 40 initial
positions and velocities for the second step of the D-NEMD procedure. The atomic
configuration corresponding to one snapshot of this trajectory is shown in Fig. (5).

In Fig. (6) is reported the ∆ρ(x, t) field on the points {xα}α=1,m together with the
isosurface ∆ρ(x) = 0 obtained as a linear interpolation of the value of the field on the
grid points. This figure shows that the interface is rather sharp, involving typically one
or two shells along the direction orthogonal to it.

From each of these initial conditions we start 25,000 timestep long unrestrained
MD simulations along which we compute the microscopic observables of interest. By
averaging over the (40) initial conditions we get ρA(x, t) and vA(x, t).



FIGURE 5. One atomic configuration extracted from the restrained MD used for sampling the initial
conditional PDF. In blue particles of type A, in red particles of type B.

Results and discussion.

In this section we present our results obtained with the restrained MD method and
compare them with those obtained by computing the relevant fields along one unre-
strained trajectory started from a configuration sampled from the restrained dynamics.
This second type of simulation, often combined with a “local time average” (i.e. aver-
aging over a small time-window centered at the current time), are used to study hydro-
dynamical phenomena by atomistic simulation. We show that the fields obtained from
this latter type of simulation violate some of the properties of the hydrodynamical fields
associated to the process under investigation while our D-NEMD approach does not.

Let us start by analyzing the surface S(t) = {x : ∆ρ(x, t) = 0}. In Fig. (7) it is shown
a series of snapshots of the S(t) surface. First of all we remark that all along its evolution
the surface satisfies the symmetry of the problem, i.e. it is symmetric with respect the
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FIGURE 6. ∆ρ(x) field over the grid points {xα}α=1,m. The color of each point depends on the ∆ρ(x)
on that point. Intense red means that all the particles in the cell are of type A and intense blue means that
they are all of type B. Intermediate colors indicate that the cell contains both types of particles (white
correspond to 50% of each type of particle). The curved interface represent the isosurface ∆ρ(x) = 0 as
obtained from the linear interpolation of the density on the grid points. The second interface due to the
periodic boundary conditions on the long edge of the simulation box is not shown.

{yz} reflection plane passing by the middle of the simulation box and it is translationally
invariant along the y direction. The tiny bumps on the S(t) surface are due to the limited
number of initial conditions (40) used for computing ∆ρ(x, t). In the limit of an infinite
number of such initial conditions the surface would be completely smooth, as expected
and predicted by classical hydrodynamics. The relaxation from the initial curved surface
to the final flat surface takes approximately 20,000 timesteps which, if we chose for the
Lennard-Jones parameters the values σ = 3.405 Å and ε = 0.01032 eV (suitable for



modeling Ar) and an amplitude of the initial interface A = 50 Å, corresponds to a
maximum value of the field v(x) of ∼ 80 m/s.

FIGURE 7. Snapshots of the interface S(t). The arrows on the first snapshot show the direction of
evolution of the interface: the center and the extreme of the interface move in opposite directions. The
field ∆ρ(x, t) is also shown on one {xz} plane by adopting the same colorcoding of Fig. 7

We now move to the analysis of the velocity field, focusing on the velocity field of
only the chemical species A:

vA(x, t) = (23)

∑Γ0 ∑
NA
i=1 pi(Γ0)Π

3
χ=1

[
er f (xα,χ − ri,χ(Γ0),σ)− er f (xα,χ − ri,χ(Γ0),σ)

]
∑Γ0 ∑

NA
i=1 Π3

χ=1µi

[
er f (xα,χ − ri,χ(Γ0),σ)− er f (xα,χ − ri,χ(Γ0),σ)

]
where the sum ∑

NA
i=1 runs only over the atoms of type A, and it is implicitly assumed

that pi and ri are taken at the time t starting from the initial condition Γ0 (see Eqs. (17)
and (13)). The sum ∑Γ0 run over the initial conditions along the restrained MD. We
consider the field vA(x, t) as, due to the conservation of the total momentum and the fact
that the initial total momentum was set to zero, the total field, i.e. those including A and
B specie, is, on average, zero. In the left column of Fig. 8 is shown the velocity field
vA(x, t) at various times. This field is computed only on the grid points corresponding to
cells that contains at least one particle of type A. This fact makes the field “noisy” (large
values of the field rapidly changing orientation) close to the A/B interface, where the
cells contain less A particles, and therefore the average of the atomic velocities over the
particles in the cell (see Eqs. (16) and (17)) is less effective in smoothing the field. This
effect is reduced by making larger the number of initial configurations used to perform
the ensemble average over the initial conditional PDF. As a first remark, it is worth to
mention that relatively few cell layers nearby the interface are involved in the relaxation
process. In fact, already 5−10 cells far from the interface the velocity field is essentially
zero at any time during the relaxation. Coming to the hydrodynamical process producing
the relaxation of the interface, we notice that initially (see panel 1 of Fig. 8) the velocity
field at the top of the interface is pointing downward while at bottom it is pointing
upward. After some time this field stabilizes into a double symmetric roll, one rotating
clockwise and the other one rotating counter clockwise, both starting at the top of the
interface and ending at its bottom (see panel 2 of Fig. 8). Overall, this velocity field



produce the phenomenon of pushing up the side of the interface and pulling down the
center as shown in Fig. 7. The relaxation of the interface follows this mechanism almost
till the end of the process. In fact, in panel 3 of Fig. 8 we see that still after 45.6 LJ time
units (104 timesteps), when the interface is almost flat, the double roll is still present.
Eventually, after 114 units of time (2.5×105 timesteps) the interface is completely flat
and the field is null everywhere (panel 4).
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vA(x, t) v̂A(x, t)

FIGURE 8. Snapshots of the vA(x, t) (left, see Eq. (13)) and v̂A(x, t) (right, see Eq. (24)) fields on the
grid points belonging to one {xz} plane at various times.

It is very interesting to compare the vA(x, t) field as obtained from the D-NEMD
simulation with the instantaneous field v̂A(x, t) defined as

v̂A(x, t) =
∑

NA
i=1 piΠ

3
χ=1

[
er f (xα,χ − ri,χ ,σ)− er f (xα,χ − ri,χ ,σ)

]
∑

NA
i=1 Π3

χ=1µi

[
er f (xα,χ − ri,χ ,σ)− er f (xα,χ − ri,χ ,σ)

] (24)

Few snapshots of this field are shown in Fig. 8. First of all we notice that the interface
relaxation process occurs via the formation of a clockwise roll, which is initially at the



top of the interface (panel 1 of Fig. 8) and then move toward the bulk (panel 2 of the
same figure). This roll is stable all over the duration of the simulation (see panel 3) and
eventually disappear when the equilibrium is reached (panel 4). The shape of the field
vA(x, t) contrasts with the symmetry imposed on the problem, which implies a {yz}
mirror plane passing through the middle of the simulation box. This problem cannot be
solved by the “local time average” that is often used in simulation of hydrodynamical
processes by atomistic simulations. In fact, as mentioned above, the clockwise vortex is
very stable and a local time average will not restore the proper symmetry expected for
this field. This problem illustrates that a proper statistical average is needed in order to
compute by atomistic simulation hydrodynamic fields as otherwise a unlucky choice of
the initial conditions can produce unphysical results.

CONCLUSIONS.

In this paper we have reviewed the dynamical approach to non-equilibrium MD. We
have shown that using a proper simulation setup it is possible to treat interesting cases
in which the initial condition is either a stationary non-equilibrium condition or a
constrained equilibrium consistent with the value of a macroscopic scalar or field-like
observable. We illustrated the functioning of the method by applying it to two cases:
the establishing of convective cells and the relaxation of an interface between two
immiscible liquids. We have shown that our method generates rigorous time-dependent
non-equilibrium averages, while the method of local time average, often used to simulate
hydrodynamical processes from atomistic simulation, can, sometimes, fail.

Our conclusion is that the method is ready for challenging applications. Work is in
progress in this direction.
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Recent progress in fluctuation theorems and free
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Abstract. In this note we review recent progress about fluctuation relations and their applicability
to free energy recovery in single molecule experiments. We underline the importance of the op-
erational definition for the mechanical work and the non-invariance of fluctuation relations under
Galilean transformations, both aspects currently amenable to experimental test. Finally we describe
a generalization of the Crooks fluctuation relation useful to recover free energies of partially equili-
brated states and thermodynamic branches.

Keywords: Nonequilibrium systems, fluctuation theorems,single-molecule experiments, optical
tweezers
PACS: 87.14.Ee,82.20.Db,87.15.Cc

NONEQUILIBRIUM SMALL SYSTEMS

In 1944 Erwin Schrödinger published the classic monograph What is life? where he
pointed out the importance of physical and chemistry laws to understand living systems
[1]. The notion that genetic information should be encoded in an “aperiodic crystal”
seeded the subsequent discovery of the double helix structure of DNA. Chapter 7 of
Schrödinger’s monograph contains an interesting discussion about the similarities and
differences between a clockwork motion and the functioning of an organism. According
to Schrödinger the regular motion of a clock must be secured by a weak spring. Yet,
whatever the weakness of the spring is, it will produce frictional effects that do compen-
sate for the external driving of the clock (e.g. the battery) in order to secure its regular
motion. Being friction a statistical phenomenon he concludes that the regular motion
of the clock cannot be understood without statistical mechanics. Then he further states:
For it must not believed that the driving mechanism really does away with the statistical
nature of the process. The true physical picture includes the possibility that even a regu-
larly going clock should all at once invert its motion and, working backward, rewind its
own spring -at the expense of the heat of the environment. The event is just ’still a little
less likely’ than a ’Brownian fit’ of a clock without driving mechanism.

Recent advances in microfabrication techniques, detection systems and instrumen-
tation have made possible the measurement of such ’inverted motions’ referred by
Schrödinger. The controlled manipulation and detection of very small objects makes
possible to exert and measure tiny forces applied on them and follow their trajectories in
space-time with resolution of piconewtons, nanometers and microseconds respectively.



According to the equipartition law, systems with a low number of degrees of freedom
embedded in a thermal environment exhibit energy fluctuations that are a few times kBT
(kB being the Boltzmann constant and T the environmental temperature). Techniques
such as atomic force microscopy (AFM), optical tweezers (OT) and magnetic tweez-
ers (MT) allow for the controlled manipulation of individual molecules such as nucleic
acid structures and proteins [2], the measurement of very small energies (within the
kBT scale) [23] and the observation of ’inverted motion’ in translocating enzymes [3].
These developments during the past years have been accompanied by a concomitant
progress of theoretical results in the domain of nonequilibrium physics [4]. This contri-
bution reviews some of the most basic concepts around fluctuation theorems and their
experimental verification.

Control parameters, configurational variables and the definition of
work

In small systems it is crucial to make a distinction between controlled parameters and
non-controlled or fluctuating variables. Controlled parameters are those macroscopic
variables that are imposed on the system by the external sources (e.g. the thermal en-
vironment) and do not fluctuate with time. In contrast, non-controlled variables are mi-
croscopic quantities describing the internal configuration of the system and do fluctuate
in time because they are subject to Brownian forces. Let us consider a typical single
molecule experiment where a protein is pulled by an AFM. In this case the control pa-
rameter is given by the position of the cantilever that determines the degree of stretching
and the average tension applied to the ends of the protein. Also the temperature and the
pressure inside the fluidic chamber are controlled parameters. However, the height of
the tip respect to the substrate or the force acting on the protein are fluctuating variables
describing the molecular extension of the protein tethered between tip and substrate.
Also the position of each of the residues along the polypeptide chain are fluctuating
variables. Both molecular extension or force and the residues positions define different
types of configurational variables. However only the former are subject to experimental
measurement and therefore we will restrict our discussion throughout this paper to such
kind of experimentally accessible configurational variables. Figure 1 illustrates other
examples of control parameters and configurational variables. In what follows we will
denote by λ the set of controlled (i.e. non-fluctuating) parameters and x the set of config-
urational (i.e. fluctuating) variables. The definition of what are controlled parameters or
configurational variables is broad. For example, a force can be a configurational variable
and a molecular extension can be a controlled parameter, or vice versa, depending on
the experimental setup (see Figure 1, right example).

The energy of a system acted by external sources can be generally described by
a Hamiltonian or energy function, U(x,λ ). The net variation of U is given by the
conservation law,

dU =
(∂U

∂x

)
dx+

(∂U
∂λ

)
dλ =d̄Q+d̄W (1)

whered̄Q,d̄W stand for the infinitesimal heat and work transferred to the system. The



previous mathematical relation has simple physical interpretation. Heat accounts for the
energy transferred to the system when the configurational variables change at fixed value
of the control parameter. Work is the energy delivered to the system by the external
sources upon changing the control parameter for a given configuration. The total work
performed by the sources on the system when the control parameter is varied from λi to
λ f is given by,

W =
∫ λ f

λi

d̄W =
∫ λ f

λi

(∂U
∂λ

)
dλ =

∫ λ f

λi

F(x,λ )dλ (2)

where F(x,λ ) is a generalized force defined as,

F(x,λ ) =
(∂U

∂λ

)
. (3)

It is important to stress that the generalized force is not necessarily equal to the me-
chanical force acting on the system. In other words, F(x,λ ) is a configurational depen-
dent variable conjugated to the control parameter λ and has dimensions of [energy]/[λ ]
which are not necessarily Newtons. In the example shown in the right of Figure 1 the
control parameter is the magnetic force λ ≡ f and the configurational variable x is the
molecular extension of the polymer. The total Hamiltonian of the system is then given
by U(x, f ) =U0(x)− f x where U0(x) is the energy of the system at λ = f = 0. In other
words, the external force f shifts all energy levels (defined by x) of the original system
by the amount - f x. The generalized force is then given by F(x, f ) =−x (i.e. it has the di-
mensions of a length) andd̄W =−xd f . The fact thatd̄W is equal to−xd f and not equal to
f dx has generated some controversy [5]. Below we show how this distinction is already
important for the simplest case of a bead in the optical trap. In Section we also show
how the physically sound definition of mechanical work is amenable to experimental
test.

A classical experiment: the bead in the optical trap

In 2002 Dennis Evans and coworkers in Canberra (Australia) performed the first
experiment where the ’inverted motions’ could be observed [6]. The experiment is
shown in Figure 2a. A micron-sized spherical bead made of silica or polystyrene is
immersed in water inside a fluidic chamber and captured in an optical trap of infrared
light generated by a high numerical aperture objective. Initially the trap is at a rest
position and the bead is in thermal equilibrium and fluctuating around the center trap
position. Suddenly the trap is set into motion at a constant speed v and the bead is
dragged through the water. After a transient time τ = γ/k the bead reaches a steady state
where the Stokes frictional force is counter balanced by the optical trapping force. The
average bead position lags behind the center of the trap by a distance y = γv/k where
γ = 6πηR is the friction coefficient (η is the water viscosity and R is the bead radius)
and k is the stiffness of the trap. In the laboratory frame (see Figure 2a) the bead and trap
center have coordinates x(t) and x∗(t) = vt (we take x = x∗ = 0 at t = 0 when the trap
is set in motion). The distance between the center of the trap and the bead is y = x∗− x



FIGURE 1. Control parameter and configurational variables. Different experimental setups corre-
sponding to different types of control parameters (denoted as λ ) or configurational variables (denoted as
x). (Top left) A micron-sized bead dragged through water. λ could be the center of the trap measured in
the lab (i.e. fixed to the water) frame whereas x is the displacement of the bead, indicated as y, respect to
the center of the trap. (Bottom left) A polymer tethered between two surfaces. λ is the distance between
the surfaces and x the force acting on the polymer. (Right) A polymer stretched with magnetic tweezers. λ
is the force acting on the magnetic bead and x is the molecular extension of the tether. Figure taken from
[3].

and the restoring force acting on the bead is given by F(y) = ky. In this example the
control parameter is given by the trap center λ = x∗ whereas x is the configurational
variable. The trapping energy of the bead is given by U(x,λ ) = (1/2)k(x−λ )2 and the
generalized force F = k(λ − x) = ky (cf. Eq.(3)). The work exerted by the trap on the
bead is then equal to W =

∫ t
0 F(y)dx∗ = vk

∫ t
0 y(s)ds. The first remarkable fact in this

expression is that the work W is neither equal to W ′ =
∫ t

0 F(y)dx nor W ′′ =
∫ t

0 F(y)dy.
These three quantities have different physical meaning. In fact, by exactly integrating
the force, W ′′ becomes equal to the energy difference between the initial and final
configurations. Whereas W ′ is equal to minus the heat, −Q. Since dy = dx∗− dx what
we are now facing is again the mathematical statement of energy conservation. Note
also that the work definition is non-invariant under Galilean transformations. In fact, the
work definition requires that x, as measured in the lab frame, is the proper configurational
variable. If we choose y rather than x (y is now measured in the trap-moving frame) then
U(y,λ ) = (1/2)ky2 is independent of λ and the work would be identically zero which
makes no sense.

By repeating the moving trap experiment an infinite number of times a work distri-
bution will be produced. The shape of the work distribution must be Gaussian because
the stochastic variable y follows an Ornstein-Uhlenbeck process that can be described



by a linear Langevin equation. Consequently, only the first and second cumulants of the
work distribution are non-zero. Let us note in passing that the Gaussian property is not
fulfilled by the heat and the energy difference, which are known to exhibit exponential
tails [8, 9]. The mean work W and variance σ2

W = W 2−W 2 can be easily worked out
in the asymptotic regime for times t that are longer than the relaxation time of the bead,
t >> γ/k. In this limit,

W = vk
∫ t

0
y(s)ds→ vkyt = γv2t (4)

σ2
W =W 2−W 2

= v2k2
∫ t

0

∫ t

0
y(s1)y(s2)ds1ds2→ 2v2k2t

∫ t

0
y(0)y(s)ds =

= 2v2k2ty2τ = 2v2k2t
kBT

k
γ
k
= 2kBT γv2t (5)

where ... stands for an average over trajectories. In deriving Eq.(5) we used time-
translational invariance in the steady state and the result y(0)y(s) = y(0)2 exp(−sτ) in
the steady state (τ = γ/k being the bead relaxation time) with y(0)2 = kBT/k due to the
equipartition law. The work probability distribution is finally given by,

P(W ) =
1√

2πσ2
W

exp
(
−(W −W )2

2σ2
W

)
. (6)

These relations teach us various things:

1. Second law. The mean work W is always positive (second law) and only vanishes
at all times for v→ 0, i.e. when the trap is moved in a quasistatic way.

2. Observation of ’Inverted motions’. Although W > 0 there are always trajectories
for which W < 0. These are the ’inverted motions’ refereed to by Schrödinger and
recently renamed as ’transient violations of the second law’. Along these ’inverted
motion’ trajectories the bead extracts energy from heat fluctuations to overcome
the frictional forces and to move ahead of the center of the trap.

3. ’Inverted motions’ as rare events. Both the mean work and the standard deviation
of the work increase with time and trap speed. However the standard deviation σW
increases as

√
t whereas W increases faster (linearly with t). Therefore, although

it is possible to find trajectories where W < 0, these are rare events because their
relative fraction decreases exponentially fast with time. W < 0 trajectories become
more probable (i.e. less rare) at short times. In the limit t → 0 they reach the 50%
of all events.

4. Fluctuation relation. The work probability density function shown in Eq.(6) sat-
isfies a fluctuation relation. From Eqs.(4,5) we find σ2

W = 2kBTW . It is straightfor-
ward to check that the following relation holds,

P(W )

P(−W )
= exp

( W
kBT

)
. (7)

Eq.(7) receives the name of a fluctuation relation because it is an exact mathe-
matical relation describing arbitrarily large work fluctuations. Eq.(7) was derived



FIGURE 2. The bead in the optical trap dragged through water. (a) Variables defining the experi-
ment. (b) Work distribution measurements corresponding to different elapsed times. The mean work W
and variance σ2

W increase with time (Inset). The main panel shows the experimental test of the fluctuation
relation Eq.(7) for all experimental data put together.

from Eq.(6) which was obtained in the limit of long enough times. More elaborate
calculations show that this relation is exact for arbitrary times [7, 8].

In Figure 2b we show an experimental test of these results. The fluctuation relation
in Eq.(7) corresponds to a special case of what is known as transient fluctuation the-
orem (TFT) [10]. The system is initially in equilibrium and transiently driven out of
equilibrium by external forces. The generalization of such relation to include arbitrary
nonequilibrium transient states gives the fluctuation relation by Crooks described in the
next section.

THE CROOKS FLUCTUATION RELATION AND FREE ENERGY
RECOVERY.

Let us consider a generic system in thermal equilibrium that is transiently driven out
of equilibrium during the time interval [0, t f ] by varying λ according to a protocol λ (t)
from an initial value λ (0) = λi to a final value λ (t f ) = λ f . We refer to this as the forward
(F) process. By repeating this process an infinite number of times we generate the work
distribution PF(W ). Let us consider now the reverse process where the system starts in
equilibrium at λ f and λ is varied according to the time reversal protocol, λ (t f − t), until
reaching the final value λi (see Figure 3). The reverse (R) process can be repeated an
infinite number of times to produce the work distribution PR(W ). The Crooks fluctuation
relation (CFR) reads [11],

PF(W )

PR(−W )
= exp

(W −∆G
kBT

)
(8)

where ∆G = G(λ f )−G(λi) is equal to the free energy difference between the equilib-
rium states at λ f and λi. Eq.(7) is a particular case of the CFR where PF(W ) = PR(W )



FIGURE 3. Forward and reverse paths. (a) An arbitrary forward protocol. The system starts in
equilibrium at λi and is transiently driven out of equilibrium until λ f . At λ f the system may be or not
in equilibrium. (b) The reverse protocol of (a). The system starts in equilibrium at λ f and is transiently
driven out of equilibrium until λi. At λi the system may be or not in equilibrium.

(the trapping potential is symmetric V (y) =V (−y)) and ∆G = 0 (the free energy of the
bead in the trap does not depend on the position of the trap, x∗). A particular result of
the CFR is the well-known Jarzynski equality [12], exp(−W/kBT ) = exp(−∆G/kBT ),
that has been used for free energy recovery [13, 14] by inverting the mathematical iden-
tity, ∆G = −kBT log(exp(−W/kBT )). However this expression is strongly biased for a
finite number of measurements [15, 16]. Bidirectional methods that combine informa-
tion from the forward and reverse processes and use the CFR have proven more predic-
tive [17, 18, 19]. In particular the CFR immediately implies that PF(W ) = PR(−W ) for
W =∆G showing that it is possible to measure ∆G in irreversible processes by measuring
the forward and reverse irreversible work distributions and looking for the value of W
where they cross each other. The CFR was experimentally tested in 2005 in RNA pulling
experiments with laser tweezers [20] showing this to be a reliable and useful method-
ology to extract free energy differences between states that could not be measured with
bulk methods.

In Figure 4 we summarize recent results obtained in the Small Biosystems lab in
Barcelona for the mechanical unfolding/refolding of DNA hairpins [21, 22] using a dual-
beam miniaturized optical tweezers [23]. DNA hairpins are versatile structures formed
by a stem of a few tens of base pairs that end in loop. They have some advantages as
compared to RNA structures such as the easier synthesis and larger chemical stability.
DNA hairpins can be easily synthesized and ligated to dsDNA handles to produce a
construct ready to be pulled with the tweezers [24]. By chemically labeling the ends
of the dsDNA handles it is possible to tether a DNA construct (formed by the DNA
hairpin inserted between the two flanking handles) between two micron sized beads.
One bead is immobilized in the tip of a pipette. The other bead is captured in the optical
trap. The deflected light by the trapped bead provides a direct measurement of the force
applied on the molecule. By repeatedly steering the optical trap back and forth it is
possible to unfold and refold the hairpin structure many times until the tether breaks.



The unfolding of the hairpin is revealed by a sudden drop in the force due to the increase
in molecular extension from the released single-stranded DNA of the hairpin. Such
increase causes a retraction in the position of the bead in the trap and a force drop.
Analogously, when the hairpin refolds a sudden increase in force is observed. One of the
most successful constructs we have designed in our lab consists of DNA hairpins linked
to two beads via extremely short (29bp) dsDNA handles [25]. These constructs are found
to moderately increase the signal-to-noise ratio of the measurements allowing for precise
work measurements. In a pulling experiment the force versus the relative trap-pipette
distance is recorded and the area below that curve provides a direct measurement of the
work. Repeated measurements of the work make possible an experimental verification
of the CFR (see figure 5).

About the right definition of work: accumulated versus transferred
work

In a pulling experiment there are two possible representations of the pulling curves
(Figure 6b). In one representation the force is plotted versus the relative trap-pipette
distance (λ ), the so-called force-distance curve (hereafter referred as FDC). In the other
representation the force is plotted versus the relative molecular extension (x), the so-
called force-extension curve (hereafter referred as FEC). In the optical tweezers setup
λ = x + y where y is the distance between the bead and the center of the trap. The
measured force is given by F = ky where k is the stiffness of the trap. The areas below the
FDC and the FEC define two possible work quantities, W =

∫ λ f
λi

Fdλ and W ′ =
∫ x f

xi
Fdx.

From the relation dλ = dx+dy we get,

W =W ′+Wb =W ′+
F2

f −F2
i

2k
(9)

where Fi,Ff are the initial and final forces along a given trajectory. W is often called the
total accumulated work and contains the work exerted to displace the bead in the trap,
Wb, and the work transferred to the molecular system, W ′ (therefore receiving the name
of transferred work) [26, 27]. The term Wb appearing in Eq.(9) implies that W,W ′ cannot
simultaneously satisfy the CFR. What is the right definition of the mechanical work? In
other words, which work definition satisfies the CFR? The problem we are facing now
is identical to the one we previously encountered in section where we had to distinguish
between work and heat. The answer to our question is straightforward if we correctly
identify which are the control parameters and which are the configurational variables.
In the lab frame defined by the pipette (or by the fluidic chamber to which the pipette
is glued) the control parameter λ is given by the relative trap-pipette distance, whereas
the molecular extension x stands for the configurational variable. Note that, due to the
non-invariance property of the CFR under Galilean transformations, y cannot be used
as configurational variable because it is defined respect to the co-moving frame defined
by the trap. The same problem was found in section when comparing the distances x
and y for the bead in the trap. The total energy of the molecular system is then given by



FIGURE 4. Mechanical folding/unfolding of DNA hairpins.(a) The sequence of a DNA hairpin with a
21bp stem ending in a tetraloop. (b) Experimental setup. A molecular construct made of the hairpin shown
in (a) flanked by two dsDNA handles (29bp each) is tethered between two micron-sized beads. In the
experiments the trap is moved relative to the pipette at speeds ranging from 10 to 1000nm/s. (c) Different
force cycles recorded at 300nm/s. The red curves indicate the stretching parts of the cycle whereas the
orange curves indicate the releasing parts of the cycle. Note that the forces of unfolding and refolding
are random due to the stochastic nature of the thermally activated unfolding/folding process. The marked
hysteresis is a signature of an irreversible process. (d) Measurement of work for a single trajectory. It is
given by the area below the force-distance curve integrated between two trap positions. Trap distances
are relative. Note that there might be more than one unfolding or refolding event along each trajectory.
f ∗(S)( f ∗(R)) defines the first rupture force in the unfolding (refolding) process. Figure taken from [21].

U(x,λ ) = Um(x)+ (k/2)(λ − x)2 where Um(x) is the energy of the molecular system.
From Eq.(3) and using λ = x + y we get F = ky = k(λ − x). From Eq.(2) we then
conclude that the mechanical work that satisfies the CFR is the accumulated work W
rather than the transferred work W ′. We remark a few relevant facts,

1. The transferred work W ′ does not satisfy the CFR and is dependent on the
bandwidth of the measurement. The FDC and FEC are sensitive to the bandwidth
or data acquisition rate of the measurement (Figure 6b). Whereas W is insensitive to
the bandwidth W ′ is not (see Figure 7a). This difference is very important because
it implies that the bandwidth dependence implicit in the boundary term in Eq.(9)



FIGURE 5. The Crooks fluctuation relation.(a) Work distributions for the hairpin shown in Figure 4
measured at three different loading rates: 50 nm/s (blue), 100 nm/s (green) and 300 nm/s (red). Unfolding
or forward (continuous lines) and refolding or reverse work distributions (dashed lines) cross each other
at a a value ≃ 81kBT independent of the loading rate.(b) Experimental test of the CFR for 10 different
molecules pulled at different speeds. The log of the ratio between the unfolding and refolding work
distributions is equal to (W −∆G) in kBT units. The inset shows the distribution of slopes for the different
molecules which are clustered around an average value of 0.96. Figure taken from [21].

(the power spectrum of the force depends on the bandwidth if this is smaller than
the corner frequency of the bead) is fully contained in W ′. Operationally it is
much easier to use W rather than W ′. As shown in Figure 7b, W satisfies the CFR
whereas W ′ does not. The logarithm of the ratio log(PF(W ′)/PR(−W ′)) plotted
versus W ′/kBT is strongly bandwidth dependent and exhibits a slope 30 times
smaller than 1 (i.e. the slope expected for W from the CFR) [27].

2. How big is the error committed in recovering free energy differences by using
W ′ rather than W? Despite that W and W ′ only differ by a boundary term (cf.
Eq.9) one can show that, for the case of the mechanical folding/unfolding of
the hairpin, the error in recovering free energy differences using the Jarzynski
equality can be as large as 100% [27]. The error or discrepancy increases with the
bandwidth. Interestingly enough, for small enough bandwidths (but always larger
than the coexistence kinetic rates between the folded and unfolded states, otherwise
the folding/unfolding transitions are smeared out) fluctuations in the boundary
term in Eq.(9) are negligible and both W and W ′ are equally good. This explains
why previous experimental tests of the CFR that used W ′ instead of W produced
satisfactory results (e.g. [20]).

3. Inequivalence between moving the trap and the pipette or chamber. The non-
invariance of the CFR under Galilean transformations suggests that moving the
optical trap inside the fluidic chamber should not be necessarily equivalent to
moving the pipette glued to the fluidic chamber. We have to distinguish two cases
depending on whether the fluid inside the chamber is dragged (stick conditions)
or not (slip conditions) by the moving chamber. The two scenarios are physically



different because in the former case the bead in the trap is subject to an additional
Stoke force due to the motion of the fluid. If the fluid is not dragged by the moving
chamber (slip conditions) then y is the right configurational variable. In this case,
U(y,λ ) =Um(λ −y)+(k/2)(y)2 and the generalized force is equal to F =U ′m(λ −
y). Note that this F is not equal to the instantaneous force measured by the optical
trap but the instantaneous force acting on the molecule. Even in case of mechanical
equilibrium the difference between the two instantaneous forces, U ′m(λ − y) and
ky, produces a net non-negligible difference term. If the fluid does move with the
chamber (stick conditions) then x is again the right configurational variable and we
recover the main results of this section. Interestingly, all experiments done until
now that use motorized stages to move chambers operate in stick conditions so we
do not expect experimental discrepancies for the definition of the work.

4. Other cases where the work definition matters. As we showed in Figure 7 the
CFR and the right definition of work W are both amenable to experimental test.
Another interesting example where the boundary term is relevant is when the force
f (rather than the trap position) is controlled. As we saw in Section the work in
that case is given by WX0 = −

∫ f f
fi Xd f where X = y+ x+X0 is the absolute trap-

pipette distance. Because X0 stands for an arbitrary origin, the work WX0 is also
a quantity that depends on X0. This may seem unphysical but it is not [5]. The
CFR is invariant respect to the value of X0 as it can be easily checked by writing,
WX0 = WX0=0−X0( f f − fi), and using Eq.(8) gives ∆GX0 = ∆GX0=0− f X0. If the
force f is controlled, then other work related quantities such as W ′ =

∫ x f
xi

f dx or

W ′′ =
∫ X f

Xi
f dX differ from W by finite boundary terms. Again these terms make

the CFR not to be satisfied for W ′ and W ′′. These predictions are amenable to
experimental test in magnetic tweezers (where the force is naturally controlled) or
in optical tweezers operating in the force clamp mode with infinite bandwidth [28]
(and possibly in a force feedback mode with finite bandwidth as well).

A GENERALIZED FLUCTUATION RELATION

The CFR can be generalized to cases where the system is initially in partial, rather than
global, equilibrium both in the forward and the reverse protocol [29]. Suppose we take
a system at fixed control parameter λ in thermal equilibrium with a bath at temperature
T . The probability distribution over configurational variables x is Gibbsian over the
whole phase space S meaning that: Peq

λ (x) = exp(−Eλ (x)/kBT )/Zλ with Zλ the partition
function Zλ =∑x∈S exp(−Eλ (x)/kBT ), where Eλ (x) is the energy function of the system
for a given pair λ ,x. We refer to this condition as global thermodynamic equilibrium.
However we might consider a case where the initial state is Gibbsian but restricted
over a subset of configurations S′ ⊆ S. We refer to this case as partial thermodynamic
equilibrium. Partially equilibrated states satisfy Peq

λ ,S′(x) = Peq
λ (x)χS′(x)Zλ/Zλ ,S′ , where

χS′ is the characteristic function defined over the subset S′ ⊆ S [χS′ = 1 if x ∈ S′ and
zero otherwise], and Zλ ,S′ is the partition function restricted to the subset S′, i.e. Zλ ,S′ =
∑x∈S′ exp(−Eλ (x)/kBT ). The partial free energy is then given by Gλ ,S′ =−kBT logZλ ,S′ .



FIGURE 6. FDC versus FEC. (a) Experimental setup and different variables. (b) The FDC and FEC
are defined as the curves obtained by plotting the force versus the trap position or the molecular extension
respectively. Although force fluctuations in both types of curves show a dependence with the bandwidth
of the measurement (black, 1kHz; green 20 kHz) only in the FEC the measurement of the work is very
sensitive to such fluctuations. Figure taken from [27].

Let us suppose again the scenario depicted in Figure 3. Along the forward process the
system is initially in partial equilibrium in S0 at λ0. Along the reverse process the system
is initially in partial equilibrium in S1 at λ1. The generalized CFR reads,

pS0→S1
F

pS0←S1
R

PS0→S1(W )

PS0←S1(−W )
= exp

[W −∆GS1,λ1
S0,λ0

kBT

]
, (10)

where the direction of the arrow distinguishes forward from reverse, pS0→S1
F (pS0←S1

R )
stands for the probability to be in S1 (S0) at the end of the forward (reverse) process,
and ∆GS1,λ1

S0,λ0
= GS1(λ1)−GS0(λ0) is the free energy difference between the partially

equilibrated states S0 and S1.
Partially equilibrated states appear in many cases, from thermodynamic branches to

intermediate and misfolded molecular states . The usefulness of the generalized CFR
relies on our possibility to experimentally distinguish the substates visited along any
trajectory and that these substates be visited frequently enough. For example, a molecule
pulled by stretching forces can be in partial equilibrium when it stays either in the folded
or unfolded state until it transits to the other state. If S0 stands for the folded state and S1



FIGURE 7. Accumulated (W ) versus transferred (W ′) work. (a) The two work quantities for a given
experimental trajectory. Note that the effect of bandwidth dependent force fluctuations is much larger for
W ′ as compared to W , showing the importance of the boundary term Eq.9. (b) Experimental test of the
CFR. When using W the CFR is satisfied at all bandwidths. However when we use W ′ the CFR is strongly
violated and dependent on the measurement bandwidth. Figure taken from [27].

for the unfolded state, the generalized CFR makes possible to extract the free energies
GS′(λ ) of the folded and unfolded states S′ = S0,S1 along the λ -axis, i.e. the folded and
unfolded branches. Figure 8 shows an experimental verification of this result for a DNA
hairpin that folds/unfolds in a two-states manner.

CONCLUSION

The possibility to experimentally measure the inverted motions remarked by
Schrödinger more than half a century ago has boosted the study of energy fluctua-
tions in very small objects under nonequilibrium conditions. The possibility to measure
work fluctuations in single molecules that are mechanically unfolded has provided the
testing ground for some of the most recent theoretical developments in nonequilibrium
statistical physics. Fluctuation relations and fluctuation theorems (e.g. the Gallavotti-
Cohen theorem for steady state systems [30]) are examples of new results that quantify



FIGURE 8. The generalized Crooks fluctuation relation. (a) Constrained work distributions mea-
sured in a 20bp hairpin at two different pulling speeds: 300nm/s (red, unfolding; green, refolding) and
40nm/s (blue, unfolding; orange, refolding). (a,Inset) The forward trajectories we consider are those
where the hairpin starts partially equilibrated in the folded (F) state at λ0 and ends in the unfolded (U)
state (partially equilibrated or not) at λ1.Note that, due to the correction term pF→U

F /pF←U
R appearing

in Eq.(10), restricted unfolding and refolding work distributions should not cross each other at a work
value that is independent of the pulling speed. (b) Reconstruction of the folded (cyan color) and unfolded
(green) free energy branches by applying the generalized CFR, Eq.(10), as shown in (a) and by varying the
parameter x≡ λ1. The two branches cross each other around xc ≃ 82nm corresponding to the coexistence
transition. For x < xc (x > xc) the F (U) state is the minimum free energy state. The upper left inset shows
an enlarged view of the crossing region. The lower left inset shows the importance of the correction term
pF→U

F /pF←U
R appearing in Eq.(10). If that term was not included in Eq.(10) the coexistence transition

disappears. Figure taken from [29].

inverted motions in nonequilibrium states. Measuring inverted motions has also practical
applications: the Crooks fluctuation relation (CFR), Eq.(8), and its generalization to
partial (rather than full) equilibrium conditions, Eq.(10), allows us to extract free energy
differences between native or non-native states and free energies of thermodynamic
branches. Future studies will also show the reliability of these methodologies to extract
free energies of misfolded and intermediate states in RNAs or proteins, and base-pair
free energies in nucleic acids unzipped under irreversible conditions. We also stressed
how important is the correct definition of mechanical work to ensure the validity of
the CFR. In this regard serious inconsistencies are encountered using other definitions
of mechanical work but such inconsistencies are nowadays amenable to experimental
test. Related to this, it is also important to underline the general non-invariance of
fluctuation relations and theorems under Galilean transformations [31], an aspect that
has not been stressed enough and that can also be tested in experiments. Finally, all the
studies covered in this note address energy fluctuations of small classical systems under
Gaussian noise conditions. It would be highly desirable to have experiments done in
systems in the regime of non-Gaussian noise (maybe at submicroseconds timescales),
or in quantum systems where the concept of classical trajectory looses its usual meaning
[32].
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Abstract. In this talk/paper I discuss the concept of universality in phase transitions and the ques-
tion of whether universality classes are more robust in equilibrium than away from it. In both of
these situations, the main ingredients determining universality are symmetries, conservation laws,
the dimension of the space and of the order-parameter and thepresence of long-range interactions or
quenched disorder. The existence of detailed-balance and fluctuation-dissipation theorems imposes
severe constraints on equilibrium systems, allowing to define universality classes in a very robust
way; instead, non-equilibrium allows for more variability. Still, quite robust non-equilibrium uni-
versality classes have been identified in the last decades. Here, I discuss some examples in which
(i) non-equilibrium phase transitions are simply controlled by equilibrium critical points, i.e. non-
equilibrium ingredients turn out to be irrelevant in the renormalization group sense and (ii) non-
equilibrium situations in which equilibrium seems to come out of the blue, generating an adequate
effective description of intrinsically non-equilibrium problems. Afterwards, I shall describe differ-
ent genuinely non-equilibrium phase transitions in which introducing small, apparently innocuous
changes (namely: presence or absence of an underlying lattice, parity conservation in the overall
number of particles, existence of an un-accessible vacuum state, deterministic versus stochastic
microscopic rules, presence or absence of a Fermionic constraint), the critical behavior is altered,
making the case for lack of robustness. However, it will be argued that in all these examples, there
is an underlying good reason (in terms of general principles) for universality to be altered. The final
conclusions are that: (i) robust universality classes exist both in equilibrium and non-equilibrium;
(ii) symmetry and conservation principles are crucial in both, (iii) non-equilibrium allows for more
variability (i.e. it is less constrained).

Keywords: Phase transitions, Universality, Renormalization group
PACS: 05.70.Fh, 64.60.ae, 64.60.fd, 64.60.Ht

UNIVERSALITY IN EQUILIBRIUM (STATICS AND DYNAMICS)

The concept of universality is very well established in equilibrium phase transitions
[1]. The main ingredients determining universality classes are symmetries, conservation
laws, the dimensions of the physical space and the order-parameter, quenched disorder
and long-range. They all have a very general character and can be easily identified.
Moreover, the presence of detailed-balance and fluctuation-dissipation relations impose
severe constraints on equilibrium systems, and allows to define universality classes in
a very robust way. Instead, in non-equilibrium, the lack of these constraints leaves
more freedom and it is usually read in the literature that non-equilibrium universality
classes are more fragile than their equilibrium counterparts (see the next section for some
specific example of this [2]). Is this really true? If yes, to what extent? Can robustness
be quantified?



Aimed at shedding some light into these and related questions, I present here a brief
discussion of the concept of universality both in equilibrium and away from it.

Even if exact solutions of some equilibrium models exist [3,4], universality is best
understood in the framework of the renormalization group [5], as follows. Given a mi-
croscopic model, a coarse-grained continuous descriptionis first constructed either in
an exact way or by using some approximation or phenomenological description (for
instance, theφ4 Ginzburg-Landau Hamiltonian is the continuous representation of the
Ising model) [1]. In this way, the problem can be parametrized and different microscopic
models can be compared within a common language. Then, renormalization group trans-
formations are applied and non-trivial fixed points in parameter space are identified. At
such fixed points, many parameters vanish, i.e. their contribution becomes “irrelevant”.
Universality is then a straightforward consequence of the stability of fixed points under
renormalization group transformations [1]. Robustness in universality classes is to be
expected.

By extending these ideas to dynamics (i.e. including in the approach not only the
stationary state, but also the relaxation towards it), Hohenberg and Halperin proposed
in a seminal work [6] a classification of universality classes in terms of Langevin
equations [7]. In particular, the (non-conserved) dynamical Ising model corresponds to
the, so called, Model A, defined in terms of the following Langevin equation for the
magnetization fieldφ(x, t):

∂φ(x, t)
∂ t

= −δHGL[φ ]
δφ(x, t)

+ση(x, t),

HGL[φ ] =
a
2

φ2+
b
4

φ4+
D
2
(∇φ)2, (1)

whereη(x, t) is a Gaussian white noise with variance 2σ2 = KBT (T is the temperature
and KB the Boltzmann constant), and the Ginzburg-Landau Hamiltonian HGL is the
minimal Hamiltonian exhibiting a paramagnetic and a ferromagnetic phase and allowing
for the Z2, up-down, symmetry to be spontaneously broken [1] (observethat some
(x, t) dependences have been omitted, and will be omitted along thetext, to unburden
the notation). The associated stationary probability distribution is the equilibrium one,
Pstat[φ ] ∝ exp(−HGL[φ ]

KT ). Another example is Model B, very similar to Model A but with
the extra constraint of the magnetization field being conserved [6].

From any Langevin equation (as the one above), one can also construct an associated
generating functional (by using the well-know Martin-Siggia-Rose or de-Dominicis-
Peliti formalisms[8]) in terms of which to develop a renormalization program fully
analogous to the one delineated above for equilibrium Hamiltonians [1]. Actually, the
main advantage of having a dynamical formulation is that it allows for a simple extension
to non-equilibrium problems (which are usually defined fromtheir dynamics, given that
a Hamiltonian and does not exist).

In what follows I shall identify any given universality class with a unique continuous
theory (be it a Langevin equation or a generating functional) capturing in the most
parsimonious way the main relevant ingredients and hence its critical behavior.



UNIVERSALITY IN NON-EQUILIBRIUM

Let me start this section by presenting a specific example supporting the belief that
universality away from equilibrium is more fragile than it is in equilibrium.

Driven diffusive systems are variations of the Ising model or, better, its equivalent,
the lattice-gas model [2], in which an external driving fieldinduces an overall particle
current (and hence anisotropy), preventing the system frombeing Hamiltonian [2, 10].
The prototypical example is the Katz-Lebowitz-Spohn, driven lattice gas (DLG) [9].
Below the critical point the DLG segregates forming characteristic stripes (as those
shown in Figure 1) along the direction of the external field. The Langevin equation
for this case (which is a variation of Model B including an external driving field, and
hence an anisotropic direction) as well as a review of the properties of this and related
universality classes can be found in [2, 10]. A Langevin theory alternative to the standard
one was proposed in [11].

Leaving aside the subtle question of which of these is the proper Langevin equa-
tion for this universality class, and following Marro and collaborators, let me present a
recently introduced off-lattice version of the DLG. It consists of a gas of hard-core par-
ticles interacting through (truncated) Lenard-Jones potentials [12]. In the absence of an
external field, and in full analogy with the (un-directed) lattice gas, the model exhibits
an Ising-like phase transition as could have been anticipated by relying on symmetry
considerations. Instead, once an external field (dragging particles in a preferred direc-
tion) is switched on, the off-lattice model forms stripes similar to those characteristic
of the DLG (see Figure 1). A priori, one would expect the external field to shift criti-
cality from Ising-like to DLG-like. Instead, curiously enough, such an off-lattice non-
equilibrium driven model exhibits critical exponents differing significantly from those
of its microscopic counterpart [12]. To add further perplexity, even if anisotropic stripes
appear, the exponents have been reported to be compatible with Ising (i.e. equilibrium
and isotropic) values(!) [12]. Why does the off-lattice version differ from the lattice one
away from thermodynamic equilibrium, even if in equilibrium they share the same uni-
versality class? Or in other words, why is the effect of the driving field irrelevant in the
off-lattice version but not in the reticular one? The underlying reason for this remains a
mystery.

FIGURE 1. Stripped configurations appearing, as the temperature is lowered, in the ordered phase of
the driven off-lattice gas of Lenard-Jones interacting particles.

Examples similar to this one have often appeared in the literature and it has been
claimed that “universality is much more fragile in non-equilibrium than in equilibrium”
[2]. Still, contrarily to initial expectations (in the 70s and early 80s), rather robust non-



equilibrium universality classes have been identified in the last decades. Some of the
best known ones can be classified in the following groups (letme caution the reader that
this does not pretend to be, by any means, an exhaustive list):

• Driven diffusive systems(see the discussion above).
• Rough interfaces. Universality classes as the Kardar-Parisi-Zhang, the molecular-

beam-epitaxy model, etc. are quite robust and ubiquitous, including a vast number
of representatives. See the review articles in [13] for details and extensive reference
lists.

• Systems with absorbing states. As first conjectured by Janssen and Grassberger
[16], a huge number of models (including directed percolation [2, 14], the contact
process [4], catalytic reactions on surfaces, branching annihilating random walks
with odd parity, or damage spreading) exhibiting a transition into a unique absorb-
ing phase (i.e. a fluctuation-less phase from which a system cannot escape) belong
into thedirected percolation(DP) universality class [14]. There is also (at last!) a
nice experimental realization of this class [15]. The corresponding Langevin equa-
tion for the activity fieldρ(x, t) is [16]:

∂tρ(x, t) = aρ(x, t)−bρ2+D∇2ρ +σ
√

ρ η(x, t). (2)

Observe the main differences with respect to Model A: (i) thefield is positive def-
inite, (ii) there is no up-down symmetry, and (iii) the amplitude of the noise is
proportional to the square-root of the density, and hence noise vanishes in the ab-
sence of activity (i.e. the absorbing state is at work). Thisconjecture was extended
to include multicomponent systems [17] as well as to systemswith infinitely many
absorbing states [18]. Finally, let me remark that two different interesting papers
have made attempts to classify absorbing state universality classes (including DP
and some others that will show up along this paper) by using a unifying framework
[19].

• Systems with multiplicative noise. They are defined by a Langevin equation very
similar to Eq.(2) but where the noise is linear in the order-parameter, i.e.

∂tρ(x, t) = aρ(x, t)−bρ2+D∇2ρ +σρ(x, t)η(x, t). (3)

This equation describes transitions in models in theoretical ecology (where the
noise describes environmental variability), synchronization transitions in spatially
extended systems [20], or wetting under non-equilibrium conditions [21]. A de-
tailed comparison between this class and DP can be found in [22]. For a review of
this universality class see [23].

