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Fluctuations arise universally in nature as a reflection of the
discrete microscopic world at the macroscopic level. Despite their
apparent noisy origin, fluctuations encode fundamental aspects of
the physics of the system at hand, crucial to understand irreversi-
bility and nonequilibrium behavior. To sustain a given fluctuation, a
system traverses a precise optimal path in phase space. Here we
show that by demanding invariance of optimal paths under sym-
metry transformations, new and general fluctuation relations valid
arbitrarily far from equilibrium are unveiled. This opens an unex-
plored route toward a deeper understanding of nonequilibrium
physics by bringing symmetry principles to the realm of fluctua-
tions. We illustrate this concept studying symmetries of the current
distribution out of equilibrium. In particular we derive an isometric
fluctuation relation that links in a strikingly simple manner the
probabilities of any pair of isometric current fluctuations. This re-
lation, which results from the time-reversibility of the dynamics,
includes as a particular instance the Gallavotti–Cohen fluctuation
theorem in this context but adds a completely new perspective
on the high level of symmetry imposed by time-reversibility on
the statistics of nonequilibrium fluctuations. The new symmetry
implies remarkable hierarchies of equations for the current cumu-
lants and the nonlinear response coefficients, going far beyond
Onsager’s reciprocity relations and Green–Kubo formulas. We
confirm the validity of the new symmetry relation in extensive
numerical simulations, and suggest that the idea of symmetry in
fluctuations as invariance of optimal paths has far-reaching conse-
quences in diverse fields.

large deviations ∣ rare events ∣ hydrodynamics ∣ transport ∣
entropy production

Large fluctuations, though rare, play an important role in many
fields of science as they crucially determine the fate of a sys-

tem (1). Examples range from chemical reaction kinetics or the
escape of metastable electrons in nanoelectronic devices to con-
formational changes in proteins, mutations in DNA, and nuclea-
tion events in the primordial universe. Remarkably, the statistics
of these large fluctuations contains deep information on the phy-
sics of the system of interest (2, 3). This is particularly important
for systems far from equilibrium, where no general theory exists
up to date capable of predicting macroscopic and fluctuating
behavior in terms of microscopic physics, in a way similar to equi-
librium statistical physics. The consensus is that the study of fluc-
tuations out of equilibrium may open the door to such general
theory. As most nonequilibrium systems are characterized by
currents of locally conserved observables, understanding current
statistics in terms of microscopic dynamics has become one of
the main objectives of nonequilibrium statistical physics (2–17).
Pursuing this line of research is both of fundamental as well as
practical importance. At the theoretical level, the function con-
trolling current fluctuations can be identified as the nonequili-
brium analog of the free-energy functional in equilibrium
systems (2–5), from which macroscopic properties of a nonequi-
librium system can be obtained (including its most prominent
features, as for instance the ubiquitous long range correlations
(18, 19), etc.) On the other hand, the physics of most modern
mesoscopic devices is characterized by large fluctuations that de-

termine their behavior and function. In this way understanding
current statistics in these systems is of great practical significance.

Despite the considerable interest and efforts on these issues,
exact and general results valid arbitrarily far from equilibrium
are still very scarce. The reason is that, whereas in equilibrium
phenomena dynamics is irrelevant and the Gibbs distribution
provides all the necessary information, in nonequilibrium physics
dynamics plays a dominant role, even in the simplest situation of a
nonequilibrium steady state (2–5). However, there is a remark-
able exception to this absence of general results that has triggered
an important surge in activity since its formulation in the mid
nineties. This is the fluctuation theorem, first discussed in the
context of simulations of sheared fluids (14), and formulated
rigorously by Gallavotti and Cohen under very general assump-
tions (15). This theorem, which implies a relation between the
probabilities of a given current fluctuation and the inverse event,
is a deep statement on the subtle consequences of time-reversal
symmetry of microscopic dynamics at the macroscopic, irreversi-
ble level. Particularly important here is the observation that
symmetries are reflected at the fluctuating macroscopic level ar-
bitrarily far from equilibrium. Inspired by this illuminating result,
we explore in this paper the behavior of the current distribution
under symmetry transformations (20). Key to our analysis is the
observation that, to facilitate a given current fluctuation, the sys-
tem traverses a well-defined optimal path in phase space (2–8,
21). This path is, under very general conditions, invariant under
certain symmetry transformations on the current. Using this in-
variance we show that for d-dimensional, time-reversible systems
described by a locally conserved field and possibly subject to a
boundary-induced gradient and an external field E, the probabil-
ity PτðJÞ of observing a current J averaged over a long time τ
obeys an isometric fluctuation relation (IFR)