All these classes are robust in the sense that they are mostlyinsensitive to the mod-
ification of microscopic details as long as they do not alter general features as conser-
vation laws, symmetries and so on. Indeed, for all of them there are plenty of distinct
microscopic models lying in the same class. Furthermore, some of the discussed non-
equilibrium Langevin equations, as for instance Eq.(2), can be renormalized along simi-
lar lines as their equilibrium counterparts (as Eq.(1)) leading to similar renormalization-
group fixed points.



From this perspective, does it make any sense to assert that the (equilibrium) Ising
universality is more robust than the (non-equilibrium) DP class? Probably not. It is
clear that in the absence of a precise definition of what we mean by “robust” it is not
meaningful to compare the robustness of different classes.

In the next two sections, aimed at giving a broader perspective on these problems,
I shall present some examples illustrating that the borderline between equilibrium and
non-equilibrium critical points is not as clearly outlinedas one could think at first sight.
Then, in the remaining section I shall explore some specific examples of non-equilibrium
universality classes and discuss the effects that can be induced by changing apparently
innocuous details.

NON-EQUILIBRIUM SYSTEMS WITH EQUILIBRIUM SCALING

In a seminal paper, Grinstein, Jayaprakash and He [24] showed that non-equilibrium
systems (in which detailed-balance is explicitly violated) with up-down symmetry can
still be described at sufficiently large scales by the equilibrium Ising class (i.e. by Model
A above). While in systems relaxing to equilibrium we can write

∂tφ(x, t) =−Fx[φ ]+ση(x, t) (4)

where the forceF obeys the potentiality condition, and therefore can be written as the
derivative of a Hamiltonian, in non-equilibrium cases withup-down symmetry (like
some cellular automata [24]) the potentiality condition does not hold:

δFx

δφ(y, t)
6= δFy

δφ(x, t)
, (5)

and consequently, the dynamics cannot be derived from a potential. Furthermore, the
noise variance, 2σ2, cannot be identified with the temperature (KT). However, expand-
ing the forceF in power-series

∂tφ(x, t) = aφ(x, t)− ∑
x,y,z

bxyzφ(x, t)φ(y, t)φ(z, t)+ ...+D∇2φ +ση(x, t) (6)

and similarly, for the noise amplitude

σ → σ0+σ2φ(x)φ(x′)+ ..., (7)

it is not difficult to see, after performing a Fourier transform, that the corresponding
Langevin equation can be rewritten as a generalization of Model A but withk-dependent
coefficients. Grinstein et al. showed that all the extrak-dependent terms are irrelevant in
the renormalization group sense, leaving only the standardcoefficients of Model A as the
significant ones [24]. Hence, at criticality, this type of models become indistinguishable
from their standard equilibrium counterparts; i.e. they exhibit equilibrium criticality.

There are many more similar examples of this type of situation in the literature; two
of them are:

• the non-equilibrium randomly driven diffusive system, which turns out to be con-
trolled by an equilibrium fixed point [10].



• The (strong disorder) critical behavior of the equilibriumdisordered quantum Ising
chain controls also the critical properties of non-equilibrium models in the directed-
percolation with quenched disorder universality class [25].

EQUILIBRIUM SCALING COMING OUT OF THE BLUE

Just to give an illustration of how subtle the line separating equilibrium from non-
equilibrium is, let me discuss a simple (highly irreversible and with no detailed-balance)
non-equilibrium model, which at some mesoscopic scale happens to be describable by
an effective equilibrium theory.

The “interacting Brownian bug” model, was introduced in [26]and further analyzed in
[27]. It consists of branching-annihilating Brownian particles (bugs) which interact with
any other within a finite distance,R [26]. Particles move off-lattice in ad-dimensional
interval with periodic boundary conditions. They can:

• diffuse(at rate 1) performing Gaussian random jumps of variance 2D,
• disappear spontaneously(at rateβ0),
• branch, creating an offspring at their same spatial coordinates with a density-

dependent rateλ :
λ ( j) = max{0,λ0−NR( j)/Ns}, (8)

where j is the particle label,λ0 (reproduction rate in isolation) andNs (a saturation
constant) are fixed parameters, andNR( j) stands for the number of particles within
a distanceR from j.

The control parameter isµ = λ0−β0 and the functionmax() enforces the transition rates
positivity. For large values ofµ there is a stationary finite density of bugs (active phase)
while for small values the system falls ineluctably into thevacuum (absorbing phase).
Separating these two regimes there is a critical point at some valueµc, belonging to
the directed percolation (DP) universality class [27]. In the active phase, owing to the
local-density dependent dynamical rules particles group together forming clusters (see
Figure 2). Such clusters have a well-defined typical diameter and a characteristic number
of particles within, which depend on the parametersR, Ns, andµ [26, 27]. Well inside
the active phase, when the clusters start filling the available space theyself-organizein
spatial structures with remarkable hexagonal order. The amount of ordering reached by
such clusters is quite impressive (see Figure 2).

One could wonder whether the Mermin-Wagner theorem (establishing that, in equi-
librium systems, fluctuations will destroy long range orderin two-dimensional systems
characterized by a continuous rotational symmetry [28]) applies also to this highly irre-
versible non-equilibrium model. In [27] a detailed analysis of the model was performed;
the conclusion is, in a nutshell, that above the cluster scale, the system behaves as if it
was a two-dimensional crystal in thermodynamic equilibrium. The ordering can be de-
scribed in the very same terms as the equilibrium melting transition, mediated by defects
and exhibiting a Kosterlitz-Thouless type of [29] transition.

In summary, even if there is no analytical way to map the Brownian bug model
into an “effective Hamiltonian”, the striking patterns it produces resemble very much



(a) (b)
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σ=2.30 σ=2.38

σ=2.41 σ=2.60

FIGURE 2. Snapshots of the Brownian bug model for different noise intensities and topological defect
analysis. By constructing a Voronoi tessellation one observe the presence of topological defects (marked
in red and white), which tend to group together forming dipoles and quadrupoles in the very same way as
occurs in the melting of a two-dimensional solid. See [27] for more details.

the melting solid-liquid transition in two-dimensional equilibrium systems, suggesting
that at some coarse-grained scale, the system behaves as an equilibrium one with some
effective Hamiltonian.

INNOCUOUS DETAILS AFFECTING UNIVERSAL PROPERTIES?

It has been often asserted in the literature, as already illustrated above, that seemingly
“innocuous details” can change the universality class in non-equilibrium problems.
Actually, trying to shed some light onto such an assertion was the motivation for our
discussion here. After expending some time scrutinizing the literature and looking for
examples of this, we came to the conclusion that in (almost) all the cases we came
across, the apparently “innocuous details” turned out to break-up some symmetry or
conservation law, to restore some hidden symmetry, or to alter any of the general
principles on the basis of which the concept of universalityis built. Some of the examples
discussed in detail the talk are enumerated here.

• Parity conserving class. This universality class puzzled researchers for quite a few
years [31]. One-dimensional systems with absorbing statesbut in which the parity
of the number of particles is conserved lie in a universalityclass, usually called
parity-conserved, different from DP (see [14] for reviews and references). It is very
surprising at first sight that a trait as the particle number parity can affect the system
large-scale behavior. Actually, one could imagine that after some coarse-graining
parity conservation should be lost. How could one write a Langevin equation
encoding parity conservation?



After some struggling, a way out of this puzzle was given: parity-conservation
was shown to be tantamount to the existence of two symmetric absorbing states:
particles correspond two “kinks” separating the two symmetric absorbing states
(see Figure 3). Once this observation has been made, it is notdifficult to write
down a Langevin equation analogous to Eq. (2) above but including 2 symmetric
absorbing states:

∂tφ = (aφ −bφ3)(1−φ2)+D∇2φ +σ
√

1−φ2η (9)

which in one-dimensional systems has been shown to capture the physics (i.e
the critical behavior) of the parity conserving class [32].As announced above,
if universality is altered (with respect to DP) there is a good reason for it: in the
present case an additional (Z2) symmetry has been switched on.

FIGURE 3. Schematic illustration of the equivalence between parity conserving branching processes
and systems with two symmetric absorbing states. The parityconserving 2A→ 0 andA→ 3A processes
correspond respectively to annihilation and creation of kinks separating two symmetric absorbing states.

Actually, depending on some parameter values, this equation can exhibit two sep-
arate phase transitions (one Ising like and one DP-like, corresponding respectively
to the breaking of the up-down symmetry and the falling into an absorbing state,
the one selected by the spontaneous breakdown of the symmetry) or instead a sin-
gle one into the parity conserved class (corresponding to the coalescence of the two
phenomena above). Hence, the Langevin equation above does include both equilib-
rium and intrinsically non-equilibrium critical points.

• A second example, also for systems with absorbing states, isthe universality class
of reaction diffusion models in which the vacuum (i.e. the absorbing state) is not
reachable (i.e. there is always, at least, one remaining particle). An example of this
is the reversible pair of reactionsA↔ 2A (in which the state with just one particle
cannot decay to the vacuum). It has been shown that other non-reversible sets of
reactions lead to this same universality class [33]. It seems surprising that the non-
accessibility of the absorbing state is relevant for the behavior of the system at
large scales and, again, it is difficult to imagine how this property could survive



to the coarse-graining process. However, it can be shown that owing to the un-
accessibility of the vacuum, a detailed-balance property (missing in the DP class)
is restored, and the system behaves quite differently from DP, and instead behaves
as an equilibrium one [34, 33].

• Another example is provided by models of self-organized criticality [35]. Aimed at
shedding some light on the origin of scale invariance in manycontexts in Nature,
different mechanisms forself-organized criticality(SOC) were proposed follow-
ing the seminal work by P. Bak and collaborators [36, 37]. Sandpiles, ricepiles,
and earthquake toy-models become paradigmatic examples capturing the essence
of self-organization to scale-invariant (critical) behavior without apparently requir-
ing the fine tuning of parameters [35, 38]. They are metaphorsof real systems (as
earthquakes, snow avalanches, stick-slip phenomena, etc.) in which some type of
stress or energy is accumulated at some slow timescale and relaxed in a much faster
way. In particular, sandpiles played a central role in the development of this field
[36, 37]. Their dynamics can be summarized as follows: grains are slowly added to
the pile until eventually they relax if locally an instability threshold is overcome.
In such a case they are transmitted to neighboring sites which, on their turn, may
become unstable and relax, generating avalanches of activity. Considering open
boundaries (to allow for energy balance) a steady state withpower-law distributed
(i.e.critical) avalanches is eventually reached. Stochastic sandpiles have been ar-
gued to belong to a unique universality class characterizedby an equation similar
to Eq.(2) but (linearly) coupled to a second conserved and non-diffusive field [38]:

{

∂tρ(~x, t) = aρ −bρ2+ωρE+D∇2ρ +σ√ρη(~x, t)
∂tE(~x, t) = DE∇2ρ(~x, t). (10)

This universality class, sometimes called C-DP (by extension of the nomenclature
introduced by Hohenberg and Halperin), or also Manna class,is quite robust and
includes, apart from many variations of the original sandpile model with rather
different microscopic rules, reaction diffusion and othertypes of models [39].
After some initial confusion, it became clear that the original Bak-Tang-Wiesenfeld
(BTW) model, as well as some other similar sandpiles exhibit a type of scaling,
not captured by Eq.(10), which instead describes very well many other sandpiles,
ricepiles, etc. [40]. It was clarified that the difference between the BTW model and
models in the C-DP class lies in the presence ofdeterministictoppling rules (vs.
stochastic rules in the C-DP class). Even if this might seem tobe an irrelevant trait,
it is not; deterministic rules induce the existence of many “toppling invariants”
or extra conservation laws, which would need to be implemented in the set of
Langevin equations to achieve a proper coarse-grained description. Summing up,
also in this subtle case, general principles (conservationlaws) have been altered for
universal features to be affected.
To add further information (and make the overall picture even more intricate),
let me stress that the C-DP class has been shown [41] to be fullyequivalent to
that of interfaces moving in the presence of quenched disorder (i.e. the Quenched
Edwards Wilkinson class) [42]. The first one is intrinsically a non-equilibrium one
with annealed disorder; the second one is an equilibrium class including quenched



disorder; both of them share the same critical properties; they are simply two
different descriptions of the same underlying phenomenon [41]. Once again, this
illustrates the subtlety of the frontier separating equilibrium and non-equilibrium
criticality.

• In particle systems, an important property is the presence of hard-core constraints.
It seems that whether a spatial position can be occupied simultaneously by only one
or more than one particles should influence decisively its critical properties. Instead,
in systems with absorbing states it is customarily argued that in the neighborhood
of the phase transition, as the density of particles becomesas small as wanted, this
type of effect can be safely ignored. Actually, this is typically the case, and there is
overwhelming evidence supporting such a conclusion. This justifies the generalized
use of bosonic-type of Fock-space formalisms employed to derived field-theoretical
actions or Langevin equations, in which analytic calculations or universality issues
are more systematically analyzed [1].
However, for a simple non-equilibrium particle model (in which particles react
only at a particular point and diffuse without interacting elsewhere) it was claimed
that Fermionic and bosonic versions of the model lead to different critical features
[43]. However, in a subsequent work it was (numerically) shown that indeed, the
Fermionic constraint is irrelevant and both versions of themodel lie in the same
universality class [44].

In summary, our main conclusion is that, as in equilibrium, general principles as
symmetries, conservation laws, disorder, dimensionality... are the sole responsible for
universal features. In (almost) all the cases under consideration in which universality is
changed by apparently innocuous details, it has been shown that such details turn out to
dramatically alter some general property. The reverse is also true; if general properties
remain unchanged universality is preserved.

An exception to this general conclusion is the example of theoff-lattice driven diffu-
sive system, for which we do not have a satisfying explanation. Our bet, however, is that
even if still un-covered a good reason (in terms of general principles) should also exist
for the breakdown of universality in this case.
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Abstract. When hydrodynamic or thermodynamic limits are performed in systems which are in the
phase transitions regime we may observe perfectly smooth profiles develop singularities with the
appearance of sharp interfaces. I will discuss the phenomenon in stationary non equilibrium states
which carry non zero steady currents. The general context is the one where the Fourier law applies,
but here it is complemented by a free boundary problem due to the presence of interfaces.

I will specifically consider an Ising system with Kac potentials which evolves under the stochastic
Kawasaki dynamics. In a continuum limit the evolution is described by an integro-differential
equation, as proved by Giacomin and Lebowitz in [2], see also [3]. I will then study its stationary
solutions with a non zero current (produced by suitable boundary conditions) and derive, in the
infinite volume limit, macroscopic profiles with an interface proving that the profiles satisfy a
stationary Stefan problem and obey the Fourier law.

Keywords: Simple exclusion, Kac potentials, non local equations
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FOURIER’S LAW

We shall call conservative a dynamics where there is “an extensive quantity” conserved
in the course of time, for instance energy, mass, or magnetization which are those
considered in the following. If a quantity is conserved it means that it cannot be created
nor destroyed, so it can only move and there is therefore a current which describes its
motion. If ρ(r, t) ∈ R+ is the density [of the conserved quantity] and I(r, t) ∈ Rd the
corresponding current the conservation law is expressed by the relation

∂ρ

∂ t
=−∇ · I (1)

The Fourier’s law holds if the current vector I is directed opposite to the gradient of ρ ,
more precisely

I =−D∇ρ (2)

where D > 0 may be either a constant or a function of ρ . (1) and (2) together yield the
conservation law

∂ρ

∂ t
= ∇

(
D∇ρ

)
(3)

More properly the Fourier’s law refers to the case where the conserved quantity is the
energy and the corresponding current is the heat current; when the conserved quantity
is the mass (2) is called “the Fick’s law”, for brevity I will in the sequel refer to (2) as



the Fourier’s law no matter what is the conserved quantity. (3) is a diffusion equation
with diffusion coefficient D, if D is a positive constant then (3) is the well known linear
heat equation. When D depends on ρ (3) is the non linear heat equation. We shall see
that if the fluid undergoes a phase transition then D may vanish and (3) becomes a free
boundary problem. But this will come later after discussing the microscopic origin of
the law.

THE SIMPLE EXCLUSION PROCESS

We shall eventually study the phase transition regime, but it is better to start from the
simpler case of a lattice gas at infinite temperature (ideal gas). Lattice gas means that
particles may only stay on the sites of the lattice Zd (or of a finite subset Λ of Zd) and
that on each site there is at most one particle. Particles configurations are then functions
η(x), x ∈ Zd , or x ∈ Λ, with values in {0,1}. In the ideal gas all allowed configurations
are equally likely, therefore the stochastic evolution of the ideal gas is defined so that
each particle independently of the others with same rate 1 “decides” to jump to one of its
nearest neighbor sites: the jump then takes place if the chosen site is empty, otherwise
the jump is suppressed. Rate 1 means that each possible jump has a clock which rings
after an exponentially distributed time of mean 1, when the clock rings then the particle
decides to jump; all clocks are independent of each other.

The expected current from x to x+1 is then

I = E
[
η(x)

(
1−η(x+1)

)
−η(x+1)

(
1−η(x)

)]
(4)

Calling ρ(x) = E[η(x)] we then have

I =−
(

ρ(x+1)−ρ(x)
)
=:−∇ρ (5)

because the non linear terms on the right hand side of (4) cancel with each other (this is
the big simplification of the process which for this reason is called the simple exclusion
process, SEP).

Fourier’s law thus holds already at the microscopic level and the “hydrodynamic
equation” for the SEP is indeed the linear heat equation.

A MECHANISM FOR PHASE TRANSITIONS

In the late 80’s Joel Lebowitz, inspired by some nice numerical simulations on phase
separation by Rothman and Zaleski, proposed to modify the rules of the SEP in order to
induce a phase transition. Referring for notational simplicity to d = 1, in Joel’s proposal
the rate to jump from say x to x+1 is modified into η(x)

(
1−η(x+1)

)(
1+B

)
, B the

bias as with B = 0 this is the SEP. To have a bias toward higher densities we then set

B =
c

N2

N

∑
`=1

(
η(x+ `)−η(x− `)

)
(6)



FIGURE 1. aβ (m) is flat in [−mβ ,mβ ]

Indeed if the are more particles to the right than to the left of x, B is positive while it is
negative if there are more particles to the left than to the right. Writing (6) as

B = c
N

∑
`=1

w(`;N)
(

η(x+ `)−η(x− `)

2`

)
, w(`;N) :=

2`
N2

we see B as a weighted average of discrete gradients, the weights converging to a
probability distribution as N→ ∞.

If we repeat the computation in (4) for the expected current across the bond (x,x+1)
we then get

I ≈−∇ρ

(
1−2cρ(1−ρ)

)
(7)

The approximation comes from: • supposing the validity of a chaos property under

which the measure factorizes; • identifying all the gradients
ρ(x+ `)−ρ(x− `)

2`
with

a same ∇ρ , we shall come back later on the validity of such approximations.
What happens to Fourier law if c is large ? The right hand side of (7) becomes negative

if c is large and ρ is not too close to 0 or 1 and the current becomes directed as the
gradient, contrary to Fourier’s law. As we shall this is related to the occurrence of a
phase transition.

THE STEFAN PROBLEM

Let us next see how the problem looks like at the macroscopic level and how it is
solved. With in view applications to the Ising model it is convenient to have here the
magnetization as order parameter. At phase transition the diagram of the free energy
density aβ (m) (β the inverse temperature, β > βc, the critical value; m the magnetization
density) has a flat segment [−mβ ,mβ ] (we suppose aβ (m) even) and it is strictly convex
elsewhere, as in Fig. 1.

The non equilibrium free energy of a magnetization profile m = m(r) is given (under
a local equilibrium assumption) by the “barometric formula”

Fβ (m) =
∫

Λ

aβ

(
m(x)

)
dx (8)

By the second law of thermodynamics the free energy decreases (more precisely does not
increase) in time. A natural way to implement such a property is to define the dynamics



as a flow directed against the gradient. If we want a conservative dynamics we then set

∂m
∂ t

=−∇I, I =−χ∇
δF(m)

δm(x)
=−χa′′

β
(m)∇m (9)

χ = χ(m) a mobility coefficient suppose strictly positive and even; D(m) := χa′′
β
(m) is

the diffusion coefficient. Indeed if mt is a solution of the equations of motion then

d
dt

F(mt) =−
∫

χ|∇δF(m)

δm(x)
|2 ≤ 0 (10)

Also with the evolution (9) we find problems with the Fourier’s law: suppose m(x),
|x| ≤ `, is a one-dimensional stationary profile with m(±`) = m±, m+ > mβ > −mβ >
m−. The stationary current I is then spatially constant hence if m takes values in
[−mβ ,mβ ] (which is certainly the case if m is continuous) by (9) it must be I = 0. Thus
the validity of the Fourier’s law is strictly related to the appearance of singularities.
Solutions of (9) are then defined in terms of a “free boundary problem”.

The Stefan problem. Find m = m(r, t), r ∈ Λ, t ≥ 0, and Ωt ⊂ Λ both smooth so that
denoting by n the unit outward normal to ∂Ω and by [ f ] the discontinuity of f across
∂Ω coming from inside Ω, ([ f ] = f+− f−):

• m(r, t)<−mβ , r ∈Ωt \∂Ω, m(r)→−mβ as r→ ∂Ω

• m(r, t)> mβ , r ∈Ωc \∂Ω, m(r)→ mβ as r→ ∂Ω

•
∂m
∂ t

= ∇

(
χa′′

β
(m)∇m

)
in the interior of Ωt and of Ωc

t while the points on ∂Ω have
velocity v such that

(2mβ )v ·n = [I ·n], r ∈ ∂Ω (11)

(11) follows from the conservation law. Indeed if Ωt would not move then (I− · n)dΣ

and −(I+ · n)dΣ would be the amounts of magnetization per unit time which leave Ωt
and respectively Ωc

t through dΣ, thus −[I · n]dΣ is the magnetization change in Ωt due
to the current flux through dΣ. If on the other hand the magnetization was frozen while
the interface ∂Ω moves with velocity vv, then, since [m] = 2mβ at ∂Ω, the contribution
to the magnetization change in Ωc is −2mβ v ·ndΣ, hence (11).

The stationary case. In a time independent solution Ωt = Ω is constant, v = 0 and
therefore I ·n is continuous across ∂Ω. Supposing a planar symmetry, I = I(x), m=m(x),
I is the same constant vector in Ω and Ωc (as it is continuous across ∂Ω); thus I =−χ∇m
in Λ\∂Ω where ∇m is not defined. The Fourier’s law is then valid at almost all points,
i.e. away from the interface. We can however reformulate the Fourier’s law so that it is
valid at all points. Recall that the magnetic field h is the conjugate variable to m defined
as h := a′

β
(m). The gradient flow dynamics is then

I =−χ∇h (12)



which shows that in the stationary case ∇h is continuous at the interface (recall that χ

being even is continuous at the interface) so that in the form (12) the Fourier’s law is
valid everywhere. (12) is therefore a better formulation of the Fourier’s law which is
equivalent to the other away from phase transitions but which remains valid when they
are present.

KAWASAKI DYNAMICS AND KAC POTENTIALS

As suggested by Herbert Spohn it is possible to interpret the Lebowitz rates in (6) in
terms of Gibbs measures. As mentioned before it is now convenient to have spins rather
than particles, so that instead of η(x)∈ {0,1} we have σ(x)∈ {−1,1}. The hamiltonian
is

H(σ) =−1
2 ∑

x 6=y
Jγ(x,y)σ(x)σ(y), Jγ(x,y) = γ

dJ(γ|y− x|) (13)

where γ > 0 is “the Kac scaling parameter” and J(|r|) a smooth, finite range, probability
density. The range of the interaction scales as γ−1 so that a spin does interact with≈ γ−d

other spins, hence the pre-factor γd in (13). The model for γ > 0 small does resemble
mean field, yet for any γ > 0 it is a finite range interaction which is then likely to belong
to the same universality class as the nearest neighbor Ising model. Dynamics is defined
in the same spirit as the gradient flow dynamics in the macroscopic theory. In fact the
rate at which the spins at two neighbor sites x and y exchange with each other is:

c(x,y;σ) = exp
{
− β

2

(
H(σ (x,y))−H(σ)

)}
(14)

where σ (x,y) is obtained from σ by exchanging σ(x) and σ(y). One can easily check the
detailed balance condition µ(σ)c(x,y;σ) = µ(σ (x,y))c(x,y;σ (x,y)), µ the Gibbs measure
at inverse temperature β , which implies that µ is invariant under the evolution defined
by the rates (14).

The difference H(σ (x,y))−H(σ) is infinitesimal in γ as γ → 0 and to leading order
becomes equal to the Lebowitz rates in (6) for a suitable choice of J.

PHASE TRANSITIONS

The equilibrium theory for the Ising model with Kac potentials of (13) gives:

Theorem. 1 In d ≥ 2 for any β > 1 there is γβ > 0 so that for all γ ≤ γβ the thermody-
namic free energy density aβ ,γ(m) is linear in the interval |m| ≤ mβ ,γ and

lim
γ→0

mβ ,γ = mβ , mβ = tanh{βmβ} (15)

A stronger version is proved in the literature, see for instance [5], Theorem 9.1.4.1,
and references therein. The theorem shows that the phase transition is of mean field type



and indeed mβ = tanh{βmβ} is the well known mean field equation for the magnetiza-
tion. As already remarked this is not at all trivial as the statement holds for finite γ where
the interaction has strictly finite range and indeed, in d = 1 there is no phase transition
unlike in the mean field model where the analysis is dimension independent. We have
thus reproduced at the microscopic level the setup we had in the macroscopic theory, let
us now turn to dynamics.

HYDRODYNAMIC LIMITS

Hydrodynamic limits describe the behavior of the system on large space-time scales.
Based on the analysis of many stochastic particle systems we conjecture that if σ(x, t)
denotes the spin at site x and time t under the evolution defined by the rates (14), then
for any test function φ , in probability

lim
ε→0

ε
d
∑
x

φ(εx)σ(x,ε−2t) =
∫

φ(r)m(r, t) (16)

where m solves:
∂m
∂ t

= ∇

(
D∇m

)
(17)

As discussed in [3] we do not expect D to be as in the macroscopic theory, see below
(12), but to have a more complex expression as given by the Green-Kubo formula.

The problem simplifies if we scale ε proportionally to γ , the Kac scaling parameter.
This is not a hydrodynamic limit and it is referred to as “a mesoscopic” or “kinetic”
limit. In this case it is indeed proved, see [2], that:

lim
γ→0

γ
d
∑
x

φ(γx)σ(x,γ−2t) =
∫

φ(r)m(r, t) (18)

where m solves the non local integro-differential equation

∂m
∂ t

= ∇

(
∇m−β (1−m2)∇J ∗m

)
, J ∗m(r) =

∫
J(|r− r′|)m(r′) (19)

which makes rigorous the heuristic argument presented in Section 3.
Our goal is to study the stationary profiles thus the correct limit is to take first

t → ∞ and then γ → 0. We are not able to do that and we exchange the limits studying
first the limit γ → 0 and then the stationary solutions of (19) in the thermodynamic
limit. The interchange of limits is not innocent, indeed in [4] it is proved that (16)
holds if ε = γb, b > 1 (but “close to 1”) and when phase transitions are absent. The
limit profile m satisfies (17) with D = χa′′

β
(m), χ = (1−m2), in agreement with the

macroscopic theory, thus in the simultaneous limit when γ → 0 together with the space-
time scaling parameter ε we loose the time fluctuations contribution to the diffusion
which is predicted by the Green-Kubo formula.



FREE ENERGY FUNCTIONALS AND LYAPUNOV FUNCTIONS

As discussed in Chapter 4, see Subsection 4.2.4, of [5] the equilibrium large deviations
in the limits γ → 0 are described by the functional

F(m) =
∫ (
− 1

2
mJ ∗m− S(m)

β

)
(20)

S(m) :=−1−m
2

log
1−m

2
− 1+m

2
log

1+m
2

where −1
2mJ ∗m is the continuum version of the hamiltonian (13) and S(m) is the

entropy of the product measure with magnetization m. Thus F(m) has the familiar
expression of energy minus T times the entropy.

F(m) is the starting point of the mesoscopic equilibrium theory which goes back to
the van der Waals works, as explained in Chapter 5 of [5]. Gradient flow dynamics can
be defined starting from F(m) just as we did in the macroscopic theory and (19) is equal
to

∂m
∂ t

=−∇

(
−χ∇

δF(m)

δm(x)

)
, χ = β (1−m2) (21)

which shows the close relation between the Kawasaki stochastic dynamics and the
gradient flow dynamics in the limit γ → 0. If mt is a solution of (21) then

d
dt

F(mt) =−
∫

χ|∇δF(m)

δm(x)
|2 ≤ 0 (22)

which also shows that the free energy F(m) does not increase with time and it is therefore
a Lyapunov function for the evolution (19).

To have a better insight on the nature of (19), let us first rewrite F(m) as

F(m) =
∫

fβ (m)+
β

4

∫ ∫
J(|r− r′|)

(
m(r)−m(r′)

)2
(23)

fβ (m) :=−m2

2
− S(m)

β

which is evidently a non local version of the well-known Ginzburg-Landau functional

FGL(m) =
∫ (

fβ (m)+ c|∇m|2
)

(24)

The gradient flow dynamics for FGL(m) (with χ = 1) is the Cahn-Hilliard equation

∂m
∂ t

=−∆

(
c∆m− f ′

β
(m)
)

(25)

We should therefore regard (21) as a non local version of the Cahn-Hilliard equation.



THE STATIONARY PROBLEM

We are finally ready to discuss the Fourier’s law. We consider the stationary solution of
the equation (19) defined in a cylinder of length 2` and cross section a square of side 2R,
thus Λ= {(x,y,z) : |x| ≤ `, |y| ≤ R, |z| ≤ R}. We define the convolution J∗m by imposing
periodic boundary conditions in the y− z coordinates and Neumann conditions in the x-
coordinates (namely the convolution sees a reflected m in the x coordinates while m is
periodic in the y− z coordinates). The problem is then well defined by specifying the
values of m at x = ±`: we impose that m(±`) = m± with m− < −mβ < mβ < m+. By
looking for solutions with a planar symmetry, i.e. m = m(x) we are then reduced to a one
dimensional problem, in other words we may and will suppose that d = 1. Summarizing,
we are looking for m(x), |x| ≤ `, and a constant I so that

−
(dm

dx
−β (1−m2)

d
dx

∇J ∗m
)
= I, m(±`) = m± (26)

where J ∗m is defined with Neumann conditions, in the sense explained above. In [1] it
is proved that

Theorem. 2 For all ` small enough there is a smooth increasing solution m(x|`) of (26).
Moreover there are r0 ∈ (−1,1) and a smooth increasing function u(r), r 6= r0, so that
|u(r)|> mβ , lim

`→∞
m(`r|`) = u(r) and

d
dr

(
β (1−u2)

d
dr

a′
β
(u)
)
= 0, u(±1) = m±, u(r±0 ) =±mβ (27)

SELF CONSISTENT FIELDS

As discussed after (12) it is convenient to reformulate the problem in terms of magnetic
fields. Following the thermodynamic prescription that the magnetic field is the derivative
of the free energy with respect to the magnetization density we set

h(x) :=
δF(m)

δm(x)
=

1
2β

log
1+m
1−m

− J ∗m (28)

so that the stationary problem (26) becomes

−χ
dh(x)

dx
= I, m = tanh

{
βJ ∗m+βh

}
(29)

(29) has a nice physical interpretation. In the presence of an external magnetic field
h(·) there is an additional term −

∫
hm to the energy so that the free energy functional

becomes:
Fh(m) := F(m)−

∫
mh (30)

The non conserved evolution equation is then

∂m
∂ t

=−∂Fh(m)

∂m(x)
=− 1

β
arctanh(m)+ J ∗m+h (31)



If we use instead the Ginzburg-Landau functional we then get the Allen-Cahn equation

∂m
∂ t

= ∆m−
( 1

β
arctanh(m)−m−h

)
(32)

The stationary solution of (31) is m= tanh{βJ ∗m+βh}, i.e. the second relation in (29),
it is the response of the system to the external field h= h(·). Physically each point x of the
system is in contact with a reservoir which acts on x with a magnetic field h(x). On x acts
also the molecular field J ∗m(x) (which is the sum of the action that all the other parts
of the system exert on x). The reservoirs exchange also magnetization with the system,

indeed if ∇ · I 6= 0 and since
∂m
∂ t

= 0 the conservation law is violated, which means that

the reservoirs absorb the excess magnetization −∇I =−∇(−χ
δF(m)
δm(x) ). A magnetization

field h is called “self-consistent” if the reservoir do not exchange magnetization with the
system and this means that (29) holds.

A FIXED POINT PROBLEM

As seen in the previous section the stationary problem (26) can be formulated in the
following way: find smooth functions m(x) and h(x), |x| ≤ `, so that (29) holds. As a
preliminary step we shall study a slightly modified problem: for fixed r0 ∈ (−1,1) and
I < 0, find smooth functions m(x) and h(x), |x| ≤ `, so that

h(x) =−1
`

∫ x

r0`

I
β (1−m2(y))

(33)

m(x) = tanh
{

βJ ∗m(x)+βh(x)
}

(34)

(33) can then be stated as a fixed point problem. Define a map m→ m′ in two steps:
given m find h using (33) and then m′ by solving (34) with the h found in the first step. If
we have a smooth fixed point of this map we then have a solution of (29) and by varying
r0 and I it will then be possible to match the boundary conditions at ±`. The existence
of a fixed point is proved by showing that iterates of the map (starting from a suitable
initial point) converge, the limit then defines the desired fixed point. Suppose we have
proved that given h there is m which solves (34), then to control the iteration scheme we
need estimates on how much m changes if we change h by a small quantity δh. To first
order m changes by δm =: ψ with ψ solution of the linearized map:

Lψ = β (1−m2)δh, Lψ = (A−1)ψ, Aψ = β (1−m2)J ∗ψ (35)

having used that cosh−2 = 1− tanh2. Since mβ = tanh{βmβ}, β (1−m2
β
)< 1 (as it can

be easily checked). Thus there is m′
β
< mβ so that for |m| ≥ m′

β
, β (1−m2) ≤ α < 1.

Thus if |m(x)| ≥ m′
β

then |Aψ(x)| ≤ α‖ψ‖∞. However since β > 1 if m(x) = 0 then
the contraction property fails. We thus find again what seen in the beginning of this
presentation, namely that the problems arise in a neighborhood of m = 0, that is at the
interface between the plus and the minus phases.



The optimal way to connect plus and minus phases is a very interesting problem in
its own which goes back to van der Waals. The problem is to minimize the free en-
ergy functional F(m) of (23) with the constraint that limx→±∞ m(x) =±mβ . It has been
proved, see Section 8.1 in Chapter 8 of [5] and references therein, that the minimum is
achieved uniquely (modulo translations), that the minimizer, m̄(x), is a strictly increas-
ing, antisymmetric smooth function which converges exponentially fast to mβ as x→ ∞

and is a critical point of the functional, namely it solves the equation m = tanh{βJ ∗m}.
The proof is not simple and it uses dynamics. Let m0 be a smooth non decreasing an-
tisymmetric function equal to mβ for x > 1. Let then mt be the solution at time t > 0
of

dmt

dt
=−mt + tanh{βJ ∗mt} (36)

(starting from m0). It can be easily checked that mt is antisymmetric and non decreasing.
Moreover F(mt) is a non increasing function of t and F(m0) < ∞. Then the argument
in the Lyapunov theorem can be adapted to show that (by subsequences) mt converges
to a stationary solution m∗ of (36) and that F(m∗)≤ F(m0). Since m∗ is non decreasing
it has a limit C as x→ ∞. Since F(m∗) < ∞ |C| = mβ and since m∗ is antisymmetric,
C = mβ and limx→−∞ m̄(x) =−mβ .

There is another important property of the “instanton” m̄ namely that the operator
A := β (1− m̄2)J∗ has an eigenvalue 0 (with eigenvector m̄′ as it can be easily checked),
moreover 0 is a simple eigenvalue and there is a spectral gap with the rest of the spectrum
away in the negative axis. This is proved using the Perron-Frobenius theorem, details can
be found in Section 8.3 of Chapter 8 in [5].

The iteration scheme to find the fixed point works more easily if we suppose r0 = 0
and work in the space of antisymmetric functions. In such a case the starting point m0
of the iteration is equal to m̄(x) for |x| ≤ c log`, with c suitably chosen. After c log` m0
is the rescaled solution of the macroscopic equation. It turns out that at all steps of the
iteration h and m are antisymmetric so that β (1−m2)δh, see (35), is also antisymmetric.
Antisymmetric functions do not have a component along the eigenvector m̄′ (which is
symmetric) hence they have good decay properties (for the operator linearized around
m̄). Using these properties it is possible to prove a contraction property for (35) and
then, eventually, the convergence of the iteration. The non symmetric case is much more
complex and one has at each step to suitably shift the functions to avoid the dangerous
components along m̄′, but this is too technical and I refer for the proof to the original
paper, [1].

ACKNOWLEDGMENTS

This paper profits of several comments and remarks following my presentation of the
subject at the Granada seminars, for which I am very indebted. I also acknowledge very
kind hospitality at La Harradura.



REFERENCES

1. A. De Masi, E. Presutti, and D. Tsagkarogiannis, preprint 2009.
2. G. B. Giacomin, and J.L. Lebowitz, J. Stat. Phys. 87, 37–61, (1997); SIAM J. Appl. Math. 58, 1707–

29, (1998).
3. G. B. Giacomin, J. L. Lebowitz, and R. Marra, Nonlinearity 13, 2143–2162 (2000).
4. J. L. Lebowitz, E. Orlandi, and E. Presutti J. Stat. Phys. 63, 933–974 (1991).
5. E. Presutti, Theoretical and Mathematical Physics, Springer, Berlin-Heidelberg, 2009.
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Abstract. We present recent developments that extend the applicability of thermodynamic concepts
deep into mesoscopic and irreversible regimes. We show how a probabilistic interpretation of
thermodynamics together with probability conservation laws can be used to obtain Fokker-Planck
equations for the relevant degrees of freedom. This approach provides a systematic method to obtain
the stochastic dynamics of a system directly from the knowledge of its equilibrium properties.
A wide variety of situations can be studied in this way, including many that were thought to be
out of reach of thermodynamic theories, such as non-linear transport in the presence of potential
barriers, activated processes, slow relaxation phenomena, and basic processes in biomolecules, like
translocation and stretching.
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INTRODUCTION

Systems in conditions of equilibrium strictly follow the rules of thermodynamics [1]. In
such cases, despite the intricate behaviour of large numbers of molecules, the system can
be completely characterized by a few variables that describe global average properties.
The extension of thermodynamics to non-equilibrium situations entails the revision of
basic concepts such as entropy and its related thermodynamic potentials as well as
temperature that are strictly defined in equilibrium.

Non-equilibrium thermodynamics proposes such an extension [2] for systems that are
in local equilibrium. Despite its generality, this theory is applicable only to situations
in which the system manifests a deterministic behaviour where fluctuations play no
role. Moreover, non-equilibrium thermodynamics is formulated in the linear response
domain in which the fluxes of the conserved local quantities (mass, energy, momentum,
etc.) are proportional to the thermodynamic forces (gradients of density, temperature,
velocity, etc.). While the linear approximation is valid for many transport processes,
such as heat conduction and mass diffusion, even in the presence of large gradients, it
is not appropriate for activated processes such as chemical and biochemical reactions
in which the system immediately enters the non-linear domain or for small systems in
which fluctuations may be relevant.

To circumvent these limitations, one has to perform a probabilistic description of the
system, which in turn has to be compatible with thermodynamic principles. We have
recently proposed such a description [3], [4] aimed at obtaining a simple and com-
prehensive description of the dynamics of non-equilibrium systems at the mesoscopic



scale. The theory, mesoscopic non-equilibrium thermodynamics (MNET), has provided
a deeper understanding of the concept of local equilibrium [5] and a framework, rem-
iniscent of non-equilibrium thermodynamics, through which fluctuations in non-linear
systems can be studied. The probabilistic interpretation of the density together with con-
servation laws in phase-space and positiveness of global entropy changes set the basis
of a theory similar to non-equilibrium thermodynamics in the method but of a much
broader range of applicability. In particular, the fact of its being based on probabili-
ties instead of densities allows for the consideration of mesoscopic systems and their
fluctuations. The situations that can be studied with this formalism include, among oth-
ers, slow relaxation processes, barrier crossing dynamics, chemical reactions, entropic
driving, non-linear transport, and anomalous diffusion, processes which are generally
non-linear. From the methodological point of view, given the equilibrium properties of
a system, this theory provides a systematic and straightforward way to obtain stochastic
non-equilibrium dynamics in terms of Fokker-Planck equations.

To set the basis for the development of the theory, we discuss first the basic concepts
of MNET and proceed afterwards with the application of the theory to two illustrative
cases: Brownian motion in a fluid in a stationary state and activated processes. The use
of the theory in the study of a chemical reaction shows categorically how an adequate
formulation of the local equilibrium hypothesis performed at the mesoscale is able to
reproduce the intrinsic non-linear dynamics of these processes.

THERMODYNAMICS AND STOCHASTIC DYNAMICS

Scaling-down the size of a system usually brings about an increase in the number of
degrees of freedom which have not yet equilibrated and that therefore influence the
dynamics of the system. The nonequilibrated degrees of freedom, denoted by γ , may
for example represent the velocity of a particle, the orientation of a spin, the size or
the monomers of a macromolecule or any coordinate or order parameter whose values
define the state of the system in a phase space. The characterization at the mesoscopic
level of the state of the system follows from P(γ, t) the probability density of finding the
system at the state γ at time t. The entropy of the system in terms of this probability can
be expressed through the Gibbs entropy postulate

S = Seq− kB

∫
P(γ, t)ln

P(γ, t)
Peq

dγ (1)

where Seq is the entropy of the system when the degrees of freedom are at equilibrium.
The equilibrium probability density is given by

Peq ≈ exp
(
−∆W (γ)

kBT

)
(2)

Here ∆W (γ) is the minimum reversible work required to create that state [6], kB is
Boltzmann’s constant, and T is the temperature of the heat bath. Variations of the
minimum work for a thermodynamic system are expressed as

∆W = ∆E + pdV −T ∆S−µdM+ y∆Y (3)



Here E is the internal energy, T the temperature of the bath, p the pressure, V the
volume, µ the chemical potential and M the mass. The term y∆Y represents other types
of work: electric, magnetic or surface work, performed on the system. The expressions
for these works is always the product of an intensive parameter y and the variation
of its conjugated extensive variable ∆Y . The expression of the minimum reversible
work reduces to the different thermodynamic potentials by imposing the corresponding
constraints that define those potentials [7]. Any other definition of work is not connected
with the free energy of the system and may lead to inconsistencies [8]. The statistical
mechanics definition of the entropy is therefore the key to connect thermodynamics with
both the mesoscopic description in terms of the probability distribution P(γ, t) and the
equilibrium behavior of the system.

The combination of the statistical definition of the entropy with the systematic
methodology of nonequilibrium thermodynamics, results in a powerful framework to
describe the kinetics of a wide class of systems. To describe the dynamics of the meso-
scopic degrees of freedom, the starting point is the statistical mechanics definition of
the entropy given through the Gibbs entropy postulate. Taking variations in Eq. (1), one
obtains

δS =−kB

∫
δP(γ, t)ln

P(γ, t)
Peq

dγ (4)

The evolution of the probability density in the γ-space is governed by the continuity
equation

∂P
∂ t

=−∂J
∂γ

(5)

where J(γ, t) is a current in γ-space which has to be specified. Its form can be obtained
by taking the time derivative in equation (4) and by using the continuity equation (5) to
eliminate the probability time derivative. After a partial integration, one then arrives at

dS
dt

=
∫

dγ
∂Js

∂γ
(6)

where
Js = kBJln

P
Peq

(7)

is the entropy flux, and

σ =−kB

∫
J(γ, t)

∂

∂γ

(
ln

P(γ, t)
Peq(γ)

dγ

)
(8)

is the entropy production.
In this scheme, the thermodynamic forces are identified as the gradients in the space

of mesoscopic variables of the logarithm of the ratio of the probability density to its
equilibrium value. We will now assume a linear dependence between fluxes and forces
and establish a linear relationship between them

J(γ, t) =−kBL(γ,P(γ))
∂

∂γ

(
ln

P(γ, t)
Peq(γ)

)
(9)



where L(γ,P(γ)) is an Onsager coefficient, which in general depends on the state
variable P(γ) and on the mesoscopic coordinates γ . To derive this expression, locality in
space has also been taken into account, for which only fluxes and forces with the same
value of γ become coupled.

The resulting kinetic equation follows by substituting Eq. back into the continuity
equation:

∂P
∂ t

=
∂

∂γ

(
DPeq

∂

∂γ

P
Peq

)
(10)

where the diffusion coefficient is defined as

D(γ) = kB
L(γ,P)

P
(11)

This equation, which in view of Eq. (9) can also be written as

∂P
∂ t

=
∂

∂γ

(
D

∂P
∂γ

+
D

kBT
∂∆W

∂γ
P
)

(12)

is the Fokker-Planck equation for the evolution of the probability density in γ-space.
Notice that the diffusion coefficient appearing in this equation may, according to (11),
depend on P. The Fokker-Planck equation obtained is in general non-linear in the
probability distribution and describes in this case anomalous diffusion [9]. Up to first
order, when the Onsager coefficient is linear in P, the diffusion coefficient may still
depend on γ . The case in which that coefficient is a constant corresponds to normal
diffusion.

Under the conditions for which the minimum work is given by the Gibbs free energy
G , ∆W = ∆G = ∆H−T ∆S , where H is the enthalpy, this equation transforms into the
Fokker-Planck equation for a system in the presence of a free energy barrier:

∂P
∂ t

=
∂

∂γ

(
D

∂P
∂γ

+
D

kBT
∂∆G
∂γ

P
)

(13)

Other cases of interest concern different thermodynamic potentials. For instance, a par-
ticularly interesting situation is the case of a purely entropic barrier, often encountered
in soft-condensed matter and biophysics [10].

It is important to stress that MNET provides a simple and direct method to determine
the dynamics of a system from its equilibrium properties. In particular, by knowing the
equilibrium thermodynamic potential of a system in terms of its relevant variables, one
could easily derive the general form of the kinetics. The method proposed thus offers a
general formalism able to analyze the dynamics of systems away from equilibrium. In
the following section we will illustrate its applicability by means of some examples.

The scheme presented can be put in closer connection with nonequilibrium thermo-
dynamics concepts. The link can be established through the non-equilibrium chemical
potential µ(γ, t). We may then assume that the evolution of these degrees of freedom is
described by a diffusion process and formulate the corresponding Gibbs equation

δS =− 1
T

∫
µ(γ)δP(γ, t)dγ (14)



which resembles the corresponding law proposed in nonequilibrium thermodynamics
for a diffusion process in terms of the mass density of particles. In this expression, the
chemical potential in γ-space is conjugated to the distribution function P(γ, t) interpreted
as a state variable in a thermodynamic context.

Comparison of the Gibbs equation (14) with Eq. (4), where the variations of the
equilibrium entropy are given by

δSeq =−
1
T

∫
µeqδP(γ, t)dγ (15)

and µeq is the value of the chemical potential at equilibrium, yields the identification of
the generalized chemical potential as

µ(γ, t) =−kBln
P(γ, t)

Peq
(γ)+µeq (16)

or alternatively, using Eq. (2),

µ(γ, t) =−kBlnP(γ, t)+∆W (17)

In this reformulation, the "thermodynamic force" driving this general diffusion pro-
cess is T−1∂ µ/∂γ , and the entropy production is given by

σ =− 1
T

∫
J

∂ µ

∂γ
dγ (18)

By comparison of the previous equation with Eq. (6), it is clear that the evolution in
time of the system mimics a generalized diffusion process over a potential landscape
in the space of mesoscopic variables. This landscape is conformed by the values of
the equilibrium energy associated to each configuration . The treatment of a diffusion
process in the framework of nonequilibrium thermodynamics can then be extended to
the case in which the relevant quantity is a probability density instead of a mass density.