lim
τ→∞

1

τ
ln
�
PτðJÞ
PτðJ0Þ

�
¼ ϵ · ðJ − J0Þ; [1]

for any pair of isometric current vectors, jJj ¼ jJ0j. Here ϵ ¼ εþ
E is a constant vector directly related to the rate of entropy
production in the system, which depends on the boundary baths
via ε (see below).

The above equation, which includes as a particular case the
Gallavotti–Cohen (GC) result for J0 ¼ −J, relates in a strikingly
simple manner the probability of a given fluctuation J with the
likelihood of any other current fluctuation on the d-dimensional
hypersphere of radius jJj, see Fig. 1, projecting a complex d-di-
mensional problem onto a much simpler one-dimensional theory.
Unlike the GC relation, which is a nondifferentiable symmetry
involving the inversion of the current sign, J → −J, Eq. 1 is valid
for arbitrary changes in orientation of the current vector. This
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makes the experimental test of the above relation a feasible pro-
blem, as data for current fluctuations involving different orienta-
tions around the average can be gathered with enough statistics
to ensure experimental accuracy. It is also important to notice
that the isometric fluctuation relation is valid for arbitrarily large
fluctuations; i.e., even for the non-Gaussian far tails of current
distribution. We confirm here the validity of this symmetry in ex-
tensive numerical simulations of two different nonequilibrium
systems: (i) A simple and very general lattice model of energy
diffusion (7, 8, 22), and (ii) a hard-disk fluid in a temperature
gradient (23).

Results
The Isometric Fluctuation RelationOur starting point is a continuity
equation that describes the macroscopic evolution of a wide class
of systems characterized by a locally conserved magnitude (e.g.,
energy, particle density, momentum, etc.)

∂tρðr;tÞ ¼ −∇ · ðQE½ρðr;tÞ� þ ξðr;tÞÞ: [2]

Here ρðr;tÞ is the density field, jðr;tÞ≡QE½ρðr;tÞ� þ ξðr;tÞ is the
fluctuating current, with local average QE½ρðr;tÞ�, and ξðr;tÞ is a
Gaussian white noise characterized by a variance (or mobility)
σ½ρðr;tÞ�. This (conserved) noise term accounts for microscopic
random fluctuations at the macroscopic level. Notice that the
current functional includes in general the effect of a conservative
external field, QE½ρðr;tÞ� ¼ Q½ρðr;tÞ� þ σ½ρðr;tÞ�E. Examples of
systems described by Eq. 2 range from diffusive systems (2–9),
where Q½ρðr;tÞ� is given by Fourier’s (or equivalently Fick’s)
law, Q½ρðr;tÞ� ¼ −D½ρ�∇ ρðr;tÞ, to most interacting-particle fluids
(24, 25), characterized by a Ginzburg–Landau-type theory for
the locally conserved particle density. To completely define the
problem, the above evolution equation must be supplemented
with appropriate boundary conditions, which may include an ex-
ternal gradient.