BROWNIAN MOTION IN A STATIONARY STATE

The advantages of using MNET become especially manifest when irreversible processes
of different nature take place simultaneously, as for instance, when the system is sub-
jected to fluctuations and exchanges heat or mass with a nonequilibrium environment
that has its own dynamics. In such cases, the Langevin and the Fokker-Planck equa-
tions are not a mere extension of those formulated for simpler situations and must be
derived by means of a nonequilibrium statistical mechanics theory. MNET uses a sys-
tematic and simple method through which those equations can easily be obtained. The
cases of the translocation of a biomolecule [11], of the stretching of a RNA molecule
[12] and of active trasnport through a protein channel [13] are illustrative examples. In
these cases, the Fokker-Planck equation contains two currents corresponding to the two
relevant dynamic variables.



To illustrate explicitly the influence of a nonequilibrium environment in the dynamics
of the system, we consider Brownian motion in a temperature gradient [14]. The effects
of the gradient on the probability current of a Brownian particle can directly be inferred
from the entropy production in the space of mesoscopic variables by taking into account
its Onsager coupling to the heat current. The form of the probability current is

~Ju =−LuT ∇T/T 2− kBLuu
∂

∂~u
ln(P/Pl.eq.) (19)

where ~u is the velocity of the Brownian particle, the L terms are Onsager coefficients
and Pl.eq. is the local equilibrium distribution function. The presence of particles, in turn,
modifies the heat current through the system. This effect can also be analyzed through
the entropy production. The resulting heat current is

~Jq =−LT T ∇T/T 2− kB

∫
LTu

∂

∂~u
ln(P/Pl.eq.)d~u (20)

where the Onsager coefficients obey the Onsager relation LTu =−LuT . These equations
clearly show the existence of a coupling between the two irreversible processes present
in the system: probability diffusion and heat conduction. The resulting Fokker-Planck
equation is

∂P
∂ t

=−~u.∇P+β
∂

∂~u

(
P~u+ kBT

∂P
∂~u

)
+

ε

T
∂P
∂~u

.P∇T (21)

with β being the friction coefficient of the particles and ε , a coefficient related to the
Onsager coefficient LuT , coincides with that obtained from kinetic theory [15]. The
Fokker-Planck equation and the evolution equation for the temperature field provide a
complete description of the heat exchange process in the system. This example illustrates
the way in which MNET can systematically be used to analyze heat exchange processes
between the system and its environment in the presence of fluctuations.

A similar analysis was performed for the Brownian motion in a velocity gradient [16]
showing that for large shear rates the fluctuation dissipation heorem is not fulfilled. The
origin of the violation of the theorem has been analyzed in [17].

ACTIVATED PROCESSES

Activated processes are those that need a finite energy to proceed and change the system
from one state to another. They can be modeled by a Brownian particle crossing of
a free energy barrier that separates two well-differentiated states that lie at the local
minima at each side of the barrier. The system needs to acquire energy to surmount the
barrier. Once the barrier is crossed, energy is released. Processes like thermal emission in
semiconductors, chemical reactions, adsorption, nucleation, and active transport through
biological membranes, share these features and, therefore, are generically referred to as
activated processes.

It is important to emphasize the essential difference between activated processes and
the linear processes described by nonequilibrium thermodynamics. The latter constitute



the response to the application of an external force or gradient and may emerge even at
very low values of the applied force, in the linear response regime. Contrarily, the regime
in which activated processes may take place is basically nonlinear. In this context, we can
contrast the linear Fourier, Fick, or Ohm laws, in which the corresponding currents are
proportional to the conjugated thermodynamic forces or gradients, with the exponential
laws appearing in activated processes.

Let us consider a general process for which a system passes from state 1 to state
2 via activation. Instances of this process can be a chemical reaction in which a sub-
stance transforms into another, an adsorption process in which the adsorbing particle
goes from the physisorbed to the chemisorbed state, or a nucleation process in which
the metastable liquid transforms into a crystal phase. Nonequilibrium thermodynamics
describes the process only in terms of the initial and final positions and is valid only in
the linear response regime [2]. If we consider the process at shorter time scales, the state
of the system progressively transforms by passing through successive molecular config-
urations. These different configurations can be characterized by a "reaction coordinate"
. In this situation, one may assume that this reaction coordinate undergoes a diffusion
process through a potential barrier separating the initial from the final states. The local
entropy production is

σ(γ) =− 1
T

J
∂ µ

∂γ
(22)

from which we can infer the linear law

J =−L
T

∂ µ

∂γ
(23)

where the chemical potential is, as in Eq. (17), given by

µ(γ, t) = kBT lnP(γ, t)+Φ(γ) (24)

with Φ(γ) being the potential in terms of the reaction coordinate. Following the previous
approach, we can obtain the Fokker-Planck equation

∂P
∂ t

=
∂

∂γ

(
b(γ)P(γ)

∂ µ(γ)

∂γ

)
(25)

where b(γ) is a mobility in the γ -space. This equation describes the dynamics of the
probability distribution for an arbitrary potential and at any value of the temperature.

It is often the case that at the time scales of interest the system is mostly found in the
states 1 and 2, which correspond to the minima at γ1 and γ2 , respectively. The probability
distribution is strongly peaked at these values and almost zero everywhere else. This
happens when the energy barrier is much higher than the thermal energy and intra-well
relaxation has already taken place. Using MNET, we will show that the Fokker-Planck
description, under these conditions, leads to a kinetic equation in which the net reaction
rate satisfies the mass action law.

The current given in (23) can be rewritten in terms of the local fugacity defined along
the reaction coordinate z(γ) = exp µ(γ)/kBT as

J =−kBL
1
z

∂ z
∂γ

(26)



which can also be expressed as

J =−D
∂ z
∂γ

(27)

where D = kBL/z represents the diffusion coefficient. We now assume D constant and
integrate from 1 to 2, obtaining

〈J〉=
∫ 2

1
Jdγ =−D(z2− z1) =−D

(
exp

µ2

kBT
− exp

µ1

kBT

)
(28)

This equation can alternatively be expressed as

〈J〉= J0

(
1− eA/kBT

)
(29)

where 〈J〉 is the integrated rate, J0 = Dexp(µ1/kBT ) and A = µ2− µ1 is the affinity,
the driving force of the process. We have then shown that MNET leads to nonlinear
kinetic laws. Remarkably, it is possible to move from a linear continuous to a nonlinear
discrete system; that is to say, a Fokker-Planck equation, linear in probabilities and in the
gradient of µ [γ,P(γ)] , accounts for a non-linear dependence in the affinity. This scheme
has been successfully applied to different classical activated processes, like chemical
reactions [18], adsorption [19], thermal emission in semiconductors [20], or nucleation
[21], to obtain the corresponding kinetic laws.

THE ACTUAL MEANING OF ’SMALL’ AND OF BEING ’FAR
FROM EQUILIBRIUM’

Many of the studies performed at present about non-equilibrium systems refer to ’small’
systems ’far from equilibrium’. Examples are many bio-systems such as protein chan-
nels, DNA molecules or nanomotors whose performance precise of the intervention of
unbalanced thermodynamic forces. But, are these systems small because of their re-
duced size, of about some tens of nanometers? or because they contain a finite number
of particles? The criterion for which a system is small should be more precise. It has
been shown that the heat capacity of some proteins is an extensive quantity [22]. Con-
sequently, despite their reduced size the proteins behave thermodynamically. This result
shows that the robust criterion is thermodynamic extensivity. But when scaling-down
the size of the system even more the question arises: is there a lower limit for a ther-
modynamic description of the system? Recent simulations performed with argon atoms
moving through a zeolite [23] have shown that due to the heterogeneity of the interac-
tions between the particles at very small scales, smaller than the crystalline unit cell of
the zeolite, the equipartition law breaks down. This fact makes no possible a consistent
definition of the temperature and consequently impedes a thermodynamic treatment of
the system.

The presence of the unbalanced thermodynamic forces drives the system away from
equilibrium. How far can these forces move the system away from equilibrium, as
discussed in the classic monograph [2], depends not only on the values of the force but



also on the nature of the process. For transport processes in simple systems, such as heat
conduction, mass diffusion and viscous phenomena, local equilibrium hold even when
the system is subjected to large or even very large gradients [22]. These processes can be
described by means of the Fourier, Fick and Stokes-Einstein laws which can be derived
from non-equilibrium thermodynamics [2]. We have seen that the probability current
also obeys a linear law: the Fokker-Planck equation is linear and describes situations
that can be far from equilibrium. Linearity does not necessarily imply in those cases
closeness to equilibrium.

On the contrary, for the wide class of activated processes, linearity breaks down at
small values of the affinity, which seems to imply that local equilibrium is lost almost
immediately. The results of the theory we have presented indicate that existence of
local equilibrium depends on the set of variables used in the characterization. When an
activated process is described not just in terms of the initial and final states but through
its reaction coordinate, local equilibrium holds. Increasing the dimensionality of the
space of thermodynamic variables, by including as many dimensions as nonequilibrated
degrees of freedom, leads to local equilibrium in the enlarged space and allows the use
of nonequilibrium thermodynamics at shorter time scales in which fluctuations are still
present. We can thus conclude that many kinetic processes, such as nucleation, chemical
reactions or active transport, which have been assumed to be far away from equilibrium
because of their intrinsic nonlinear nature, take place at local equilibrium when a finer
description is adopted.

To better illustrate how systems brought outside equilibrium may be considered at
local equilibrium in an extended space, we will study the case of a bio-molecule in a
solvent at constant temperature subjected to an external driving force F . In addition
to the position of its center of mass x, the molecule is characterized by an additional
fluctuating variable θ , which might represent, for instance, its size or its orientation.
For small values of the force, local equilibrium in γ-space holds in such a way that we
can formulate the Gibbs equation expressed now in differential form

T ds(x) =−µ(x)dρ(x)−FdΘ (30)

where Θ is the average value of the θ variable defined as

Θ(x) =
∫

θP(x,θ)dθ (31)

with P(x,θ) being the probability distribution and µ(x,θ) , its conjugated chemical po-
tential. Let us now assume that the driving force increases in such a way that the system
is no longer in local equilibrium in x-space. The way to restore local equilibrium is to
increase the dimensionality by considering the fluctuating variable θ as an independent
variable and defining the Gibbs equation as

T ds(x,θ) =−µ(x,θ)dP(x,θ) (32)

Proceeding as indicated previously, one would obtain from this equation the correspond-
ing Fokker-Planck equation, which would describe the dynamics of the bio-molecule in
the extended space.



CONCLUSIONS

The classical way to study nonequilibrium mesoscopic systems is to use microscopic
theories and proceed with a coarse-graining procedure to eliminate the degrees of free-
dom that are not relevant to the mesoscopic scale. Such microscopic theories are fun-
damental to understand how the macroscopic and mesoscopic behavior arises from the
microscopic dynamics. On the downside, they usually involve specialized mathemati-
cal methods that prevent them to be generally applicable to complex systems; and more
importantly, they use much detailed information that is lost during the coarse-graining
procedure and that is actually not needed to understand the general properties of the
mesoscopic dynamics.

The mesoscopic thermodynamic theory we have presented here starts from the meso-
scopic equilibrium behavior and adds all the dynamic details compatible with the sec-
ond principle of thermodynamics and with the conservation laws and symmetries that
are present in the system. Thus, given the equilibrium statistical thermodynamics of a
system, it is straightforward to obtain Fokker-Planck equations for its dynamics. The dy-
namics is characterized by a few phenomenological coefficients, which can be obtained
for the particular situation of interest from experiments or from microscopic theories,
and describes not only the deterministic properties but also their fluctuations.

Mesoscopic non-equilibrium thermodynamics has been used in a broad variety of
situations, including activated processes in the nonlinear regime, inertial effects in dif-
fusion, and transport in the presence of entropic forces. In transport phenomena at short
time and length scales MNET provides a method to obtain relaxation equations and
transport coefficients. Spin transfer [24] Radiative heat transfer has also been studied
using the MNET theory, obtaining a non-equilibrium Stefan-Boltzmann law [25] and
an expression for the heat conductance at the nanoscale [26] that agrees with computer
simulations results [27].
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Abstract. I will briefly review the field of noise-induced phase transitions, emphasizing the main
differences with the phase-induced transitions and showing that they appear in different systems. I
will show that a noise-induced transition can disappear after a suitable change of variables and I will
also discuss the breaking of ergodicity and symmetry breaking that occur in noise-induced phase
transitions in the thermodynamic limit, but not in noise-induced transitions.
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BIFURCATIONS IN STOCHASTIC SYSTEMS

A bifurcation in a dynamical system is a change in the number of fixed points, or in their
relative stability, that occurs when varying a control parameter, the so-called bifurcation
parameter. The value of this parameter at which the change occurs is the bifurcation
point [1]. The normal form of a bifurcation is the simplest mathematical model (usually
involving polynomials of the lowest possible order) for which a particular change of
behavior occurs. One of the simplest examples is that of the transcritical bifurcation for
which the normal form is dx(t)/dt = µx−x2, the Verhulst, or logistic, equation [2]. This
equation can model, for instance, the growth of biological populations, or autocatalytic
reactions, amongst other applications. For µ < 0, there is only one (stable) fixed point
at x = 0, whereas for µ > 0 there are two fixed points: the one at x = 0 (which is now
unstable) and another one at x = µ which is stable. Another simple example is that of the
supercritical pitchfork bifurcation for which the normal form is dx(t)/dt = µx− x3, the
Landau equation used in the context of phase transitions in the mean-field approach. For
µ < 0, there is only one (stable) fixed point at x = 0, whereas for µ > 0 there are three
fixed points: the one at x = 0 (which is now unstable) and two more at x =±√µ which
are stable. In both examples, the bifurcation point is, hence, µ = 0. The importance
of the stable fixed points is that, under some additional conditions, they determine the
long-time dynamical behavior, as the dynamical evolution tends to one of the stable fixed
points, and then it stops [3]. In the supercritical pitchfork, the value x =+

√
µ is reached

if the initial condition is x(t = 0) > 0, whereas the fixed point at x = −√µ is reached
whenever x(t = 0)< 0. The symmetry x→−x of the differential equation is broken by
the initial condition in the case µ > 0.

When there are stochastic, so-called noise, terms in the dynamics, usually there are no
fixed points but the long-time dynamical behavior still has some preferred values. Con-
sider, for example, the normal form for the supercritical bifurcation with an additional



noise term
dx(t)

dt
= µx− x3 +

√
2Dξ (t), (1)

being ξ (t) a Gaussian process of zero mean and correlations 〈ξ (t)ξ (t ′)〉 = δ (t − t ′),
or white noise [3]. D is the noise intensity. This equation can be written in terms of
relaxational dynamics [3] in a double-well potential V (x):

dx(t)
dt

=−∂V (x)
∂x

+
√

2Dξ (t), V (x) =−µ

2
x2 +

1
4

x4. (2)

It is possible to prove using the Fokker-Planck equation [4] (see later) that the stationary
probability distribution for the x variable is Pst(x) = Z −1 exp

[
−V (x)

D

]
, being Z =∫

∞

−∞
dx exp

[
−V (x)

D

]
a normalization factor. The stationary probability has maxima at

x = 0 for µ < 0 and at x = ±√µ for µ > 0. So it is still true that, from a probabilistic
point of view, the fixed points of the deterministic, i.e. D = 0, dynamics are the ones
preferred by the stochastic trajectories, but the dynamics does not end in one of the
fixed points. Another important difference with the deterministic dynamics is that, for
µ > 0, the trajectories are not confined to the neighborhood of one of the maxima.
There are constant jumps between the two maxima of the probability distribution. A
classical calculation by Kramers [5], shows that the frequency of the jumps between the
two maxima is proportional to exp

[
−∆V

D

]
, being ∆V the height of the potential barrier

between the maxima, or ∆V = µ2/4 in the double well potential. As there are many
jumps between the maxima, the noise terms have restored the symmetry x→−x of the
equation.

There are other more complicated examples. Consider, for example, the Verhulst
equation with the addition of a noise term ξ which is coupled multiplicatively to the
dynamical variable x:

dx(t)
dt

= µx− x2 +
√

2Dxξ (t). (3)

This can be thought as originated from the fact that the parameter µ randomly fluctuates
and can be replaced by µ → µ +

√
2Dξ (t). There are some mathematical subtleties

to handle the presence of the singular function ξ (t). After all, the correlation function
of ξ (t) is a delta function, a not too well defined mathematical object. The different
possible interpretations of the integral

∫
dt g(x(t))ξ (t), for an arbitrary function g(x),

lead to different results. We will limit our considerations to the so-called Stratonovich
interpretation [6, 7]. In this example, x = 0 is a fixed point of the stochastic dynamics.
Therefore starting from x(t = 0) > 0 as it is the case in the biological or chemical
applications, the barrier x = 0 can never be crossed. For µ < 0, the value x = 0 is
an attracting boundary [6]: it will be reached in the asymptotic limit t → ∞. As a
consequence, the stationary probability distribution is Pst(x) = δ (x). As µ increases and
crosses zero, the picture changes. The full analysis uses the Fokker-Planck equation for
the time dependent probability density P(x, t). The stationary distribution for 0 < µ < D
is no longer a delta function at x = 0 but still has a maximum at x = 0. However,
when µ > D, the maximum of Pst(x) is no longer at x = 0 but it moves to x = µ −D.



Alternatively, for fixed µ > 0 one finds that the maximum of the stationary distribution
switches from x = µ−D for 0 < D < µ to x = 0 for D > µ . Note that this is a somewhat
counterintuitive result in the sense that a large value of the noise intensity leads to a state
where the maximum of the distribution is located at a state, x = 0, in which the noise
term xξ (t) vanishes.

Similar shifts of the maxima of the probability distribution as the noise intensity
increases appear in a large class of stochastic differential equations. They have been
named generically as noise-induced transitions [8]. In the general case of a stochastic
differential equation of the form dx(t)/dt = q(x) +

√
2Dg(x)ξ (t), the Fokker-Planck

equation reads:

∂P(x, t)
∂ t

=− ∂

∂x

[(
q(x)−Dg(x)g′(x)

)
P(x, t)

]
+D

∂ 2

∂x2

[
g(x)2P(x, t)

]
(4)

and the steady-state solution ∂P(x,t)
∂ t

∣∣∣
P=Pst

= 0 is:

Pst(x) = Z −1 exp
[∫ x

dx′
q(x′)−Dg(x′)g′(x′)

Dg2(x′)

]
. (5)

The maxima x̄ of this distribution are given by

q(x̄)−Dg(x̄)g′(x̄) = 0. (6)

And it is clear that x̄(D) depends on the noise intensity D. There are examples [8] in
which equations that display the x→−x symmetry are such that for small noise intensity
D the distribution is unimodal centered at x̄ = 0, and that increasing D the distribution
becomes bimodal with maxima at ±x̄(D) 6= 0. This is the generic behavior whenever
q(x) =−x+o(x) and g(x) = 1+ x2 +o(x2). A specific example is Hongler’s model [9]
q(x) =−tanh(x), g(x) = sech(x). The transition occurs at D = Dc = 1. The situation, in
principle, could be considered the equivalent of the supercritical pitchfork bifurcation, in
the sense that the most visited states are x = 0 for D < 1 and±x̄(D) for D > 1. However,
the same remarks than in the case of the model of Eq.(1) apply: the bifurcation does
not break the x→−x symmetry, as trajectories visit ergodically all possible values of x
and, therefore, there are many jumps between the two preferred states. Furthermore, it is
possible to show that the change in the number of maxima in the probability distribution
is simply a matter of the variable used and that a simple change of variables can eliminate
the bifurcation. This is explained in the next section.

NOISE-INDUCED TRANSITIONS AS A CHANGE OF VARIABLES

Let us consider the Gaussian distribution:

fz(z) =
1√

2Dπ
e−z2/2D. (7)

It is obviously single-peaked for all values of D, the noise intensity. Let us now introduce
the new variable x = argsh(z) or z = sinh(x). The change of variables (i) does not depend



on the noise intensity D and (ii) it is one-to-one, mapping the set of real numbers onto
itself. The probability distribution for the new variable is

fx(x) = fz(z)
∣∣∣∣dz
dx

∣∣∣∣= fz(z)cosh(x), (8)

or
fx(x) =

1√
2Dπ

e−[sinh(x)2−2D lncosh(x)]/2D ≡ 1√
2Dπ

e−
Veff(x)

D , (9)

with an effective potential

Veff(x) =
1
2

sinh(x)2−D lncosh(x), (10)

which depends on the noise intensity. The potential is monostable for D < Dc and
bistable for D > Dc with Dc = 1, as the expansion Veff(x) = 1−D

2 x2 + 2+D
12 x4 +O(x6)

shows. The Horsthemke-Lefever mechanism for noise-induced transitions is an equiva-
lent way of reproducing this result. Just take the Langevin equation:

dz
dt

=−z+
√

2Dξ (t), (11)

being ξ (t) zero-mean white noise, 〈ξ (t)ξ (t ′)〉= δ (t− t ′). Its steady-state probability is

fz(z) = Z −1e−
V (z)

D , (12)

with a potential function V (z) = z2

2 , Z is a normalization constant.
We now perform the aforementioned change of variables x = argsh(z) to obtain

(Stratonovich sense)
dx
dt

=− tanh(x)+ sech(x)
√

2Dξ (t), (13)

which is Hongler’s model, one of the typical examples of noise-induced transitions
explained above.

This result is very general. The same (well-known) trick can be used to reduce any
one-variable Langevin equation with multiplicative noise:

dx
dt

= q(x)+g(x)
√

2Dξ (t), (14)

to one with additive noise. Simply make the change of variables defined by dz= dx/g(x)
or z =

∫ x dx′/g(x′) to obtain

dz
dt

= F(z)+
√

2Dξ (t), (15)

with
F(z) = q(x)/g(x), (16)



expressed in terms of the variable z. The steady-state distribution of z can be written as

fz(z) = Z −1e−
V (z)

D , (17)

with a potential

V (z) =−
∫ z

dz′F(z′). (18)

The steady-state probability distribution in terms of the variable x (assuming a one-to-
one change of variables) is

fx(x)= fz(z)
∣∣∣∣dz
dx

∣∣∣∣= fz(z)
|g(x)|

=
Z −1

|g(x)|
e

1
D
∫ z dz′F(z′)=

Z −1

|g(x)|
e

1
D
∫ x dx′

g(x′)
q(x′)
g(x′) =

Z −1

|g(x)|
e

1
D
∫ x dx′ q(x′)

g(x′)2 ,

(19)
the same steady-state probability distribution coming from the multiplicative-noise
Langevin equation (14) that was written in Eq.(5). In terms of an effective potential:
fx(x) = Z −1e−

V eff(x)
D we have

Veff(x) =−
∫ x

dx′
q(x′)
g(x′)2 +D ln |g(x)|. (20)

A noise-induced transition will appear if the potential Veff(x) changes from monostable
to bistable as the noise intensity D increases.

Another widely used example of a noise-induced transition [8] is that of q(x) =
−x+λx(1− x2) and g(x) = 1− x2. The change of variables z =

∫ x dx′
1−x′2 = 1

2 log
(1+x

1−x

)
,

or x = tanh(z) leads to the Langevin equation:

dz
dt

=−sinh(z)cosh(z)+λ tanh(z)+
√

2Dξ (t). (21)

Note that x ∈ (−1,1), a fact already implied in the original Langevin equation since
x =±1 are reflecting barriers. The steady-state probability distribution of this Langevin
equation is fz(z) = Z −1e−

V (z)
D with a potential V (z) = 1

2 cosh(z)2−λ log(cosh(z)). The
Taylor expansion V (z) = 1

2 + 1−λ

2 z2 + 2+λ

12 z4 + O(z6), shows that fz(z) has a single
minimum at z = 0 for λ < 1 and double minima for λ > 1. As far as the x variable
is concerned, the effective potential as given by (20) is

Veff(x) =
1

2(1− x2)
+

λ +2D
2

log(1− x2). (22)

The Taylor expansion Veff(x) = 1
2 +

1−λ−2D
2 x2+ 2−λ−2D

4 x4+O[x6] shows that the poten-
tial leads to a monostable distribution if λ +2D < 1 and to a bistable one if λ +2D > 1.
Hence, a noise-induced transition occurs for λ < 1 since a bistable distribution for the
x variable appears for D > Dc = (1−λ )/2. Note, however, that the distribution of the
z variable is monostable for all values of D, so that the noise-induced transition is de-
pendent on the variable considered. In the case λ > 1 the distribution is always bistable,
both for the x and the z variables.



The change x = tanh(z) also induces a transition in the simpler case that the z vari-
able follows the Gaussian distribution Eq.(7). The probability distribution function for
the new variable is q(x) = 1+x2

√
2Dπ

e−argth(x)2/2D = 1√
2Dπ

[
1+
(
1− 1

2D

)
x2 +O(x4)

]
which

indicates a phase transition at Dc = 1/2.
A remarkable example is the change x = z

1+|z| which leads to a probability distribution

q(x) = 1√
2Dπ

e
−
(

x
1−|x|

)2
/2D

(1−|x|)2 for x ∈ (−1,1) which is bimodal for any D > 0, or Dc = 0.

NOISE-INDUCED PHASE TRANSITIONS

How can one obtain a true, symmetry breaking, bifurcation in a stochastic model? The
answer lies in the coupling of many individual systems in order to obtain a bifurcation
in the macroscopic variable. Let us explain this with a simple example: the standard
Ginzburg-Landau model for phase transitions [10]. It consists of many coupled dynam-
ical variables xi(t), i = 1, . . . ,N which individually follow Eq.(1). The full model is:

dxi(t)
dt

= µxi− x3
i +

C
Ni

∑
j∈Ni

(x j− xi)+
√

2Dξi(t). (23)

The noise variables are now independent Gaussian variables of zero mean and correla-
tions 〈ξi(t)ξ j(t ′)〉= δi jδ (t− t ′). Ni refers to the set of Ni variables x j which are coupled
to xi. Typical situations include an all-to-all coupling where Ni is the set of all units
and Ni = N, or regular d-dimensional lattices where a unit xi is connected to the set of
Ni = 2d nearest neighbors, although in more recent applications one also considers non-
regular, random, small world, scale free or other types of lattices [11]. C is the coupling
constant. If C = 0 each unit is independent of the other and displays the stochastic bi-
furcation at µ = 0 explained before. For C > 0, a collective state can develop in which
the global variable m(t) = N−1

∑
N
i=1 xi(t) follows, in the thermodynamic limit, a true

bifurcation from a state in which the stationary distribution is Pst(x) = δ (m), to another
one in which it is either Pst(x) = δ (m−m0) or Pst(x) = δ (m+m0). This is nothing but
a phase transition. Here, borrowing the language from the para-ferromagnetic transi-
tion [12], m0 is called, in this context, the spontaneous magnetization and it is a function
of noise intensity D, coupling constant C and the parameter µ . It is important to stress
that a true symmetry-breaking transition, with non-ergodic behavior, occurs only in the
thermodynamic limit N → ∞. For finite N the stationary probability distribution Pst(m)
is either a function peaked around m = 0 or displays two large maxima around ±m0.
The height of these maxima increases with N and the width around them decreases with
N until delta-functions are reached for N→ ∞. One can see evidence of this behavior in
Fig.1 The price one has to pay to obtain this symmetry-breaking bifurcation is that, for
fixed C and D, the bifurcation point is no longer at µ = 0, but is is shifted to a positive
value µc [13]. Alternatively, for fixed µ > 0 there is a bifurcation induced by varying
the noise intensity: when D < Dc (the critical noise intensity), the distribution of m is a
delta function located either at m = ±m0; for D > Dc, the distribution is again a delta
function around m = 0. The bifurcation acts in the way noise is expected to influence



the dynamics: for larger noise intensity the distribution is peaked around m = 0 (a sit-
uation in which roughly half of the xi variables have a positive value and the other half
negative, or disordered). When the noise intensity is small, D < Dc, the distribution is
peaked around +m0 or m0 and, hence, variables xi have a probability distribution peaked
around this value, or ordered. As either +m0 or −m0 is selected (depending on initial
conditions and realizations of the noise variables), the x→−x symmetry has been bro-
ken for D < Dc and it is restored for D > Dc. It is not possible, in general, to obtain the
probability distribution p(xi, t) for a single unit xi, but an approximate result can be de-
rived within the so-called Weiss effective-field theory [14, 12]. In a nutshell, it consists
in replacing the detailed interaction with the neighbors with the global variable m(t).
This leads to a single equation for xi:

dxi(t)
dt

= µxi− x3
i +C(m(t)− xi)+

√
2Dξi(t). (24)

From here it is possible to write the Fokker-Planck equation for p(xi, t). The stationary
solution depends on the value of m(t) in the steady state, m0,

pst(xi;m0) = Z −1 exp [−v(xi;m0)/D] , v(x;m) =−Cm0x− µ−C
2

x2 +
1
4

x4

(25)
m0 is obtained via the self-consistency relation 〈x〉 =

∫
dx pst(x;m0) = m0. This yields

m0 = m0(D,C,µ) and it is such that, for a range of values of µ and µ > C, there is
a critical value Dc such that m0 = 0 for D > Dc and there are two solutions ±m0 with
m0 > 0 for D <Dc. Therefore, the one-unit dynamical system xi experiences a stochastic
bifurcation, in the sense that the maxima of the probability of pst(xi) change location as
D crosses Dc.

The idea naturally arises of whether is is possible to obtain a bifurcation for the global
variable if we couple N units (x1,x2, . . . ,xN), each one of which experiences a noise-
induced transition from unimodal to bimodal as the noise intensity increases. In other
words, if we consider the coupled system:

dxi(t)
dt

= q(xi)+
C
Ni

∑
j∈Ni

(x j− xi)+
√

2Dg(xi)ξi(t). (26)

such that the uncoupled unit dxi(t)
dt = q(xi)+

√
2Dg(xi)ξi(t) undergoes a noise-induced

transition in the sense of Hormthenske and Lefever, will the global variable m(t) undergo
a bifurcation from disorder to order as the noise intensity increases? The answer turns
out to be no[15, 16], one of the reasons being that, as we have already noted, the shift in
the maxima of the probability distribution of pst(xi) might disappear after a change of
variables, whereas a true bifurcation remains after a one-to-one change of variables.

However, it was found quite surprisingly [15, 16] that it is possible to find functions
q(x) and g(x) such that the global variable m(t) experiences a bifurcation from m0 = 0
to±m0 with m0 > 0 increasing the noise intensity D. The minimal model (normal form)
is

dxi(t)
dt

=−xi(1+ x2
i )

2 +
C
Ni

∑
j∈Ni

(x j− xi)+
√

2D(1+ x2
i )ξi(t). (27)



-4

-2

 0

 2

 4

m(t)

-1

 0

 1

m(t)

-1

 0

 1

m(t)

-1

 0

 1

m(t)

-1

 0

 1

 5⋅10
4

 1⋅10
5

m(t)

t

0

-4

-2

 0

 2

 4

-1

 0

 1

-1

 0

 1

-1

 0

 1

-1

 0

 1

 5⋅10
4

 1⋅10
5

t

0

-1

 0

 1

 5⋅10
4

 1⋅10
5

t

0

N=1

N=5
2

N=10
2

N=15
2

N=20
2

FIGURE 1. Time traces of the magnetization m(t) =N−1
∑

N
i=1 xi(t) for the Ginzburg-Landau model in a

2-d regular network with nearest-neighbors coupling. The right column corresponds to D = 4 (disordered
state), and the left column to D = 1.5 (ordered stated). In both cases it is µ = 0.5 and the coupling
constant is C = 20. Note that the uncoupled system, N = 1 is always disordered as, in both cases, it has
the maximum of the probability distribution located at x = 0. Note also that the width of the distributions
decrease with N and tend to delta-functions in the limit N→ ∞.

It is remarkable, and counterintuitive, that a globally ordered situation arises as a result
of an increase of the noise intensity. As it can be seen in Fig.2, the bifurcation is truly
symmetry-breaking only for N → ∞. If noise is increased even further, then a new
bifurcation to the disordered state is obtained. However, as explained in detail in [15, 16]
the explanation of this counterintuitive behavior has to do with the short-time dynamical
instability of xi rather than with the long-time steady distribution. We refer the interested
reader to those papers and the excellent review in the book [17] for further details on this
topic.

Let us now analyze this model using the results of the previous section with
q(x) = −x(1 + x2)2 and g(x) = 1 + x2. The change of variables in this case is
z =

∫ x dx′
1+x′2 = arctan(x) or x = tan(z). A one-to-one transformation is obtained if
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FIGURE 2. Time traces of the magnetization m(t) = N−1

∑
N
i=1 xi(t) for the canonical model displaying

a noise-induced phase transition, Eq. (27) in a 2-d regular network with nearest-neighbors coupling. The
right column corresponds to D = 0.8 (disorder state), and the left column to D = 4 (order induced by
noise). The coupling constant is C = 20 in both cases. As in the previous figure, note that the uncoupled
system, N = 1 is always disordered as, in both cases, it has the maximum of the probability distribution
located at x = 0. Note also that the width of the distributions decrease with N and tend to delta-functions
in the limit N → ∞. Here and in Fig.1, the trajectories have been generated by a stochastic version of
the Runge-Kutta algorithm, known as the Heun method [3] and using an efficient generator of Gaussian
random numbers [18]

we limit z ∈ (−π/2,π/2). The Langevin equation for the z variable is

dz
dt

=− sin(z)
cos(z)3 +

√
2Dξ (t), (28)

with a potential V (z) = 1
2cos(z)2 . The potential is monostable for z ∈ (−π/2,π/2). The

effective potential for the x variable is:

Veff(x) =
x2

2
+D log(1+ x2) (29)



which, again, is always monostable. Therefore, in this case the change of variables does
not induce any bistability.

In summary, we have revisited the concept of noise-induced transitions, defined as
shifts in the maxima of the steady state probability distribution. They can not be consid-
ered "bona fide” bifurcations in the standard sense as (i) they can disappear through a
one-to-one change of variables and (ii) there is no true symmetry breaking as all states
can be visited independently of the initial condition. A noise-induced phase transition,
on the other hand, can appear in the global variable of a coupled system. In the thermody-
namic limit it displays symmetry breaking and lack of ergodicity. There are bifurcations
from disorder to order when increasing the noise intensity (as in the Ginzburg-Landau
model) but, more remarkably, there are cases in which an ordered state can appear as
a result of an increase of the noise intensity. Generally, the transition is reentrant, in
the sense that a large noise recovers the ordered state, but it is possible to find other
situations in which reentrance does not occur [19].
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Abstract. In joint work with J. L. Lebowitz, C. Mastrodonato, and N. Zanghì [2, 3, 4], we con-
sidered an isolated, macroscopic quantum system. Let H be a micro-canonical “energy shell,” i.e.,
a subspace of the system’s Hilbert space spanned by the (finitely) many energy eigenstates with
energies between E and E +δE. The thermal equilibrium macro-state at energy E corresponds to a
subspace Heq of H such that dimHeq/dimH is close to 1. We say that a system with state vector
ψ ∈H is in thermal equilibrium if ψ is “close” to Heq. We argue that for “typical” Hamiltonians,
all initial state vectors ψ0 evolve in such a way that ψt is in thermal equilibrium for most times t.
This is closely related to von Neumann’s quantum ergodic theorem of 1929.
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INFORMAL STATEMENT OF RESULT

The result we wish to describe concerns a macroscopic quantum system, described by a
wave function ψ evolving according to a Schrödinger dynamics (h̄ = 1):

i
∂ψt

∂ t
= Hψt . (1)

Here is the statement:

For every initial state ψ0 of a typical macroscopic quantum system (e.g., a gas
in a box), the system will spend most of its time in thermal equilibrium.

We will need to explain what we mean by “typical” and “most,” though you can probably
guess. But first we must explain what we mean by “thermal equilibrium.”

WHAT IS THERMAL EQUILIBRIUM?

There are, in fact, two basic views about what is meant by thermal equilibrium, corre-
sponding to two different attitudes towards the foundations of statistical mechanics: the
individualist view and the ensemblist view. According to the individualist a system is
in thermal equilibrium if it is in an appropriate pure state (given by a wave function or



point in phase space). According to the ensemblist a system is in thermal equilibrium if
it is in an appropriate statistical state (given by a density matrix or probability measure
on phase space). And depending upon what is intended by “appropriate” one obtains
different individualist and ensemblist possibilities.

Individualist Equilibrium

In more detail, let’s consider the meaning of equilibrium for an individualist for
a classical macroscopic system. The state of the system is given by a point X =
(q1, . . . ,qN , p1, . . . , pN) in its phase space, a point corresponding to the positions and
velocities of its particles. The relevant part of the phase space is the energy surface
Γ = {X : H(X) = E}, consisting of all phase points for which the energy H is the
same value E. Then, depending on a choice of macro-variables, one may partition Γ

into macro-states Γν corresponding to different (small ranges of) values of the macro-
variables, Γ =

⋃
ν Γν .

Here are two sketches of the partition into macro-states:

A crucial point is that the sketch on the left gives a completely distorted impression of
the relative sizes of the macro-states. In particular, there will normally be one dominant
macro-state, the equilibrium macro-state Γeq, that occupies almost the entire energy
surface:

|Γeq|
|Γ |
≈ 1

(using | · | for volume or area on the energy surface). With this is mind, we say that a
system is in equilibrium if its phase point is in the equilibrium macro-state, X ∈ Γeq.

For a macroscopic quantum system the state of the system is given by its (normalized)
wave function ψ = ψ(q1, . . . ,qN) (‖ψ‖= 1). We shall assume that this belongs to the
energy shell H = span

{
φα : Eα ∈ [E,E +δE]

}
, spanned by the energy eigenstates φα

whose eigenvalues Eα belong to the indicated range, i.e., ψ =∑α cαφα , Hφα =Eαφα .
Then, instead of a partition into macro-states, we have an orthogonal decomposition into
macro-spaces Hν , corresponding more or less to different (small ranges of) values of
the macro-variables (suitably “rounded” so that they commute),

H =
⊕

ν

Hν . (2)



We assume that there is one dominant macro-space Heq:

dimHeq

dimH
≈ 1 .

We say that the system is in equilibrium if its wave function ψ is near Heq, meaning that
the projection Peqψ of ψ into Heq is almost all of ψ , i.e., that

〈ψ|Peq|ψ〉 ≈ 1 . (3)

Ensemblist Equilibrium

For an ensemblist a system is in equilibrium if its state X is random, or its quantum
state is a mixture, with distribution or density matrix

ρ = ρmc or ρ = ρcan = e−βH/Z ,

where ρmc describes the microcanonical ensemble. This formulation has the defect that
an individual system can’t be in equilibrium and the virtue of being precise. It also has
the virtue that it admits of a clean simple notion of approach to equilibrium.

Approach to Thermal Equilibrium

For an ensemblist a system approaches equilibrium of its time-evolving statistical
state ρt has the obvious long-time limit:

ρt −→ ρmc (or ρcan) as t→ ∞

in a suitable sense. This sort of mixing behavior, though rare and hard to prove for
realistic deterministic dynamical systems, is a genuine mathematical possibility.

As a natural first attempt at an individualist formulation of approach to equilibrium,
consider the condition that Xt ∈ Γeq (or near Γeq) as t → ∞, i.e., that 〈ψt |Peq|ψt〉 ≈
1 for t → ∞. This is typically impossible, because of the phenomenon of Poincaré
recurrence. It will typically not be the case that the system is in, or near, equilibrium
for all sufficiently large times. Rather what is meant by approach to equilibrium for an
individualist, and what we mean by it here, is that Xt ∈ Γeq or, in the quantum case, with
which we are concerned here,

〈ψt |Peq|ψt〉 ≈ 1

for most (sufficiently large) t (even when the system is initially not in equilibrium).

Equilibrium is Typical

It is important to recognize that with this (equation (3)) understanding of equilibrium,
for most ψ ∈H the system is indeed in equilibrium—just as in the classical case. Here



the sense of “most” is given by the microcanonical distribution µmc = µ on H , i.e., the
uniform distribution over the unit sphere in H :

〈ψ|Peq|ψ〉 ≈ 1 for µ-most ψs .

This is easily seen by computing the microcanonical average∫
µ(dψ)〈ψ|Peq|ψ〉 = Tr

[(∫
µ(dψ)|ψ〉〈ψ|

)
Peq

]
= Tr

[
ρmcPeq

]
=

dimHeq

dimH
≈ 1 ,

where ρmc = I/dimH (and TrPeq = dimHeq). Since 〈ψ|Peq|ψ〉 can be no greater than
1, it follows that it must be near 1 for µ-most ψs.

That equilibrium is in this sense typical is crucial to the individualist understanding
of the notion. However, it does have the consequence that the initial wave functions ψ0
with which we are concerned for the issue of approach to equilibrium are atypical. We
would like it to be the case that even for “most” non-equilibrium initial wave functions
we have approach to equilibrium. The best that we could hope for in this regard is that
we have approach to equilibrium for all such wave functions.

ABSOLUTE THERMALIZATION AND EIGENSTATE
THERMALIZATION

When a system is such that we have approach to equilibrium for all initial wave functions
ψ0, we say that we have absolute thermalization (AT). Clearly, a necessary condition for
AT is that

〈φα |Peq|φα〉 ≈ 1 for all α, (4)

since the energy eigenstates φα , possible initial states, are stationary states. Equation (4)
is a version of what Srednicki [8] has called eigenstate thermalization (ET).

It is also sufficient, as is easily seen by computing the time-average of 〈ψt |Peq|ψt〉.
Writing f (t) for the time average of f ,

f (t) = lim
T→∞

1
T

∫ T

0
dt f (t) ,

we have that
〈ψt |Peq|ψt〉= Tr

[
|ψt〉〈ψt |Peq

]
. (5)

With

ψ0 =
D

∑
α=1

cα |φα〉 (D = dimH )

and hence

ψt =
D

∑
α=1

e−iEα tcα |φα〉



we thus have that

|ψt〉〈ψt |= ∑
α,β

e−i(Eα−Eβ )t︸ ︷︷ ︸
δαβ

cαc∗
β
|φα〉〈φβ |= ∑

α

|cα |2|φα〉〈φα | .

Inserting this into (5), we find that

〈ψt |Peq|ψt〉= ∑
α

|cα |2〈φα |Peq|φα〉 . (6)

Since 〈ψt |Peq|ψt〉 can’t be greater that 1, it follows from (6) and (4) that it must be near
1 for most times. Hence ET is indeed a sufficient condition for AT,

ET⇒ AT .

Eigenstate Thermalization

Even though equilibrium is typical, since ET requires that all energy eigenstates in
the microcanonical subspace H , of which there are a great many, be in equilibrium,
you might imagine that ET is a rather stringent condition. It can be shown [2], however,
that ET in facts holds for a typical Hamiltonian H.

The meaning here of “typical” is in the sense of most Hs as provided by the uni-
form distribution on orthonormal bases of H : Fix the energies E1, . . . ,ED (assumed
nondegenerate). Let

H = ∑
α

Eα |φα〉〈φα |

with the orthonormal basis φα ,α = 1, . . . D, uniformly distributed. Equivalently, let

H =UH0U∗, H0 = ∑
α

Eα |χα〉〈χα |

with χα any orthonormal basis of H and U a uniformly (Haar) distributed unitary on
H . By a typical Hamiltonian we refer to the distribution of such a random Hamiltonian
H.

To appreciate why ET might be expected to hold for a typical Hamiltonian H, choose
the basis {χα} in such a way that the first deq = dimH basis vectors lie in Heq. Then

〈φα |Peq|φα〉=
deq

∑
β=1
|Uβα |2 (7)

with

φα =
D

∑
β=1

Uβα χβ

where Uβα is uniformly distributed unitary D×D matrix. The distribution of (7) is

independent of α , and the crucial estimate is that of the probability p that ∑
deq
β=1 |Uβα |2

fails to be near 1.



For fixed α the Uβαs are approximately independent complex Gaussian random
variables with mean 0 and variance 1/D. Suitably using large deviations estimates for
independent Gaussians, p can be shown to be sufficiently small.

PRECISE STATEMENT OF RESULT

For the record, here is a precise statement of the main result:
For all η ,δ ,δ ′ ∈ (0,1), all integers D > D0(ηδ ′,δ ) and all integers deq > (1−

ηδ ′/2)D the following is true: Let H be a Hilbert space of dimension D; let Heq
be a subspace of dimension deq; let Peq denote the projection to Heq; let E1, . . . ,ED
be pairwise distinct but otherwise arbitrary; choose a Hamiltonian at random with
eigenvalues Eα and an eigenbasis φα that is uniformly distributed. Then, with probability
at least 1−δ , every initial quantum state will spend (1−δ ′)-most of the time in thermal
equilibrium in the sense that

liminf
T→∞

1
T

∣∣∣{0 < t < T : 〈ψt |Peq|ψt〉> 1−η
}∣∣∣≥ 1−δ

′ , (8)

where |M| denotes the size (Lebesgue measure) of the set M.
We don’t want to go into many details here. But we do want to note that δ (≈ 0)

makes precise what we have meant by most Hs, δ ′ (≈ 0) most times, and η (≈ 0) how
near 〈ψt |Peq|ψt〉 must be to 1.

VON NEUMANN’S QUANTUM ERGODIC THEOREM (1929) [10]

Here is an informal statement of von Neumann’s quantum ergodic theorem:

For every initial state ψ0 of a typical macroscopic quantum system, the system
will spend most of its time in thermal equilibrium.

This should seem rather similar to the earlier informal statement of the result I’ve been
discussing up to this point. And, as a matter of fact, “every” and “most” mean here
exactly what they meant there, and “typical” means almost the same thing. But the
meaning here of “thermal equilibrium” is rather different.

In the orthogonal decomposition (2) of H into macro-spaces Hν , let dν = dimHν

and let Pν be the corresponding projections. For von Neumann a system with wave
function ψ is in thermal equilibrium if, instead of (3), we have that

〈ψ|Pν |ψ〉 ≈ dν/D (9)

for all ν . And as a sufficient condition for absolute thermalization AT+ for this more
stringent notion of equilibrium, von Neumann provides a strengthening ET++ of ET.
ET++ is in fact a strengthening of a condition ET+, namely that for all ν

〈φα |Pν |φα〉 ≈ dν/D (10)

for all α , itself a strengthening of ET naturally suggested by comparing (3) and (9).



To better appreciate the significance of (9), observe that∫
µ(dψ)〈ψ|Pν |ψ〉= Tr [ρmcPν ] = dν/D .

In particular, (9) is the same thing as

〈ψ|Pν |ψ〉 ≈ Tr [ρmcPν ] ,

i.e., the requirement that the quantum averages of the macro-projections Pν agree with
their micro-canonical averages.

ET++ involves a certain non-resonance condition [10] (requiring non-degenerate en-
ergy gaps) together with the following:

max
α 6=β

∣∣〈φα |Pν |φβ 〉
∣∣2 +max

α

(
〈φα |Pν |φα〉−

dν

D

)2
� 1 . (11)

The second term on the left hand side of (11) corresponds to ET+, which implies that

〈ψt |Pν |ψt〉 ≈
dν

D

in the same way that ET implies AT. But ET+ does not imply AT+, because 〈ψt |Pν |ψt〉
could have significant fluctuations above and below its mean. The first term is needed to
control these fluctuations, via bounds on(

〈ψt |Pν |ψt〉−
dν

D

)2
.

Von Neumann showed that ET++ indeed implies AT+. He also showed that ET++ is
satisfied for a typical Hamiltonian. To do the latter is considerably more difficult than
showing this for ET. (Because of certain assumptions on the dimensions of macro-spaces
needed by von Neumann, the result in Section () is not a consequence of the quantum
ergodic theorem.)

A Remark on Varieties of Individualism (Quantum Case)

Von Neumann’s quantum ergodic theorem has both individualist and ensemblist as-
pects. It is individualist in that the relevant notion of equilibrium is for an individual
pure state; it is ensemblist in that what it demands of that pure state is that it resemble
the microcanonical ensemble. We’re inclined to say that the quantum ergodic theorem is
quasi-individualist—individualist by accident or necessity—and not pure individualist.
This is true also for many of the related results—in which the individualism permits the
extraction of thermal statistics without having to make any detailed a priori probabilistic
assumptions—upon which we shall now touch.



RELATED RESULTS

Versions of eigenstate thermalization have been discussed by Schnirelman, see [1], and
by M. Srednicki [8]. Results on equilibration and thermalization have been obtained by
N. Linden, S. Popescu, A.J. Short, and A. Winter [5], by P. Reimann [6], by H. Tasaki
[9], and by M. Rigol, V. Dunjko, and M. Olshanii [7].