We are interested in the probability PτðJÞ of observing a space-
and time-averaged empirical current J, defined as

J ¼ 1

τ

Z
τ

0

dt
Z

drjðr;tÞ: [3]

This probability obeys a large-deviation principle for long times
(26, 27), PτðJÞ ∼ exp½þτLdGðJÞ�, where L is the system linear size
and GðJÞ ≤ 0 is the current large-deviation function (LDF),
meaning that current fluctuations away from the average are

exponentially unlikely in time. According to hydrodynamic fluc-
tuation theory (2, 4–6),

GðJÞ ¼ −min
ρðrÞ

Z ðJ −QE½ρðrÞ�Þ2
2σ½ρðrÞ� dr; [4]

which expresses the locally-Gaussian nature of fluctuations (6–8).
The optimal profile ρ0ðr; JÞ solution of the above variational pro-
blem can be interpreted as the density profile the system adopts
to facilitate a current fluctuation J (7, 8, 21). To derive Eq. 4 we
assumed that (i) the optimal profiles associated to a given current
fluctuation are time-independent (2–9, 21), and (ii) the optimal
current field has no spatial structure (SI Text). This last hypoth-
esis, which greatly simplifies the calculation of current statistics,
can be however relaxed for our purposes (as shown below). The
probability PτðJÞ is thus simply the Gaussian weight associated to
the optimal profile. Note however that the minimization proce-
dure gives rise to a nonlinear problem that results in general in a
current distribution with non-Gaussian tails (2–8).

The optimal profile is solution of the following equation

δω2½ρðrÞ�
δρðr0Þ − 2J ·

δω1½ρðrÞ�
δρðr0Þ þ J2

δω0½ρðrÞ�
δρðr0Þ ¼ 0; [5]

where δ
δρðr0 Þ stands for functional derivative, and

ωn½ρðrÞ�≡
Z

dr
Qn

E½ρðrÞ�
σ½ρðrÞ� : [6]

Remarkably, the optimal profile ρ0ðr; JÞ solution of Eq. 5
depends exclusively on J and J2. Such a simple quadratic depen-
dence, inherited from the locally Gaussian nature of fluctuations,
has important consequences at the level of symmetries of the cur-
rent distribution. In fact, it is clear from Eq. 5 that the condition

δω1½ρðrÞ�
δρðr0Þ ¼ 0; [7]

implies that ρ0ðr; JÞ will depend exclusively on the magnitude of
the current vector, via J2, not on its orientation. In this way, all
isometric current fluctuations characterized by a constant jJj will
have the same associated optimal profile, ρ0ðr; JÞ ¼ ρ0ðr; jJjÞ,
independently of whether the current vector J points along the
gradient direction, against it, or along any arbitrary direction.
In other words, the optimal profile is invariant under current
rotations if Eq. 7 holds. It turns out that condition [7] follows
from the time-reversibility of the dynamics, in the sense that
the evolution operator in the Fokker–Planck formulation of
Eq. 2 obeys a local detailed balance condition (16, 17). In this
case QE½ρðrÞ�∕σ½ρðrÞ� ¼ −∇ δH½ρ�∕δρ, with H½ρðrÞ� the system
Hamiltonian, and condition [7] holds. The invariance of the op-
timal profile can be now used in Eq. 4 to relate in a simple way
the current LDF of any pair of isometric current fluctuations J
and J0, with jJj ¼ jJ0j,

GðJÞ −GðJ0Þ ¼ jϵjjJjðcos θ − cos θ0Þ; [8]

where θ and θ0 are the angles formed by vectors J and J0, respec-
tively, with a constant vector ϵ ¼ εþ E; see below. Eq. 8 is just an
alternative formulation of the isometric fluctuation relation [1].
By letting J and J0 differ by an infinitesimal angle, the IFR can
be cast in a simple differential form, ∂θGðJÞ ¼ jϵjjJj sin θ, which
reflects the high level of symmetry imposed by time-reversibility
on the current distribution.

The condition δω1½ρðrÞ�∕δρðr0Þ ¼ 0 can be seen as a conserva-
tion law. It implies that the observable ω1½ρðrÞ� is in fact a
constant of motion, ϵ≡ω1½ρðrÞ�, independent of the profile

Fig. 1. The isometric fluctuation relation at a glance. Sketch of the current
distribution in two dimensions, peaked around its average hJiϵ, and isometric
contour lines for different jJjs. The isometric fluctuation relation, Eq. 1, estab-
lishes a simple relation for the probability of current fluctuations along each
of these contour lines.
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ρðrÞ, which can be related with the rate of entropy production via
the Gallavotti–Cohen theorem (15–17). In a way similar to
Noether’s theorem, the conservation law for ϵ implies a symmetry
for the optimal profiles under rotations of the current and a fluc-
tuation relation for the current LDF. This constant can be easily
computed under very general assumptions (SI Text).