Most of the equilibration and thermalization results say something in the vicinity of
the following: For physical initial states ψ0 of suitable macroscopic quantum systems,
the system will spend most of its time in thermal equilibrium. Different results may
involve different notions of “physical” and of “suitable.” Here we wish only to mention
that the various “thermal equilibrium” conditions involved are of the form

〈ψ|A|ψ〉 ≈ Tr [ρmcA]

for all A ∈ A , with the different choices of a class A of observables corresponding to
different notions of thermal equilibrium. For example, for von Neumann A consists of
macroscopic observables, and for Linden et al. of observables for a small subsystem of
a larger system.

REMARK ON TYPICALITY

We quote here from [3]:

When employing the method of appeal to typicality, one usually uses
the language of probability theory. But that does not imply that any of the
objects considered is random in reality. Rather, it means that certain sets (of
wave functions, of orthonormal bases, etc.) have certain sizes (e.g., close to
1) in terms of certain natural (normalized) measures of size. That is, one
describes the behavior that is typical of wave functions, orthonormal bases,
etc.. However, since the mathematics is equivalent to that of probability theory,
it is convenient to adopt that language. For this reason, using a normalized
measure µ does not mean making an “assumption of equal probability,” even
if one uses the word “probability.” Rather, it means that, if a condition is true
of most . . . , or most H, this fact may suggest that the condition is also true of
a concrete given system, unless we have reasons to expect otherwise.

Of course, a theorem saying that a condition is true of the vast majority of
systems does not prove anything about a concrete given system; if we want to
know for sure whether a given system is normal for every initial wave function,
we need to check the relevant condition . . . . Nevertheless, a typicality theorem
is, as we have suggested, illuminating; at the very least, it is certainly useful
to know which behaviour is typical and which is exceptional. . . .

The method of appeal to typicality belongs to a long tradition in physics,
which includes also Wigner’s work on random matrices of the 1950s. In the
words of Wigner . . . :

One [. . . ] deals with a specific system, with its proper (though
in many cases unknown) Hamiltonian, yet pretends that one deals



with a multitude of systems, all with their own Hamiltonians, and
averages over the properties of these systems. Evidently, such a
procedure can be meaningful only if it turns out that the properties
in which one is interested are the same for the vast majority of the
admissible Hamiltonians.

This method was used by Wigner to obtain specific new and surprising pre-
dictions about detailed properties of complex quantum systems in nuclear
physics.
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Temperature, entropy and second law beyond
local equilibrium: An illustration
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Abstract. Local-equilibrium thermodynamics applies to local scale the concepts and methods of
equilibrium thermodynamics concerning the meaning of entropy, temperature and equations of state.
However, when going beyond local equilibrium, the basic problems avoided by local equilibrium
hypothesis arise: how temperature and entropy are defined, how second law is formulated, how
macroscopic theory is related to microscopic formulations. Here, we illustrate these topics with
phonon hydrodynamics as a model for the description of heat transfer in nanosystems and its
corresponding non-equilibrium thermodynamic potentials, and discuss the limits for the existence
of non-equilibrium thermodynamic potentials in general situations.
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INTRODUCTION

One of the relevant conceptual questions in non-equilibrium thermodynamics is whether
there exists the analogous of equilibrium thermodynamic potentials for non-equilibrium
steady states, with such potentials depending on the currents through the system [1].
Non-equilibrium steady states share with equilibrium states the fact that the variables
describing them do not depend on time, but they differ from them by the presence of non-
vanishing fluxes of mass, energy, momentum, and some other relevant quantities. Thus,
a natural generalization of equilibrium thermodynamics would be the thermodynamics
of non-equilibrium steady states, including the non-zero currents as additional variables.
In particular, we will provide an example of non-equilibrium thermodynamic potentials,
and we will examine their form and their main physical contents. Thus, although such
potentials are not expected to exist in general, they are useful in a number of relevant
situations of much practical interest.

Usually, the approach towards the description of a system far from equilibrium is un-
dertaken from a microscopic perspective, with emphasis on a kinetic equation describ-
ing the evolution of the distribution function, and with the obtention of such distribution
function in special situations of interest. The microscopic information obtained in such
a perspective is in fact considerably wider than that accessible through macroscopic and
mesoscopic measurements. Therefore, it would be of interest to proceed in two com-
plementary directions: the usual bottom-up approach of statistical mechanics, and the
up-down approach of thermodynamics.

The second approach has been, up to now, less developed than the first one, because
of the usual restriction of non-equilibrium thermodynamics to the local-equilibrium



hypothesis [2], in which the thermodynamic potentials and equations of state keep
locally the same form they have in equilibrium thermodynamics. From this point of view,
non-equilibrium thermodynamics does not bring any approach towards a mesoscopic
description, in which additional variables are needed besides the local-equilibrium ones.
Then, a question arising in the up-down approach is which are the variables necessary
for the description of the mesoscopic state. This question is related to the experimental
capabilities and to the intrinsic nature and dynamics of the corresponding system and is
also a topic of interest from the microscopic perspective, as one should identify them in
terms of microscopic operators whose average could be calculated from the distribution
function.

Among the observables there is the temperature, which deserves special mention
because of its central relevance in thermodynamics, and because it exerts an influence on
practically all the properties of the system. Thermometry in non-equilibrium states is not
a trivial question, because there are many different ways to measure temperature, related
to different variables. In equilibrium, measuring temperature in different ways yields the
same value, but out of equilibrium the values of the different methods of measurement
are different and, on the other side, they also depend not only on properties of the own
system but also from the contact between the system and the thermometer. The question
of temperature also appears in microscopic theories, asking for microscopic definitions
of temperature, which may be different ones. A second group of questions refers to the
entropy and second law. This question is especially delicate, because entropy is defined
only for equilibrium states. Can an entropy be also defined for non-equilibrium steady
states? Is it univocal? How is the formulation of the second law related to this entropy?
Although up to now no clear answers are known for all these questions, asking for
them is useful because the frontiers of local-equilibrium thermodynamics become better
understood. Furthermore, the dialog between the up-down approach with the bottom-up
approach is fostered if one has more general expressions than the local-equilibrium ones,
and is also more fruitful and challenging.

PHONON HYDRODYNAMICS AND HEAT TRANSPORT IN
NANOSYSTEMS

We will specify our analysis to heat transport in nanosystems, which is not described by
usual Fourier’s law, but by more detailed equations accounting for the transition from
diffusive to ballistic transport [3, 4, 5, 6, 7]. This is necessary, for instance, when the size
of the system (for instance, the radius of a nanowire, the thickness of thin layer, the size
of each layer in a multilayered system, and so on) becomes comparable to the mean-free
path ` of the heat carriers.

From the practical point of view Fourier’s law is generalized as

dQ
dt

=−λe f f

(
`

R

)
A∇T (1)

where dQ/dt stands for the heat along a nanowire per unit time, A is the transverse area
of the nanowire, R its radius, and λe f f (`/R) is the effective thermal conductivity, which



tends to the bulk thermal conductivity when `/R (a dimensionless ratio usually known
as Knudsen number) tends to zero, and tends to 0 when `/R is big. The decrease of
the effective thermal conductivity of nanowires with decreasing radius is well known
from the experimental point of view [4, 5], and is expected to be useful, for instance,
in thermoelectrical conversion, where it is convenient to have low thermal conductivity
and high electrical conductivity.

To describe this behavior, one may use for the local heat flux q a transport equation
incorporating the mean free path of the carriers. Furthermore, if one is interested in
describing also fast perturbations, one should incorporate the relaxation time t of the
heat flux, related to the collision time of the heat carriers. As a concrete illustration we
consider the Guyer-Krumhansl equation, of the form [6, 7, 8]

τ
dq
dt

=−q−λ∇T + `2
∇

2q (2)

with λ the bulk thermal conductivity (dependent on the material and temperature but
not on the size of the system). When the terms in τ and ` are negligible, this equation
reduces to Fourier’s law. In the steady state, and when `/R is higher than 1, this equation
yields λe f f = (λ/8)(R/`)2, which tends to 0 when R tends to zero [8]. However, it tends
to zero too fast, as for small R it is experimentally observed that λe f f behaves linearly
with R rather than quadratically.

This feature may be taken into account if one incorporates constitutive equations for
a slip heat flow qw along the wall, in the so-called Knudsen layer, a layer near the wall
of thickness of the order of `. This is a relevant contribution when ` is of the order of R
or higher than R. In this case, and in analogy with the theory of rarefied gases, we take
[8, 9]

qw =C`

(
∂q
∂ r

)
r=R

−α`2
(

∂ 2q
∂ r2

)
r=R

(3)

The coefficient C takes into account specular and diffusive phonon collisions against
the wall, and the coefficient α has been proposed to describe phonon-backscattering,
a phenomenon of special interest in rough-walled nanowires. When this is taken into
account one finds [8]

λ =
λ0

8
R2

`2

[
1+4C

`

R
−4α

`2

R2

]
(4)

Thus, below a small value of the radius it seems that backscattering effects may turn
the nanowire into a heat insulator with vanishing effective thermal conductivity. Thus,
expression (4) is not meant to give negative values for the thermal conductivity, but zero
values for R smaller than the value making (4) to vanish. The coefficients C and α depend
on temperature and on the roughness of the wall. When they are taken into account, they
provide a reasonable description of the effective thermal conductivity of nanolayers [8].
Alternative versions based on a continued-fraction expansion of the effective thermal
conductivity in terms of the Knudsen number have also been studied [6, 10].



NON-EQUILIBRIUM THERMODYNAMIC POTENTIALS FOR
RELAXATIONAL HEAT TRANSFER

Since Fourier’s law, directly relating the heat flux to the instantaneous and local tem-
perature gradient, has been replaced by an evolution equation for the heat flux q, as in
(2), it is clear that q becomes an independent variable of the theory. Then, it is logical to
incorporate it into the entropy of the system. In particular, in extended thermodynamics
[1, 6, 7, 11, 12], the entropy per unit mass is seen to have the form

s(u,q) = seq(u)−
τv

2λT 2 q ·q (5)

where seq(u) is the local equilibrium entropy. Furthermore, the entropy flux is [6]

J =
q
T
− `2

λT 2 (∇q) ·q (6)

Both the entropy (5) and the entropy flux (6) reduce to their respective classical expres-
sions when the terms in t and ` are negligible. From (5) one may define a Gibbs free
energy of the form

g(T,q) = geq(T )−
τv

2λT
q ·q+

τv
T

(∇T ) ·q (7)

This free energy becomes minimum when q =−λ∇T , i.e. when Fourier’s law is locally
satisfied.

Some outstanding properties of the non-equilibrium thermodynamic potentials (5) and
(7) are:

1) The entropy (5) is more satisfactory for the expression of the second law of ther-
modynamics than the local-equilibrium entropy; indeed, the advantage of the extended
non-equilibrium entropy (5) with respect to the local-equilibrium one is that the extended
entropy production has the form [1, 6, 7]

σ
s = q ·

[
∇T−1 − τ

λT 2

(
dq
dt

)]
+

`2

λT 2 (∇q) : (∇q) (8)

For q satisfying equation (2), this entropy production is always positive. Instead, the
local-equilibrium entropy production is simply σ s = q ·∇T−1, which may be positive or
negative if the heat flux follows equation (2) instead of Fourier’s law. In particular, the
integrated entropy in an insulated system evolving towards equilibrium through equation
(2) is always increasing for the generalized entropy (5) but not for the integrated local-
equilibrium entropy, in which case the entropy production may oscillate.

2) The entropy (5) is closer to the Boltzmann entropy than the local-equilibrium en-
tropy itself. Indeed, up to the second order in the non-equilibrium corrections, Boltzmann
expression for the entropy in terms of the velocity distribution function may be written
as [6, 7]

s = seq(u)−
(

kB

2

)∫
Φ

2
1 (C) feq (C)dC (9)



with C the particle velocity, feq (C) the local-equilibrium distribution function, seq(u)
the local-equilibrium entropy corresponding to the Boltzmann entropy for the Maxwell-
Boltzmann distribution function, and Φ1 (C) the non-equilibrium correction, namely
f (C) = feq(C)[1+Φ2

1 (C)], where Φ1 (C) depends on the heat flux or the temperature
gradient. It is checked that when the non-equilibrium correction to the distribution
function is introduced into (9) and the integral is carried out, the non-equilibrium term of
the entropy (5) is obtained, either in Grad’s moment expansion or in Chapman-Enskog
gradient expansion or in maximum-entropy distribution functions for a system submitted
to a heat flux. Thus, using entropy (5) one is closer to microscopic results than merely
using the local-equilibrium entropy.

3) The generalized entropy (5) contains information on the fluctuations of the fluxes
around an equilibrium state. Indeed, using Einstein formula for the probability of fluc-
tuations around equilibrium one finds from (5) that the second moments of fluctuations
of the heat flux are given by [1, 6, 7]〈

δqiδq j
〉
= kB

(
λT 2

τv

)
δi j (10)

This is a particular expression of the Green-Kubo relations between transport coeffi-
cients and the time integral of the time correlation function of the fluctuations of the
fluxes, for relaxational dynamics consistent with equation (2) around an equilibrium
(homogeneous) state. For more general kinds of dynamics, more general forms of the
entropy should be used instead of (5). Some particular cases are known, but not the
general answer.

4) The free energy (7) contains information on the fluctuations of the heat flux around
its steady state average value. In particular, the relation between probability and free
energy (7) leads to the following expression for the ratio of the relative probabilities that
the heat flux q has a value +q in the forward direction (i.e. in the direction of the average
steady state value given by Fourier’s law) or a value q (in the backwards direction) [14]

Pr(q)
Pr(−q)

= exp

−2λ∇T ·q〈
(δqi)

2
〉

eq

 (11)

The relative probability of fluctuations of the fluxes around non-equilibrium steady
states is currently a topic of much interest in statistical physics [15, 16].

Thus, in general terms, it is seen that in some situations, non-equilibrium thermody-
namic potentials dependent on the currents may be defined, and generalize a number of
properties of the equilibrium thermodynamic potentials. We will comment that this result
is not expected to be completely general, but since a considerable number of situations
of practical interest fall in this range, its theoretical and practical interest is remarkable.

TEMPERATURE IN NON-EQUILIBRIUM STEADY STATES

Since in equilibrium thermodynamics the reciprocal of absolute temperature is given by
the partial derivative of the entropy with respect to internal energy at constant volume



and composition, the question about the meaning of this derivative for a non-equilibrium
entropy arises in an immediate way. Evidently, since the entropy (5) depends on heat
flux, its derivative with respect to internal energy will also depend on the heat flux,
thus being different than the local-equilibrium absolute temperature. This idea does
not seem very intuitive, and deserves some attention [17, 18, 19, 20]. In equilibrium
thermodynamics there are more than a dozen ways to relate temperature of the system to
some of its physical properties, let they be entropy, thermal or caloric equations of state,
second moments of fluctuations in equilibrium, transport coefficients, average kinetic
energy, average energy of different microscopic degrees of freedom [17]. In equilibrium,
all these definitions lead to the same value of temperature in a given state of the system,
but out of equilibrium all the definitions are expected to lead to different values, in
general.

Thus, out of equilibrium the zero principle must be reformulated in more detail than in
equilibrium, namely, by referring to the concrete kind of interaction between the system
and the thermometer. In our opinion, all the different definitions of temperature out
of equilibrium are physically interesting, and one should try to be able to understand
their mutual relation and predict the outcomes of the different temperatures for a given
non-equilibrium steady state [17]. For instance, in non-equilibrium steady state, the
average kinetic energy depends on the spatial direction, and therefore the corresponding
directional temperatures that could be defined will be different [17, 18, 19, 20, 21]. In
simple situations one may study, for instance, the relation between the several directional
temperatures in terms of the heat flux crossing the system. The difference is small in
usual situations, but it may be very relevant in shock waves [21]. It seems (although it
is not clear how general this statement is) that the thermodynamic temperature obtained
from the derivative of the entropy with respect to internal energy is related to the kinetic
temperature in an axis perpendicular to the heat flux, and that it is lower than the average
kinetic energy along the direction of the heat flux [17]. Similar analyses could be done
if configurational temperatures related to the average intermolecular potential energy
are used; in this case, one should be able to know the kinetic and the configurational
temperatures, and to know how the several degrees of freedom (kinetic and potential,
for instance) contribute to the heat transport and thermal conductivity.

PHYSICAL INTERPRETATION AND LIMITS OF VALIDITY OF
THE NON-EQUILIBRIUM POTENTIALS

The generalized entropy (5) may be given a relatively simple and appealing interpreta-
tion. Assume a system in a non-equilibrium steady state; assume that a small volume
of it is suddenly isolated and let to decay to equilibrium. The difference between the
final entropy (the local-equilibrium entropy) and the initial entropy (the unknown non-
equilibrium entropy) will be related to the entropy production as

s f in = sin +
∫

∞

0
σ

sdt (12)

If the expression σ s = q ·q/λT 2 is used and an exponential decay for the heat flux is
assumed in (12), the entropy (5) is obtained [6]. However, this process will lead to a



unique entropy provided that the dissipation does not depend on the way the isolated
system decays to equilibrium. In principle, there could be many situations in which
such decay could depend on the specific way of decaying, in such a way that a non-
equilibrium entropy could not be defined, unless one was able to characterize in full
detail the whole decay. Then, it is conceivable that energy dissipation is a more general
concept than entropy itself, in the sense that one could have the dissipation per unit time
well defined, but its time integral would depend on the process. In this case, relation (12)
would take processes rather than states as the basic focus of attention [22].

CONCLUSIONS

In this text we have presented an explicit non-equilibrium thermodynamic potential
dependent on the heat flux, namely entropy (5) or free energy (7). Such potentials have
a number of interesting properties relating them to a definite positive production or to
the properties of the fluctuations of the fluxes, which generalize the properties of the
local-equilibrium potentials. In particular, the potential we have shown is related to
generalized transport equations, going beyond Fourier’s law and describing the transition
from diffusive to ballistic heat transport. Thus, this equation is useful for the description
of heat transport in nanosystems. This kind of potentials has also been studied for mass
transport, electrical current, and flowing systems submitted to viscous effects [6, 7].

We have also warned that in general it should not be expected to find such generalized
thermodynamic potentials, unless one would be able to characterize in detail the partic-
ular process of decay of a system to equilibrium after it has been suddenly isolated. This
may be too complicated and cumbersome to be practically useful, in which case one
could directly take the processes themselves as the protagonists of the non-equilibrium
analysis.

Since we have referred to nanosystems, it is also worth of mention the role of the
constitutive equations on the boundaries, for instance, for a slip heat flow along the wall,
which may have much influence on the effective thermal conductivity along nanowires.
Thus, as it is logical to expect, non-equilibrium small systems require a detailed consid-
eration of wall effects.
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Abstract. Dynamical processes occurring on top of complex networks have become an exciting
area of research. Quenched disorder plays a relevant role in general dynamical processes and phase
transitions, but the effect of topological quenched disorder on the dynamics of complex networks
has not been systematically studied so far. Here, we provide heuristic and numerical analyses of the
contact process defined on some complex networks with topological disorder. We report on Griffiths
phases and other rare region effects, leading rather generically to anomalously slow relaxation in
generalized small-world networks. In particular, it is illustrated that Griffiths phases can emerge as
the consequence of pure topological heterogeneity if the topological dimension of the network is
finite.
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INTRODUCTION

The study of complex networks has been flourishing since the introduction of a simple
model describing the emergence of scaling in random networks [1]. Multidisciplinary
applications involve, for example, the World Wide Web, various biological, sociological
and technological networks. These are, in many cases, scale-free networks (for recent
reviews see [2],[3]). Other families of complex network models are those composed
of a d-dimensional regular lattice and additional long edges [4]. These arise e.g. in
sociophysics [3], in the context of conductive properties of linear polymers with cross-
links that connect remote monomers [5], in public traffic systems [6], in the case of
nanowires [7], and in many other examples. In general, a pair of nodes separated by the
distance l is connected by an edge with the asymptotic probability for large l:

P(l) = β l−s . (1)

In the special case s = 0, the edges exist with a length-independent probability, as in
small world networks, therefore we call the nets with generic s generalized small world
networks (GSW). If s ≥ 2, they are characterized by a finite topological dimension D,
i.e. N(l) ∼ lD, where N(l) is the number of nodes within a distance l from a given
node. (Note that "small-world" property means that the number of neighbors of a node
increases exponentially with the distance from it, i.e. formally D = ∞).



Dynamical processes defined on networks are of recent interest, for example in the
context of optimization dynamics of spreading or transport processes [8]. Different
dynamical processes, defined on regular lattices, often exhibit scaling behavior, that
can be classified into basic universality classes [9]. Instead, the existence of scaling
universality classes on network architectures is not clearly established. In many cases,
the presence of short average distances induces mean-field type of (fast) dynamics. It
is also well known that structural heterogeneity may lead to more complex behavior;
for example, on scale-free networks, characterized by a power-law degree distribution
P(k)∝ k−γ [1], critical exponents may vary with the degree exponent γ [12, 2]. In related
’annealed networks’, where the links change rapidly, γ-dependent critical exponents
have also been reported [10, 11]. Real networks are, however, ’quenched’ in many cases,
i.e. the topology changes slowly with respect to the dynamical process evolving on them.

In the context of the statistical physics of models defined on Euclidean lattices, it
is well known that quenched randomness can generate “rare-region effects” in the so
called Griffiths phase (GP), where, in many cases, algebraic scaling is observed (as
opposed to pure systems in which power-laws are observed only at critical points) with
scaling exponents changing continuously with the control parameter [13, 14, 15, 16, 30].
Furthermore, at the phase transition the evolution becomes logarithmically slow, and it
is controlled by ’activated scaling’. A nontrivial question can be posed: Under which
conditions do rare-region effects and GPs occur in network systems? Can they emerge
out of topological disorder alone (i.e. without disorder in the transition rates)? These
problems have not been systematically studied so far. At first sight one might guess
that in network models the dynamics should be very fast, due to the strong inter-
connectedness, i.e. information can propagate very efficiently throughout the system,
resulting in mean-field like, exponential relaxation. Recently, however, generic slow
dynamics has been reported to occur in various network models; its origin has been
attributed to heterogeneity [17] or to local bursty activity patterns [18, 19]. To tackle
this type of problems, here we present a study of the contact process (CP) [20] (i.e. the
simplest possible model for epidemic spreading, or information flow) on different GSW
networks, including regular networks and non-regular ones.

NUMERICAL ANALYSES

We study the CP on random networks composed of a d-dimensional lattice and a set
of long edges with unbounded length. Any pair of nodes, separated by the distance
l, is connected by an edge with some l-dependent probability, Eq.(1) [4, 24, 25]. An
intriguing feature of these type of graphs for d = 1 is that in the marginal case (s = 2)
intrinsic properties show power-law behavior and the corresponding exponents vary
continuously with the prefactor β . Indeed, the topological dimension D of such networks
has been conjectured to depend on β [24]. Instead, for larger values of s long-ranged
links are irrelevant, and D(β ) = 1, while for s < 2 the topological dimension diverges. It
has been claimed in a recent paper [28] that if D(β ) is finite, Griffiths phases and similar
rare-region effects can appear.

We have considered the CP [20], in which each infected (active) sites is healed at rate
1, whereas each of its nearest-neighbor sites is infected at rate λ/k (where k is the degree



of the site) so that the total infection rate is λ . In numerical simulations we update active
sites randomly and increment the time by 1/Na, where Na is the number of active sites.
In this way, all active sites are updated on average once every time unit. For a critical
infection rate λc we find a phase transition from the active to an absorbing phase [21],
with vanishing density of infected sites.

We have performed numerical simulations initiated either from a fully active state or
from a single active seed. In the former case, the density ρ(t) of active sites has been
measured.

Non-regular random networks

The precise definition of the networks we consider is as follows[23, 24]. We start
with N nodes, numbered as 1,2, . . . ,N and define the distance between node i and j
as l = min(|i− j|,N − |i− j|). We connect any pair of sites separated by a distance
l = 1 (i.e. neighboring sites on the ring) with probability 1, and pairs with l > 1
with a probability P(l) = 1− exp(−β l−s). This implies P(l) = β l−s at large distances.
In the case s > 2, long-range links do not change the topological dimension, which
remains unity, and hence the critical behavior is expected to be similar to that of the
one-dimensional CP with disordered transition rates. In the latter model, the critical
dynamics is logarithmically slow, for instance, starting from a fully active state, the
density decays asymptotically as ρ ∝ (ln(t))−α̃ with α̃ = 0.38197 [16]. For s = 3
(and β = 2) we have run extremely long (tmax = 228 MCs) simulations on networks
with number of nodes N = 105. Besides observing a GP, we have found that data are
compatible with the above form of logarithmic dependence on time, and have located the
critical point at λc = 2.783(1). As Fig. 1(a) shows the assumption on activated scaling
with α̃ = 0.38197 is satisfactory, although only after an extremely long crossover time
to be discussed later [29].

(a) (b)
FIGURE 1. Time-dependence of the density in the s = 3, β = 2 random network. Inset: local slopes of
the same (lower curves), and local slopes of the survival probability in the 1d QCP simulations (dashed
curves). Slow convergence of the effective exponents can be observed. (b) Phase diagram of QCP on the
ER graph for r = 0.



For the marginal case s = 2, where the topological dimension is a continuous function
of β , numerical simulations indicate qualitatively different scenarios of the phase tran-
sition for different values of β . If β is small enough, GP is observed and the scaling at
the transition is of logarithmic form. However, when β is large enough, the GP seems to
be lacking and the critical dynamics follows a power-law. The latter type of behavior is
observed also for s < 2, where formally D = ∞.

An “annealed” counterpart of CP on the above random networks is the 1d CP with
Lévy flight distributed activation probabilities P(r) ∝ r−d−σ . In this model the dynam-
ical exponents are known to depend continuously on σ [27]. The estimated dynamical
exponent of the CP on the above random networks in case of power-law critical behavior
is found to be compatible with the dynamical exponent of the Lévy-flight CP with d = 1.
For further details the reader is referred to [28, 29].

3-regular (or cubic) random networks

In the networks studied so far the degree of nodes was random. In the following we
consider networks with a “weaker” topological disorder, in the sense that the degree of
nodes is constant (3). Such random networks with nodes of degree 3 can be constructed
in the following way [25]. A one-dimensional periodic lattice with N sites is given,
where the degree of all sites is initially 2. Sites of degree 2 are called “free sites”. Let
us assume that N is even and k is a fixed positive integer. A pair of free sites is selected
such that the number of free sites between them is k−1 (the number of non-free nodes
can take any value) and this pair is then connected by a link. That means, for k = 1,
neighboring free sites are connected, for k = 2 next-to-neighboring ones, etc. This step,
which raises to 3 the degree of two free sites, is then iterated until 2(k−1) free sites are
left. These are then paired in an arbitrary way, which does not affect the properties of
the network in the limit N → ∞. In the resulting network, all sites are of degree 3, and
one can show that the probability of edges is given by Eq. (1) with s = 2. For certain
networks of this type it has been demonstrated that the long-ranged connections result
in a finite topological dimension which is less than one [25]. Furthermore, in the case of
aperiodic networks, the critical exponents of the CP depend on the underlying aperiodic
modulation [26]. In the following, we concentrate on random networks in which the pairs
to be connected are selected randomly (with equal probability) in the above procedure
for a fixed k. In this case, one can show that the prefactor in Eq. (1) is given by β = k/2.

We have performed numerical simulations for the CP on k = 1 random networks
with N = 107 nodes. The averaging was done over 200 different network realiza-
tions for each λ value and the maximum time is tmax ≤ 226. As Fig. 2(a) shows,
power-law decay with continuously changing exponent emerges for a range of λ -s.
By analyzing the effective decay exponents, defined as the local slopes of the density
αeff(t) = −(lnρ(t)− lnρ(t ′))/(ln(t)− ln(t ′)), where t/t ′ = 2, the curves do not level-
off for large times, instead one can observe a small drift. One can easily derive that the
functional dependence of the effective exponent αeff(t) = α + x/ ln(1/t) is related to
the scaling correction ρ(t) = t−α lnx(1/t). By plotting αeff(t) on logarithmic time scales
(see inset of Fig. 2(a)) it turns out that the drift describes logarithmic corrections to



power-laws and that α is a non-universal quantity which depends on λ . The possibility
of logarithmic corrections has already been pointed out in the case of CP with quenched
disorder [15].

(a) (b)
FIGURE 2. Density decay in 3-regular, random networks. (a) GP in k = 1 between λ = 2.535 and
λ = 2.57 (from bottom to top). (b) Critical point for k = 2 between λ = 2.156 and λ = 2.1598 (from
bottom to top). The inset shows the corresponding local slopes.

In accordance with results on non-regular networks with s = 2, the phase transition
is qualitatively different for k = 2 which corresponds to a higher value of β . Here, a
standard phase transition seems to appear at λc = 2.15835(5), with the density decay
exponent α ' 0.51(5) (Fig. 2(b)). This value agrees again with that of the Lévy flight
CP with d = 1 and d +σ = 2.

QCP ON ERDŐS-RÉNYI NETWORKS

Apart from studying the effect of heterogeneous (i.e. disordered) topologies on the
dynamics of the contact process, we have also scrutinized the behavior of the disordered
contact process on random networks. In particular, we have considered CP on ER graphs
[22] with a quenched disordered infection rate: a fraction 1− q of the nodes (type-
I) take value λ and the remaining fraction q (type-II nodes) take a reduced value λ r,
with 0 ≤ r < 1. Pair mean-field approximations [28, 29] lead to the following critical
threshold

λc(q) =
〈k〉
〈k〉−1

1
1−q

. (2)

Type-I nodes experience a percolation transition, where the type I-to-type I average
degree is 1, i.e. at qperc = 1−〈k〉−1. For q > qperc activity cannot be sustained: type-
I clusters are finite and type-II ones do not propagate activity.

Numerical simulations and optimal fluctuation theory for 〈k〉= 3 (qperc = 2/3) leads
to the complex phase diagram shown on Fig. 1(b). In agreement with (2) one finds
a critical active/absorbing phase transition, but below the percolation threshold the
absorbing phase splits into parts. In particular, for λ & 4.5 (iv) rare, percolating regions



may occur, which cause power-law dynamics (i), i.e. a Griffiths phase, compared to the
inactive phase of simple CP, which is purely exponential. Further details can be found
in [28, 29].

CONCLUSIONS

We have illustrated that, besides quenched site disorder, topological disorder by itself
can result in slow dynamics and non-universality, at least for the contact process. We
expect these results to have a broad spectrum of implications for propagation phenomena
and other dynamical process taking place on networks, and to be relevant for the analysis
of both models and empirical data [17]. We have claimed in a different publication
[28] that having finite topological dimension is a necessary condition for the occurrence
of slow, GP type of evolution in complex networks, at least for CP type of dynamics.
Investigation of other factors promises to be an interesting, open field of research.
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Abstract. Nonanalyticities of thermodynamic functions are studied by adopting an approach based
on stationary points of the potential energy. For finite systems, each stationary point is found to cause
a nonanalyticity in the microcanonical entropy, and the functional form of this nonanalytic term is
derived explicitly. With increasing system size, the order of the nonanalytic term grows, leading to
an increasing differentiability of the entropy. It is found that only “asymptotically flat” stationary
points may cause a nonanalyticity that survives in the thermodynamic limit, and this property is
used to derive an analytic criterion establishing the existence or absence of phase transitions. We
sketch how this result can be employed to analytically compute transition energies of classical spin
models.
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A phase transition is an abrupt change of the macroscopic properties of a many-
particle system under variation of a control parameter. An approach commonly used
for the theoretical description of phase transitions is the investigation of the analyticity
properties of thermodynamic functions like the canonical free energy of enthalpy. It is
long known that nonanalytic behavior in a canonical or grandcanonical thermodynamic
function can occur only in the thermodynamic limit in which the number of degrees of
freedom N of the system goes to infinity [1]. Recently, however, it was observed that the
microcanonical entropy, or Boltzmann entropy, sN of a finite system is not necessarily
real-analytic, i. e. not necessarily infinitely many times differentiable. More specifically,
it was observed in [2] that stationary points of the potential energy function VN(q) of a
classical many-body system with continuous variables q = (q1, . . . ,qN) give rise to these
nonanalyticities. Generically, with increasing N, the nonanalyticities appear in higher
and higher derivatives of the microcanonical entropy sN . Despite this “smoothening” of
the entropy when approaching the thermodynamic limit, it was shown recently that a
finite-system nonanalyticity of sN can survive the thermodynamic limit if the Hessian
determinant of VN , evaluated along a suitable sequence of stationary points for different
system sizes N, goes to zero in a suitable way. This observation was used in [3, 4] to
derive an analytic criterion, local in microscopic configuration space, on the basis of
which the existence of phase transitions can be analyzed and, in some cases, an exact
analytical expression for the phase transition energy can be derived.

In this article, the functional form of the nonanalyticities of the finite-system entropy
sN is reviewed. Based on this result, we then sketch the criterion which relates the
occurrence of a phase transition to the vanishing of the Hessian determinant evaluated
along a sequence of stationary points. Finally, a simple strategy is discussed which



FIGURE 1. As a simple example, consider a two-dimensional configurational space R2 on which a
potential energy function V2(q1,q2) = q2

1 + q2
2 is defined (left). The corresponding density of states as

defined in (2) has a discontinuity at v = v0 (right).

permits to construct sequences of stationary points for systems of arbitrary size N.

NONANALYTICITIES OF THE FINITE-SYSTEM ENTROPY

Canonical and grandcanonical ensembles are the ones most frequently used in statisti-
cal mechanics applications. The corresponding thermodynamic potentials, i.e. the free
energy and the grandcanonical potential, are known to be analytic functions for all fi-
nite systems sizes, and many physicists have become so used to this property that they
expected all finite-system thermodynamic functions to be smooth. It is, however, fairly
easy to construct counterexamples to this false expectation. The thermodynamic func-
tion we consider here is the configurational microcanonical entropy1

sN(v) = lnΩN(v)/N, (1)

where
ΩN(v) =

∫
dqδ (VN(q)−Nv) (2)

is the configurational density of states. The integration in (2) is over configuration space,
and v denotes the potential energy per degree of freedom. For a potential energy function
V2(q1,q2) = q2

1 +q2
2, the configurational density of states Ω2(v) is easily shown to have

a discontinuity at v = v0 (see figure 1). For a slightly less trivial example of a potential
with a proper saddle point, see figure 1 of [6].

In both examples, the nonanalyticities of ΩN(v) occur precisely at the values of the
potential energy per degree of freedom vs = VN(qs)/N which correspond to stationary
points of the potential, i.e. points qs where dVN(qs) = 0. This observation remains valid
in higher dimensional configuration spaces, and independent of whether the stationary
point is a minimum, a maximum, or a saddle point. In the following, in order to obtain
a general result characterizing the nonanalytic behavior of ΩN induced by a stationary
point, we require the potential VN to be a Morse function, i.e. to have a non-vanishing
determinant of the Hessian HV at all stationary points of VN . One may argue that this

1 Nonanalyticities of the “usual” microcanonical entropy are related to nonanalyticities of its configura-
tional counterpart in a rather straightforward way. See [5] for details.



is an insignificant restriction, since Morse functions form an open dense subset of the
space of smooth functions [7] and are therefore generic. This means that, if the potential
VN we are interested in is not a Morse function, we can transform it into one by adding an
arbitrarily small perturbation. An important consequence of the Morse property is that
all stationary points of such a function are isolated which allows us to study the effect of
a single stationary point on the configurational density of states (2). Such an asymptotic
analysis has been reported in [8, 4]:

Theorem 1 Let VN : G→ R be a Morse function with a single stationary point qs of
index k in an open region G ⊂ RN . Without loss of generality, we assume VN(qs) = 0.
Then there exists a polynomial P of degree less than N/2 such that at v = 0 the
configurational density of states (2) can be written in the form

ΩN(v) = P(v)+
hN,k(v)√
|det [HV (qs)]|

+o(vN/2−ε) (3)

for any ε > 0. Here Θ is the Heaviside step function, o denotes Landau’s little-o symbol
for asymptotic negligibility, and

hN,k(v) =


(−1)k/2 v(N−2)/2Θ(v) for k even,
(−1)(k+1)/2 v(N−2)/2 π−1 ln |v| for N even, k odd,
(−1)(N−k)/2(−v)(N−2)/2Θ(−v) for N,k odd.

(4)

For a proof of this result see [4]. In short, we see from theorem 1 that, at a nonanalyticity
of ΩN(v) induced by the presence of a stationary point of VN , the configurational
density of states is b(N − 3)/2c-times differentiable at the corresponding value vs of
the potential energy. Hence, when increasing the number N of degrees of freedom, the
non-differentiability occurs in higher and higher derivatives of ΩN(v) [or sN(v)], and
one might naively expect the nonanalyticity to disappear in the thermodynamic limit.

FLAT STATIONARY POINTS AND PHASE TRANSITIONS

The result of the previous section, and in particular the unbounded growth of the differ-
entiability with increasing N, does not seem to suggest any connection between station-
ary points of the potential energy function and phase transitions in the thermodynamic
limit N → ∞. There is, however, a result by Franzosi and Pettini which indeed estab-
lishes such a relation. The following sloppy reformulation of the result will be sufficient
for our purposes.

Sloppy theorem 1 Let VN be the potential of a system with N degrees of freedom
and short-range interactions. If some interval [a,b] of potential energies per degree
of freedom remains, for any large enough N, free of stationary values of VN , then the
configurational entropy s(v) = limN→∞ sN(v) does not show a phase transition in this
interval.

Note that a precise formulation of this theorem requires further technical conditions on
the potential VN (see [9, 10] for details).



Indeed, the finite-system result of theorem 1 can be helpful towards an understanding
of how nonanalyticities of the entropy sN can give rise to a nonanalyticity in the thermo-
dynamic limit: From equation (3), we observe that the nonanalytic term hN,k comes with
a prefactor of 1/

√
|det [HV (qs)]|. Although, with increasing N, the differentiability of

hN,k grows unboundedly, this “smoothing” may be counterbalanced by a vanishing (with
increasing N) Hessian determinant. This intuition has been made rigorous in [3, 4], but
here we will give only a sloppy reformulation capturing the essence of this result.

Sloppy theorem 2 The nonanalytic contributions of the stationary points of VN to the
configurational entropy cannot induce a phase transition at a potential energy per
particle vt if, in a neighborhood of vt,

1. the number of critical points is bounded by exp(CN) with some C > 0, and
2. the stationary points do not become “asymptotically flat” in the thermodynamic

limit, i.e. limN→∞

∣∣detHV (q
s)
∣∣1/N is bounded away from zero for any sequence of

stationary points qs lying in the vicinity of vt.

For a precise formulation and a proof of this result see [4]. In short, this result classifies
a subset of all stationary points of VN as harmless as what regards phase transitions
and leaves only the asymptotically flat ones as candidates capable of causing a phase
transition.

SPECIAL SEQUENCES OF STATIONARY POINTS

Importantly for the application of sloppy theorem 2, knowledge of a suitably chosen
subset of the stationary points of VN may be sufficient: If one manages to find some
sequence of stationary points such that, along this sequence,

lim
N→∞

∣∣detHV (q
s)
∣∣1/N

= 0, (5)

the corresponding limiting value vt = limN→∞VN
(
qs)/N is a good candidate for the exact

value of the phase transition potential energy. This idea was first employed by Nardini
and Casetti in [11], where suitably constructed sequences of stationary points were used
to single out the phase transition of a model of gravitating masses and determine its
critical energy.

To illustrate how special sequences of stationary points can be constructed, we con-
sider a one-dimensional XY model with periodic boundary conditions, characterized by
the potential energy function

VN(q) =
N

∑
i=1

(N−1)/2

∑
j=1

1− cos(qi−qi+ j)

jα
(6)

where qi ∈ [−π,π) are angular variables, and α is some non-negative exponent. For
α ∈ [1,2], this model is known to show a phase transition from a ferromagnetically
ordered to a paramagnetic phase, but no exact thermodynamic solution is known.



FIGURE 2. Sketch of stationary points of VN for N = 8, where qi is the angle between the arrow and
the dashed axis. Left: Stationary points where all qi ∈ {0,π}. Right: All differences qk− qk−1 between
neighboring angles are equal, with differences chosen such that q0 = qN , in compliance with the periodic
boundary conditions.

Stationary points of the potential energy (6) have to satisfy the set of equations

0 =
∂VN(q)

∂qk
=

(N−1)/2

∑
j=1

sin(qk−qk+ j)+ sin(qk−qk− j)

jα
(7)

for k = 1, . . . ,N. To get rid of the trivial global rotational invariance of (6), we fix qN = 0
and eliminate the equation with k =N in (7). The thermodynamics of this reduced model
is identical to that of the full one, as the contribution of one degree of freedom to the
partition function is negligible in the thermodynamic limit.

There are two particularly simple classes of solutions of (7), similar in spirit to
those constructed in [11] for a one-dimensional model of gravitating masses: First, any
combination of qi ∈ {0,π} for i = 1, . . . ,N−1 will make the sine functions in (7) vanish.
A second class of solutions is given by q(n)m = 2πmn/N for m,n ∈ {1, . . . ,N}. These
solutions have equal angles between neighboring spins. As a result, sin(qk− qk+ j) =
sin(qk− j − qk), and therefore each of the summands in (7) vanishes separately. Both
classes of solutions are sketched in figure 2. To employ these classes of stationary points
along the lines of sloppy theorem 2, one needs to evaluate the Hessian determinant of
(6) at the stationary points. This is work in progress and will be reported elsewhere.

ACKNOWLEDGMENTS

The author acknowledges financial support by the Incentive Funding for Rated Re-
searchers program of the National Research Foundation of South Africa.

REFERENCES

1. R. B. Griffiths, in Phase Transitions and Critical Phenomena, edited by C. Domb, and M. S. Green,
Academic Press, London, 1972, vol. 1.

2. L. Casetti, and M. Kastner, Phys. Rev. Lett. 97, 100602 (2006).
3. M. Kastner, and O. Schnetz, Phys. Rev. Lett. 100, 160601 (2008).
4. M. Kastner, O. Schnetz, and S. Schreiber, J. Stat. Mech. Theory Exp. 2008, P04025 (2008).
5. L. Casetti, M. Kastner, and R. Nerattini, J. Stat. Mech. Theory Exp. 2009, P07036 (2009).
6. M. Kastner, J. Stat. Mech. Theory Exp. 2009, P02016 (2009).
7. M. Demazure, Bifurcations and Catastrophes: Geometry of Solutions to Nonlinear Problems,

Springer, 2000.
8. M. Kastner, S. Schreiber, and O. Schnetz, Phys. Rev. Lett. 99, 050601 (2007).
9. R. Franzosi, and M. Pettini, Phys. Rev. Lett. 92, 060601 (2004).
10. R. Franzosi, M. Pettini, and L. Spinelli, Nuclear Phys. B 782, 189–218 (2007).
11. C. Nardini, and L. Casetti, Phys. Rev. E 80, 060103(R) (2009).



Energy bursts in vibrated shallow granular
systems

N. Rivas∗, D. Risso†, R. Soto∗ and P. Cordero∗

∗Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
†Departamento de Física, Universidad del BioBio, Concepción, Chile

Abstract. In a mixture of two species of inelastic spheres of equal size but different mass, placed in
a vertically vibrated shallow box (large horizontal dimensions and height comparable to the grains’
size), there is spontaneous segregation. Once the system is at least partly segregated energy bursts
recurrently take place: the horizontal kinetic energy of the heavy particles, that normally is small,
suddenly increases an order of magnitude. An explanation of these events is provided based on the
existence of a fixed point for an isolated particle bouncing with only vertical motion between the
top and bottom plates. Energy bursts occur when clusters of heavy particles start a chain reaction of
collisions that transfer vertical energy to horizontal energy producing an expansion of the cluster.
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INTRODUCTION

Granular systems, like sand, are systems formed by hard macroscopic particles. They
are intrinsically dissipative systems, since colliding grains transfer rotational and trans-
lational energy into their internal degrees of freedom. The temperature does not play a
role in the dynamics of the system because the energy needed to considerably move a
grain is much larger than the temperature energy scale kBT . If no energy is injected into
the system, the dissipative collisions will make all particles come to rest—as when we
fill a sugar bowl. In this static state the top surface will most probably not be horizon-
tal but rather the top layers will be forming a heap. But when energy is injected, the
granular system may behave like a fluid, even though there are important differences
with molecular fluids because of the energy dissipation at grain collisions [1]. In a wide
variety of situations the presence of any interstitial fluid, such as air, can be neglected.
When the system has two species of grains—that differ in their size, shape, density or
inelasticity—segregation generically takes place. Depending on the forcing parameters,
segregation can be partial or total with different driving mechanisms [2].

Granular systems found in nature normally are irregular in shape and with a diversity
of sizes. However, it became evident that the main features of granular media are
determined by their stiffness and the energy dissipation at collisions. For this reason and
in order to make quantitative and reproducible predictions, the study of these systems are
usually focused on systems consisting of spherical particles and quite often the systems
are monodisperse or, perhaps, bidisperse. It is clear now that these systems present an
immensely rich variety of behaviors.

The study of granular systems in a vibrated shallow box—a box with large horizontal



dimensions and height comparable to the particle’s diameter— allows both to study the
collective behaviour of the system as well as that of individual particles [3, 4, 5, 6]. As it
should be expected, the system variables behave quite anisotropically to the extent that,
for example, the horizontal mean kinetic energy is quite different from the vertical one.
Placing monodisperse inelastic spheres in a vertically vibrated shallow box of height
comparable to the size of the particles, a particular phase separation takes place: regions
appear with quite different densities and granular temperatures [3]. Namely, grains
form solid-like regions surrounded by fluid-like regions. In this phase separation waves
develop, driven by negative compressibility of the effective pressure [4].

In this article we study a mixture of two species of inelastic spheres of equal size but
different mass, placed in a vertically vibrated shallow box when there is spontaneous
segregation. Once the system is at least partly segregated energy bursts take place. An
explanation of these events is provided based on the existence of a fixed point for an
isolated particle bouncing with only vertical motion between the top and bottom plates.

SYSTEM CONFIGURATION

Two species of spheres of the same diameter σ but different mass are placed in a
square shallow box as described below. The lighter/heavier particles will be called L
and H respectively. In the simulations we use the so-called Inelastic Hard Sphere model,
in which collisions are instantaneous and are characterized by restitution and friction
coefficients (static and dynamic), which we take to be the same for the L’s and H’s in
all their collisions. The spheres have translation and rotation degrees of freedom; their
collision rules, including those with the walls, can be found in [7].

The shallow box, with horizontal periodic boundary conditions, oscillates with am-
plitude A and frequency ω . The simulations make use of an event driven algorithm [8]
with the following parameters: mass ratio mH/mL = 10, box height Lz/σ = 1.82, nor-
mal and tangential restitution coefficients r = 0.8, static and dynamic friction coeffi-
cients µs = 0.3 and µd = 0.15, the angular frequency and amplitude of vibration are
kept fixed at ω

√
σ/g = 7.0 and A/σ = 0.15 so that the dimensionless acceleration is

Γ ≡ Aω2/g = 7.35. Simulations are reported using two systems: (a) a small system
NH = 500, NL = 1000 and Lx/σ = Ly/σ = 40 and (b) a large system NH = 2000,
NL = 4000 and Lx/σ = Ly/σ = 80. Both simulations have the same area fraction
ρ = πσ2(NH +NL)/(4LxLy) = 0.74 and number ratio NH : NL = 1 : 2, and only differ in
their size.

The appearance of the energy bursts is related to the existence of a fixed point in the
dynamics of a single particle in the shallow box. The friction with the plates damps
the horizontal and rotational motion, hence the fixed point is characterized by a vertical
dynamics in which the particle collides alternatively with the bottom and top plates
with the frequency ω of the box. For a wide range of the parameters this periodic
trajectory is unique, and thus aligns all particles the vibrating box—in the form of a
moving horizontal layer—even if there is no interaction between them.

For the parameters used in the simulation the fixed point is unique and stable. When
the system is initialized, the particles approach the fixed point but the grain-grain colli-
sions may prevent to reach it, with different results for the H and L particles. The H’s



reach the fixed point keeping a small horizontal energy due to the collisions with the L’s
while, due to the mass contrast, the L particles are continuously taken off the fixed point
and, as a result, their average horizontal energy is significant

The mass difference produces segregation of the species but the underlying driving
mechanism is not yet known. Such mechanism is not the focus of this article, but rather
a phenomenon that takes place after segregation has occurred. Shortly after starting from
an initial random configuration many small dense clusters of H’s appear. Later on there
is a slow dynamics in which the clusters coalesce. The clusters tend to have some L’s
in their bulk. Because of the fixed point, from a top view the H’s appear as if they were
standing still, while the L’s outside the clusters show a significant horizontal agitation.
The external pressure exerted by the light particles leads the heavy ones to form denser
clusters. As the fixed point is unique, the clusters move in phase as practically one solid
layer.

HE ENERGY BURSTS

As described in [9], once there is at least one cluster, the segregation process is repeat-
edly interrupted by sudden bursts of the horizontal kinetic energy of the H particles
implying a fast expansion of the cluster. Figure 1 shows the evolution of the horizon-
tal energy for the two simulated systems. Two regimes are clearly observed: the small
system shows bursts that are irregular in intensity and time lags, while the bursts in the
larger system are roughly periodically spaced with a rather well defined amplitude. Later
we put forward an explanation of the observed periodicity.
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FIGURE 1. Horizontal kinetic energy of the H particles EHh(t) obtained in the simulations for the (a)
small and (b) large systems.

Each burst begins as an abrupt increase of the agitation of the H’s in a small region
in one of the clusters, implying a local expansion followed by a fast propagation of the
horizontal agitation to a much larger zone. Next the L-H collisions slowly compress the
cluster again, eventually recovering the original density. Two configuration sequences,
one for each system size, are presented in Fig. 2. The main difference between the two
systems is that in the large one the agitation always covers the complete cluster, while
in the small one only part of the cluster is normally involved.

To analyze the bursts we show, in Fig. 3, the evolution of the average (per particle)
horizontal and vertical kinetic energy of particles H, EHh, EHv. The standard deviation



FIGURE 2. Sequence of top view configurations of the system showing an explosion for the small
system (top) and the large system (bottom). The heavy particles are presented in black, while the light
ones in gray.

σHz of the stroboscopic height of the H’s—when the box is at its lowest position—is also
shown. Previous to the energy burst σHz is small, showing that the H’s move coherently
in phase. It is seen that during the burst σHz jumps an order of magnitude and it recovers
its typical small value as soon as the burst has finished, namely the H’s are again moving
in phase. It is this coherent motion that is destroyed at every energy burst.

The picture at the particle level is that eventually two heavy particles, not exactly in
phase, collide. This is a collision between two energetic particles which, as a result,
all of a sudden, get a comparably large horizontal energy, triggering a chain reaction
of collisions among neighboring H’s rapidly propagating within the cluster. The chain
reaction rapidly transforms the vertical kinetic energy EHv into horizontal energy EHh,
phenomenon that is observed in Fig. 3.
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THE REGULARITY OF THE EVENTS

The burst waiting times and intensities show different degrees of regularity and for the
large system they even look almost as if they were periodic.

After observing many different realizations there appears to be an explanation for
the different degrees of regularity. For bursts to take place, a high enough density of the
cluster is needed. A burst produces an expansion and no other burst can take place in that
region until the density increases again. This implies a necessary waiting time between
bursts.

For the waiting times to be regular several conditions have to be met: (i) there must
be a unique cluster; (ii) the cluster has to be sufficiently convex so that a burst does not
destroy the connectivity of it; (iii) the concentration of L’s inside the cluster must not be
too large so that they do not block the burst propagating front allowing the existence of
several alternative paths for the burst propagation.

If a burst does not propagate through all the cluster then the time of compression is
highly variable as it depends on the amount of particles that were involved in it. Even
more, other bursts can take place while the cluster is compressing in those parts of it that
remain dense.

CONCLUSIONS

Numerical simulations of a granular mixture of two types of grains —in a vibrated
shallow box— which only differ in their mass show energy bursts characterized by the
rapid conversion of vertical energy into horizontal energy; these bursts are preceded by
the segregation of the species. In the segregated state the massive grains approach a fixed
point characterized by a vanishing horizontal energy and a vertical motion in phase with
the box oscillations. The light grains cannot reach the fixed point because collisions with
the heavy ones take them easily off, remaining with an important horizontal energy. The
heavy grains trapped about the fixed point move in phase and collide most of the time
with a tiny momentum transfer in the horizontal direction. As a result a densely packed
cluster of the heavy grains develops. Eventually, however, a small dephasing between
heavy grains or an energetic collision with a lighter one, allows a heavy grain to acquire
significant horizontal momentum leaving the fixed point. The subsequent collisions with
neighboring heavy grains transfer a high amount of energy to the horizontal agitation in
the form of a chain reaction, generating an energy burst.

When there is a unique cluster different regimes may be reached depending on the
relative number of light particles inside the cluster of the heavy ones. When there are too
many light particles in the cluster the bursts are localized, and have a broad distribution
of intensities and waiting times, otherwise the bursts propagate through all the cluster
and show characteristic intensities and waiting times.



ACKNOWLEDGMENTS

We would like to thank Nicolás Mújica for many helpful discussions. This research is
supported by Fondecyt Grants No. 1070958, No. 1100100 and Proyecto Anillo ACT
127.

REFERENCES

1. H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod. Phys. 68, 1259 (1996); L. P. Kadanoff,
Rev. Mod. Phys. 71, 435 (1999); P. G. de Gennes, Rev. Mod. Phys. 71, 374 (1999); I. S. Aranson,
and L. S. Tsimring, Rev. Mod. Phys. 78, 641 (2006); J. Duran, Sands, Powders, and Grains: An
Introduction to the Physics of Granular Materials, Springer-Verlag, New York, 1999.

2. A. Kudrolli, Rep. Prog. Phys. 67, 209 (2004).
3. J. S. Olafsen, J. S. Urbach, Phys. Rev. Lett. 81, 4369 (1998); A. Prevost, P. Melby, D. A. Egolf, and

J. S. Urbach, Phys. Rev. E, 70 050301(R) (2004); P. Melby, F. Vega Reyes, A. Prevost, R. Robertson,
P. Kumar, D. A. Egolf, and J. S. Urbach, J. Phys.: Condens. Matter 17, S2689-S2704 (2005).

4. M. G. Clerc, P. Cordero, J. Dunstan, K. Huff, N. Mújica, D. Risso and G. Varas, Nature Phys. 4, 249
(2008).

5. T. Schnautz, R. Brito, C. A. Kruelle, and I. Rehberg, Phys. Rev. Lett. 95, 028001 (2005).
6. F. F. Chung, S. S. Liaw, and C. Y. Ju, Gran. Matter 11, 79 (2009).
7. D. Risso, R. Soto, S. Godoy, and P. Cordero, Phys Rev E 72, 011305 (2005).
8. M. Marín, D. Risso, and P. Cordero, J. Comput. Phys. 109, 306 (1993); P. Cordero, D. Risso, and

M. Marín, Chaos, Fractals and Solitons 6, 95 (1995); P. Cordero, and D, Risso, Fourth Granada
Lectures in Computational Physics, edited by P. L. Garrido and J. Marro„ Springer-Verlag, 1997.

9. N. Rivas et al., Phys. Rev. Lett., to appear.



Layering and wetting transitions
for an interface model
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Centre de Physique Théorique, CNRS, Marseille, France

Abstract. We study the solid-on-solid interface model above a horizontal wall in three dimensional
space, with an attractive interaction when the interface is in contact with the wall, at low tem-
peratures. The system presents a sequence of layering transitions, whose levels increase with the
temperature, before the complete wetting above a certain value of this quantity.

Keywords: SOS model, wetting and layering transitions, interfaces, entropic repulsion.
PACS: 68.08.Bc, 05.50.+q, 60.30.Hn, 02.50.-r

Consider the square lattice Z2. To each site x = (x1,x2) of the lattice, an integer
variable φx ≥ 0 is associated which represents the height of the interface at this site. The
system is first considered in a finite box Λ⊂ Z2 with fixed values of the heights outside.
Each interface configuration on Λ: {φx}, x ∈ Λ, denoted φΛ, has an energy defined by
the Hamiltonian

HΛ(φΛ | φ̄) = 2J ∑
〈x,x′〉∩Λ 6= /0

|φx−φx′|−2(J−K) ∑
x∈Λ

δ (φx)+2J|Λ|, (1)

where J and K are positive constants, the function δ equals 1, when φx = 0, and 0,
otherwise, and |Λ| is the number of sites in Λ. The first sum is taken over all nearest
neighbors pairs 〈x,x′〉 ⊂ Z2, such that at least one of the sites belongs to Λ, and one
takes φx = φ̄x when x 6∈ Λ, the configuration φ̄ being the boundary condition, assumed
to be uniformly bounded.

In the space R3, the region obtained as the union of all unit cubes centered at the
sites of the lattice Λ×Z, that satisfy x3 ≤ φ(x1,x2), is supposed to be occupied by
fluid +, while the complementary region above it, is occupied by fluid −. The common
boundary between these regions is a surface in R3, the microscopic interface. The region
x3 ≤−1/2 is considered as the substrate, also called the wall W .

The considered system differs from the usual SOS model by the restriction to non-
negative height variables and the introduction of the second sum in the Hamiltonian, the
term describing the interaction with the substrate.

The probability of the configuration φΛ, at the inverse temperature β = 1/kT , is given
by the finite volume Gibbs measure

µΛ(φΛ | φ̄) = Z(Λ, φ̄)−1 exp
(
−βHΛ(φΛ | φ̄)

)
, (2)

where Z(Λ, φ̄) is the partition function

Z(Λ, φ̄) = ∑
φΛ

exp
(
−βHΛ(φΛ | φ̄)

)
. (3)



Local properties at equilibrium can be described by correlation functions between the
heights on finite sets of sites, obtained as expectations with respect to the Gibbs measure.

We next briefly describe some general results, which are an adaptation to our case of
analogous results established by Fröhlich and Pfister (ref. [1]) for the semi-infinite Ising
model.

Let Λ ⊂ Z2 be a rectangular box of sides parallel to the axes. Consider the boundary
condition φ̄x = 0, for all x 6∈Λ, and write Z(Λ,0) for the corresponding partition function.
The associated free energy per site,

τ
W− =− lim

Λ→∞
(1/β |Λ|) lnZ(Λ,0), (4)

represents the surface tension between the medium − and the substrate W .
This limit (4) exists and 0≤ τW− ≤ 2J. One can introduce the densities

ρz = lim
Λ→∞

z

∑
z′=0
〈δ (φx− z′)〉(0)

Λ
, ρ0 = lim

Λ→∞
〈δ (φx)〉(0)Λ

, (5)

Their connection with the surface free energy is given by the formula

τ
W−(β ,K) = τ

W−(β ,0)+2
∫ K

0
ρ0(β ,K′)dK′. (6)

The surface tension τW+ between the fluid + and the substrate is τW+ = 0. In order
to define the surface tension τ+− associated to a horizontal interface between the fluids
+ and − we consider the ordinary SOS model, with boundary condition φ̄x = 0. The
corresponding free energy gives τ+−. With the above definitions, we have

τ
W+(β )+ τ

+−(β )≥ τ
W−(β ,K). (7)

and the right hand side in (7) is a monotone increasing and concave (and hence contin-
uous) function of the parameter K. This follows from relation (6) where the integrand is
a positive decreasing function of K. Moreover, when K ≥ J equality is satisfied in (7).

In the thermodynamic description of wetting, the partial wetting situation is character-
ized by the strict inequality in equation (7), which can occur only if K < J, as assumed
henceforth. We must have then ρ0 > 0. The complete wetting situation is characterized
by the equality in (7). If this occurs for some K, say K′< J, then equation (6) tells us that
this condition is equivalent to ρ0 = 0. Then, both conditions, the equality and ρ0 = 0,
hold for any value of K in the interval (K′,J).

On the other hand, we know that ρ0 = 0 implies also that ρz = 0, for any positive
integer z. This indicates that, in the limit Λ→ ∞, we are in the + phase of the system,
although we have used the zero boundary condition, so that the medium − cannot reach
anymore the wall. This means also that the Gibbs state of the SOS model does not exist
in this case.

That such a situation of complete wetting is present for some values of the parameters
does not follow, however, from the above results. Actually this fact, as far as we know,
remains an open problem for the semi-infinite Ising model in 3 dimensions. For the
model we are considering an answer to this problem has been given by Chalker [2].



Chalker’s result. We use the following notation:

u = 2β (J−K), t = e−4βJ. (8)

If u <− ln(1− t2), then ρ0 = 0.

Thus, for any given values of J and K, there is a temperature below which the interface
is almost surely bound and another higher one, above which it is almost surely unbound
and complete wetting occurs. At low temperature (i.e., if u > ln16), we have ρ0 > 0.

The object of our study is to investigate the region not covered by this theorem when
the temperature is low enough. As mentioned in the abstract, we shall prove that a
sequence of layering transitions occurs before the system attains complete wetting. More
precisely the main results can be summarized as follows.

Theorem 1. Let the integer n≥ 0 be given. For any ε > 0 there exists a value t0(n,ε)> 0
such that, if the parameters t,u, satisfy 0 < t < t0(n,ε) and

− ln(1− t2)+(2+ ε)tn+3 < u <− ln(1− t2)+(2− ε)tn+2, (9)

then the following statements hold: (1) The free energy τW− is an analytic function of
the parameters t,u. (2) There is a unique Gibbs state µn, a pure phase associated to the
level n. (3) The density is ρ0 > 0. The second inequality in (9) is not needed in the case
n = 0.

An illustration for this theorem, in the plane (K,β−1), is given in Figure 1. From it
we can see, as mentioned in the abstract, that if the parameter K is kept fixed, that seems
natural since it depends on the properties of the substrate, then the value n of the level
increases when the temperature is increased.

Concerning this theorem, the following remarks can be made:
(1) The analyticity of the free energy comes from the existence of a convergent

cluster expansion for this system. This implies the analyticity, in a direct way, of some
correlation functions and, in particular, of the density ρ0.

(2) The unicity of the Gibbs state means that the correlation functions converge, when
Λ→ ∞, to a limit that does not depend on the chosen (uniformly bounded) boundary
condition φ̄x. Being unique and translation invariant this state represents a pure phase.
It is associated to a level n in the sense that, for the typical configurations of the state,
large portions of the interface are near to the level n.

(3) The condition ρ0 > 0 means that the interface remains at a finite distance from the
wall and hence, we have partial wetting. We can see that the region where this condition
holds is, according to the Theorem, much larger, at low temperatures, than the region
initially proved by Chalker. It comes very close to the line above which it is known that
complete wetting occurs.

(4) We have, t0(n,ε)→ 0 when n→ ∞ or ε → 0.

The reason why t0(n,ε) depends on ε , satisfying remark 4, has an explanation. One
may believe that the regions of uniqueness of the state extend in such a way that two
neighboring regions, say those corresponding to the levels n and n + 1, will have a
common boundary where the two states µn and µn+1 coexist.
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FIGURE 1. The analyticity regions of Theorem 1.

At this boundary there will be a first order phase transition, since the two Gibbs
states are different. The curve of coexistence does not exactly coincide with the curve
u = − ln(1− t2) + 2tn+3. Theorem 1 says that it is however very near to it, if the
temperature is sufficiently low.

Let us formulate in the following statement the kind of theorem that we expect. We
think that such a statement could be proved using, as for Theorem 1, an extension of the
Pirogov-Sinai theory.

Statement. For each given integer n≥ 0, there exists t0(n)> 0 and a continuous function
u = ψn+1(t) on the interval 0 < t < t0(n), such that the statements of Theorem 1 hold,
for t in this interval, in the region where ψn+1(t) < u < ψn+2(t) and for n = 0, in the
region ψ1(t)< u. When u = ψn+1(t) the two Gibbs states, µn and µn+1, coexist.

The existence of a sequence of layering transitions has been proved for a related
model, known as the SOS model with an external magnetic field. See the works by
Dinaburg, Mazel [3], Cesi, Martinelli [4] and Lebowitz, Mazel [5]. This model has the
same set of configurations as the model considered here, but a different energy: The
second term in (1) has to be replaced by the term +h∑x∈Λ φx to obtain the Hamiltonian
of the model with an external magnetic field. The method followed for the proof of
the Theorem is essentially analogous to the method developed for the study of that
model. The most important difference between the two systems concerns the restricted
ensembles and the computation of the associated free energies.

Concerning the proof of Theorem 1 (paper in preparation) let us say that, for an
interesting class of systems, among which our model is included, one needs some
extension of the Pirogov-Sinai theory of phase transitions (see ref. [6]). In such an
extension certain states, called the restricted ensembles, play the role of the ground
states in the usual theory. They can be defined as a Gibbs probability measure on certain
subsets of configurations. In the present case one considers, for each n = 0,1,2, . . .,
subsets of configurations which are in some sense near to the constant configurations
φx = n.



Namely, we consider the set C res
k (Λ,n) of the microscopic interfaces, with boundary

at height φ̄x = n, and whose Dobrushin walls have, all of them, horizontal projections
with diameter less than 3k+3 (these walls are the maximally connected sets of vertical
plaquettes of the interface). The Gibbs measure defined on the subset C res

k (Λ,n) is the
restricted ensemble corresponding to the level n. The associated free energies per unit
area

fk(n) =− lim
Λ→∞

(1/β |Λ|) ln ∑
φΛ∈C res

k (Λ,n)
exp(−βH(φΛ|n)) (10)

can be computed, with the help of cluster expansions (see, for instance, ref. [7]), as a
convergent power series in the variable t. Then one is able to study the phase diagram
of the restricted ensembles. The restricted ensemble at level n is said to be dominant, or
stable, for some given values of the parameters u and t, if fk(n) = minn′ fk(n′). We then
have:

Proposition 1. Let the integer n≥ 0 be given and choose k≥ 1. Let a,b≥ 0 be two real
numbers. Let 0 < t ≤ t1(k) = (3k+3)−4. If

− ln(1− t2)+(2+a)tn+3 ≤ u≤− ln(1− t2)+(2−b)tn+2, (11)

then, we have

fk(n)≤ fk(h)−at3n+3 +O(t3n+4), for any h≥ n+1, (12)
fk(n)≤ fk(h)−bt3n +O(t3n+1), for any 0≤ h≤ n−1. (13)

We notice that k ≥ n is the useful case in the proof of Theorem 1, and that the
remainders in inequalities (12) and (13) can be bounded uniformly in h. Then the proof
of Theorem 1 consists in showing that the phase diagram of the pure phases at low
temperature is close to the phase diagram of the dominant restricted ensembles.
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Abstract. Starting from a variational formulation of the Kardar-Parisi-Zhang (KPZ) equation, we
point out some strong constraints and consistency tests, to be fulfilled by real-space discretization
schemes. In the light of these findings, the mainstream opinion on the relevance of Galilean invari-
ance and the fluctuation–dissipation theorem (peculiar of 1D) is challenged.
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The KPZ equation [1] that describes the growth of a rough interface, has become
a paradigm of nonequilibrium growth processes [2, 3]. In a recent paper [4] it was
shown that, despite the current negative belief, it is possible to write a Lyapunov or free
energy-like functional for such an equation. Such a variational formulation has allowed
us to analyze some discretization aspects, and to discuss the true role of the Galilean
invariance (fulfilled by the continuous equation) in determining the universality class
for the KPZ dynamics. We briefly discuss these points here.

We start from a general scalar reaction–diffusion equation with multiplicative noise

∂tφ(x, t) = ν∂
2
x φ(x, t)+ γφ(x, t)+φ(x, t)η(x, t), (1)

where η(x, t) is a Gaussian white noise with zero mean and intensity σ . We may safely
assume the physically grounded Stratonovich interpretation, since the parameter γ will
absorb the divergences coming from noise interpretation by means of a renormalization
argument.

Exploiting the Hopf–Cole transformation we can now define a new field h(x, t) =
2ν

λ
lnφ(x, t), which corresponds to an interface height and whose inverse is φ(x, t) =

exp[ λ

2ν
h(x, t)]. The transformed equation reads

∂th(x, t) = ν∂
2
x h+

λ

2
(∂xh)2 +

λ

2ν
γ +ξ (x, t), (2)

which is the celebrated KPZ equation. The noise term, which had a multiplicative
character in Eq. (1), becomes additive. The associated NEP is [4]

G [h] =
∫

Ω

e
λ

ν
h(x,t) λ

2ν

[
−F +

λ

4
(∂xh(x, t))2

]
dx, (3)



with F = λ γ

2ν
. It is easy to prove that this functional fulfills

∂th(x, t) =−Γ[h]
δG [h]

δh(x, t)
+ξ (x, t), (4)

as well as the Lyapunov property d
dt G [h]≤ 0, with Γ[h] =

(2ν

λ

)2
exp[−λ

ν
h(x, t)].

The KPZ equation in 1D has two main symmetries: Galilean invariance and the
fluctuation–dissipation relation. On one hand, Galilean invariance has been traditionally
linked to the exactness, in any spatial dimensionality, of the relation α + z = 2 between
the critical exponents [the roughness exponent α , characterizing the surface morphology
in the stationary regime, and the dynamic exponent z, indicating the correlation length
scaling as ξ (t)∼ t1/z]. However, this interpretation has been criticized in this and other
nonequilibrium models [5, 6]. On the other hand, the second symmetry essentially tells
us that in 1D, the nonlinear (KPZ) term is not operative at long times.

Even recognizing the interesting analytical properties of the KPZ equation, it is
clear that investigating the behavior of its solutions requires the (stochastic) numerical
integration of a discrete version. Such an approach has been used e.g. to obtain the
critical exponents in one and more spatial dimensions. Real-space discrete versions of
the KPZ equation are still used for numerical simulations. One reason is their relative
ease of implementation and of interpretation in the case of non-homogeneous substrates
like, e.g. a quenched impurity distribution.

CONSISTENCY

We use the standard, nearest-neighbor discretization prescription [2, 3] as a benchmark
to elucidate the constraints to be obeyed by any spatial discretization scheme, arising
from the mapping between the KPZ equation and Eq. (1).

The standard spatially discrete version of Eq. (1) is

φ̇ j =
ν

a2

(
φ j+1−2φ j +φ j−1

)
+

λF
2ν

φ j +
λε

2ν
φ jξ j, (5)

where 1 ≤ j ≤ N ≡ 0 (because periodic b.c. are usually assumed) and a is the lattice
spacing. An important feature of the Hopf–Cole transformation is that it is local, i.e., it
involves neither spatial nor temporal transformations. Then, using the discrete version
of this transformation

φ j(t) = exp
[

λ

2ν
h j(t)

]
,

we get

ḣ j =
2ν2

λa2

(
eδ

+
j a + eδ

−
j a−2

)
+ ε ξ j, (6)



with δ
±
j ≡

λ

2νa(h j±1−h j) and γ = 0 = F . By expanding the exponentials up to terms of
order a2, and collecting equal powers of a (the zero-order contribution vanishes) yields

ḣ j =
ν

a2

(
h j+1−2h j +h j−1

)
+

λ

4a2

[
(h j+1−h j)

2 +(h j−h j−1)
2]+ ε ξ j, (7)

implying that the discrete form of the Laplacian is the same, regardless of whether it is
applied to φ or h. Also, by virtue of the discrete Hopf–Cole transformation, the discrete
form of the Laplacian in Eq. (6) constrains the discrete form of the nonlinear term in the
transformed equation. In order to strengthen these observations we consider the discrete
version of the KPZ functional indicated in Eq. (3)

G [h]≈ λ 2

8ν

N

∑
j=1

e
λ

ν
h j(x,t)1

a

[
(φ j+1−φ j)

2 +(φ j−φ j−1)
2] . (8)

The discrete analog of the variational procedure yields precisely Eq. (7), confirming
that the discretizations of both terms are strictly related.

THE FLUCTUATION–DISSIPATION RELATION

This relation is a fundamental symmetry of the 1D KPZ equation. The stationary prob-
ability distribution for the KPZ problem in 1D is known to be [2, 3]

Pstat[h]∼ exp
{
− ν

2ε

∫
dx(∂xh)2

}
.

With the discretization scheme in Eq. (7), this is

Pstat[h]∼ exp

{
− ν

2ε

1
2a ∑

j

[
(h j+1−h j)

2 +(h j−h j−1)
2]} . (9)

Inserting this expression into the stationary Fokker–Planck equation, the only surviving
term has the form 1

2a3 ∑ j
[
(h j+1−h j)

2 +(h j−h j−1)
2]× [h j+1−2h j +h j−1

]
, whose

continuum limit is
∫

dx(∂xh)2
∂ 2

x h, that is identically zero [2, 3]. A numerical analysis
of such discrete representation indicates that it is several orders of magnitude smaller
than the value of the exponents’ pdf [in Eq. (9)], and typically behaves as O(1/N),
where N is the number of spatial points used in the discretization, with an even faster
approach to zero if expressions with higher accuracy are used [7, 8]. This indicates that
the problem with the fluctuation–dissipation theorem in 1+1, which is generically not
fulfilled by discrete forms of the KPZ equation, can be circumvented by just using more
accurate discretizations.



GALILEAN INVARIANCE

This invariance means that the transformation

x→ x−λvt , h→ h+ vx , F → F− λ

2
v2, (10)

where v is an arbitrary constant vector field, leaves the KPZ equation invariant. The
equation obtained using the classical discretization

∂xh→ 1
2a

(h j+1−h j−1), (11)

is invariant under the discrete Galilean transformation

ja→ ja−λvt, h j→ h j + v ja, F → F− λ

2
v2. (12)

However, the associated equation is known to be numerically unstable [9], at least when
a is not small enough. No other discretization is known to be invariant under the discrete
Galilean transformation, and this assertion includes Eq. (7). In fact, the transformation
h→ h+ v ja yields an excess term which is compatible with the gradient discretization
in Eq. (11); however this discretization does not allow to recover the quadratic term in
Eq. (7), indicating that this finite-difference scheme is not Galilean-invariant.

Since Eq. (5) is invariant under the discrete Galilean transformation, Eq. (12), the re-
sponsible for the loss of Galilean invariance is the (discrete, within the present context)
nonlinear Hopf–Cole transformation. Note that these results are independent of whether
we consider this discretization scheme or a more accurate one. It is clear that this sym-
metry is recovered when the continuum limit is taken in any reasonable discretization
scheme.

As already argued, Galilean invariance has always been associated with the exactness
of the one-dimensional KPZ exponents, and with the relation α + z = 2, that holds even
in higher dimensions [2, 3].

The fact that the numerical solution obtained from a non-Galilean invariant finite-
difference scheme as Eq. (7), yields the well known critical exponents, strongly suggests
it is not Galilean invariance what determines the KPZ universality class. The numerical
results shown in [7, 8, 10] are a clear indication that this is the case.

CONCLUSIONS

The moral from the present analysis is clear: (i) a Lyapunov functional exists for KPZ;
(ii) the problem with the fluctuation-dissipation theorem in 1D is tightly related to
numerical accuracy; (iii) there is strong evidence that Galilean invariance does not play
the relevant role previously assumed in defining the KPZ universality class.
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INTRODUCTION

Some of the basics theorems of statistical mechanics can be understood in the frame-
work of diffusion. We shall discuss here the ergodic hypothesis (EH), the fluctuation-
dissipation theorem (FDT), and the second law of thermodynamics[1]. The KT [2] is of
great importance since it relates the ergodicity of a variable p to the irreversibility of its
autocorrelation function Cp(t) [2, 3, 4, 5, 6, 7, 8].

Most of the experimental situations in which the EH does not hold arise in complex
nonlinear or far from equilibrium structures where detailed balance is not fulfilled. A
few examples are found in supercooled liquids and glasses [9] and blinking nanocrys-
tals [10]. The majority of those systems, however, apparently do not have an easy ana-
lytical solution. On the other hand, in this work we show that even anomalous diffusion
treated with the Generalized Langevin Equation (GLE) can present closed solutions for
the main expectation values, and can be used as a simple laboratory for the discussion
of those properties. As we shall see, in this case, we can give a full description for the
validity of the KT, even when the EH breakdowns.

The GLE for a single particle in the absence of a net external force can be written as

d p(t)
dt

=−
∫ t

0
Π(t− t ′)p(t ′)dt ′+η(t), (1)

where Π(t) is the memory function, and η(t) is a random force of zero mean. Besides,
the noise is uncorrelated with the initial-value p(0), 〈η(t)p(0)〉= 0, and obeys the Kubo
fluctuation-dissipation theorem (FDT):

〈η(t)η(t ′)〉= 〈p2〉eqΠ(t− t ′), (2)



where 〈. . .〉eq is an average over an ensemble in thermal equilibrium. It is very useful to
introduce the relaxation function R(t)=Cp(t)/Cp(0), where the autocorrelation function
of p is given by Cp(t) = 〈p(t)p(0)〉− 〈p(t)〉〈p(0)〉, and 〈. . .〉 stands for an ensemble
average. Explicitly, the KT states that if

R(t→ ∞) = 0, (3)

then p is ergodic [2]. We shall analyze that for diffusion.

DIFFUSION PHENOMENA

Diffusive dynamics is usually analyzed using the mean square displacement of the
particles, which behaves in general as

〈[x(t)−〈x(t)〉]2〉 ∝ tα ,

where the exponent α classifies the different types of diffusion: subdiffusion for 0<α <
1, normal diffusion for α = 1, and superdiffusion for 1 < α ≤ 2; for α = 2 the process
is called ballistic [5, 7, 11, 12, 13]. Morgado et al. [11] obtained a general relationship
between the Laplace transform of the memory function Π̃(z) and the diffusion exponent
α , i.e. if limz→0 Π̃(z) ∝ zν , than

α = ν +1. (4)

To obtain the memory we define the noise η(t) as

η(t) = 〈p2(0)〉eq

∫
ρ(ω)cos[ωt +φ(ω)]dω, (5)

where ρ(ω) is the noise density of states, and φ(ω) is a set of random numbers 0≤ φ ≤
2π . From the FDT

Π(t) =
∫

ρ(ω)cos(ωt)dω. (6)

A typical noise density has the form

ρ(ω) =

{
aωβ , f or ω ≤ ωs
g(ω), otherwise.

(7)

Here, the function g(ω) is arbitrary as long as it is sufficiently well-behaved and that
its integral in the memory function converges. If one is interested only in the long time
behavior t� 1/ωs, it can be taken to be 0. With this noise density of states, it is possible
to simulate many diffusive regimes. Noise of this form can be obtained either by formal
methods or empirical data. Using this expression, Vainstein et al. [12] have shown that
ν = β for β ≤ 1 and ν = 1 for β ≥ 1 consequently ν ≤ 1, i.e. ballistic is the highest
asymptotic limit for diffusion.



ENSEMBLE AVERAGE AND EQUILIBRIUM CONDITION

If a system is ergodic and there are no external forces, thermal equilibrium should be
observed in a time t � τ , where τ is a relaxation time. Then, the distribution function
of p approaches the equilibrium distribution in the limit t → ∞, and the mean energy
converges to the equilibrium value, 〈p2(t→ ∞)〉= 〈p2〉eq.

For any initial distribution of values, p(0), it is possible to obtain the temporal
evolution of the moments 〈pn(t)〉, with n = 1,2, . . .. The first moments are obtained
directly by taking the ensemble average of Eq. (1):

〈p(t)〉= 〈p(0)〉R(t), (8)

〈p2(t)〉= 〈p2〉eq +R2(t)
[
〈p2(0)〉−〈p2〉eq

]
. (9)

Consequently, we see that the knowledge of R(t) allows one to describe completely
these averages. Equations (8) and (9) are sufficient to show the condition of equilibrium
for diffusion: if condition (3) holds, then the time evolution will produce the ensemble
average with 〈p(t→∞)〉= 0 and 〈p2(t→∞)〉= 〈p2〉eq. This result also suggests that the
EH holds, thus the KT holds. Now it is possible to show that limt→∞ R(t) = limz→0 zR̃(z)
which is null for all diffusive processes in the range 0 < α < 2. In fact, this occurs in
equilibrium or near equilibrium states in which the validity of Linear Response Theory
holds. On the other hand, this condition fails for ballistic motion, α = 2, in which
R(t → ∞) = Λ 6= 0 and the autocorrelation function Cp(t) will be non-null for long
times[7]. In other words, if the ballistic system is not initially equilibrated, then it will
never reach equilibrium and the final result of any measurement will depend on the
initial conditions. In this situation, the EH will not be valid; however, once again the
KT holds since the violation of the EH was due to the violation of the irreversibility
condition, Eq. (3), as predicted by Khinchin. The main consequence of the violation of
this condition is the presence of a residual current, Eq. (8). However, the effective current
can be very small compared to 〈p(0)〉 and its value, as any other measurable property
for ballistic diffusion, will depend on the value of Λ. In other words, the system decays
to a metastable state and remains in it indefinitely, even in the absence of an external
field.

CONCLUDING REMARKS

In this work, we have shown that the KT (proved by Khinchin for normal diffusion)
holds for all kinds of diffusive processes, which are ergodic in the range of exponents
0 < α < 2. This result may have deep consequences in many areas [9, 10]. Moreover,
it could be verified in and applied to experimental systems, such as the subdiffusive
dynamics of the distance between an electron transfer donor and acceptor pair within
a single protein molecule [14], which has been modeled by a GLE [15]. Such a model
successfully explains the equilibrium fluctuations and its broad range of time scales,
being in excellent agreement with experiments. As well a very important and growing
research field is the transport in intracellular media[16, 17]. In principle, it is generally
possible to derive a GLE for hamiltonian systems for example, the disordered spectra of



the Heisenberg chain is incorporated in the memory kernel and in the colored noise [18].
In the analysis of those systems, the KT gives the EH a practical character, since it is
expressed in terms of response functions: our results apply for real-valued relaxation
functions R(t); on the other hand, if the relaxation function assumes complex values,
e.g. conductivity, the final value theorem may not be applied. For those systems, the KT
fails, as proposed in Ref. [4]. Moreover many theorems, as the FDT, may fail [5].
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Abstract. In this notes we study the large deviations of the time-averaged current in the two-
dimensional (2D) Kipnis-Marchioro-Presutti model of energy transport when subject to a bound-
ary gradient. We use the tools of hydrodynamic fluctuation theory, supplemented with an appro-
priate generalization of the additivity principle. As compared to its one-dimensional counterpart,
which amounts to assume that the optimal profiles responsible of a given current fluctuation are
time-independent, the 2D additivity conjecture requires an extra assumption, i.e. that the optimal,
divergence-free current vector field associated to a given fluctuation of the time-averaged current is
in fact constant across the system. Within this context we show that the current distribution exhibits
in general non-Gaussian tails. The ensuing optimal density profile can be either monotone for small
current fluctuations, or non-monotone with a single maximum for large enough current deviations.
Furthermore, this optimal profile remains invariant under arbitrary rotations of the current vector,
providing a detailed example of the recently introduced Isometric Fluctuation Relation.
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INTRODUCTION

Large deviation functions measure the rate at which the empiric average of an observable
converges toward its asymptotic value. Think for instance on the time-averaged current
in a d-dimensional mesoscopic conductor of length L. As time increases, and provided
that the system is ergodic, the time-averaged current J= τ−1 ∫ τ

0 j(t)dt quickly converges
toward its ensemble average 〈J〉. For finite times, the measured J may fluctuate and
the probability of a given output follows in general a large-deviation principle [1] for
long times, PL(J,τ)∼ exp[+τLdG(J)]. Here G(J) is the current large deviation function
(LDF), and measures the (exponential) rate at which J→ 〈J〉 as τ increases (notice that
G(J)≤ 0, with G(〈J〉) = 0).

Large deviation functions akin to G(J) play an important role in statistical physics
[2]. For instance, the LDF of the density profile in equilibrium systems can be simply
related with the free-energy functional, a central object in the theory [1, 2, 3]. In a similar
way, we can use LDFs in systems far from equilibrium to define the nonequilibrium
analog of the free-energy functional. This top-down approach is specially appealing
in a nonequilibrium context, as we don’t know in this case the statistical weight of
microscopic configurations, equivalent to the equilibrium Boltzmann-Gibbs measure,
from which to build up a nonequilibrium partition function. In any case, LDFs out
of equilibrium may be non-local and/or non-convex [3, 4], reflecting in this way the
pathologies associated to nonequilibrium behavior.



Computing LDFs from scratch, starting from microscopic dynamics, is in general
an extraordinary difficult task which has been successfully accomplished only for a
handfull of simple stochastic lattice gases. However, in a series of recent works [4],
Bertini, De Sole, Gabrielli, Jona-Lasinio, and Landim have introduced a hydrodynamic
fluctuation theory (HFT) which describes large dynamic fluctuations in diffusive systems
and the associated LDFs starting from a macroscopic rescaled description of the system
of interest, where the only inputs are the system transport coefficients. This is a very
general approach which leads however to a hard variational problem whose solution
remains challenging in most cases. However, if supplemented with a recently-introduced
conjecture named additivity principle [5], HFT can be readily applied to obtain explicit
predictions, opening the door to a systematic way of computing LDFs in nonequilibrium
systems.

In this paper we apply this program to study the statistics of current fluctuations in a
simple but very general model of diffusive energy transport in two dimensions, namely
the 2D Kipnis-Marchioro-Presutti (KMP) model [6].

HFT FOR CURRENT FLUCTUATIONS

We start from a rescaled (r→ r/L, t→ t/L2) continuity equation

∂tρ(r, t) =−∇∇∇ ·
(

Q[ρ(r, t)]+ξξξ (r, t)
)
, (1)

which describes a wide class of d-dimensional systems characterized by a single locally-
conserved field ρ(r, t), representing a density of e.g. energy, particles, momentum,
charge, etc. Here j(r, t) ≡ −D[ρ]∇∇∇[ρ(r, t)]+ ξξξ (r, t) is a fluctuating current, with local
average Q[ρ(r, t)], and r ∈ {0,1}d . In particular, we focus in this paper on diffusive
systems, for which the current obeys Fick’s (or equivalently Fourier’s) law, Q[ρ(r, t)] =
−D[ρ]∇∇∇ρ(r, t), where D[ρ] is the diffusivity (a functional of the density profile in
general). The (conserved) noise vector term ξξξ (r, t), which accounts for microscopic
random fluctuations at the macroscopic level, is Gaussian and white with 〈ξξξ (r, t)〉 =
0 and 〈ξα(r, t)ξβ (r′, t ′)〉 = 2L−dσ [ρ]δαβ δ (r− r′)δ (t − t ′), being σ [ρ] the mobility
functional and L the system linear size. This noise source represents the many fast
microscopic degrees of freedom which are averaged out in the coarse-graining procedure
resulting in eq. (1), and whose net effect on the macroscopic evolution amounts to
a Gaussian random perturbation according to the central limit theorem. The above
equation must be supplemented with appropriate boundary conditions, which in this
work we choose to be gradient-like in the x̂-direction, with fixed densities ρL and ρR at
the left and right reservoirs, respectively, and periodic boundary conditions in all other
directions.

We are interested in the probability PL(J,τ) of observing a space and time averaged
current J = τ−1 ∫ τ

0 dt
∫

dr j(r, t). For long times [1, 2, 3, 4] PL(J,τ) ∼ exp[+τLdG(J)],
and we aim at computing the current LDF G(J) starting from eq. (1) within a path
integral formalism. In particular, the probability of observing a history {ρ(r, t), j(r, t)}τ

0
of duration τ for the density and current fields, starting from a given initial state, can be



written as a path integral over all possible noise realizations {ξξξ (r, t)}τ
0

P({ρ, j}τ
0) =

∫
Dξξξ exp

[
−Ld

∫
τ

0
dt
∫

dr
ξξξ

2

2σ [ρ]

]
∏

t
∏

r
δ

[
ξξξ − (j+D[ρ]∇∇∇ρ)

]
, (2)

with ρ(r, t) and j(r, t) coupled via the continuity equation, ∂tρ(r, t)+∇∇∇ · j(r, t) = 0. No-
tice that this coupling does not determine univocally the relation between ρ and j. For
instance, the fields ρ ′(r, t) = ρ(r, t)+χ(r) and j′(r, t) = j(r, t)+g(r, t), with χ(r) arbi-
trary and g(r, t) divergenceless, satisfy the same continuity equation. This freedom can
be traced back to the loss of information during the coarse-graining from the microscale
to the macroscale [4]. Eq. (2) naturally leads to P

(
{ρ, j}τ

0
)
∼ exp

(
+LdIτ [ρ, j]

)
, with

Iτ [ρ, j] =−
∫

τ

0
dt
∫

dr
(j(r, t)+D[ρ]∇∇∇ρ(r, t))2

2σ [ρ]
. (3)

The probability PL(J,τ) of observing an averaged current J can be written now as

PL(J,τ)∼
∫ ∗

DρDj P({ρ, j}τ
0) δ

(
J− τ

−1
∫

τ

0
dt
∫

drj(r, t)
)
,

where the asterisk means that this path integral is restricted to histories {ρ, j}τ
0 coupled

via the continuity equation. As the exponent of P
(
{ρ, j}τ

0
)

is extensive in both τ and Ld ,
see above, for long times and large system sizes the above path integral is dominated by
the associated saddle point, resulting in the following current LDF

G(J) = τ
−1 max

ρ, j
Iτ [ρ, j] , (4)

with the constraints J = τ−1 ∫ τ

0 dt
∫

drj(r, t) and ∂tρ+∇∇∇ · j = 0. The optimal density and
current fields solution of this variational problem, denoted here as ρJ(r, t) and jJ(r, t),
can be interpreted as the optimal path the system follows in order to sustain a long-time
current fluctuation J. It is worth emphasizing here that the existence of an optimal path
rests on the presence of a selection principle at play, namely a long time, large size limit
which selects, among all possible paths compatible with a given fluctuation, an optimal
one via a saddle point mechanism.

The variational problem posed in eq. (4) is a complex spatiotemporal problem whose
solution remains challenging in most cases. In order to proceed, we now make the
following hypotheses:

1. We assume that the optimal profiles responsible of a given current fluctuation are
time-independent, ρJ(r) and jJ(r). This, together with the continuity equation,
implies that the optimal current vector field is divergence-free, ∇∇∇ · jJ(r) = 0.

2. A further simplification consists in assuming that this optimal current field is in fact
constant across space, so jJ(r) = J.

Provided that these hypotheses hold, the current LDF can be written as

G(J) =−min
ρ(r)

∫
(J+D[ρ(r)]∇∇∇ρ(r))2

2σ [ρ(r)]
dr , (5)



which expresses the locally-Gaussian nature of fluctuations [3, 11]. In this way the
probability PL(J,τ) is simply the Gaussian weight associated to the optimal density
profile responsible of such fluctuation. Note however that the minimization procedure
gives rise to a nonlinear problem which results in general in a current distribution with
non-Gaussian tails [3, 4, 7]. As opposed to the general problem in eq. (4), its simplified
version, eq. (5), can be readily used to obtain quantitative predictions for the current
statistics in a large variety of nonequilibrium systems.

The minimization of the functional in eq. (5) leads to the following differential
equation for the optimal profile ρJ(r)

D2[ρJ]
(
∇∇∇ρJ

)2
= J2{1+2σ [ρJ]K(J2)

}
, (6)

where K(J2) is a constant which guarantees the correct boundary conditions for ρJ(r).
Remarkably, the optimal profile solution of eq. (6) depends exclusively on the magnitude
of the current vector, via J2, not on its orientation, i.e. ρJ(r) = ρ|J|(r), as demanded for
time-reversible systems by the recently introduced Isometric Fluctuation Relation (IFR)
[11].

The assumption of time-independent optimal profiles has been shown [4] to be equiv-
alent to the additivity principle recently introduced by Bodineau and Derrida for one-
dimensional (1D) diffusive systems [5]. Let PL(J,ρL,ρR,τ) be the probability of observ-
ing a time-averaged current J during a long time τ in a one-dimensional system of size
L in contact with boundary reservoirs at densities ρL and ρR. The additivity principle re-
lates this probability with the probabilities of sustaining the same current in subsystems
of lengths L−` and `, i.e, PL(J,ρL,ρR,τ) =maxρ [PL−`(J,ρL,ρ,τ)× P̀ (J,ρ,ρR,τ)]. The
maximization over the contact density ρ can be rationalized by writing this probability
as an integral over ρ of the product of probabilities for subsystems and noticing that
these should obey also a large deviation principle. Hence a saddle-point calculation in
the long-τ limit leads to the above expression. The additivity principle can be rewritten
for the current LDF as LG(J,ρL,ρR) = maxρ [(L− `)G(J,ρL,ρ)+ `G(J,ρ,ρR). Slicing
iteratively the 1D system of length N into smaller and smaller segments, and assuming
locally-Gaussian current fluctuations, it is easy to show that in the continuum limit a
variational form for G(J,ρL,ρR) is obtained which is just the 1D counterpart of eq. (5).
Interestingly, for 1D systems the conjecture of time-independent optimal profiles im-
plies that the optimal current profile must be constant. This is no longer true in higher
dimensions, as any divergence-free current field with spatial integral equal to J is com-
patible with the equations. This gives rise to a variational problem with respect to the
(time-independent) density and current fields which still poses many technical difficul-
ties. Therefore an additional assumption is needed, namely the constancy of the optimal
current vector field across space. These two hypotheses are equivalent to the iterative
procedure of the additivity principle in higher dimensions.

The validity of the additivity principle has been recently confirmed for a broad range
of current fluctuations in extensive numerical simulations of the 1D Kipnis-Marchioro-
Presutti model of energy transport. However, this conjecture is known to break down in
some special cases for extreme current fluctuations, where time-dependent optimal pro-
files in the form of traveling waves propagating along the current direction may emerge.
Even in these cases the additivity principle correctly predicts the current distribution in a



very large current interval. As for higher-dimensional systems, the range of applicability
of the generalized additivity hypothesis here proposed is an open issue [12].

In what follows we derive explicit predictions for the current LDF in the 2D KMP
model of heat conduction based on the above generalization of the additivity principle.

RESULTS FOR THE 2D-KMP MODEL

The 2D-KMP model is a microscopic stochastic lattice model of energy transport in
which Fourier’s law holds. Each site on the lattice models an harmonic oscillator which
is mechanically uncoupled from its nearest neighbors but interacts with them through a
random process which redistributes energy locally. The system is coupled to boundary
heat baths along the x-direction at temperatures ρL and ρR, whereas periodic boundary
conditions hold in the y-direction. For ρL 6= ρR the system reaches a nonequilibrium
steady state with a nonzero rescaled average current 〈J〉= x̂(ρL−ρR)/2 and a stationary
profile ρst(r) = ρL + x(ρR− ρL). At the macroscopic level the KMP model is charac-
terized by a diffusivity D[ρ] = 1

2 , and a mobility σ [ρ] = ρ2 which characterizes the
variance of energy current fluctuations in equilibrium (ρL = ρR).

To study the statistics of the averaged current, first notice that the symmetry of the
problem suggests that the optimal density profile associated to a given current fluctuation
depends exclusively on x, with no structure in the y-direction, i.e. ρ|J|(r) = ρ|J|(x),
compatible with the presence of an external gradient along the x-direction. Under these
considerations, and denoting J = |J|, eq. (6) becomes(

dρJ(x)
dx

)2

= 4J2
(

1+2K(J)ρ2
J (x)

)
(7)

Here two different scenarios appear. On one hand, for large enough K(J) the rhs of eq.
(7) does not vanish ∀x ∈ [0,1] and the resulting profile is monotone. In this case, and
assuming ρL > ρR henceforth without loss of generality,

dρJ(x)
dx

=−2J
√

1+2ρ2
J (x)K(J) . (8)

On the other hand, for K(J) < 0 the rhs of eq. (7) may vanish at some points, resulting
in a ρJ(x) that is non-monotone and takes an unique value ρ∗J ≡

√
−1/2K(J) in the

extrema. Notice that the rhs of eq. (7) may be written in this case as 4J2[1−(ρJ(x)/ρ∗J )
2].

It is then clear that, if non-monotone, the profile ρJ(x) can only have a single maximum
because: (i) ρJ(x) ≤ ρ∗J ∀x ∈ [0,1] for the profile to be a real function, and (ii) several
maxima are not possible because they should be separated by a minimum, which is not



allowed because of (i). Hence for the non-monotone case (recall ρL > ρR)

dρJ(x)
dx

=


+2J

√
1−
(

ρJ(x)
ρ
∗
J

)2

, x < x∗

−2J

√
1−
(

ρJ(x)
ρ
∗
J

)2

, x > x∗

(9)

where x∗ locates the profile maximum. This leaves us with two separated regimes for
current fluctuations, with the crossover happening for J = ρL

2

[
π

2 − sin−1
(

ρR
ρL

)]
≡ Jc.

This crossover current can be obtained from eq. (15) below by letting ρ∗J → ρL

Region I: Monotonous Regime (J < Jc)

In this case, using eq. (8) to change variables in eq. (5) we have

G(J) =
∫

ρR

ρL

dρJ
1

4Jρ2
J

√
1+2K(J)ρ2

J

[(
Jx− J

√
1+2K(J)ρ2

J

)2

+ J2
y

]
, (10)

with Jα the α component of vector J. This results in

G(J) =
Jx

2

(
1

ρR
− 1

ρL

)
− J2K(J)+

J
2


√

1+2K(J)ρ2
L

ρL
−

√
1+2K(J)ρ2

R

ρR

 (11)

Notice that, for ρJ(x) to be monotone, 1 + 2K(J)ρ2
J > 0. Thus, K(J) > −(2ρ2

L)
−1.

Integrating now eq. (8) we obtain the following implicit equation for ρJ(x) in this regime

2xJ=



1√
2K(J)

ln

 ρL +
√

ρ2
L +

1
2K(J)

ρJ(x)+
√

ρJ(x)2 + 1
2K(J)

 , K(J)> 0

sin−1
[
ρL
√
−2K(J)

]
− sin−1

[
ρJ(x)

√
−2K(J)

]
√
−2K(J)

, − 1
2ρ2

L
< K(J)< 0

(12)

Making x = 1 and ρJ(x = 1) = ρR in the previous equation, we obtain the implicit
expression for the constant K(J). To get a feeling on how it depends on J, note that in
the limit K(J)→ (−1/2ρ2

L), the current J→ Jc, while for K(J)→ ∞ one gets J→ 0. In
addition, from eq. (12) we see that for K(J)→ 0 we find J = (ρL−ρR)/2 = 〈J〉.

Sometimes it is interesting to work with the Legendre transform of the current LDF
[3, 4, 7], µ(λλλ ) = maxJ[G(J) + λλλ · J], where λλλ is a vector parameter conjugate to



the current. Using the previous results for G(J) is is easy to show [7] that µ(λλλ ) =
−K(λλλ )J∗(λλλ )2, where J∗(λλλ ) is the current associated to a given λλλ , and the constant
K(λλλ ) = K(|J∗(λλλ )|). The expression for J∗(λλλ ) can be obtained from eq. (12) above in
the limit x→ 1. Finally, the optimal profile for a given λλλ is just ρλλλ (x) = ρ|J∗(λλλ )|(x).

Region II: Non-Monotonous Regime (J > Jc)

In this case the optimal profile has a single maximum ρ∗J ≡ ρJ(x = x∗) with ρ∗J =

1/
√
−2K(J) and −1/2ρ2

L < K(J) < 0. Splitting the integral in eq. (5) at x∗, and using
now eq. (9) to change variables, we arrive at

G(J) =
Jx

2

(
1

ρR
− 1

ρL

)
− J

2

[
1

ρL

√
1−
(

ρL

ρ∗J

)2

+
1

ρR

√
1−
(

ρR

ρ∗J

)2

− 1
2ρ∗J

(
π− sin−1

(
ρL

ρ∗J

)
− sin−1

(
ρR

ρ∗J

))]
. (13)

Integrating eq. (9) one gets an implicit equation for the non-monotone optimal profile

2xJ=


ρ
∗
J

[
sin−1

(
ρJ(x)

ρ∗J

)
− sin−1

(
ρL

ρ∗J

)]
for 0≤ x < x∗

2J+ρ
∗
J

[
sin−1

(
ρR

ρ∗J

)
− sin−1

(
ρJ(x)

ρ∗J

)]
for x∗ < x≤ 1

(14)

At x= x∗ both branches of the above equation must coincide, and this condition provides
simple equations for both x∗ and ρ∗J

J =
ρ∗J
2

[
π− sin−1

(
ρL

ρ∗J

)
− sin−1

(
ρR

ρ∗J

)]
; x∗ =

π

2
− sin−1

(
ρL

ρ∗J

)
π− sin−1

(
ρL

ρ∗J

)
− sin−1

(
ρR

ρ∗J

) .

(15)
Finally, as in the monotone regime, we can compute the Legendre transform of the
current LDF, obtaining as before µ(λλλ ) =−K(λλλ )J∗(λλλ )2, where J∗(λλλ ) and the constant
K(λλλ ) = K(|J∗(λλλ )|) can be easily computed from the previous expressions [7]. Note

that, in λλλ -space, monotone profiles are expected for |λλλ + εεε| ≤ 1
2ρR

√
1−
(

ρR
ρL

)2
, where

εεε = (1
2

(
ρ
−1
L −ρ

−1
R
)
,0) is a constant vector directly related with the rate of entropy

production in the system, while non-monotone profiles appear for 1
2ρR

√
1−
(

ρR
ρL

)2
≤

|λλλ + εεε| ≤ 1
2

(
1

ρL
+ 1

ρR

)
.
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FIGURE 1. Left panel: G(J) for the 2D-KMP model for ρL = 2 and ρR = 1. The blue circle signals
the crossover from monotone (J < Jc ≡ π/3) to non-monotone (J > π/3) optimal profiles. The green
surface corresponds to the Gaussian approximation for small current fluctuations. Right panel: Legendre
transform of both G(J) (brown) and G(J→ 〈J〉) (green), together with the projection in λλλ -space of the
crossover between monotonous and non-monotonous regime.

Fig. 1 shows the predicted G(J) (left panel) and its Legendre transform (right panel)
for the 2D-KMP model. Notice that the LDF is zero for J = 〈J〉= ((ρL−ρR)/2,0) and
negative elsewhere. For small current fluctuations, J ≈ 〈J〉, G(J) obeys the following
quadratic form

G(J)≈−1
2

(
(Jx− (ρL−ρR)/2)2

σ2
x

+
J2

y

σ2
y

)
, (16)

with σ2
x = (ρ2

L + ρLρR + ρ2
R)/3 and σ2

y = ρLρR, resulting in Gaussian statistics for
currents near the average as expected from the central limit theorem. A similar expansion
for the Legendre transform yields

µ(λλλ )≈ λx

2
[
(ρL−ρR)+σ

2
x λx
]
+

σ2
y

2
λ

2
y . (17)

Notice that beyond this restricted Gaussian regime, current statistics is in general non-
Gaussian. In particular, for large enough current deviations, G(J) decays linearly, mean-
ing that the probability of such fluctuations is exponentially small in J (rather than J2).
Fig. (2) shows the x-dependence of optimal density profiles for different values of J,
including both the monotone and non-monotone regimes.

Despite the complex structure of G(J) in both regime I and II above, it can be easily
checked that for any pair of isometric current vectors J and J′, such that |J| = |J′|, the
current LDF obeys

G(J)−G(J′) = εεε · (J−J′) , (18)

where εεε = (1
2

(
ρ
−1
L −ρ

−1
R
)
,0) is the constant vector defined above, linked to the rate of

entropy production in the system. The above equation is known as Isometric Fluctuation
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FIGURE 2. Optimal ρJ(x) for ρL = 2 and ρR = 1 and different J. The dash line (J = Jc = π/3)
corresponds to the crossover between the monotone and non-monotone regimes.

Relation (IFR) [11], and is a general results for time-reversible systems described at the
macroscopic level by a continuity equation similar to eq. (1), for which time-reversibility
implies the invariance of optimal profiles under arbitrary rotations of the current vector.
The IFR, which has been confirmed in extensive simulations [11], links in a strikingly
simple manner the probability of any pair of isometric current fluctuations, and includes
as a particular case the Gallavotti-Cohen Fluctuation Theorem in this context. However,
the IFR adds a completely new perspective on the high level of symmetry imposed by
time-reversibility on the statistics of nonequilibrium fluctuations.

CONCLUSIONS

We have derived explicit predictions for the statistics of current fluctuations in a sim-
ple but very general model of diffusive energy transport in two dimensions, the KMP
model [6]. For that, we used the hydrodynamic fluctuation theory recently introduced
by Bertini and coworkers [4], supplemented with a reasonable set of simplifying hy-
potheses, namely:

(i) The optimal profiles responsible of a given current fluctuation are time-
independent.

(ii) The resulting divergence-free optimal current profile is in fact constant across
space.

(iii) The ensuing optimal density profile has structure only along the gradient direction.

While assumption (i) is known to break down for extreme current fluctuations in some
particular cases [4, 9, 10], it would be interesting to explore the range of validity of
conjectures (ii)-(iii) in the time-independent regime. This could be achieved using a
local stability analysis in the spirit of the results in [9]. Moreover, the emergence of time-



dependent optimal profiles (probably traveling waves) in high-dimensional systems is an
open and interesting problem which deserves further study.

Provided that hypotheses (i)-(iii) hold, we have obtained explicitly the current distri-
bution for this model, which exhibits in general non-Gaussian tails. The optimal density
profile which facilitates a given fluctuation can be either monotone for small current
fluctuations, or non-monotone with a single maximum for large enough deviations. Fur-
thermore, this optimal profile remains invariant under arbitrary rotations of the current
vector, providing a detailed example of the recently introduced Isometric Fluctuation
Relation [11].
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Abstract. The nonequilibrium Ising–Bloch (NIB) bifurcation of the FitzHugh–Nagumo (FHN)
model with nondiffusing inhibitor provides a beautiful instance of an extended bistable system
with counterpropagating fronts or Bloch walls (BW) as stable attractors. Moreover, these fronts
are chiral and parity-related, and the barrier between them is the unstable stationary front or Ising
wall (IW). Here we show by means of numerical simulation the presence of stochastic resonance in
the transition between 1D BW of opposite chiralities when an additive noise is included. A scaling
law of the signal-to-noise ratio (SNR) with the distance to the critical point is numerically observed
and theoretically characterized in terms of an effective nonequilibrium potential.

Keywords: Fluctuation phenomena in statistical physics, nonlinear dynamics
PACS: 05.40.-a,05.45.-a,

Stochastic resonance (SR) is a well-studied phenomenon in concentrated (0D) sys-
tems [1]. Regarding nonlinear media, much of the analytical work in SR has been done
on transitions between stable static patterns in reaction–diffusion systems [2] exploit-
ing the nonequilibrium analog of a free energy, the nonequilibrium potential (NEP) [3].
Our concern here is with SR in the transitions between counterpropagating stable trav-
eling fronts [4, 5]. In particular we consider systems undergoing a NIB front bifurcation
[6]—a pitchfork bifurcation where an IW exchanges stability with a pair of counter-
propagating and opposite-chirality BW—an important pattern-forming mechanism. A
well-studied instance (besides optical ones [7, 8]) is the FHN model with nondiffusing
inhibitor [9, 10, 11]:

∂u
∂ t

= ∇2u+[u+S(t)](1−u2)− v+ξ (x, t),
∂v
∂ t

= ε [u−av],

where independent additive Gaussian white-noise sources ξ (x, t) with strength γ and a
multiplicative signal S(t) = δ sinωt that adiabatically forces the uniform unstable fixed
point have been included. BW are stable for ε < εc = a−2 and propagate at velocities
c = ±

√
5

2u2
+
(εc− ε), with u+ =

√
1−a−1. Their leading-order form for |c| ≪ 1 is

u(x, t) = u0(x− ct), v(x, t) = a−1 u0(x− ct + ca), with u0(x) =−u+ tanh(u+x/
√

2).
In an appropriate γ range under external forcing, coherent noise-assisted jumps are

numerically observed between counterpropagating BW. The SNR averaged over 20
realizations presents the characteristic SR shape as a function of γ [Fig. 1(a)]. Moreover,
the γ level needed to induce jumps decreases as ε → εc. Figure 1(b) shows log(SNR)
(averaged over 24 realizations) vs (εc− ε)2 for fixed γ , indicating a scale law. After
reducing to the central manifold, this effect can be described in terms of a canonical NEP



.
FIGURE 1. a) SNR vs γ , for εc− ε = .01 (average over 20 realizations); b) log(SNR) vs (εc− ε)2 for
γ = 1.8×10−4 (average over 24 realizations).

for the normal form dηop
dt = (εc− ε)ηop−η3

op of a pitchfork bifurcation. The transitions

between attractors are then governed by the NEP Φ=−(ε−εc)η2
op+

η4
op
4 . The maximum

of Φ (ηop = 0) corresponds to an IW, and its symmetric minima to the BW. Hence the
NEP difference between the saddle (IW) and the local attractors (BW) is proportional
to (εc− ε)2, which yields a linear dependence of log(SNR) with (εc− ε)2, at least in a
neighborhood of the NIB bifurcation [12].

In conclusion, we have presented numerical evidence of SR in the transition between
traveling chiral fronts in the the symmetric FHN model with nondiffusing inhibitor, as a
nontrivial example of SR between dynamic attractors in extended systems. In particular,
we have extended early work on reaction–diffusion systems that exploited the NEP
concept to analyze transitions between static patterns. The SNR was found to scale with
the distance to the critical point, in agreement with an analysis in terms of the NEP for
the pitchfork normal form.
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Abstract. The nature of the heat flux in special relativistic kinetic theory is discussed to some detail
emphasizing the need to explicitly include the chaotic velocity in order to correctly define dissipative
fluxes while retaining both their physical meaning and the Lorentz covariance of the theory.
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Special relativity is based on two postulates: the relativity principle, which states that
the physics laws are the same for all inertial observers, and the invariance of the speed
of light in vacuum. These two requirements are satisfied when covariant formalisms
are used such that physical quantities are given by tensors which undergo Lorentz
transformations within a Minkowski space-time. On the other hand, kinetic theory is a
formalism in which the macroscopic properties of a gas can be deduced from averages of
the dynamics variables of molecules. The Boltzmann equation gives the time evolution
of the single particle distribution function. When the temperature of the gas is high
enough, the speed of the molecules can become close to the speed of light and thus,
relativistic effects must be taken into account. In this scenario is where special relativistic
kinetic theory is on call.

The relativistic Boltzmann equation has been established as well as the local equilib-
rium distribution function [1]. However, when referring to the non-equilibrium situation,
many questions remain unanswered. Most formalisms express macroscopic quantities in
terms of a decomposition with respect to the direction of the hydrodynamic velocity. The
equations are thus written for an arbitrary observer. However, such formulation has two
drawbacks. Firstly, the nature of the dissipative fluxes is lost since the concept of chaotic
velocity is absent in the theory. Secondly, some fine points remain unclear for example
the fact that the local equilibrium assumption, needed in order to specify an entropy pro-
duction, is assumed to be satisfied within a parcel of the fluid. However, observers do not
agree on distances and thus, the size of the region where local equilibrium is assumed
to be valid is not an invariant. Also, different observers do not agree on simultaneity
such that assumptions regarding time, for instance the distribution function not chang-
ing significantly over a mean collision time, turn out to be also ambiguous if one does
not specify the state of motion of the observer measuring that time.

In special relativity all inertial frames are equivalent. However, for any given event in
space-time, some quantities are defined as the ones measured by a comoving observer.
In the case of relativistic kinetic theory, when we talk about a comoving frame, it is in
an averaged sense. To understand this, consider an arbitrary observer O in a reference
frame S which averages the velocity of molecules in a fluid element and concludes that
the hydrodynamic four-velocity in that region is Uν . With that information, the observer



can set up a reference frame S′ that moves with velocity Uν with respect to himself
such that an observer O′ in that system measures zero average velocity. For observer
O′ the molecules are at rest in average but each one moves with its chaotic velocity.
By repeating the procedure for every parcel in the fluid, one ends up with a collection
of reference frames S′, one for each volume where local equilibrium can be assumed.
These reference frames are what we call local comoving frames. The transformation law
for tensor quantities between S and each S′ is given by a Lorentz transformation between
two frames that move with a relative velocity given by Uν . Since Uν , as measured by
an arbitrary observer is in general not constant, this transformation depends on space-
time and thus can be thought of as a point dependent transformation. Notice that this
concept is also used in the non-relativistic case without giving too much thought into
it. The idea here proposed, which was originally formulated by Sandoval-Villalbazo
and García-Colín [2], is completely analogous to the decomposition introduced in the
non-relativistic case when one writes the molecular velocity as the vector sum of the
chaotic and the hydrodynamic velocities. This amounts to setting local reference frames
by Galilean transformations.

In Ref. [3] the ideas discussed above, are developed and the results analyzed. The
different contributions to the stress-energy tensor T µν are clearly identified by separating
the parts arising from the systematic and the chaotic components of the velocity, a
procedure analog to the one preformed in the non-relativistic case. As a consequence,
the heat flux is defined as the total energy flux measured in S′. As a part of T µν , the
energy flux associated with heat dissipation is given by the Lorentz transformation of
the corresponding terms in T µν as calculated in S′

Thus, in this framework T µν is calculated in the local comoving frame where there
is no ambiguity on how to measure distances and time intervals. Also, Boltzmann’s
equation is solved in S′ to obtain constitutive equations [4]. Once all this information
is gathered, the Lorentz transformation is used in order to express T µν in an arbitrary
frame. It is important to point out that, as shown in Ref. [3], the constitutive equation for
the heat flux obtained in this framework is consistent with the one obtained following the
standard method [1]. However, the formalism here described is conceptually different.
The introduction of chaotic velocities in relativistic kinetic theory leads to definitions for
the dissipative fluxes that are direct generalizations of the non-relativistic ones. In this
way the concept of heat arising from the chaotic motion of particles, as firstly introduced
by Kroenig, Clausius and Maxwell [5], is also present in the relativistic formalism.

The author wishes to thank A. Sandoval-Villalbazo and L. S. García-Colín for their
valuable comments.
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Abstract. We derive a Crooks-Jarzynski-type identity for computing free energy differences be-
tween metastable states that is based on nonequilibrium diffusion processes. Furthermore we outline
a brief derivation of an infinite-dimensional stochastic partial differential equation that can be used
to efficiently generate the ensemble of trajectories connecting the metastable states.

Keywords: Conditional free energy, fluctuation theorem, rare events, diffusion bridge
PACS: 02.50.Ga, 05.10.Gg, 05.70.Ln, 65.40.gh

INTRODUCTION

Given a system assuming states x ∈X ⊆ Rd with the energy V (x), the free energy at
temperature ε > 0 as a function of a scalar reaction coordinate Φ(x) is defined as

F(ξ ) =−ε ln
∫
X

exp(−ε
−1V (x))δ (Φ(x)−ξ )dx . (1)

Given that x ∈X follows the Boltzmann distribution ρ ∝ exp(−ε−1V ), the free en-
ergy is just the marginal distribution in Φ(x). However estimating the marginal numeri-
cally from samples of ρ may be prohibitively expensive, e.g., when V has large barriers
in the direction of Φ. Therefore we dismiss this option and propose a different scheme
that employs realizations of the overdamped Langevin equation

dXτ = f (Xτ ,τ)dτ +
√

2εdWτ , τ ∈ [0,T ] (2)

subject to the boundary conditions (see Fig. 1)

Φ(X0) = ξA and Φ(XT ) = ξB . (3)

The vector field f (x,τ) = −∇V (x) + g(x,τ) is assumed to be smooth with the time-
dependent part g being such that the process hits the level set {Φ(x) = ξB} at time T ;
without loss of generality we set T = 1.

As we will demonstrate below, the free energy difference ∆F = F(ξB)−F(ξA) can
be computed as the weighted average (cf. [1, 2, 3])

∆F =−ε lnE
[

exp
(
−ε
−1
∫ 1

0
g(Xτ ,τ)◦dXτ

)]
(4)

where “◦” means integration in the sense of Stratonovich and E[·] denotes the expecta-
tion over all (bridge) paths that solve the conditioned Langevin equation (2)–(3).
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B

FIGURE 1. Boundaries of metastable states A and B as level sets of the reaction coordinate Φ.

DERIVATION: EULER’S METHOD

Our derivation of (4) is based on the discrete Euler-Maruyama approximation of (2),

Xk+1 = Xk +∆τ f (Xk,τk)+
√

2ε∆τ ηk+1 , k = 0, . . . ,n−1 . (5)

Here ∆τ = 1/n and ηk ∼N (0, I) are i.i.d. distributed Gaussian random variables.
We call Pn(x) = Prob [X0 = x0,X1 = x1, . . . ,Xn = xn] the joint distribution of the path

x = {x0,x1, . . . ,xn} ⊂ X . Assuming that the x0 follow the Boltzmann distribution ρ

conditional on Φ(x0) = ξA, the distribution of the paths is readily shown to be

Pn(x) ∝ ρ(x0|ξA)exp

(
−∆τ

4ε

n−1

∑
k=0

∣∣∣∣xk+1− xk

∆τ
− f (xk,τk)

∣∣∣∣2
)

δ (Φ(xn)−ξB) .

We are interested in the likelihood ratio of forward and backward paths. To this end we
introduce P̃n(x) = Pn(x̃) as the distribution of the reversed paths x̃ = {xn,xn−1, . . . ,x0} ⊂
X with xn ∼ ρ(·|ξB). By the smoothness of f , the forward measure Pn has a density
with respect to P̃n that is is given in terms of their Radon-Nikodym derivative,

ψn(x) = exp
(
ε
−1(∆V +Wn(x))

)
exp
(
−ε
−1

∆F
)
. (6)

Here ∆V =V (xn)−V (x0) and

Wn(x) =
1
2

n−1

∑
k=0

(xk+1− xk) · ( f (xk,τk)+ f (xk+1,τk+1))+O(|∆τ|)

is the Stratonovich approximation of the stochastic work integral, i.e.,

lim
n→∞

Wn(x) =−∆V +
∫ 1

0
g(Xτ ,τ)◦dXτ (∆τ → 0, n∆τ = 1) .

The free energy difference in (6) pops up as a boundary term, exp(−ε−1∆F) = ZB/ZA,
with ZA and ZB normalizing the conditional distributions for forward and backward
paths. Upon noting that both Pn and P̃n are probability measures, (6) entails (4) as n→∞.



AN INFINITE-DIMENSIONAL LANGEVIN SAMPLER

Now comes our main result: To evaluate the expectation in (4) we have to generate the
ensemble of bridge paths. For this purpose we introduce the auxiliary potential

ϕ = ∆τ
−1V (x0)+

1
4

n−1

∑
k=0

∣∣∣∣xk+1− xk

∆τ
+ f (xk,τk)

∣∣∣∣2 +∆τ
−1

ε (ln |∇Φ(x0)|+ ln |∇Φ(xn)|) ,

so that exp(−ε−1∆τϕ) is the density of Pn with respect to the surface element on the
image space Σ = {x ∈X n+1 : Φ(x0) = ξA, Φ(xn) = ξB} ⊂X n+1 of admissible paths.
Conversely, exp(−ε−1∆τϕ) is the stationary distribution of the Langevin equation [4]

dQs =−
(
∇ϕ(Qs)+∇σ(Qs)λ

T)ds+
√

2ε∆τ−1dWs , σ(Qs) = 0 (7)

where Qs = (q0(s), . . . ,qn(s)) and λ = (λ1,λ2) labels the Lagrange multipliers deter-
mined by the constraint σ = 0, the latter being shorthand for Φ(q0)= ξA and Φ(qn)= ξB.

Using formal arguments (that can be made rigorous using Girsanov’s theorem), we
can take the limit n→ ∞ which turns the Langevin sampler (7) into a stochastic partial
differential equation (SPDE) for bridge paths [5]. If we denote the continuous path by
γ = γ(τ,s) with τ ∈ [0,1] now being the “spatial” variable, our SPDE reads

∂γ

∂ s
=

1
2

∂ 2γ

∂τ2 −
1
2
(∇ f f + ε∇(∇ · f ))(γ)+

√
2ε

∂W
∂ s

∀(τ,s) ∈ [0,1]× (0,∞)

Φ(γ) = ξA ,

(
∂γ

∂ s

)‖
= (2ε Sn(γ)− f (γ))‖ ∀(τ, t) ∈ {0}× (0,∞)

Φ(γ) = ξB ,

(
∂γ

∂ s

)‖
= ( f (γ)−2ε Sn(γ))‖ ∀(τ, t) ∈ {1}× (0,∞)

γ = γ0 ∀(τ,s) ∈ [0,1]×{0}

(8)

where ∂W/∂ s is space-time white noise and we have introduced the various shorthands:
n = ∇Φ/|∇Φ| for the unit normal to the level sets {Φ(x) = ξ}, f ‖ = (I− n⊗ n) f for
the vector field f tangent to the level sets, and S = ∇2Φ/|∇Φ| for the shape operator
(second fundamental form) of {Φ(x) = ξ} understood as a submanifold of X .

Note that although γ lives in X ⊆ Rd , which may be high-dimensional, its two argu-
ments are scalar variables (namely, arc length τ and time s). Methods for numerically
solving SPDEs such as (8) are discussed in, e.g., [6].
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Abstract. Equilibrium molecular dynamics is performed to obtain the thermal conductivity of crys-
talline argon using the Green-Kubo formalism, which permits the study of dynamical details of the
transport process. A large system run to longer times is used to derive the heat flux autocorrela-
tion functions from the low temperature solid to the liquid state. The power spectrum of an auto-
correlation function reveals the change in the nature of the underlying atomic motions across the
temperature range.
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The theory of thermal conduction in electronically insulating crystals is based on the
phonon concept in which the individual (rapid) atomic motions are averaged out. Molec-
ular dynamics method enables us to look into both fast and slow atomic motions, at the
cost of computational efforts. Crystalline argon is a good benchmark target because the
interatomic potential is well described by the Lennard-Jones potential and experimental
data are available. The temperature dependence of thermal conductivity has been stud-
ied using the equilibrium molecular dynamics method with the Green-Kubo formalism
and the results compared with experiment. We have previously performed a simulation
[1] for a system of 864 particles with 107 time steps, and the resulting thermal conduc-

FIGURE 1. Heat flux autocorrelation function for the long (left) and short (right) time range



FIGURE 2. Power spectra at 10K,50K(left) and 70K,90K(right). The data of 50K and 70K are shifted
upward for easy comparison. The linear line in the figure shows a guide to ( f requency)−2 relation.

tivity was found to be in good agreement with experiment. However, we did not obtain
the power spectrum with adequate accuracy due to insufficient sampling. Here, a larger
system of 4000 atoms with total time steps of 108 is employed to obtain a good power
spectrum.

Figure 1 shows the results of the heat flux autocorrelation function at various temper-
atures. The form of the heat flux autocorrelation function for N = 4000 is almost the
same with the previous N = 864 case, so the values of thermal conductivity are mostly
the same. However, a slight reduction of the autocorrelation is observed in the lower tem-
peratures with increasing the system size, suggesting that longer-wavelength phonons,
now allowed to exist in the supercell, enhances scattering. A more quantitative analysis
should be made on the N-dependence of thermal conductivity. We see clearly in Fig.1
(left) the two-stage relaxation process, except in the liquid case(90K), where the first
(fast) relaxation is ascribed to single-particle like motions and the second relaxation to
collective atomic motions (phonons) [1, 2]. Single particle motions, which are observed
in the diffusion of atoms in the liquid state, can be expected to become more prominent in
the solid state during the continuous transition from high-temperature solid to the liquid.
At the lower temperatures, the autocorrelation is oscillatory at the beginning of the sec-
ond stage[2, 1], corresponding to the resonant peak in the power spectrum(Fig.2 (left)).
Also, a slight shoulder, likely a damped shear mode in a solid, is observed in the first
stage[1]. A wide range of power spectra has been obtained by taking Fourier-transform of
the heat flux correlation functions (see Fig.2) which show from low frequency collective
motions to high frequency atomic motions. Oscillatory modes are seen as characterized
by the resonant peak at 0.5 THz and the step at 4 THz. These features appear to persist
even below the melting point. Because the highest phonon frequency in Ar is 1.9 THz,
the step at 4 THz appears to be due to frequency cutoff of second harmonic generation.

Both H.K. acknowledge support by the Grand-in-Aid for Scientific Research (C).
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Abstract. We study fast transient dynamics of an open quantum system at the initial stage of its
equilibration starting far from equilibrium from correlated initial conditions reflecting entanglement
with the environment. These correlations rapidly decay and the process enters the non-equilibrium
quasi-particle mode controlled by a generalized master equation. As a model system, the nanoscopic
molecular bridge between two leads is considered. The coupling to the leads is assumed to be
intermittent. Properties of the resulting transients are demonstrated and analyzed.
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1. MOLECULAR BRIDGE IN TRANSIENT REGIME

We study electronic transients in the well-known model of molecular bridge [1] :

LEFT LEAD JL BRIDGE ISLAND JR RIGHT LEAD

The central island is represented by a single molecular level, while the leads are metal-
lic and serve as both particle and energy reservoirs. They are floating at their externally
imposed potentials kept at a finite bias. The connectivity in the system is controlled by
the two tunneling junctions JL and JR. In the paper [2], we have introduced a formalism
for calculating the transient response of the electrons to sudden changes of the connec-
tivity, modeled by switching on or off each of the two junctions independently. We use
the technique of time-partitioning for non-equilibrium Green’s functions (NGF)whose
general framework is described in [3]. For a parallel development based on NGF and the
time-dependent density functional, the most recent reference is [4].

Here, we present and discuss first results of calculation of these transients, using the
model of independent electrons and looking at the time dependence of the occupancy
of the central island. The initial transient reflects the details of the tunneling through
the junctions and depends sensitively on the initial conditions at the time of the sudden
change of the connectivity. These may be simple, dependent on the one-particle distri-
bution only, called uncorrelated (UIC), or they may be "correlated" that is incorporate
higher order initial correlations (CIC). The initial transient typically dies out within a
decay time τ? ∼= max{τQ,τc} (Q ... quasi-particle formation, c ... decay of correlations).
The generic quasi-particle (QP) stage ensues characterized by a relaxation time τ � τ?.
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2. FORMAL TREATMENT AND RESULTS

The central island occupancy for t > tI , where the initial time tI coincides with the
switching time of a junction, has the following NGF form:

n(t) = GR(t, tI)n(tI)G
A(tI , t)− i

t∫
tI

dv
t∫

tI

du GR(t,v)(Σ<(v,u)+{CIC terms})GA(u, t)

(1)
It has the first, coherent transient, term and the integral "transport term", persisting in
time. The time range of the Σ< self-energy is τc. These two terms together reflect the
UIC. The additional CIC terms have kernels acting within a ∼τc vicinity of tI . They
express the initial correlations in terms of their gradual build-up during the bridge history
prior to tI . Propagators GR,A have a QP formation period ∼τQ followed by the standard
QP regime.

The results in Fig.1 are for a semirealistic model with leads of heavily doped semi-
conductor at nitrogen temperature. The island starts as disconnected, with the level oc-
cupancy n = 1. First, at tI = 0fs, JL is switched on. We see the UIC controlled transient
given mostly by the QP formation. A saturation tending to n ∼ 0.78 follows. This is
interrupted by connecting also JR at tI = 25fs. The transient starts now from a correlated
initial state. To show the effect of CIC, we also plot the transient with correlations ne-
glected, largely repeating the JL behavior before. Again, the gradual saturation, now to
n = 0.51 follows. The initial correlations decay quickly, but their cumulative effect is
propagated by GR,A with the damping time equal to the QP relaxation time.
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Abstract. Recently, a new concept is proposed for chasing and evading in crowds, called “group
chase and escape” through a simple model. In this model, two kinds of players, chasers and escapees,
play tag on a two-dimensional square lattice. Each chaser approaches its nearest escapee. On the
other hand, each escapee steps away from its nearest chaser. Although there are no communications
within each group, players appear to cooperate among themselves to chase or escape. We found
relation between this cooperative behavior and group formations depend on the density of chasers
and targets.
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Recently, group chase and escape is proposed [1] as an extended concept of “Chase
and Escape” or “Pursuit and Evasion”, which is a traditional mathematical problem
[2, 3]. This new problem indicates that chasers or targets (escapees) segregate spon-
taneously without attractive interactions in order to prey or survive more efficiently.
However, it has not been clarified how this group formation affects the efficiency of
chase or escape behavior under various conditions. In this article, we characterize it by
lifetime of target and estimate the effect of the group formation.

The model is the same as the one in Ref. [1]. The field is a two-dimensional square
lattice Lx × Ly with periodic boundary conditions. Initially, chasers and targets are
randomly distributed over the lattice. Each player hops to one of the nearest neighboring
sites at each step. The next site is chosen to approach or distance oneself from the
nearest opponent. Here, if there are multiple nearest chasers (targets), the target (chasers)
chooses one of them randomly. On the square lattice, there are two types of hopping
situations. When a chaser and its nearest target are aligned, the chaser moves in one
direction toward the opponent, but the target randomly chooses one of three neighboring
sites to increase the distance. In the other case, both chasers and targets decide one of
two possible nearest sites with an equal probability in order to get closer to, or get away
from their opponents. When a target resides in the nearest neighboring sites of a chaser,
the chaser catches the target by hopping to the site, and then the target is removed from
the system. After the catch, the chaser pursues remaining targets in the same manner.
We run the simulations until all targets are caught by chasers.

It was pointed out, by observing the time T for catching all targets, that there are
two qualitatively different regimes of chasing process [1]. However, the group behavior



FIGURE 1. (a) Three types of decay regimes for several ρC with ρT (0) = 2−4. (b) The lifetime of target
τ vs. the density of chaser ρC and (c) the degree of convergence vs. that of target ρT (t) for ρC = 2−7 with
the different ρT (0). Solid line is guide to the eye for ρ−1

C in (b). The lattice size is set to Lx = Ly = 211.

was not identified in detail since the parameter T includes dependence on an initial
configuration and a finite-size effect. To characterize the players’ behavior, we analyze
a lifetime of targets estimated from time evolution of the density of targets, ρT (t).

Figure 1(a) plots the decay rate of ρT , dρT (t)/dt, with respect to ρT , which shows
three types of decay regimes. The first stage is the initial relaxation, in which some
targets have short lifetimes because they happen to be near chasers initially. In the
final stage, a group of chasers locks on to one final target for a long time, leading to
the eventual catch. In the middle of these stages, ρT shows exponential decay. Thus,
the lifetime of target τ(ρC,ρT (0)) is estimated from dρT (t)/dt =−ρT (t)/τ(ρC,ρT (0)),
where τ(ρC,ρT (0)) depends on the density of chaser, ρC, and ρT (0). Figure 1(b) shows
a plot of τ against ρC for different ρT (0).

Around ρC = 1, τ ∼ 1. In the region ρC < ρT , τ decreases proportionally to ρ−1
C . In

the middle region, however, τ decreases more rapidly as ρC increases. Therefore, in this
region increasing the number of chasers enhances effectiveness of catching.

While τ increases with the initial density of target, the group formation influences
these increments. To parametrize the group formation effect, we calculate the degree of
convergence (DOC) in Fig. 1(c) defined as number of chasers divided by that of chased
targets. If the targets are randomly distributed, this value is close to ρC/ρT ,

as in the case of ρT (0) = 2−10. The DOC increases, however, with ρT (0) at the same
ρT , indicating existence of targets which are not chased due to group formation. Here,
while chasers catch some targets in the initial stage, others escape and form groups away
from chasers.

This work was partly supported by Award No. KUK-I1-005-04 made by King Abdul-
lah University of Science and Technology (KAUST).
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Abstract. To investigate the onset of thermal rectification in graded mass systems, we study the
classic and quantum self-consistent harmonic chain of oscillators. We show that rectification is
absent in the classic, but present in the quantum chain. We note the ingredient of rectification, and
its existence in this simple model indicates that rectification may be an ubiquitous phenomenon.
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The derivation of the macroscopic laws of thermodynamic transport from the under-
lying microscopic Hamiltonian models is still a challenge: in particular, our knowledge
about the mechanism of heat flow is quite incomplete. Anyway, by performing numer-
ical simulations or analytical investigations in simplified models, interesting properties
have been discovered and their use proposed: e.g., the possibility to control the heat flow
by using devices such as thermal diodes, transistors, gates, memories, etc. The main ob-
ject here, the thermal diode or rectifier, is a device in which heat flows preferably in one
direction. Recently, Chang et al. [1] built a diode in a experimental work by using graded
materials, i.e., nanotubes inhomogeneously mass-loaded with heavy molecules.

In these notes, we address the onset of thermal rectification in these experimental
reliable class of diodes: the graded mass materials. Our crystal model is given by a chain
of oscillators with harmonic interparticle and on-site potentials, and with a reservoir
connected to each site, but with the “self-consistent condition”, that means absence of
heat flow between each inner reservoir and its site in the steady state.

We examine the classic and quantum versions of this graded chain of oscillators, and
note that thermal rectification is absent in the classic, but present in the quantum chain.

Our microscopic classical model is a chain of N oscillators with the Hamiltonian

H(q, p) =
1
2 ∑

p2
j

m j
+

1
2 ∑ q2

j +
1
2 ∑ qlJl jq j, (1)

where we assume graded masses: m1 > .. .m j > .. .mN ; Ji j is the interparticle (nearest
neighbor) interaction. The dynamics is given by the differential equations

dq j = (p j/m j)dt, d p j =−(∂H/∂q j)dt−ζ j p jdt + γ
1/2
j dB j, (2)

where η j = dB j/dt are white noises; ζ j is the dissipative constant; γ j = 2m jζ jTj; Tj is
the temperature of j− th bath, chosen to lead to the self-consistent condition.



To study the heat flow, we write the energy H j of the site j, where H = ∑ j H j. Then,
we study

〈
dH j(t)/dt

〉
and identify the heat flow coming from the inner reservoir (that

we vanish in the steady state) and the heat current in the chain.
Let us list the main results for the heat current in the classic model. For the simpler

case of a homogeneous chain, i.e. m1 = . . . = mN , an exact solution for the heat flow
is well known [2]: Fourier’s law holds, and, an important physical feature, the thermal
conductivity depends on the particle mass, but not on temperature. For the graded mass
chain (m1 > .. . > mN), the computation of the conductivity is very difficult, but the
absence of thermal rectification is shown[3].

Now we turn to the quantum self-consistent harmonic model. We use a Ford-Kac-
Mazur approach, as presented in ref.[4], to describe the quantum system and its evolution
to the steady state. Here, all the baths are modeled as mechanical harmonic systems,
with initial coordinates and momenta determined by some statistical distribution. Then,
we solve the quantum dynamics given by Heisenberg equations, take the stochastic
distribution for the initial coordinates of the baths, as well as the limit t→∞, and obtain
the expression for the heat flow in the steady state.

The expression obtained for the heat flow from the l-th reservoir to the chain is

Fl =
N

∑
m=1

ζ
2
∫ +∞

−∞

dω ω
2
∣∣∣[G+

W (ω)
]

l,m

∣∣∣2 h̄ω

π
[ f (ω,Tl)− f (ω,Tm)] , (3)

with G+
W (ω) =

[
−ω2MW +ΦW − iζ ω

]−1, where MW is the matrix for the particle
masses, ΦW gives the interparticle interaction, and f (ω,Tl) = [exp(h̄ω/kBTl)−1]−1 is
the phonon distribution for the l-th bath (details in ref.[4]).

We list the main results for the heat flow in the quantum self-consistent chain. For the
simpler homogeneous chain, it is shown [4] that the Fourier’s law holds, and, the main
physical feature, now the thermal conductivity depends on the particle masses and also
on their temperatures. For the graded mass chain, it is shown the absence of rectification
in the linear response regime [5] (small gradient of temperature). But, beyond linear
approximation, we note the existence of rectification [6] (for few particles: a proof for a
system with any number of particles is in preparation [7]).

The ingredient behind rectification is the combination of particle masses and temper-
atures in the thermal conductivity for the quantum model (the classic conductivity does
not involve temperature). As we invert the chain, the temperature profile and the mass
distributions change in a different way. This difference gives the rectification.
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Abstract. Using a doubly-thermostated heat-conducting oscillator as an example, we demonstrate
how time-reversal invariance affects the perturbation vectors in tangent space and the associated
local Lyapunov exponents. We also find that the local covariant exponents vary discontinuously
along directions transverse to the phase flow.
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For classical chaotic systems, the set of Lyapunov exponents, {λ`}, ` = 1, . . . ,D,
measures the exponential growth, or decay, of small (infinitesimal) perturbations of
the phase-space trajectory. Here, D is the dimension of the phase space. The standard
algorithms for the computation of the exponents (see Ref. [1] for a review) probe the
tangent-space dynamics by a set of orthonormal Gram-Schmidt (GS) vectors {g`}.
Since their orthonormality is not preserved, it must be periodically restored by a GS
procedure, or continuously kept up by Lagrange-multiplier constraints. These schemes
are all based on the volume changes of d-dimensional volume elements in phase space,
d ≤ D, but they simultaneously destroy any information concerning the angles between
the perturbation vectors. Thus, symmetries concerning phase-space volumes generate
symmetries of the associated local GS Lyapunov exponents1, whereas time-reversal
symmetry does not. For example, for a phase-space conserving symplectic system the
equalities (+)ΛGS

` (t) = −(+)ΛGS
D+1−`(t) and (−)ΛGS

` (t) = −(−)ΛGS
D+1−`(t) hold, if the

trajectory is followed forward or backward in time as indicated by the upper indices (+)

and (−), respectively. However, time reversal invariance of the motion equations is not
reflected by the GS local exponents: (−)ΛGS

` (t) 6=−(+)ΛGS
D+1−`(t).

The multiplicative ergodic theorem of Oseledec [2, 3] asserts that there exists an-
other spanning set of normalized vectors v` (Γ(0)) in tangent space. These vectors
evolve (co-rotate) with the natural tangent flow, v` (Γ(t)) = Dφ t |Γ(0) v` (Γ(0)) , (where
Dφ t |Γ(0) is the propagator), and directly generate the Lyapunov exponents, ±λ` =

limt→±∞ (1/|t|) ln
∥∥Dφ t |Γ(0) v` (Γ(0))

∥∥ , ` ∈ {1, · · · ,D}, along the way. They are re-
ferred to as covariant vectors. Generally, they are not pairwise orthogonal and span in-
variant manifolds, for which the local expansion (contraction) rates are given by the local
covariant Lyapunov exponents (±)Λcov

` . In contrast to the GS exponents, they respect

1 Local Lyapunov exponents give the local (time-dependent) exponential rate of growth (shrinkage) of the
norm for GS or covariant vectors at a phase point Γ(t) along the trajectory. The global exponents are time
averages of the local exponents.



the time-reversal invariance of the motion equations, such that

(−)
Λ

cov
` (Γ(t)) =−(+)

Λ
cov
D+1−`(Γ(t)) ; `= 1, · · · ,D. (1)

Local expansion forward in time implies local contraction backward in time and vice
versa. However, they do not reflect (possible) phase-volume conservation.

Recently, reasonably efficient algorithms for the computation of covariant vectors
have become available [4, 5], which were applied to a variety of systems [1, 6, 7]. In
the panel on the left of the figure we demonstrate the time-reversal symmetry displayed
by the local covariant exponents for a one-dimensional harmonic oscillator coupled to

FIGURE 1. Panel on the left: Time-dependent local Lyapunov exponents Λ(t) (as identified by the
labels) for the doubly-thermostated oscillator in a nonequilibrium stationary state (ε = 0.25). Panel on the
right: Fractal behavior of the local covariant exponents (+)Λcov

i for ` ∈ {1,4} along a parametric straight
line transverse to the phase flow. The parameter s specifies the location Γ(s) in phase space. The data are
for the doubly-thermostated oscillator in thermal equilibrium (ε = 0).

a position-dependent temperature T (q) = 1+ ε tanh(q) with a two-stage Nosé-Hoover
thermostat, which makes use of two thermostat variables [1]. The equations of motion
are time reversible and not symplectic, and D = 4. The control parameter ε denotes
the temperature gradient at the oscillator position q = 0. As the figure shows, the
time-reversal symmetry of Eq. (1) is clearly obeyed for the maximum (` = 1) and
minimum (`= 4 ) covariant exponents. Since, by construction, (+)ΛGS

1 ≡(+) Λcov
1 [1],

one observes that no analogous relation holds for the GS exponents.
In the panel on the right of the figure it is demonstrated that the local covariant

exponents show a fractal-like structure along a straight line transverse to the phase-
space flow [1]. This is to be expected in view of the different past (and future) histories
for trajectories passing through adjacent phase-space points transverse to the flow.
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Abstract. We investigate an oscillator linearly coupled with a one-dimensional Ising system. The
coupling gives rise to drastic changes both in the oscillator statics and dynamics. Firstly, there
appears a second order phase transition, with the oscillator stable rest position as its order parameter.
Secondly, for fast spins, the oscillator dynamics is described by an effective equation with a
nonlinear friction term that drives the oscillator towards the stable equilibrium state.
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We analyze the behaviour of a classical harmonic oscillator (mass m, frequency ω0,
position x and momentum p) linearly coupled to a one dimensional Ising system (N
spin variables σi = ±1) in contact with a heat bath at temperature T . After a suitable
nondimensionalization of the variables, the system energy per spin site is [1]

H (x, p,σσσ) =
p2 + x2

2
− x

N

N

∑
i=1

σiσi+1 , (1)

The oscillator dynamics follows from Hamilton’s equations, ẍ+ x = (1/N)∑
N
i=1 σiσi+1,

while the spins dynamics is governed by a master equation with Glauber single-flip
transition rates [2]. Then, the rate at which the i-th spin flips in configuration σσσ is
Wi(σσσ |x, p) = δ [1− γσi(σi−1 +σi+1)/2]/2, with γ = tanh(2x/θ). In these rates, δ gives
the (dimensionless) characteristic attempt rate for the spin flips and θ is the dimen-
sionless temperature [1]. The equilibrium properties of the system are obtained from
the canonical distribution Peq(x, p,σσσ)∝ exp [−N H (x, p,σσσ)/θ ] . By summing over the
spin variables, we calculate the marginal probability for the oscillator variables,

Peq(x, p) ∝ exp
[
−N

(
p2

2
+Ve f f (x)

)
/θ

]
, Ve f f (x) =

x2

2
−θ

[
lncosh

( x
θ

)
+ ln2

]
(2)

in which the spins produce a non-harmonic additional contribution to the effective
potential of the oscillator, Ve f f (x). The equilibrium stable rest points x̃eq of the oscillator
are the minima of Ve f f , so that they verify the bifurcation equation x̃eq− tanh(x̃eq/θ) =
0. Thus, there is a second order phase transition at θ = 1, with x̃eq as its order parameter.

In the limit of fast spins, a perturbative analysis in powers of δ−1 � 1 yields an
approximate nonlinear equation for the macroscopic (completely neglecting the fluctua-



FIGURE 1. Averaged stochastic trajectories 〈x(t)〉 = x̃(t) (circles) versus nonlinear (solid blue line)
predictions for (a) θ = 4, (b) θ = 0.95, and (c) θ = 0.6.



tions) value of the oscillator position x̃

d2x̃
dt2 =−V ′e f f (x̃)−δ

−1 1
2θ

R(x̃)
dx̃
dt

, R(x̃) =
1+ tanh2( x̃

θ
)

1− tanh2( x̃
θ
)
. (3)

The spins are so fast that they relax, almost instantaneously, to the equilibrium state
corresponding to x̃(t). But, since x̃(t) is slowly varying, there is a small separation from
equilibrium proportional to dx̃/dt, which gives rise to the friction term.

In the figure, the theoretical result (3) (its numerical integration) is compared to the
simulation of the stochastic model, for a random initial configuration of the spins and
suitable initial conditions for the oscillator [1]. For high temperatures, case (a), and for
a temperature below (but close to) the critical value θ = 1, case (b), the agreement
between simulation and theory is excellent. On the other hand, for a further lower value
of the temperature, case (c), the theory breaks down. This was to be expected, since
for very low temperatures the spins relaxation time diverge and they are actually slow
as compared with the oscillator. Hence, another approach is needed, in which the fast
vibrations of the oscillator are averaged using the method of multiple scales [3].
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Abstract. We investigate the dynamics of a heterogeneous granular chiral rotor immersed in a bath
of thermalized particles. We use a mechanical approach, which is consistent with the Boltzmann-
Lorentz equation, to obtain the efficiency of the motor in the Brownian limit.
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Brownian ratchets, which are devices that extract work from a thermal bath, have a
long history. A ratchet effect is possible whenever there is a breakdown of detailed bal-
ance and a lack of spatial symmetry[1]. The time reversal symmetry is obviously broken
in collisions of inelastic particles and, as a result, several models have been proposed for
granular ratchets[2, 3, 4]. Here we examine a granular chiral rotor composed of two ma-
terials with different coefficients of restitution[5]: See Fig. 1a. When the rotor collides
with a bath particle of mass m and velocity v, the post-collisional velocities are given
by: (

Ω′

v′

)
=

(
Ω

v

)
+

1+α

I +mx2 (v−Ωx)
(

mx
−I

)
(1)

where Ω is the angular velocity, I is the moment of inertia and −L/2 ≤ x ≤ L/2 is
the algebraic distance of impact from the center. The granular temperature of the rotor is
given by Tg = I < (Ω−< Ω >)2 >. Given a bath characterized by a velocity distribution
φ(v) (which is assumed to be invariant) the problem is to determine the angular velocity
distribution of the rotor, F(Ω). An approximate theoretical approach was proposed by
Costantini et al.[4] for the case of an asymmetric piston and, subsequently, we proposed
a force-based approach that gives the exact drift velocity in the Brownian limit [5], Here
we illustrate the approach for the chiral rotor.

For a given angular velocity, the net torque acting on the rotor is given by

Γ(Ω) = 2mρ

∫ L/2

0
dx
∫

∞

0
dy

xy2

1+ mx2

I

((1+α+)φ(xΩ+ y)− (1+α−)φ(xΩ− y)) (2)

where ρ is the bath particle density. We obtain the mean angular velocity, Ω∗, in the
Brownian limit, mL2/I → 0, by setting the torque equal to zero: Γ(Ω∗) = 0. A major
interest of heterogeneous granular particles is that they have a non-zero mean velocity
in the Brownian limit, contrary to homogeneous asymmetric granular particles where



the mean velocity vanishes as m/M → 0. To confirm this strong ratchet effect, we
now consider the mechanical work that can be extracted from this motor by coupling
it to a work source. By imposing a constant external torque Γext a mechanical power
Γext <Ω > is obtained. Collisions between bath particles and chiral rotor are dissipative.
One then defines the efficiency of the heterogeneous rotor as the ratio of the power to
the dissipation rate. In the Brownian limit, we obtain the following exact expression

η

2Ω
=

∫ L/2
0 dx

∫
∞

0 dyxy2((1+α+)φ(xΩ+ y)− (1+α−)φ(xΩ− y))∫ L/2
0 dx

∫
∞

0 dyy3((1−α2
+)φ(xΩ+ y)+(1−α2

−)φ(xΩ− y))
(3)

Figure 1b shows the efficiency versus external torque for different values of M/m for a
Gaussian bath distribution. The maximum efficiency is 4.32% and occurs for Ω≈Ω∗/2.
Conversely, the efficiency vanishes when Ω = Ω∗ and Ω = 0. In the later case, Eq.1
provides an upper bound of external torque, Γmax

ext = ρL2(α−−α+)T/8 for an arbitrary
bath distribution characterized by a temperature T .

If the solid friction about the axis is smaller than Γmax
ext , the chiral rotor should be

a good candidate for experimental realization. Indeed, a recent study demonstrated a
motor effect using a similar device [6].

(a) (b)

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
Γ

ext
/(ρL

2
T)

0

0.01

0.02

0.03

0.04

0.05

η

FIGURE 1. (a) The chiral rotor, made with two different materials is immersed in a bath of thermal-
ized particles. The red and blue materials have coefficients of restitution α+ and α−, respectively. (b)
efficiency η versus external torque Γext/(ρL2T ) for M/m = 1,2,5,10 and α+−α− = 1. The upper curve
corresponds to the Brownian Limit, Eq.3.
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Abstract. Translation is the cellular process in which ribosomes make proteins from information
encoded on messenger RNA. We model this process using driven lattice gases and take into account
the finite lifetime of mRNA. The stochastic properties of the translation process can then be
determined from the time-dependent current fluctuations of the lattice gas model. We illustrate our
ideas with a totally asymmetric exclusion process with extended objects.
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The production of proteins from genes occurs in two steps. In the first one, called
transcription, information encoded on the genes is used to synthesize messenger RNA
(mRNA). In the second step of translation, a ribosome uses the information stored on
the codons of mRNA to make a new protein.

Cellular processes are noisy because of the small number of molecules involved and
because they occur in a crowded environment [1]. In this contribution, we study the
stochastic aspects of the translation process. In the standard model (Fig.1, left-side),
proteins are produced with rate k while the mRNA decays with a rate λ . The number
of proteins produced by one mRNA then follows a geometric distribution with average
k/λ [2]. This approach does not take into account that at a particular moment several
ribosomes are attached to a single mRNA which can lead to delays due to jamming
and is an extra source of stochasticity [3]. A simple model that describes these effects
[4] is the totally asymmetric exclusion process (TASEP) with extended objects [4, 5].
In the TASEP, mRNA is modelled as a one-dimensional lattice of N sites, each site
corresponding with one codon. Ribosomes are large in comparison with a codon and are
therefore represented as an extended ’particle’ that covers l lattice sites. Following [5],
we will take l = 12. Each site can be occupied by at most one ribosome. The dynamics
of the TASEP is that of a Markov process: a ribosome can move forward one codon with
rate 1, translation is initiated with rate α and terminates with rate β . The total number
of proteins produced up to time t therefore equals the time integral J(t) of the particle
current j(t) through the last site: J(t)=

∫ t
0 j(t ′)dt ′. To take into account the finite lifetime

of mRNA, we add an extra empty state /0 to the configuration space of the process. This
absorbing state can be reached from any other state with rate λ describing the decay of
mRNA and the end of the translation process. Our model is summarized on the right
side of Fig. 1.

We are interested in the probability P(Q) that Q proteins are produced by one mRNA.
This quantity can easily be obtained from simulations of our model. It is however
also possible to gain some further insight in this distribution from a link with known
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FIGURE 1. Standard model (left) and our model (right) for translation.

properties of current fluctuations.
Using a simple argument starting from the master equation, one can derive a relation

between the generating function of Q, Z(s) = ⟨esQ⟩ and that of J(t), W (s, t) = ⟨esJ(t)⟩,
where ⟨·⟩ is the average over the realizations of the process. This relation reads

Z(s) = λ
∫ ∞

0
W (s, t)e−λ tdt (1)

Using (1), we can relate the moments of Q to those of the current distribution.
We recently showed that the cumulants of the time dependent current in the TASEP

have an interesting scaling form [6]. From that, one can then derive scaling forms for the
N-dependence of the cumulants of Q. We find for example

⟨Q⟩= J⋆/λ +
√

NH(λN3/2) (2)

where H is a scaling function and J⋆ is the steady-state current of the TASEP in the
thermodynamic limit. In a mean-field approximation, it was found that J⋆ = 1/(1+

√
l)2

in the maximal current phase of the TASEP [5]. The first term in (2) equals the one found
in the standard model if we identify J⋆ = k. The second term in (2) determines deviations
from the standard theory which are due to the finite size of mRNA and which can become
important for small proteins. Similar expressions can be obtained for the variance of Q.

Our results indicate that mRNA-length may be an important quantity, which so far
has been overlooked, in problems of stochastic gene expression.
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Abstract. We propose a computational method to simulate non-Gaussian self-diffusion in a simple
liquid. The method is based on nonequilibrium molecular dynamics (NEMD).
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INTRODUCTION

A simple liquid is the prime example of a system of interacting units that possesses
Gaussian self-diffusion properties. This implies that the mean square displacements are
proportional with time ∆r2(t)∼ t. This is for example reflected in the Gaussian character
of the single time step (defined by ∆t) displacement distributions P∆t

(
∆x

σ(t)

)
with ∆xi =

xi(t+∆t)−xi(t), i= 1, . . . ,N. The distribution P∆t

(
∆x

σ(t)

)
is one of the quantities that can

be determined in a molecular-dynamics (MD) simulation of a system of N molecules.
Under equilibrium conditions, the width σ of the distribution can be connected to the
diffusion coefficient and depends on the temperature, on the intermolecular interaction,
and on the density. We propose a simulation technique to create conditions of anomalous
self-diffusion in a simple liquid. More in particular, we are seeking to simulate systems
with a (non-Gaussian) fat-tailed P∆t

(
∆x

σ(t)

)
. This implies that the ∆x’s are no longer

confined to a certain scale (determined by the quantity σ ) and that every so often
molecules perform steps ∆x that are much larger than average.

COMPUTATIONAL METHOD AND RESULTS

Events of “all” sizes are encountered in systems which display self-organized criticality
(SOC) and reside in a steady-state nonequilibrium state [1]. To summarize the major
ideas of SOC: the system gets very slowly driven, which allows it to relax according
to the rules of its internal dynamics. During the relaxation stage one typically observes
events of all sizes.

We have translated the above-mentioned SOC ideas to a liquid as it is simulated in
MD. We drive the simulation system by injecting potential energy at various locations in
the simulation system at intermittent times. Clearly, this creates a temporal nonequilib-
rium situation with a highly non-uniform potential energy density. Subsequently, we let
the system evolve according to Newton’s energy-conserving laws. The dissipation of the



locally injected potential energy under conditions of constant total energy which char-
acterizes the dynamics of the system, results in a small amount of very fast molecules.
The anomalous feature of the self-diffusion properties of the system is reflected in non-
Gaussian single time step displacement distributions P∆t

(
∆x

σ(t)

)
during the nonequilib-

rium time periods of the simulation. One can discriminate between the equilibrium and
nonequilibrium time periods of the simulation system by monitoring the average kinetic
energy < T >. During nonequilibrium time periods, the < T > is an increasing function
of time.

In comparison to the equilibrium situation, we observe that under nonequilibrium
conditions, small ∆x’s become more abundant, medium ∆x’s less probable, and that
really large ∆x’s can be observed. In other words, the distribution P∆t

(
∆x

σ(t)

)
has fat

tails, which is equivalent to saying that displacements ∆x of all sizes occur or that the
self-diffusion properties are anomalous.

In the simulation we use an interaction potential USC (r12) with a soft-core repulsion
at short inter-particles distances r12 and an attractive part at medium r12. Hard-core po-
tentials are observed to drive the simulation system out of control under nonequilibrium
conditions. The driving, or injection of potential energy, is achieved by subjecting the
system to changes in the system’s length scale at intermittent times. The rescaling mod-
ifies the intermolecular interaction according to USC (r)−→USC(λ (t)r)(λ (t)< 1). The

λ gets modified in a stepwise fashion: λ (t) = λ
b( t

τ )c
0 , where b

( t
τ

)
c rounds

( t
τ

)
towards

positive integer values. The parameter τ determines the time interval between two sub-
sequent rescalings of λ . From the above it becomes clear that for a given temperature,
density and interaction, the nonequilibrium features of the simulation are controlled by
(λ0,τ). The parameter τ is expressed in units of simulation steps. In line with typical
SOC conditions [1], it is required that the driving is done in a sufficiently slow fashion.
For a broad range of the two parameters λ0 and τ , we observe that our NEMD simulation
technique generates conditions of anomalous self-diffusion. This proves the robustness
of the proposed simulation method and hints at the fact that the anomalous self-diffusion
is an emergent feature of the nonequilibrium simulation system. The “anomalous” char-
acter of P∆t

(
∆x

σ(t)

)
can be quantified by means of a non-vanishing fourth moment (or,

kurtosis) of the distribution.
Summarizing, we have created a rather simple and robust simulation method to

achieve conditions of anomalous self-diffusion in an interacting system. This emergence
of global behaviour that cannot be determined from local properties is also a property of
SOC, to which our simulation system bears similarities.
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Cluster size distribution in Gaussian glasses
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Abstract. A simple method for the estimation of the asymptotics of the cluster numbers in Gaussian
glasses is described. Validity of the method was tested by the comparison with the exact analytic
result for the non-correlated field and simulation data for the distribution of random energies in
strongly spatially correlated dipolar glass model.
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A common feature of any random medium is the formation of clusters. In this report
we consider the cluster distribution on size ns (here s is the number of sites in a cluster)
for a random Gaussian field. In many cases the random Gaussian field is a good model
for the description of physical properties of amorphous materials. Assuming a zero
average, the only relevant characteristic of the Gaussian field is the binary correlation
function C(~r). In some cases spatial correlations are extremely strong; for example, for
the distribution of random energies U(~r) in polar organic materials (dipolar glasses)
C(~r) ≈ Aσ2a/r for r� a (here A ≈ 0.76 for a simple cubic lattice, a is a lattice scale,
and σ2 =

〈
U2〉) [1]. In terms of random energy U(~r) a cluster is defined as a set of

connected sites, where all of them have site energy greater than some boundary energy
U0. Correlated nature of the dipolar glass directly dictates the main features of charge
carrier transport and injection in polar organic materials [1].

Cluster distribution on size is one of the simplest yet basic characteristics of the
random media. Typically, it is very difficult to calculate, and the reason is obvious:
a difficulty to take into account a vast variety of possible shapes of clusters. At the
moment, our knowledge of ns is mostly limited to the case of non-correlated Gaussian
field in the vicinity of the percolation threshold [2].

There is another parameter which is much more easy to calculate, namely the distri-
bution PV (U0) of the spatial average U0 =

1
V
∫

V d~rU(~r) of the random energy U(~r) in a
finite domain having volume V [3]. For the Gaussian field an exact result is

PV (U0) =
V√
2πK

exp
(
−

U2
0 V 2

2K

)
, K =

∫
V

d~rd~r1C(~r−~r1). (1)

Naturally, parameter K depends on the shape of the domain, apart from the case of
non-correlated field. We may expect that Eq. (1) gives a reasonable estimation for the
number ns of the true clusters, i.e. domains, where U(~r) > U0 everywhere (assuming
V = a3s), at least for the leading term of the asymptotic dependence of ns on s. This
hypothesis seems to be plausible at least for the case of very correlated fields (for
example, the dipolar glass), where the deep clusters should have a compact structure. For



the same reason we performed all calculations for spherical (most compact) domains.
The hypothesis was tested for the random energies in the dipolar glass and non-

correlated Gaussian field. Surprisingly enough, it was true even in the latter case, where
there is no reason for the compact structure of the cluster. The asymptotics for the non-
correlated field according to (1) is

lnns =−
U2

0
2σ2 s+o(s), (2)

and agrees with the well-known exact result [4]. For the 3D dipolar glass (1) gives

lnns =−B
U2

0
σ2 s1/3 +o(s1/3), B =

5
4A(36π)1/3 ≈ 0.34, (3)

and agrees well with the result of the computer simulation [3]. It is worth to emphasize
that not only the functional form of the dependence of ns on s is well captured by the
extremely simple calculation, but the numeric coefficients in (2) and (3) are valid, too
(at least, the discrepancy between the calculated value of B in (3) and corresponding
coefficient for the simulation data is no worse than 10% [3]).

Results (2) and (3) can be immediately generalized to any power-law correlation
function C(~r)∝ 1/rn in d-dimensional space. Indeed, the direct estimation of the integral
in (1) gives K ∝ V for n > d, while K ∝ V 2−n/d for n < d. This means that for s� 1

lnns ∝ −
U2

0
σ2 sn/d, n < d, (4)

lnns ∝ −
U2

0
σ2 s, n > d. (5)

Interesting example of a spatially non-uniform disorder is the distribution of random
energies in the dipolar glass near the electrode [5, 6]. How to use the suggested method
to estimate ns for the spatially non-uniform disorder is an open question and promising
direction of future development. The major problem here is a difficulty to choose a
proper shape of the domain (clusters near the electrode do not have a spherical symmetry
and are elongated in the direction, perpendicular to the electrode).
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A non-equilibrium potential function to study
competition in neural systems
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Abstract. In this work, I overview some novel results concerning the theoretical calculation of a
non-equilibrium potential function for a biologically motivated model of a neural network. Such
model displays competition between different populations of excitatory and inhibitory neurons,
which is known to originate synchronous dynamics, fast activity oscillations, and other nontrivial
behavior in more sophisticated models of neural media.
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INTRODUCTION AND MODEL

The development of a complete framework to characterize the behavior of non-
equilibrium systems constitutes, up to date, one of the main challenges in Physics, with
strong implications for other disciplines such as Chemistry, Biology, or Economics.
One of the most remarkable attempts to build such a framework is the so called non-
equilibrium potential (NEP), developed some decades ago [1, 2]. In the particular field
of Theoretical Neuroscience, this framework has been proven to be of much interest for
simple neuron models (see, for instance, [3, 4]). However, the calculation of a NEP for
more realistic neural systems, such as large populations of neurons interconnected in a
recurrent manner, is hardly achievable with this method in a straightforward manner.

In this work I briefly present an alternative approach to this problem. By assuming
a highly simplified model of a neural population (which captures, however, some inter-
esting features of more sophisticated models), I compute an approximated expression of
the NEP for a network of interconnected excitatory and inhibitory neurons. The result-
ing NEP can be used to explore some characteristics of the model which may prevail for
actual neural networks.

Lets assume that the dynamics of the electrical activity of a neural network is de-
scribed by the following equations,

ν̇e(t) =−νe(t)+h S[Jeeνe(t)+ Jeiνi(t)+µ]+σ11ξ1(t)+σ12ξ2(t), (1)

ν̇i(t) =−νi(t)+h S[Jieνe(t)+ Jiiνi(t)]+σ21ξ1(t)+σ22ξ2(t), (2)

where νe, νi are the activity level of the excitatory and inhibitory neural populations,
respectively. The parameter µ represents a constant external input, S[x] = 1

2(1+x−x3/3)
is the transduction function which gives the effect of input currents on the activity level



of each population, h is a constant factor, and Jmn is the mean strength of the synaptic
connections which go from neurons of population n to the ones of population m. A
certain level of stochasticity and correlation is introduced by random Gaussian noise
sources ξk of variance η , with σkl being noise amplitudes.

RESULTS

Following [1, 3], we define the NEP as Φ(νe,νi) ≡ − limη→0 η logPstat(νe,νi), with
Pstat(x,y) being the stationary probability density distribution. Here, we will restrict to
the case Jei = 0 for simplicity (details of the calculation and more general situations will
be considered elsewhere). Using standard procedures (see [3, 5, 6]) one arrives at

Φ(νe,νi) =
ν2

e
λ1

(
1− hJee

2
+

λhJie

λ2

)
+

ν2
i

λ2

(
1− hJii

2

)
+

hνe

λ1

(
2λ

λ2
−µ−1

)
− hνi

λ2
(1+ Jieνe)

+
h

12λ2Jii
(Jieνe + Jiiνi)

4 +
h

12λ1Jee
(Jeeνe +µ)4− hλ

6λ1λ2Jie
(J4

ieν
4
e + J4

iiν
4
i )

(3)
where λ1 ≡ σ2

11 +σ2
12, λ2 ≡ σ2

21 +σ2
22 and λ ≡ σ11σ21 +σ12σ22. The above equation

constitutes the NEP for our neural population, and it properly describes the dynamics
of equations (1, 2) as long as the integrability conditions Jii = 2/(1− h) and Jie =
2λ/(h− 1), which emerge in the calculations, are satisfied by the particular values of
the model parameters.

The strategy presented in this work also suggests to consider other realistic biophysi-
cal mechanisms (such as dynamic synapses [7, 8, 9]) and extract the NEP of the corre-
sponding model. An extension of the present study will be published elsewhere.
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Abstract. Systems of long-range interacting particles present typically “quasi-stationary” states
(QSS). Investigating their lifetime for a generic pair interaction V (r → ∞) ∼ 1/rγ we give a
classification of the range of the interactions according to the dynamical properties of the system.
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When we consider a system of interacting particles, it is natural to make a classifica-
tion between “short range” and “long range” interactions. The range of interactions is
usually defined as a function of the additivity of the potential energy of an uniform sys-
tem. If it is additive (like in many common gases, liquids, etc.), then the system is said
to be “short range”. Otherwise, it is said to be “long range”. Typical examples of such
systems are astrophysical objects interacting by gravity, vortices or non-neutral plasmas
[1]. This classification corresponds mathematically to the integrability of the associated
pair potential: a pair interaction V (r → ∞) ∼ 1/rγ is short range if γ > d in d space
dimensions and long range otherwise. A consequence of the additivity of the energy are
the properties of the thermal equilibrium of the system (if it exists). When the interac-
tion is long range, peculiar properties (compared to short range systems) appear [1, 2]:
different ensembles are not equivalent, the specific heat can be negative, etc.

On the other hand, observations of real systems (such as galaxies) and numerical sim-
ulations have shown that thermal equilibrium is attained on a timescale much longer
than the one in which the system evolves macroscopically, the “mean field” (Vlasov)
timescale τm f . After a process called “violent-relaxation”, there is typically the forma-
tion of a “quasi-stationary” state (QSS) which evolves, on a much longer timescale (di-
verging with the number of particles N) to thermal equilibrium [1, 2]. Therefore, in the
mean field (Vlasov) limit (where N→ ∞), QSS are stable. However, we have seen that
interactions are usually classified according to their thermal equilibrium properties, but
equilibrium may never be attained in the Vlasov limit for long-range systems. It is there-
fore interesting to consider whether a purely dynamical classification of interactions can
be given, which will depend on the existence of QSS in the Vlasov limit.

In this proceedings, we will describe briefly the work presented in [3]. The approach
is the following: (i) we assume that a QSS exists, (ii) we estimate the relaxation rate
Γrelax associated with soft two-body scattering (assumed to be the leading process for
thermal relaxation), and (iii) we study the existence of the QSS independently of the
short range properties of the potential.
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FIGURE 1. Left: evolution of the potential energy for γ = 5/4 and different N. The relaxation rate
is estimated measuring the slope of these curves. Right: relaxation rate as a function of the small scale
softening ε in V (r) for N = 8000 and system size L. The straight lines are the theoretical prediction (1)
with bmin = ε . In inset same quantity in function of N for γ = 5/4. For more details see [3].

Generalizing a work by Chandrasekhar, we assume the existence of a spatially ho-
mogeneous spherical QSS, and we consider a test particle with velocity v which suffer
a two-body collision with impact factor b. Integrating over all the possible collisions,
we estimate δv2, the square velocity change of a particle per crossing. (i.e. in a time of
order τm f ). A particle has relaxed when δv2/v2 ≃ 1. It is possible to show [3]:

Γrelax τm f ∼

{
N−1 ifγ < (d−1)/2

N−1
(

R
bmin

)2γ−d+1
ifγ > (d−1)/2,

(1)

where R is the size of the system and bmin the minimal impact factor. The latter parameter
can be controlled “by hand” using a softening ε at small scales in the potential V (r).
Using the condition for soft collisions and the mean field scaling of N, it is possible to
estimate bmin ∼ RN−1/γ . We obtain then, for γ > (d−1)/2, Γrelaxτm f ∼ N−(d−1−γ)/γ .

This result leads to a “dynamical” classification of the interactions as follows: (i) for
γ < d−1, limN→∞ Γrelaxτm f = 0 and we call the interaction “dynamically long range”,
and (ii) for γ > d− 1, limN→∞ Γrelaxτm f → ∞ and we call the interaction “dynamically
short range”. In the latter case, a QSS may however exist if a sufficiently large and
sufficiently soft core is introduced in the potential [3]. A different formalization of this
classification is given in terms of the behavior of the probability distribution function of
the force in the infinite system limit in [4].

All these results have been checked with molecular dynamics simulations, see Fig. 1.
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Abstract. Fluctuation relations are a set of remarkable relations obeyed by a large class of systems
and arbitrarily far from equilibrium. It is interesting to discuss the implications of these relations for
molecular motors, which are chemically driven enzymes. These enzymes operate stochastically at
the molecular level and for these reasons undergo large thermal fluctuations. Using simple ratchet
models of molecular motors, the various forms of fluctuation relations can be illustrated in a simple
way. In the linear regime, finite time fluctuation relations imply specific modified fluctuation-
dissipation relations.
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INTRODUCTION

In recent years, a renewed interest has arisen in ratchet models in the context of non-
equilibrium statistical physics. There is large family of ratchet models, but only the
isothermal models are relevant for molecular motors. In these models, the coupling of
the ratchet to some external agent (e.g., a chemical reaction) continuously drives the
system out of equilibrium, and this allows work to be extracted under certain conditions.
There is no contradiction with thermodynamics here: the system is far from equilibrium
and the ratchet plays the role of a transducer between the energy put in by the agent (e.g.,
chemical energy) and the mechanical work extracted. The analysis of the energetics of
such devices far from equilibrium requires concepts that go beyond the classical laws
of thermodynamics. The fluctuation relations, is one of such concepts. These relations,
which hold arbitrarily far from equilibrium, can be seen as macroscopic consequences
of the invariance under time reversal of the dynamics at the microscopic scale. It is
interesting to apply these concepts to small systems such as molecular motors, which
operate naturally far from equilibrium and undergo large thermal fluctuations.

As shown in [1], models of molecular motors can provide a particularly clear and
pedagogical illustration of fluctuation relations, such as the Gallovotti-Cohen symmetry
relation, which is known to hold generally for systems obeying markovian dynamics.
This study has been carried out for both the discrete and for the continuous version of
the model, called the flashing ratchet [2]. Interestingly, one finds that the Gallavotti-
Cohen symmetry is no longer guaranteed if the system is not described by sufficiently
variables to properly account for the reversibility of the microscopic dynamics. However,
the symmetry can be restored in these models, when variables are added so as to render
the dynamics markovian.



LINEAR RESPONSE NEAR A NON-EQUILIBRIUM
STEADY-STATE

Within the linear response regime and for slightly perturbed non-equilibrium steady
states (Ness), finite time fluctuation relations, can be used to obtain modified fluctuation-
response relations for systems obeying markovian dynamics [3, 4, 5]. These fluctuation-
response relations qualify as extensions of the well-known fluctuation-dissipation the-
orem (FDT), because they hold in the vicinity of a non-equilibrium steady-state rather
than near an equilibrium state as in the classic FDT.

Let us consider a system initially in non-equilibrium steady state, characterized by a
(set of) control parameters denoted by λ . For a given value of λ , we assume that there
exists a steady state with stationary probability distribution Pstat(c,λ ) = exp(−φ(c,λ )).
A time-dependent perturbation of the dynamics around the fixed value λ0 will be de-
scribed by λ (s) = λ0+δλ (s) for t > s. The response R(t,s) = δ 〈A(c(t),λ0)〉path/δλ (s)
of the dynamic observable A that depends on the microscopic configuration c(t) at time
t is given by the nonequilibrium FDT [3, 4]:

R(t,s) =− d
ds

〈
∂φ(c(s),λ0)

∂λ
A(c(t),λ0)

〉
0
, (1)

where 〈..〉0 denotes the average in the stationary state with the control parameter λ0.
For thermal equilibrium, we have φ(c,λ ) = β (H(c)−λO(c)−F(λ )), where H is the
unperturbed hamiltonian, O is a perturbation, F is the free energy; and the usual form of
the fluctuation-dissipation theorem is recovered from Eq. 1.

In Ref. [5], we have given a compact derivation of Eq. 1 and provided two appli-
cations: In the first application introduced in Ref. [6], a particle obeying overdamped
Langevin dynamics is subjected to a periodic potential and a non-conservative force.
In the second application, a discrete two-states ratchet model of a molecular motor is
considered. In this case, the modified FDT takes the form of Green-Kubo relations char-
acterizing the response of the motor near a NESS. We have observed that the modified
FDT relation requires a knowledge of the relevant degrees of freedom in order to be able
to distinguish an equilibrium state from a non-equilibrium steady state, just as it does
for the existence of a Gallavotti-Cohen symmetry [2].
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Abstract. A wide range of empirical networks –whether biological, technological, information-
related or linguistic – generically exhibit important degree-degree anticorrelations (i.e., they are
disassortative), the only exceptions being social ones, which tend to be positively correlated (as-
sortative). Using an information-theory approach, we show that the equilibrium state of highly
heterogeneous (scale-free) random networks is disassortative. This not only gives a parsimonious
explanation to a long-standing question, but also provides a neutral model against which to com-
pare experimental data and ascertain whether a given system is being driven from equilibrium by
correlating mechanisms.

Keywords: Random graphs, correlated networks, assortativity, Shannon entropy
PACS: 89.75.Fb, 89.75.Hc, 05.90.+m

One of the great scientific challenges we face today is to understand complex systems:
sets of many elements –genes, people, routers, neurons, airports, species...– interacting
in such a way that non-trivial collective phenomena emerge. In other words, those for
which the whole is more than the sum of the parts. Often, many essential characteristics
of these systems are captured by representing them as networks, in which elements are
nodes and edges play the part of interactions (genetic activation, sexual intercourse,
telephone lines, synapses, flights, predation...). Over the past dozen years or so complex
networks have been the focus of intense study. One of the objectives in this field is to
determine universal properties of networks and to understand how these come about [1].

An intriguing feature of most real networks is the existence of degree-degree corre-
lations: the degree (number of neighbours) of a given node is correlated with that of
its neighbours, either positively or negatively. The network is then called assortative or
disassortative, respectively. This can be measured, for instance, computing Pearson’s
coefficient, r, over all edges. It turns out that a high proportion of empirical networks –
whether biological, technological, information-related or linguistic – are disassortatively
arranged (high-degree nodes, or hubs, are preferentially linked to low-degree neigh-
bours, and viceversa) while social networks are usually assortative. Such degree-degree
correlations have important consequences for network characteristics. For instance, as-
sortative networks have lower percolation thresholds and are more resilient to targeted
attacks [2], while disassortative ones make for more stable ecosystems and are more syn-
chronizable [3]. Assortativity has also been shown to increase the robustness to noise of
attractor neural networks [4].

We have recently shown how the ensemble of networks compatible with given macro-
scopic constraints can be partitioned, conceptually, into subsets such that each contains
all networks with a given correlation profile [5]. We computed the Shannon entropy
(which coincides with the thermodynamic entropy for intensive constraints [6]) of scale-
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FIGURE 1. (Color online) Left: Entropy of scale-free networks in the correlation ensemble against
Pearson’s coefficient r for various values of γ (increasing from bottom to top). ⟨k⟩ = 10, N = 104.
Right: Level of assortativity that maximizes the entropy, r∗, for various real-world, scale-free networks,
as predicted theoretically against exponent γ . Bar ends show the empirical values.

free networks, and found that it exhibits a non-monotonic curve when plotted against
assortativity (see Fig. 1, left). Maximum entropy corresponds to the macrostate compat-
ible with the largest number of microstates, and should thus be seen as the most likely
kind of configuration in the absence of further information regarding how a particular
network was formed. In general, this maximum occurs for a certain level of disassorta-
tivity (negative degree-degree correlations), which provides a simple explanation for the
ubiquity of such networks. Indeed, some real networks display correlations very close
to those predicted by entropic considerations (in the right panel of Fig. 1, the metabolic,
Web page and protein interaction networks). However, others turn out not to be so near
their equilibrium point, displaying either a negative bias (like the Internet and P2P net-
work of Fig. 1, probably due to node hierarchy), or a positive one (like the actor graph,
since well-known actors tend to work together). The extent to which these systems are
driven from equilibrium by correlating mechanisms can be estimated from the entropy
reduction.
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Although thermal fluctuations are believed to be essential to many first-order phase
transitions, there are multiple examples in which such fluctuations do not play a promi-
nent role. These include magnetisation reversal (Barkhausen noise [1, 2]), martensitic
transformations [3] and vapour condensation in porous media [4]. A prototype model
for systems exhibiting athermal first order phase transitions is the random field Ising
model at zero temperature [5].

This model consists of a set of classical spins, each in one oftwo statessi = ±1,
placed on the sites of a lattice. The system is described by the following Hamiltonian:

H =−J ∑
〈i j〉

sis j −Hext∑
i

si −∑
i

hisi . (1)

Here,J is the strength of ferromagnetic interactions between nearest-neighbour spins
andHext is an external magnetic field. The local fields,hi, are independent identically
distributed random variables characterised by normal probability density functions with
standard deviation∆h. The system obeys synchronous Glauber dynamics atT = 0 [6].

The state of such a system can be characterised by the total magnetisation of the lattice
(m=N−1∑i si), which displays hysteresis when the external magnetic field is varied (see
Fig. 1). The properties of the hysteresis loop have previously been studied analytically
in the mean-field approximation [6] and on Bethe lattices [7],and numerically on hyper-
cubic lattices [8].

It has been found that the hysteresis loop consists of many small discontinuities, asso-
ciated with microscopic avalanches. In addition, in certain topologies, the system under-
goes a single infinite avalanche at a particular value ofHext, provided the disorder,∆h,
is below a critical value,∆hc. This infinite avalanche manifests itself as a macroscopic
discontinuity in the magnetisation (see the dashed line in Fig. 1(a)). As the degree of dis-
order increases, the size of the discontinuity approaches zero continuously at the critical
disorder∆hc and external fieldHc. Above the critical disorder (∆h > ∆hc), no infinite
avalanche is observed (solid line in Fig. 1(a)). Topologiesknown to display this transi-
tion include the mean-field system, Bethe lattices with coordination numberq > 3 and
hyper-cubic lattices withd ≥ 3.

We have introduced a new method which extends the range of lattices in which the
magnetisation is analytically solvable as a function of external field. This procedure is
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FIGURE 1. (a) Hysteresis loops for magnetisation as a function of the external field (which is swept
cyclically between−∞ and+∞) for Bethe lattice withq = 4. The solid and dashed lines correspond to
∆h = 2 and∆h = 1, respectively. (b) Phase diagram in the(Hext,∆h) space. The solid line shows the field
at which the infinite avalanche occurs for increasing external field. The critical point(Hc,∆hc) is marked.
Solid and dashed lines correspond to paths taken by systems in panel (a).

iterative and modifies the existing approach used to solve the problem for the Bethe
lattice with arbitraryq [7]. The main advantage of our method is that certain systems
containing both large and small lattice loops, such as the ladder (two regularly linked
1D chains), can be systematically analysed. Using this method, we have shown, by
analytically evaluating the spin-spin correlation function, that the correlation length
diverges as a power law at(Hc,∆hc) for a Bethe lattice withq> 3 (Fig. 1(b)). In contrast,
although a discontinuity in magnetisation is observed in a 1D system andq = 3 Bethe
lattice at∆h = 0, we have shown that the divergence in correlation length isexponential
rather than a power law. This confirms the absence of a critical point.

TPH thanks the UK EPSRC for funding. FJP and SNT acknowledge funding from
BBSRC (Grant No. BB/E017312/1).
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Abstract. We consider N particles with unidirectional motion in one dimension. The particles never
pass each other, and they are distinguishable (labelled). We have studied two types of particle
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queue structure from particle scale up to system size. We are interested in quantities obtained after
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QUEUES ON NARROW ROADS

In a first contribution, we study the queues formed when each particle has a preferred
velocity and all these preferred (initial) velocities differ. As a result, clustering occurs
behind slow particles, as initially faster particles must reduce their velocities to comply.
This is similar to cars on a narrow road that does not allow overtaking.

Consider, as an example, particles (cars) with preferred velocities

0.67 0.97 0.04 0.12 0.71 0.22

all moving to the right. After clustering, the actual velocities in this case are

0.04 0.04 0.04 0.12 0.22 0.22

in three queues as indicated.
From preferred velocities to actual velocities high values are typically replaced by

low ones. Thus, one ends up with a systematically increased probability for low actual
velocities, as compared to the preferred velocities. The actual velocities increase along
the direction of motion. The lower a preferred velocity is, the larger the number of
particles (cars) it tends to influence. Furthermore, with increasing system size N, more
particles will in general be influenced by a low preferred velocity. From observations
like these, one may infer that the average particle velocity 〈v〉 (obtained after averaging
all actual velocities over all permutations of preferred velocities) will decrease with N.
However, the functional form of 〈v(N)〉 is not obvious.

We have found exact expressions for the average particle velocity (after clustering)
and for the average number of clusters with given size and velocity [1, 2, 3]. The
expression for the average velocity applies for a uniform distribution of initial velocities



on [0,Vmax], and is

〈v〉 = Vmax

N
·

N

∑
i=1

1
i+1

'Vmax
lnN
N

,

which is much smaller than the average over initial velocities Vmax/2.
As outlined above, the average velocity is a result of a redistribution (lowering) of

velocities from the preferred ones to the actual ones. Thus, 〈v〉 will be sensitive to the
probability distribution of the preferred velocities. We have explored this issue through
increasing and decreasing power-law distributions, for which we have found asymptotic
(large-N) expressions for the average velocity [3]. Of particular interest is the decaying
power law, with several 〈v(N)〉 asymptotics depending on the exponent value. There is
even a regime where 〈v〉 increases with N.

QUEUES IN AIRPLANES

In a second contribution, we study queues that result from mismatch between the queue
ordering and the ordering of sinks on a substrate, as when some airplane passengers must
wait in line before they reach their reserved seats. Due to different degrees of mismatch,
the total time to settle all particles varies significantly between queue configurations.

A simple example is shown below. Here, the first line represents the numbered seats
in an airplane, here with only one seat in each row (underlined). The next three lines
show three stages (time steps) during passenger boarding. Each passenger is labelled by
the number of the seat for which s/he has a reservation.

1 2 3 4 5 6
4 6 1 2 5 3

4 6 1 2 5
4 6

In the first time step, passenger 3 has reached her/his seat and is busy with hand luggage,
etc, while all the others are waiting. After 3 is seated, 1, 2, and 5 are able to rush to their
seats, while 4 and 6 are waiting and are able to get seated only in the third time step.
Thus, the boarding time T for this particular case is T = 3.

The average time (averaging over all permutations of passengers), to first order, is
〈T 〉= (N+1)/2 [4]. This result is obtained based on structuring of the passenger queue
that occurs during boarding. However, complete enumeration shows that the average
boarding time is significantly lower, current estimates give 〈T 〉 ∝ Nα , with α = 0.7.
This is due to a hierarchy of correlations between queue ordering and substrate ordering.
Thus, the number of correlations increases with N at least as fast as N! [4].
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Fluctuations play an important role in the formation of the dissipative structures [1],
find applications in diagnostic procedures. Moreover fluctuations determine the sensi-
tivity of the devices. Any oscillating system is characterized by two main parameters:
the proper frequency and the quality factor Q. The latter is inversely proportional to the
width of the spectral line of the parameter fluctuations. The higher Q factor, the more
sensitive the system is. In thermodynamic equilibrium, fluctuations are determined by
the system temperature and the dissipation. The fluctuation-dissipation relation was ex-
tended by Callen and Welton [2] to a general class of dissipative thermodynamic equilib-
rium systems. In the classical case the spectral function of the fluctuations of the variable
x has the form: (

x2)
ω
=

2T
ω

Imα(ω) (1)

where α - is the response function, and T - is the temperature in energy units. However,
it is not evident that the systems parameters can be kept constant in both space and time.
Inhomogeneities in space and time of these quantities will certainly also contribute to
the fluctuations. For generalization of fluctuation-dissipation theorem to a general class
system with slowly varying parameters, we use the so-called momentum method, which
is alternative to the Langevin method. This method is based on the equation for two-
time correlation function [3]. Let us consider an arbitrary system whose evolution is
described by the following equation:(

∂

∂ t
+L

)
•G(t, t ′) = 0, t > t ′ (2)

where L - is generally a non self-conjugate, linear operator in the Hilbert space. This
operator varies slowly in time. The term ”slowly” means that the control parameter
undergoes only a small change during the period of the system motion. The slow scale is
much larger than the characteristic fluctuation time. We can therefore introduce a small



parameter µ , which allows us to describe fluctuations on the basis of a multiple time
scale analysis. Obviously, fluctuations vary on both ”fast” and ”slow” time scales. At
first order with respect to µ the expression for the spectral function of the fluctuations in
the classical limit takes the form [4]:

(δAδB)
ω
=

2T
ω

[ImαAB(ω)+
d2

dµtdω
ReαAB(ω)] (3)

When expanding the Green’s function of Eq. (2) in terms of the small parameter µ , there
appears an additional term at first order. It is important to note that the imaginary part of
the response function is now replaced by the real part. If the quality factor of the system
is of the order of one, (it can be a broadband system or a process near the zero frequency),
the real and imaginary parts of the response function are of the same order and the
correction is negligibly small. However, in the case of systems with a high quality factor,
for which the real part of the response function is greater than the imaginary part, the
second small parameter appears to be inversely proportional to the quality factor. An
example of such system with a high quality factor could be plasma fluctuations near the
Langmuir frequency when the quality factor is inversely proportional to the small plasma
parameter [5]. When this small parameter is comparable with µ , the second term in Eqs.
(3) may have an effect comparable to the first term. At the second order in the expansion
in µ , the corrections appear only in the imaginary part of the response function, and they
can reasonably be neglected. It is therefore sufficient to retain the first order corrections
to solve the problem. As an example, we consider the electrical oscillation circuit, which
can be used to model many oscillation processes in nature and it is demonstrated that
the dispersive contribution may strongly affect the quality factor.

Conclusion

We have generalized the Callen-Welton formula to systems with slowly varying pa-
rameters. The spectral function of the fluctuations is determined not only by the dissipa-
tion but also by the derivatives of the dispersion. The non-Joule dispersion contribution
is characterized by a new nonlocal effect originating from an additional phase shift be-
tween the force and the response of the system. That phase shift results from the para-
metric control to the system. Referring to the example of an electrical oscillation circuit
it is demonstrated that the dispersive contribution may strongly affect the quality factor.
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Abstract. We briefly review the derivation of the Vlasov equation, which is a convenient approx-
imation for the description of the transport properties of long-range interacting systems. We then
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A rigorous, standard, derivation of the kinetic equations describing the transport
properties of a Hamiltonian system is the Born-Bogoliubov-Green-Kirkwood-Yvon
(BBGKY) hierarchy, which amounts to a set of exact, interlaced equations for the many-
particle distribution functions, obtained starting from the Liouville equation. In order to
be useful, the equations of the hierarchy must be closed by some appropriate approxima-
tion. Thinking, for the sake of simplicity, in terms of a one-dimensional Hamiltonian of
the form H = ∑

N
i=1

m v2
i

2 +∑
N
i< j V

(
xi− x j

)
, and separating in the two-particle distribution

function f2 the correlated part g2, due to the effects of the “collisions”, from the inde-
pendent one: f2 ≡ f f + g2 [here, f (x,v, t) ≡ f1(x,v, t) is the one-particle distribution
function], the first BBGKY equation reads

∂ f
∂ t

+ v
∂ f
∂x
− 1

m
∂Φ

∂x
∂ f
∂v

=

(
∂ f
∂ t

)
coll

, (1)

where
Φ(x, t)≡

∫ +∞

−∞

dx′V
(
x− x′

) ∫ +∞

−∞

dv f (x′,v, t). (2)

One-dimensional long-range systems are those for which V (x) decays at large |x| slower
than 1/|x|. Among other fields, examples are present in plasma physics, astrophysics
and wave-matter interacting systems (e.g., the Free Electron Laser). In these cases(

∂ f
∂ t

)
coll
∼ 1/N and, in the thermodynamic limit obtained by rescaling the interaction

strength by 1/N (Kaĉ prescription), the first BBGKY equation becomes the Vlasov
equation

∂ f
∂ t

+ v
∂ f
∂x
− 1

m
∂Φ

∂x
∂ f
∂v

= 0. (3)



Those cases in which a long-range system is in contact with external noise sources,
like for instance a heat bath, are conveniently described by adding at the r.h.s. of the
Vlasov equation a diffusive and a damping term:

∂ f
∂ t

+ v
∂ f
∂x
− 1

m
∂Φ

∂x
∂ f
∂v

=
∂

∂v

(
D

∂ f
∂v

+ γ f v
)
, (4)

where D and γ are the diffusion and the damping coefficients, respectively. Typically, the
fluctuation-dissipation relation imposes D = γ kB T/m, but one can also conceive more
general external noise sources.

Here we are interested in Hamiltonians such that there exists a critical temperature Tc,
which separates a high-temperature equilibrium homogeneous phase characterized by a
zero order parameter ϕ from a low-temperature inhomogeneous one in which ϕ 6= 0.
Considering a spatially homogeneous nonequilibrium initial condition f (x,v,0) = f0(v)
[ϕ(0) = 0], we have ∂Φ

∂x = 0, and, as long as the spatially homogeneous distribution
remains dynamically stable, the previous equation simplifies into

∂ f
∂ t

=
∂

∂v

(
D

∂ f
∂v

+ γ f v
)
. (5)

By performing a Landau stability analysis it is possible to identify the critical time tc at
which the dynamical stability is lost and, as a consequence, ϕ(tc) 6= 0. It is the minimum
time t for which equation

1− Ṽ (k)
m

∫
dv

f ′(v, t)
v

= 0 (6)

admits a solution for at least a k ∈ R, k 6= 0 (Ṽ is the Fourier transform of V ). Taking
advantage of the fact that the propagator of Eq. (5) is simply a Gaussian Green function,
it is possible to prove that tc is equivalently identified by the first zero of the function

I(t,k)≡ 1+
m Ṽ (k)

2

∫ +∞

−∞

dw |w| f̃0 (a(t) w) e−σ2(t) w2/2, (7)

for some k 6= 0, where a(t) ≡ e−γt , σ2(t) ≡ kBT
(
1− e−2γt), and f̃0(w) is the Fourier

transform of f0(v). This is a general result valid for any one-dimensional long-range
system with a symmetric potential and for spatially homogeneous distribution functions
with a single maximum at v = 0. It shows that external noise sources can induce
dynamical phase transitions to long-range systems, which correspond to restore the full
ergodic occupation of phase space. In particular, it predicts that a peak (“pulse”) in the
time evolution of ϕ(t) can be used as a signature of the existence of Vlasov-stable out-of-
equilibrium states in experiments with long-range systems. Extensions to more general
situations are also possible.
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Wilsonian renormalization group (RG) starts from dividing all the variables of a given
statistical or field-theoretic system into two parts: fast and slow ones, with subsequent
elimination of the fast ones [1]. This means that initially we have some system in
equilibrium with variables φ and probability distribution p(φ). Now, to define the
renormalization procedure we divide φ ’s into fast variables x and slow ones, y, and in
the simplest case introduce the following transformation of probability measures

p(φ)→ p(y) = ∑
x

p(x,y), (1)

If the marginal coarse-grained probability p(y) has the same functional dependence on
the fields as the initial one p(φ), with only some parameters gi (coupling constants)
changed, then the RG transformation may be written as gi → g′i and its successive
application results in a flow in the space of parameters gi.

In general, the nonlinear mapping gi→ g′i may be very complicated. While normally
one is interested in fixed points of this transformation (they define the critical behavior
at phase transitions [1]) more general questions may be asked, e.g. could the RG flow be
chaotic as many nonlinear mappings are? What kind of attractors may appear, are limit
cycles or strange attractors possible? Or this flow is strictly irreversible due to obvious
information loss related to elimination of fast variables? Irreversibility here means that
the flow in the space of couplings resembles that of a purely dissipative system with a
given trajectory never returning back to its starting point.

Certainly, the RG transformation does not have the inverse, so the irreversibility here
is not something unexpected, but to prove it rigorously is nevertheless not an easy task.
In 2D field theory this was done first by Zamolodchikov [2], who constructed a “c-
function” (a kind of Lyapunov function) which monotonically decreases along the flow.
Many later attempts to generalize this c-theorem to other situations are not so widely
known and in general pay no attention to informational aspects (see, however, [3]).

If, however, we start from the information theory, then the most natural way is to
view the RG transformation as a signal transmission through a noisy channel. Namely,
we may view x variables as an input signal, which is not directly available, and y as



an output, which we receive. Then the average information loss under a single step of
Wilsonian RG is given by a conditional entropy [4] of the fast variables, conditioned
by slow ones. Its positivity results in the monotonic decrease of the informational
entropy H(X ,Y )=−∑x,y p(x,y) ln p(x,y) under renormalization, i.e. H(X ,Y )≥H(Y )=
−∑y p(y) ln p(y). This, however, does not necessarily imply the irreversibility of the RG
flow, because the entropy explicitly depends on the total number of variables, which is
reduced, and thus H cannot be a proper Lyapunov function. Probably only some part of
information losses is relevant to the irreversibility problem [5], but this point is not clear.

One possible way out is to focus on the information which is transferred through the
“channel”. This is given by the mutual information [4] of the fast and slow variables

I(X ,Y ) = ∑
x,y

p(x,y) ln
p(x,y)

p(x)p(y)
= H(X)+H(Y )−H(X ,Y )≥ 0. (2)

The positivity of I(X ,Y ) may itself provide some restrictions on the RG flow. For
example, for some decimation real-space RG transformations [1], when “fast” and
“slow” spins are located on two complementary sublattices and exactly half of spin
variables are summed away, one can easily prove that the entropy per lattice site always
increases [5]. Thus, such decimation RG flows are irreversible and resembles, in many
aspects, an approach to equilibrium.

Mutual information of this kind may appear useful in some other problems as well.
For example, simple diffusion evolution of the probability distribution function

p(y, t) =
1√

4πDt

∫
dx exp

[
−(y− x)2

4Dt

]
p(x,0) (3)

may also be viewed as a renormalization. Equation (3) is in fact just a generalization
of Eq. (1) and corresponds to Kadanoff block-spin transformation [1] (though with
conserved number of variables). Here we actually have a kind of coarse-graining with
x being the “fast” variable while y in p(y, t) is a “slow” one, and t plays the role of a
scale parameter. Evaluating the mutual information between the initial coordinate of the
diffusing particle and its final position results in

I(X ,Y )≥ 0 −→ h(t)≥ ln(
√

4πeDt), (4)

where h(t) = −
∫

dx p(x, t) ln p(x, t). Surely, for diffusion we already know that the
entropy increases with time, but the analogy between a time evolution and some RG
transformation (coarse-graining) may probably be of some use in less trivial cases, and
irreversibility of the RG flow could possibly be related somehow to irreversibility in
statistical physics.
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Let a classical particle, with mass m, position x and momentum p, be subject to a
real potential V = V (x), in the presence of a “Heat bath” at equilibrium, at tempera-
ture T . The classical Hamiltonian of the particle is: H = p2/(2m)+V . Its probability
distribution function is: W = W (x, p; t)(> 0) at time t. The equilibrium distribution is:
W =Weq = exp[−β (p2/(2m)+V )]. Let Hn(q) be the standard n-th Hermite polynomial.
We introduce the moments Wn =Wn(x; t) (n = 0,1,2, ...) of W [1, 2]:

Wn =
∫

d p
Hn(p/q)

(π1/22nn!)1/2W (x, p; t), q = (2m/β )1/2 (1)

(β = (KBT )−1, KB = Boltzmann’s constant). If W = Weq, then Weq,0 is proportional to
exp[−βV ] and Weq,n = 0, n = 1,2, .... Let Win be an initial off-equilibrium distribution, at
t = 0. The corresponding initial moments, using (1), are Win,n. The irreversible Kramers
equation (with a friction constant σ > 0 on the particle due to the “Heat bath”) [1]
provides one temporal evolution: (∂W/∂ t) + (p/m)(∂W/∂x)− (∂V/∂x)(∂W/∂ p) =
(1/σ)(∂/∂ p)[p + (m/β )(∂/∂ p)]W . The latter and (1) yield the infinite irreversible
three-term linear hierarchy for Wn’s (n = 0,1,2, ..., W−1 = 0) [1]:

∂Wn

∂ t
=−M′n,n+1Wn+1−M′n,n−1Wn−1−

n
σ

Wn (2)

M′n,n±1 being linear operators. From (2), Wn relax the quicker the larger n. W0 ( fulfilling
the Smoluchowski equation) dominates the approach towards equilibrium for t→+∞.

As a source of insight, we shall treat an idealization (in presence of the “Heat bath” but
without friction effects): (∂W/∂ t)+ (p/m)(∂W/∂x)− (∂V/∂x)(∂W/∂ p) = 0 (the re-
versible Liouville equation, σ−1 = 0). The infinite reversible three-term linear hierarchy
for Wn’s (n = 0,1,2, ..., W−1 = 0 ) is the same as in (2), with σ−1 = 0. Let us consider
the Laplace transforms W̃n(s)≡

∫+∞

0 dtWn exp(−st) and introduce: gn =W−1/2
eq,0 W̃n. This

and (2) with σ−1 = 0 yield the symmetric reversible three-term hierarchy for gn:

sgn =W−1/2
eq,0 Win,n−Mn,n+1gn+1−Mn,n−1gn−1 (3)

Mn,n±1gn±1 ≡ [
(n+(1/2)(1±1))KBT

m
]1/2[

∂gn±1

∂x
− (±1)gn±1

2KBT
dV
dx

] (4)



The hierarchy (3) for gn can be solved formally, in terms of the linear operators:

D[n;s] = [s−Mn,n+1D[n+1;s]Mn+1,n]
−1 (5)

By iteration, D[n;s] becomes an infinite continued fractions of products of linear op-
erators. D[n;s] has been evaluated for V = 0 and for a harmonic oscillator [2]. We
choose n0(≥ 1) and fix s = ε ≥ 0 in any D[n;s] (ε suitably small). The D[n;ε]’s are
Hermitian, and all their eigenvalues are non-negative (if all eigenvalues of D[n+ 1;ε]
are ≥ 0, the same holds for D[n;ε]). The long-time approximation for n ≥ n0 reads as
follows. One replaces any D[n′;s] yielding W̃n(s), n′ ≥ n ≥ n0, by D[n′;ε]: this approx-
imation is not done for n < n0 and is the better, the larger n0. We regard D[n0;ε] as a
fixed (s-independent ) operator. For a simpler hierarchy, neglect all Win,n′’s for n′ ≥ n0.
Then, for small s: gn0(s) ' −D[n0;ε]Mn0,n0−1gn0−1(s). The resulting hierarchy for gn’s
(n = 0,1, .,n0−1), through inverse Laplace transform, yields a closed approximate irre-
versible hierarchy for Wn, n = 0,1, .,n0−1. The solutions of the last closed hierarchy for
Wn relax irreversibly, for large t and reasonable Win, towards Weq,0 6= 0 and Weq,n = 0,
n = 0,1, .,n0− 1 (thermal equilibrium). As an example, let n0 = 1 and regard the lin-
ear operator D[1;ε] as a real constant (> 0), playing a role similar to σ

m (for Kramers
equation). One finds the irreversible Smoluchowski equation for the n = 0 moment:
∂W0/∂ t = (D[1;ε]/βeq)(∂/∂x)[(∂/∂x)+β (∂V/∂x)]W0, with initial condition Win,0.

Finally, we treat a closed large system of many ( N� 1) classical particles, in 3 spatial
dimensions. Neither a “Heat bath” nor external friction mechanisms are assumed. The
interaction potential is: V = ΣN

i, j=1,i< jVi, j(| xi−x j |). The classical distribution function
is: W ([x], [p]; t). The initial distribution Win at t = 0 describes thermal equilibrium with
homogeneous temperature T for large distances and nonequilibrium for intermediate
distances (with spatial inhomogeneities). The reversible Liouville equation is:

∂W
∂ t

= Σ
N
i=1[(∇xiV )(∇piW )− pi

m
(∇xiW )] . (6)

We introduce moments W[n] of W (using products of Hermite polynomials, by gener-
alizing (1)) and g[n]. One gets an infinite reversible three-term linear recurrence for
g[n]’s, generalizing (3), which is formally solved in terms of continued-fraction oper-
ators D[[n];s] for the actual N(� 1). One also gets a generalized Hermitian operator
D[[n];ε] with non-negative eigenvalues. All that leads to formulate a similar long-time
approximation and to a closed approximate hierarchy, which yields an irreversible evo-
lution towards thermal equilibrium ( consistently, approximately, with Fluid Dynamics).

Project FIS2008-01323 ( Ministerio de Ciencia e Innovación, Spain) supports us.
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Reentrant behavior of effective attraction between
like-charged macroions immersed in electrolyte

solution
Ryo Akiyama, Ryo Sakata, and Yuji Ide

Department of Chemistry, Graduate School of Sciences, Kyushu Univ.
(rakiyama@chem.kyushu-univ.jp)

Strong effective attraction between like-charged macroions appears in electrolyte solution. The at-
traction between the monomers in DNA is experimentally measured[1,2]. The attraction depends on the
concentration of electrolyte. When the electrolyte concentration is low, the effective interaction between
like-charged macroions is repulsive. Addition of salt inverts the sign of the effective interaction. The dimer
of macroions is strongly stabilized when the charges of the macroions are enough large and the electrolyte
concentration is ∼ 1 mM. However the strong attraction disappears, when the electrolyte concentration
becomes higher than 0.1M. We studied this reentrant behavior on the basis of the HNC-OZ theory with
a simple model. The attraction is caused by the overlap of ionic clouds which surround the macroions.
This ionic "covalent" bond, namely shared-ion-bond, is similar to the molecular covalent bond consists
of electronic cloud. (See Fig. 1.) Moreover, the result s indicates that the role of co-ions is important in
disappearing the attraction. We will discuss the detail of our results and a model of molecular motor driven
by the growth of actin filament in neutrophil (a kind of white blood cells) in our presentation.

!
+

!+

FIGURE 1. Ionic "covalent" bond.

[1] Y. Murayama et al. Phys. Rev. Lett. 90, 018102 (2003).
[2] K. Besteman et al., Nature Phys. 3, 641 (2007).
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Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids.
Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles,
vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs).

Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work
by considering first the case when the distribution function does not depend on space (homogeneous case),
but only on time and the magnitude of the molecular velocity (isotropic collisional integral).

The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple di-
lute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying
the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic
Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-
dynamics or sociophysics.

The present work [1] aims to improve the deterministic method for solving homogenous isotropic
Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is
reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and
energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands
for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy
exactly the conservation laws at macroscopic level, which is particularly important for describing the late
dynamics in the relaxation towards the equilibrium).

[1] P. Asinari, accepted for publication in Comp. Phys. Comm., arXiv:1004.3491v1 [physics.comp-ph],
2010.

[2] V.V. Aristov, Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium
Flows, Kluwer Academic Publishers, 2001.



Effective dimension in flocking mechanisms
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Even in its minimal representation (Vicsek Model, VM [T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen
and O. Shochet. Phys. Rev. Lett. 75, 1226 (1995).]), the widespread phenomenon of flocking raises
intriguing questions to the statistical physicists. While the VM is very close to the better understood
XY Model because they share many symmetry properties, a major difference arises by the fact that the
former can sustain long-range order in two dimensions, while the latter can not. Aiming to contribute to
the understanding of this feature, by means of extensive numerical simulations of the VM, we study the
network structure of clusters showing that they can also sustain purely orientational, mean-field-like, long-
range order. We identify the reason of this capability with the key concept of “effective dimension.” In fact,
by analyzing the behavior of the average path length and the mean degree, we show that this dimension is
very close to four, which coincides with the upper critical dimension of the XY Model, where orientational
order is also of a mean-field nature. We expect that this methodology could be generalized to other types
of dynamical systems.



The Liouville equation and BBGKY hierarchy for a
stochastic particle system
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We consider the dynamics of stochastic system of particles moving according to Newton’s Laws of
Motion, with additional stochastic perturbations of position (qi) and momentum (pi) of each particle. We
assume that particles are interacting through smooth repulsive potential Φ, not admitting any collisions
between different particles. The system under consideration can be described by a system of equations
(i = 1, . . . ,N): {

dqi =
pi
m dt +ηi dwi,

d pi =−∑ j 6=i ∇Φ(qi−q j)dt +ξi dw̃i,

where wi and w̃i are independent standard Wiener processes in R3, ηi and ξi – constant real diagonal
matrices of dimension 3.
We establish a stochastic Liouville equation (the evolution equation for a density function of position the
system in the phase space) and a stochastic BBGKY hierarchy (the system of equations describing the
time evolution of density functions for arbitrary subsystems of particles) for this system.



To model kinetic description
V.V. Belyi
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A new form of the collision operator for a Boltzmann gas of hard spheres and Coulomb plasma
is proposed [1]. One-component and many-component systems are considered. The proposed collision
operator properly takes into account the relaxation of the first 13 hydrodynamic moments. Besides this, it
accounts for the non-diagonal component contribution in the quadratic approximation in the expansion of
the linearized collision operator with respect to the complete system of Hermite polynomials. It is shown
that for a system of charged particles with the Coulomb interaction potential, these contributions are
essential and lead to Spitzer corrections to the transport coefficients. An expression for the intensity of the
Langevin source in the kinetic equation is obtained in the same approximation. A new form of the model
collision operator for a Boltzmann gas of hard spheres is proposed. For a many-component system we
have reconstructed a non-linear model collision integral by using the linearized collision integral found.
Unlike previous ones, it does not contain complicated exponential dependence and avoids the coefficients
ambiguity in the many-component collision integral.

[1] V.V. Belyi, J. Stat. Mech: Theor. Exp., 6, P06001 (2009).



Experimental densities of binary mixtures: Acetic acid
with benzene at several temperatures

Georgiana Bolat, Daniel Sutiman, and Gabriela Lisa
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Protection, Mangeron Blvd., no. 71, Iasi, Romania, 700050

Hydrocarbons are the most commonly used chemicals in the hydrocarbon processing industries. The
knowledge of thermodynamic properties of various binary organic or inorganic mixtures is essential in
many practical aspects concerning the mass transport and fluid flow. Such properties are important from
the fundamental point of view to understand their mixing behaviour (molecular interactions), as well for
practical applications (e.g. in the petrochemical industry). The density of acetic acid-benzene mixtures at
several temperatures (T = 296.15, 302.15, 308.15, 314.15 and 319.15 K) were measured over the whole
composition range and atmospheric pressure, along with the physical-chemical properties of the pure
components (e.g. density, viscosity, refractive index at 298.15 K). The excess molar volumes at the above-
mentioned temperatures were calculated from experimental data and fitted by using a new polynomial
equation comparing the results with the known equation of Redlich-Kister. The excess volumes for acetic
acid with benzene were positive and increase with the temperature. Results were analyzed in terms of
molecular interactions. This research was financed by the postdoc grant PERFORM-ERA-ID 57649.



Enhanced memory performance thanks to neural
network assortativity
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The behaviour of many complex dynamical systems has been found to depend crucially on the
structure of the underlying networks of interactions. An intriguing feature of empirical networks is their
assortativity – i.e., the extent to which the degrees of neighbouring nodes are correlated. However, until
very recently it was difficult to take this property into account analytically, most work being exclusively
numerical. We get round this problem by considering ensembles of equally correlated graphs [1] and apply
this novel technique to the case of attractor neural networks. Assortativity turns out to be a key feature for
memory performance in these systems – so much so that for sufficiently correlated topologies the critical
temperature diverges. We predict that artificial and biological neural systems could significantly enhance
their robustness to noise by developing positive correlations [2].

[1] S. Johnson, J.J. Torres, J. Marro, and M.A. Muñoz, Phys. Rev. Lett. 104, 108702 (2010).
[2] S. de Franciscis, S. Johnson, and J.J. Torres, in preparation.



New insights in a 2-D hard disk system under a
temperature gradient
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Hard Disks system is a paradicmatic model well suited, numericaly, to test new approaches to nonequi-
librium fenomena, being also easy and fast to simulate due to efficient event driven algorithms present in
the literature. In this poster we study several properties of the model under a temperature gradient on the
stationary regime. In this situation the sistem has well defined gradients in temperatures and densities
allowing us to calculate experimentaly the thermal conductivity. We found this result compatible with the
Enskog expresion even for large gradients. We also check that Henderson’s state equation, although is an
expresion derived under equilibrium conditions, is valid in our system for a wide range of temperatures
gradients. We explain this fact showing that the system reach a local thermal equilibrium. Finaly we focus
on the role of fluctuations of the energy current finding good agreement with the, recently introduced,
Isometric Fluctuation Relation (IFR). We conclude that IFR also stands in our system, although it was
formulated from a much simpler case.



Automatic optimization of experiments with coupled
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As a step in our experimental study of the noise-enhanced propagation of a low-frequency periodic
signal through a chain of one-way coupled bistable oscillators—a mock-up of synaptic transmission
between neurons [1]—and exploiting an acquisition and control system recently developed by us [2],
we automatically optimize the units’ input parameters with the goal of achieving maximal coherence
between the last oscillator’s response and the input signal. The optimization is carried out by means of
a genetic algorithm, using as measures of input–output coherence either the Hamming distance or the
mutual information, and as input parameters the signal-to-noise ratio αi and the switching threshold βi
of each oscillator. The figure shows that in the uniform case (αi = α, βi = β , ∀i) the optimal setup is
basically the same, regardless of which coherence measure is employed.

Comparison between coherence measures for 2 bistable units.

[1] R. Perazzo, L. Romanelli, and R. R. Deza, Phys. Rev. E 61, R3287–R3290 (2000).
[2] M. F. Calabria, and R. R. Deza, Rev. Sci. Instr. 81, in press (2010).



Velocity-velocity correlation function for anomalous
diffusion
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Ceará, Brazil

In this work we used a previous theory [1,2,3] to explain and resolve a problem of diffusion studied by
Srokowski [4]. In order to do that, we have used a generalized formalism of Langevin equation to develop
a computational algorithm and treat the problem numerically. To confirm the result of the method, an
analytical alternative asymptotic method for long times was derived, and both results were compared
through the introduction of a time scaling factor. After all, it was presented a final characterization to
the anomalous diffusion through the calculation of some functions and parameters such as correlation
function, diffusion coefficient and mean square displacement. We show that for long times the diffusion
coefficient behaves as

lim
t→∞

D(t) =
1

K + ln(t)

Where K is a constant determined by the theory. The good agreement between theory and numerical
results, in the asymptotic limit is a prime result of our theory. Those results open the possibility of
applications in more complex systems such as dynamics of disordered spin systems [5] and anomalous
transport in cells [6]. As well the asymptotic method alow us to validate results for ergodicity [1,7,8], and
fluctuation dissipation theorem where the detail balance fails [9].

This work was supported by Brazilian Research Foundations: CAPES, CNPq, FINATEC, and FAPDF.
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Excess of low frequency vibrational modes, glass
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Using a repulsive soft potential, molecular dynamics (MD) at constant pressure in a monodispersive
glass and MD in a binary glass at constant volume, we are able to study the relationship between the
excess of low frequency vibrational modes (known as the boson peak), square mean displacement (SMD)
and glass transition temperature Tg. It is observed that the SMD is enhanced by such modes as predicted
using a harmonic Hamiltonian for metastable states. As a result, glasses lose mechanical stability at lower
temperatures than the corresponding crystal. We found that the average force is reduced in the glass due to
such excess of modes. For the binary binary glass, we are able to study the SMD in the inherent structures
(IE) over several temperatures below and around Tg. In this way, we can make the statistics of SMD over
diferent IE.

[1] G. G. Naumis, and H. M. Flores-Ruiz, Phys. Rev. B 78, 094203 (2008).
[2] H. M. Flores-Ruiz, and G. G. Naumis, J. Chem. Phys. 131, 154501 (2009).
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We analyze complex manuevering histories of ships obtained from training sessions on bridge simula-
tors.

Advanced ships are used in fields like offshore oil exploration: dive support vessels, supply vessels,
anchor handling vessels, tugs, cable layers, and multi-purpose vessels. Due to high demands from the
operations carried out, these ships need to have very high maneuverability. This is achieved through a
propulsion system with several thrusters, water jets, and rudders in addition to standard propellers. For
some operations, like subsea maintenance, it is crucial that the ship accurately keeps a fixed position.
Therefore, bridge systems usually incorporate equipment for Dynamic Positioning (DP).

DP is a method to keep ships and semi submersible rigs in a fixed position using the propulsion systems
instead of anchors. It may also be used for sailing a vessel from one position to another along a predefined
route. Like an autopilot on an airplane, DP may operate without human involvement. The method relies
on accurate determination of position from external reference systems like GPS, as well as a continuously
adjusted mathematical model of the ship and external forces from wind, waves and currents.

In a specific simulator exercise for offshore crews, a ship is to be taken up to an installation consisting
of three nearby oil platforms connected by bridges (Frigg field, North Sea), where a subsea inspection is
to be carried out. Due to the many degrees of freedom during maneuvering, including partly or full use
of DP, the chosen routes vary significantly. In this poster we report preliminary results on representations
of the complex maneuvering histories; representations that allow comparison between crew groups, and,
possibly, sorting of the different strategic choices behind.



Unfying approach for fluctuation theorems from joint
probability distributions
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Any decomposition of the total trajectory entropy production for markovian systems have a joint
probability distribution satisfying a generalized detailed fluctuation theorem, without relying in dual
probability distributions, when all the contributing terms are odd with respect to time reversal. We show
that several fluctuation theorems for perturbed non-equilibrium steady states are unified and arise as
simple particular cases of this general result. In particular, we show that the joint probability distribution
of the system and reservoir trajectory entropies satisfy a detailed fluctuation theorem valid for all times
although each contribution does not do it separately

[1] C. Bustamante, J.Liphardt, and F. Ritort, Physics Today, 58 43 (2005).
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Thermally activated escape over potential barriers is addressed for systems driven out of equilibrium by
time-dependent forces, temperatures, or dissipation coefficients of rather general type. Particular examples
are periodic perturbations, single pulses, and the initial convergence towards Kramers rate in a time-
independent set up. The general problem is treated within one common, unifying path-integral approach
in the simplest case of an overdamped, one-dimensional model dynamics [1]. As an application, the
following quite astonishing effect is demonstrated: For a suitably chosen, but still quite simple static
potential landscape, the net escape rate may be substantially reduced by temporally increasing the
temperature above its unperturbed, constant level [2].

[1] S. Getfert and P. Reimann, Chem. Phys., in press.
[2] S. Getfert and P. Reimann, Phys. Rev. E 80, 030101(R) (2009).
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Most of the theories and studies of crystallization and crystal nucleation consider the boundaries be-
tween the crystallites and the fluid as smooth. The crystallites are the small clusters of atoms, molecules
and/or particles with the symmetry of the crystal lattice that, with a slight chance of success, would grow
to form the crystal grains. In fact, in the classical nucleation theory, the crystallites are assumed to have
a spherical shape (circular in 2D). As far are we are aware, there is only one experimental work [1] on
colloidal crystals that founds rough surfaces for the crystallites and for the crystal grains.
Motivated by this work, we performed large Kinetic Monte Carlo simulations in 2D, that would follow
the eventual growing of a few crystallites to form the crystal grains. The used potential has, besides the
impenetrable hard core, a soft core followed by a potential well. We found that indeed the crystallites
have a fractal boundary, whose value we were able to obtain. See the figure below of a typical isolated
crystallite. We were also able to obtain the critical crystallite size, measured by its number of particles,
Nc, and not by any critical radius. The boundaries of the crystals above Nc also have a fractal structure
but of a lower value, closer to one. Finally, we also obtained the line tension between the crystallites and
the surrounding fluid, as function of temperature and particle diameter, as well as the chemical potential
difference between these two phases.
In the URL: www.fis.unam.mx/∼agus/ there are posted two movies that can be downloaded: (1)
2D_crystal_nucleation.mp4, and (2) 2D_crystal_growth.mp4, that illustrate the crystal nucleation and its
further growth.

[1] U. Gasser et al., Science 292, 258 (2001).
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One can drive a system away from equilibrium by brining it in contact with reservoirs at a different
temperature or chemical potential; as a result, heat or particle currents will develop. Recently, the
interest in the fluctuations of these currents has increased considerably, both from a theoretical and an
experimental point of view.
We studied current fluctuations in the Totally Asymmetric Simple Exclusion Process (TASEP), which
consists of a one-dimensional lattice in which each site is either empty or occupied by at most one
particle. The particles enter the lattice with rate α , move to the right in the bulk of the lattice with rate 1,
and exit the lattice with rate β , provided these moves are allowed by the exclusion statistics. In our work,
the current is then taken to be equal to the total number of particles that has passed through all bonds up
to a certain time.
Using a powerful numerically exact technique called the Density Matrix Renormalization Group
(DMRG), we were able to obtain results for the first three cumulants of the current and their time
dependence in the various phases of the TASEP (determined by the values of α and β ). Furthermore,
by studying ensenbles of histories weighted by an exponential function of the current, we found that the
TASEP displays a space-time phase transition.
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After a brief review of recent modeling of growth during Pulsed Laser Deposition (PLD), we present
the study of a role of adatom interactions on growth of surface islands during PLD in submonolayer
regime. We employ kinetic Monte Carlo simulation with reversible growth, see e.g. [1]. Attachment of
monomers to islands is irreversible at low temperatures while it becomes reversible at higher temperatures,
small islands become unstable with growing temperature. In the case of real system we have to take
into account not only diffusion of monomers but also diffusivity of dimers and larger clusters and theirs
stability.

Our new code allows us to study processes which proceed on different time scales which are typical in
PLD experiments: fast deposition (on scale order of 10−5 s) during individual pulses, and relaxation of a
system between pulses (on scale order of 0.1 s). We calculate and compare the temperature dependence of
island density for two modes pulsed deposition and continuous Molecular Beam Epitaxy (MBE) growth.
The island densities in PLD mode are substantially higher than in MBE mode, provided the temperature
is sufficiently high. In the case of PLD, we observe anomalous temperature dependence of the island
density in a certain temperature interval. It is due to the interplay between a cluster decay time and an
interval between pulses. The cluster decay time depends not only on temperature but also on clusters size
and shape. The anomalous behavior is caused by the temperature limited stability of the closed–compact
clusters.

This scenario was revealed for the simplified model with only nearest–neighbor interaction. Now, it is
elucidated further and we also include interaction to second and third neighbors. We analyze role of the
closed–compact surface island in kinetics of both growth modes. Furthermore, by varying interactions
energies, diffusion barrier and parameters of deposition, we compare results of simulations with the PLD
experiment for Fe/Mo system [2].

[1] M. Kotrla, Comp. Phys. Comm. 97, 82-100 (1996).
[2] P. O. Jubert, O. Fruchart, and C. Mayer, Surf. Sci. 522, 8 (2003).
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Large fluctuations, play an important role in many fields of science as they crucially determine the
fate of a system. The statistics of these fluctuations encodes essential information on the physics of the
system at hand. This is particularly important in systems far from equilibrium, where no general theory
exists up to date capable of predicting macroscopic and fluctuating behavior in terms of microscopic
physics.The study of fluctuations far from equilibrium may open the door to such general theory. In this
work we follow this path by studying the fluctuations of the dissipated energy in an oversimplified model
of a granular system. The model, first proposed and solved by Levanony and Levine [1], is a simple one
dimensional diffusive lattice system which includes energy dissipation as a main ingredient. When subject
to boundary heat baths, the system reaches an steady state characterized by a highly nonlinear temperature
profile and a nonzero average energy dissipation. For long but finite times, the time-averaged dissipated
energy fluctuates, obeying a large deviation principle. We study the large deviation function (LDF) of the
dissipated energy by means of advanced Monte Carlo techniques [2], arriving to the following results: (i)
the LDF of the dissipated energy has only a positive branch, meaning that for long times only positive
dissipation is expected, (ii) as a result of microscopic time-irreversibility, the LDF does not obeys the
Gallavotti-Cohen fluctuation theorem, (iii) the LDF is Gaussian around the average dissipation, but non-
Gaussian, asymmetric tails quickly develop away from the average, and (iv) the granular system adopts
a precise optimal profile in order to facilitate a given dissipation fluctuation, different from the steady
profile. We compare our numerical results with predictions based on hydrodynamic fluctuation theory [3],
finding good agreement.

[1] D. Levanony and D. Levine, Phys. Rev. E 73 , 055102 (2006).
[2] C. Giardina, J. Kurchan, and L. Peliti, Phys. Rev. Lett. 96, 120603 (2006).
[3] T. Bodineau and M. Lagouge. J. Stat. Phys. 139 , 201 (2010).
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The possible creation of architectures of quantum cellular automata formed by simple molecules opens
a very promising and interesting area of research due to the possibility of going beyond the current limits of
miniaturization and integration of devices. In this research we theoretically study the electronic properties
of a quan- tum dot array in graphene nanoribbons and in an array of molecules with graphane structures.
The role of quantum dots in the ribbons and in the mole- cules is played by oxide reduction centers that
can trap or release electrons. With the knowledge about these properties we design cellular automata
archi- tectures with nanoribbons and molecular arrays, with this it will be feasible to store and process
logic information at room temperature. The stability of the proposed graphene structures are studied
using quan- tum methods of geometric optimization [1]. The electronic properties of the nanoribbons are
obtained from first-principle calculations based on pseudo- potentials by using the generalized gradient
approximation (GGA) of Perdew- Burke-Ernzerhof [2-3]. With the parameters obtained from the study of
the electronic properties of the cells that make up the automata, we can make a simulation of the dynamical
response of the system. To do this, we use a set of accelerated algorithms for discrete systems [4] based on
the Glauber dynamic [5]. Our results show that the studied system can be scaled so that the propagation
of digital information throughout the automata is possible at room temperature.

[1] P. Csaszar and P. Pulay, J. Mol. Struct.:THEOCHEM 114, 31 (1984).
[2] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[3] http://www.openmx-square.org
[4] W. Krauth, Statistical Mechanics: Algorithms and Computations, Oxford University Press, New

York, 2006.
[5] R. J. Glauber, J. Math. Phys. (Cambridge, Mass.) 4, 294 (1963).
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Gravitational lenses are a spectacular astrophysical phenomenon, a cosmic mirage caused by the
gravitational deflection of light in which multiple images of a same background object can be seen. Their
beauty is only exceeded by their usefulness, as the gravitational lens effect is a direct probe of the total
mass of the deflecting object. Furthermore, since the image configuration arising from the gravitational
lens effect depends on the exact gravitational potential of the deflector, it even holds the promise of
learning about the distribution of the mass. In this presentation, a method for extracting the information
encoded in the images and reconstructing the mass distribution is presented. Being a non-parametric
method, it avoids making a priori assumptions about the shape of the mass distribution. At the core of the
procedure lies a genetic algorithm, an optimization strategy inspired by Darwin’s principle of “survival
of the fittest”. One only needs to specify a criterion to decide if one particular trial solution is deemed
better than another, and the genetic algorithm will “breed” appropriate solutions to the problem. In a
similar way, one can create a multi-objective genetic algorithm, capable of optimizing several fitness
criteria at the same time. This provides a very flexible way to incorporate all the available information in
the gravitational lens system: not only the positions and shapes of the multiple images are used, but also
the so-called “null space”, i.e. the area in which no such images can be seen. The effectiveness of this
approach is illustrated using simulated data, which allows one to compare the reconstruction to the true
mass distribution.
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As has been done for the treatment of diluted gases, kinetic methods are formulated for the study
of unidirectional freeway traffic. Fluid dynamic models obtained from kinetic equations have inherent
restrictions, the principal one is the restriction to the low density regime. Macroscopic models obtained
from kinetic equations tends to selfrestrict to this regime [1] and makes impossible to observe the medium
density region. In this work, we present some results heading to improve this model and extend the
observable region. Now, we are presenting a fluid dynamic model for aggressive drivers [2] obtained from
kinetic assumptions to extend the model to the medium density region in order to study synchronization
phenomena which is a very interesting transition phase between free flow and traffic jams. We are
changing the constant variance prefactor condition imposed before [1] by a variance prefactor density
dependent, the numerical solution of the model is presented, analyzed and contrasted with the previous
one. We are also comparing our results with heuristic macroscopic models [3] and real traffic observations.

[1] R. M. Velasco and W. Marques, Jr., Phys. Rev. E 72, 046102 (2005).
[2] A. R. Méndez and R. M. Velasco, J. Non-Newtonian Fluid. Mech., (2010) (accepted).
[3] D. Helbing, Phys. Rev E 51, 3164-3169 (1995).
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Let (X , f ) be a dynamical system, with X a compact metric space and f : X→ X a continuous map. For

any x ∈ X , let us consider the empirical measures En(x) = 1
n

n−1
∑

i=0
δ f i(x) ⊂M(X), where δ is the Dirac point

mass measure. The limit set of the sequence {En(x)} will be denoted by V (x). A particularly interesting
case is when V (x) = {µ} , i.e. the points for which the time-average along their orbits of any continuous
potential ψ agrees with the average of ψ with respect to µ. This kind of points are called generic for the
measure µ and let us denote Gµ = {x : V (x) = {µ}}. A measure µ is called a physical measure if there is a
Lebesgue measure m such that m(Gµ)> 0. In the case of considering C2 -maps f : M→M with a negative
Lyapunov exponent, where M is a compact Riemannian manifold, the Sinai-Ruelle-Bowen measures
(SRB-measures) are physical measures. In the context of Lattice Statistical Mechanics the scheme is
the following: the phase space X is a subset of the space

{
x : x = (xi)i∈zd ,xi ∈Ω = {1,2, · · · ,k}

}
, i.e.

a space of configurations with spin Ω and sites in the lattice L = Zd , the dynamics are given by the

shift σ (x)i = xi+d , for any i ∈ Zd and the measures (states) are En(x) = 1
∆n

n−1
∑

i=0
δ f i(x), where ∆n is the

volume of the lattice [−n,n]d . The goal is to find an expression for PGµ
(ψ) , the topological pressure

for the set Gµ of the potential ψ. Our analysis is more general, in the sense that we obtain a variational
expression for sets GK = {x : V (x) = K}, with K a compact set of measures in X instead of working just
in Gµ The condition imposed on the dynamical system is the so called almost property product, which is
weaker than specification. Equilibrium case is when the dynamics have the properties of expansiveness
and specification. This work generalizes previous results obtained for ψ ≡ 0, i.e. for the topological
entropy, (C.E. Pfister and W.G. Sullivan, Ergod. Th. and Dynam. Sys. 27, 929-956 (2007)) and for the
pressure of potentials ψ,but with specification (D. Thompson, J. London Math. Soc. 80, 585-602 (2009)).
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Classical statistical thermodynamics is one of the oldest, most well-established physical theories and
its basis and results have not been challenged within its domain since the time of Boltzmann. Special
relativity, however, introduces some constraints as well as ambiguities into such a theory. For example,
the cornerstone of classical statistical mechanics, the Maxwell-Boltzmann (MB) distribution does not
respect the maximal velocity of light, the cornerstone of special relativity. Additionally, the Lorentz
transformation of temperature, i.e. how a moving body’s temperature compares to its rest frame value,
has long caused controversies. Special relativity also introduces a new concept of proper time, which
could potentially affect fundamental concepts of ergodicity and time-averaging in thermodynamics.

In this work, we propose a model of a relativistic hard-sphere gas, and via molecular dynamics
simulations, investigate all the above issues. In particular we show that the so-called Jüttner distribution
is the correct relativistic generalization of the MB distribution. Introducing proper time averaging simply
rescales such distribution by similar energy factor γ . We also show that temperature is best understood
as an invariant quantity, i.e. temperature does not change under the motion of inertial frames, and is
not affected by time reparametrization. Additionally, we have studied this model under a temperature
gradient and have shown that the model satisfies the minimal ingredients to study nonequilibrium transport
properties, i.e. the existence of a non-equilibrium steady state and local thermal equilibrium. This will
allow us to study generalizations of transport properties to relativistic regimes.

[1] A. Montakhab, M. Ghodrat, and M. Barati, Phys. Rev. E 79, 031124 (2009).
[2] M. Ghodrat and A. Montakhab, Phys. Rev. E 82, 011110 (2010).
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A model of noninteracting classical spins in a time-dependent rotating magnetic field, described by the
Hamiltonian of the form

H = −−→h (t) ·
N

∑
i=1

−→s i

= −hz

N

∑
i=1

sz
i −h0

N

∑
i=1

(sx
i cosωt− sy

i sinωt)

is investigated. The nonequilibrium magnetization, equal-time total spin correlation functions, time-
displaced total spin correlation functions, and the energy are exactly calculated to see their dependence on
the magnitude of a transverse rotating magnetic field and a rotating angular frequency. The time-displaced
correlation function shows nonstationarity as expected. Even for very small rotating fields, compared to a
static field along the z-axis, all the nonequilibrium quantities show remarkable increases in the oscillation
amplitudes at the resonance frequency. However, due to competition between the static field and the
rotating field, the oscillation amplitude increases monotonically for large rotating fields as we increase the
angular frequency beyond the resonance angular frequency.
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We consider the Eigen quasispecies model with a dynamic environment. For an environment with
sharp-peak fitness in which the most-fit sequence moves by k spin-flips each period T we find an
asymptotic stationary state in which the quasispecies population changes regularly according to the regular
environmental change. From this stationary state we estimate the maximum and the minimum mutation
rates for a quasispecies to survive under the changing environment and calculate the optimum mutation
rate that maximizes the population growth. Interestingly we find that the optimum mutation rate in the
Eigen model is lower than that in the Crow-Kimura model, and at their optimum mutation rates the
corresponding mean fitness in the Eigen model is lower than that in the Crow-Kimura model, suggesting
that the mutation process which occurs in parallel to the replication process as in the Crow-Kimura model
gives an adaptive advantage under changing environment.

[1] M. Ancliff and J.-M. Park, Phys. Rev. E 80, 061910 (2009).
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In this work we study numerically and analytically current fluctuations in the two-dimensional Kipnis-
Marchioro-Presutti (KMP) model of heat conduction. For that purpose, we use a recently introduced
algorithm which allows the direct evaluation of large deviations functions. We compare our results with
predictions based on the Hydrodynamic Fluctuation Theory (HFT) of Bertini and coworkers, finding very
good agreement in a wide interval of current fluctuations. We also verify the existence of a well-defined
temperature profile associated to a given current fluctuation which depends exclusively on the magnitude
of the current vector, not on its orientation. This confirms the recently introduced Isometric Fluctuation
Relation (IFR), which results from the time-reversibility of the dynamics, and includes as a particular
instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective
on the high level of symmetry imposed by timereversibility on the statistics of nonequilibrium fluctuations.
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(1) Faculty of Mathematics and Physics, Charles University, Prague
(2) Institute of Physics AS CR, Prague

(pesek@fzu.cz, http://www.fzu.cz/∼netocny)

A basic difficulty in measuring and computing the energy exchange between a system, its thermal
environment, and time-dependent external fields is the divergence of energy flows in the quasistatic limit.
This problem is overcome by properly constructing their finite or ‘excess’ parts [1,2]. It has been recently
proposed that for weakly equilibrium processes the excess heat (approximately) satisfies thermodynamic
relations extending those for equilibrium processes, with a generalized entropy function [2].

In order to systematically analyze these propositions, we first derive nonperturbative formulas for
quasistatic excess path quantities in markovian systems, and we propose a method how to possibly access
them experimentally. By extending the method of [3], we perturbatively construct the excess work and
heat for both over- and under-damped diffusions driven by small nongradient forces. It is shown that the
excess heat always satisfies the (generalized) Clausius relation up to the first order in nonequilibrium
driving, whereas this is no longer true in general when beyond the leading order [4]. In the latter case,
the excess path quantities do not derive from (generalized) thermodynamic potentials but they require new
nonpotential corrections, as demonstrated numerically. We also discuss the possible meaning of those new
corrections.

[1] D. Ruelle, Proc. Nat. Acad. Sci. USA 18, 3054 (2003).
[2] T. S. Komatsu, N. Nakagawa, S. Sasa, and H. Tasaki, Phys. Rev. Lett. 100, 230602 (2008).
[3] C. Maes and K. Netočný, J. Math. Phys. 51, 015219 (2010).
[4] J. Pešek and K. Netočný, in preparation.
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In this work we study the critical equilibrium properties and the off-equilibrium dynamics of an Ising
system with non additive interactions. The traditional assumption of additivity is modified for one more
general, where the energy of exchange J between two spins depends on their neighbourhood. First, for
several non additive situations, we calculated the critical temperature Tc by using paralell tempering
Monte Carlo in the canonical assemble and standard finite-size scaling techniques. Then, we carry out a
quench from infinite temperature to a low temperature below Tc (off-equilibrium dynamics protocol) and
we compute two-time correlation and response functions. We find a violation of fluctuation-dissipation
theorem like coarsening systems. All this was done for several waiting time and several non additive
situations. Finally, we analyze the scaling of correlation and response functions for a critical quench from
infinite temperature.



Geometric aspects of Schnakenberg’s network theory
of macroscopic nonequilibrium observables
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Schnakenberg’s network theory deals with macroscopic thermodynamical observables (forces, currents
and entropy production) associated to the steady states of diffusions on generic graphs. Using results from
graph theory and from the theory of discrete differential forms we recast Schnakenberg’s treatment in the
form of a simple discrete gauge theory, which allows to interpret macroscopic forces as the Wilson loops
of a real connection. We discuss the geometric properties of transient states, showing that heat fluxes allow
for a notion of duality of macroscopic observables which interchanges the role of the environment and
that of the system. We discuss possible generalizations to less trivial gauge groups and the relevance for
nonequilibrium fluctuation theorems.

Based on work in collaboration with professor A. Maritan, University of Padua, to be published.

[1] J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).
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We use two counter propagating laser beams to create a dual trap optical tweezers setup which is free
from cross interference between the beams and provides great instrumental stability. This setup works by
direct measurement of light momentum, separately for each trap, and is based on the Minitweezers design
[1]. The dual trap setup has many applications: it can be used to study the force-dependent unfolding
kinetics of single molecules and to address fundamental problems in nonequilibrium thermodynamics of
small systems [2]. Recent progress in statistical physics has shown the importance of considering large
energy deviations in the beahvior of systems that are driven out-of-equilibrium by time-dependent forces.
Prominent examples are nonequilibrium work relations (e.g. the Jarzynski equality [3]) and fluctuation
theorems. By repeated measurement of the irreversible work the Jarzynski equality allows us to recover
the free energy difference between two thermodynamic states, ∆F , by taking exponential averages of the
work W done by the external agent on the system, e−β∆F =

〈
e−βW

〉
, where the average in the rhs is taken

over an infinite number of experiments. A crucial aspect of nonequilibrium work relations and fluctuation
theorems in general is their non-invariance under Galilean transformations. This implies that mechanical
work must be measured in the proper reference that is solidary with the thermal bath for these relations
to hold. We have carried out repeated mechanical unfolding/folding cycles on short (20 bp) DNA hairpins
and measured work distributions in the dual-trap setup along this process. Our aim is to check under
which experimental conditions we can discern the non-invariance property of fluctuation relations thereby
establishing the correct operative definition of the work in our setting. This study may help to identify and
quantify potential violations of the fluctuation relations.

[1] C. Bustamante, S.B. Smith, 2006 US PATENT, 7, 133, 132, B2.
[2] F. Ritort, Adv. Chem. Phys. 137, 31 (2008).
[3] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
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We have studied the dynamics of electron currents in graphene subject to a magnetic field. Several
types of periodicity must be distinguished if the wave packets representing the electrons are sufficiently
localized around some large enough central quantum number n0. In this case, currents initially evolve
quasiclassically and oscillate with a period TCl, but at later times the wave packet eventually spreads,
leading to the collapse of the classical oscillations. At times that are multiple of TR, or rational fractions
of TR, the wave packet (almost) regains its initial form, and the electron current its initial amplitude.
For this to occur, the presence of a quantizing magnetic field is necessary, for if B = 0 the spectrum is
continuous which rules out the possibility of revivals. Associated with the revival of the wave packet the
quasiclassical oscillatory motion of the currents resumes. Additionally, when both positive and negative
Landau levels are populated, permanent ZB oscillations are observed, in agreement with previous results.
We relate the temporal scales of these three effects and discuss to what extent these results hold for real
graphene samples.

[1] E. Romera and F. de los Santos, Phys. Rev. A 78, 013837 (2008).



The non-equilibrium and energetic cost of sensory
adaptation

G. Lan, Pablo Sartori, and Y. Tu

IBM T.J. Watson Research Center, Physics Department

Biological sensory systems respond to external signals in short time and adapt to permanent environ-
mental changes over a longer timescale to maintain high sensitivity in widely varying environments. In
this work we have shown how all adaptation dynamics are intrinsically non-equilibrium and free energy
is dissipated. We show that the dissipated energy is utilized to maintain adaptation accuracy. A univer-
sal relation between the energy dissipation and the optimum adaptation accuracy is established by both
a general continuum model and a discrete model i n the specific case of the well-known E. coli chemo-
sensory adaptation. Our study suggests that cellular level adaptations are fueled by hydrolysis of high
energy biomolecules, such as ATP.

The relevance of this work lies on linking the functionality of a biological system (sensory adaptation)
with a concept rooted in statistical physics (energy dissipation), by a mathematical law. This has been
made possible by identifying a general sensory system with a non-equilibrium steady state (a stationary
state in which the probability current is not zero, but its divergence is, see figure), and then numerically
and analytically solving the Fokker-Planck and Master Equations which describe the sensory adaptive
system. The application of our general results to the case of E. Coli has shed light on why this system
uses the high energy SAM molecule to perform adaptation, since using the more common ATP would not
suffice to obtain the required adaptation accuracy.

[1] D.E. Koshland, A. Goldbeter, and J.B. Stock, Science 217, 220 (1982).
[2] Y. Tu, Proc. Natl. Acad. Sci. U.S.A. 105, 11737 (2008).
[3] Y. Tu, T.S. Shimizu, and H.C. Berg, Proc. Natl. Acad. Sci. U.S.A. 105, 14855 (2008).
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France
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According to thermodynamics, the specific heat of Boltzmannian short-range interacting systems is a
positive quantity. Less intuitive properties are in- stead displayed by systems characterized by long-range
interactions. In that case, the sign of specific heat depends on the considered statistical ensemble: negative
specific heat can be found in isolated systems, which are studied in the framework of the microcanonical
ensemble; on the other hand, it is generally recognized that a positive specific heat should always be
measured in systems in contact with a thermal bath, for which the canonical ensemble is the appropriate
one. We demonstrate that the latter assumption is not generally true: one can in principle measure negative
specific heat also in the canonical ensemble if the system under scrutiny is non-Boltzmannian and/or our-
of-equilibrium
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The Sznajd model is a Potts-like model that has been studied in the context of sociophysics [1,2] (where
spins are interpreted as opinions). In a recent work [3], we generalized the Sznajd model to include
assymetric interactions between the spins (interpreted as biases towards opinions) and used dynamical
systems techniques to tackle its mean-field version, given by the flow:

η̇σ =
M

∑
σ ′=1

ησ ησ ′(ησ pσ ′→σ −ησ ′ pσ→σ ′).

Where ησ is the proportion of agents with opinion (spin) σ , M is the number of opinions and pσ→σ ′ is
the probability weight for an agent with opinion σ being convinced by another agent with opinion σ ′.

We made Monte Carlo simulations of the model in a complex network (using Barabási-Albert networks
[4]) and they displayed the same attractors than the mean-field. Using linear stability analysis, we were
able to determine the mean-field attractor structure analytically and to show that it has connections with
well known graph theory problems (maximal independent sets and positive fluxes in directed graphs).

Our dynamical systems approach is quite simple and can be used also in other models, like the voter
model.

[1] K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C, 11(6), 1157-1165 (2000).
[2] A. T. Bernardes, D. Stauffer, and J. Kertész, Eur. Phys. J. B, 25, 123-127 (2002).
[3] A. M. Timpanaro and C. P. C. Prado, Phys. Rev. E, 80(2), 021119 (2009).
[4] A. L. Barabási and R. Albert, Science 286(5439), 509-512 (1999).
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mechanical work through solvation change
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Many systems in which the hydrolysis of ATP is finally converted into the mechanical work are
known (e.g. actin-myosin motor protein system). It seems that there are various types of the conversion
mechanism. In this work, we examined a possibility of conversion from chemical reaction into mechanical
work due to solvation change around the reaction site by using the molecular dynamics simulation (MD)
with explicit solvent model.

In our model, solvent molecules, S, and a motor (colloidal particle), M, are treated as Lennard-
Jones (LJ) particles. Effect of chemical reaction is taken in the system as the change of LJ potential
parameter ε between S and M, however the reaction site is restricted on the M. The parameter ε is
switched to ε ′=1000 ε during the reaction (∆t), Fig. (a).

Averaged displacement of the motor M is shown in Fig. (b). The motor M is driven by this
reaction model, however the direction and efficiency are dependent on the reaction time ∆t and the
thermodynamic state of the solvent.
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