Implications and GeneralizationsThe isometric fluctuation relation,
Eq. 1, has far-reaching and nontrivial consequences. First, the
IFR implies a remarkable hierarchy of equations for the cumu-
lants of the current distribution, see Eq. 13 inMaterials and Meth-
ods. This hierarchy can be derived starting from the Legendre
transform of the current LDF, μðλÞ ¼ maxJ½GðJÞ þ λ · J�, from
which all cumulants can be obtained (3), and writing the IFR
for μðλÞ in the limit of infinitesimal rotations. As an example,
the cumulant hierarchy in two dimensions implies the following
relations

hJxiϵ ¼ τL2½ϵxhΔJ2y iϵ − ϵyhΔJxΔJyiϵ�
hJyiϵ ¼ τL2½ϵyhΔJ2x iϵ − ϵxhΔJxΔJyiϵ�

[9]

2hΔJxΔJyiϵ ¼ τL2½ϵyhΔJ3x iϵ − ϵxhΔJ2xΔJyiϵ�
¼ τL2½ϵxhΔJ3y iϵ − ϵyhΔJxΔJ2y iϵ�

hΔJ2x iϵ − hΔJ2y iϵ ¼ τL2½ϵxhΔJxΔJ2y iϵ − ϵyhΔJ2xΔJyiϵ�;
[10]

for the first cumulants, with ΔJα ≡ Jα − hJαiϵ. It is worth stressing
that the cumulant hierarchy is valid arbitrarily far from equili-
brium. In a similar way, the IFR implies a set of hierarchies
for the nonlinear response coefficients, see Eqs. 15–17 in Materi-

als and Methods. In our two-dimensional example, let ðkÞ
ðnÞχ

ðkx;kyÞ
ðnx;nyÞ be

the response coefficient of the cumulant hΔJnxx ΔJnyy iϵ to order

ϵkxx ϵ
ky
y , with n ¼ nx þ ny and k ¼ kx þ ky. To the lowest order these

hierarchies imply Onsager’s reciprocity symmetries and Green–
Kubo relations for the linear response coefficients of the current.
They further predict that in fact the linear response matrix is pro-
portional to the identity, so ð1Þ

ð1Þχ
ð1;0Þ
ð1;0Þ ¼ ð1Þ

ð1Þχ
ð0;1Þ
ð0;1Þ ¼ ð0Þ

ð2Þχ
ð0;0Þ
ð2;0Þ ¼ ð0Þ

ð2Þχ
ð0;0Þ
ð0;2Þ

whereas ð1Þ
ð1Þχ

ð0;1Þ
ð1;0Þ ¼ 0 ¼ ð1Þ

ð1Þχ
ð1;0Þ
ð0;1Þ. The first nonlinear coefficients of

the current can be simply written in terms of the linear coeffi-
cients of the second cumulants as ð2Þ

ð1Þχ
ð2;0Þ
ð1;0Þ ¼ 2

ð1Þ
ð2Þχ

ð1;0Þ
ð2;0Þ and

ð2Þ
ð1Þχ

ð0;2Þ
ð1;0Þ ¼ −2ð1Þð2Þχ

ð1;0Þ
ð1;1Þ, whereas the cross-coefficient reads

ð2Þ
ð1Þχ

ð1;1Þ
ð1;0Þ ¼ 2½ð1Þð2Þχ

ð0;1Þ
ð2;0Þ þ ð1Þ

ð2Þχ
ð0;1Þ
ð1;1Þ� (symmetric results hold for

nx ¼ 0, ny ¼ 1). Linear response coefficients for the second-order

cumulants also obey simple relations (e.g., ð1Þ
ð2Þχ

ð1;0Þ
ð1;1Þ ¼ −ð1Þ

ð2Þχ
ð0;1Þ
ð1;1Þ

and ð1Þ
ð2Þχ

ð1;0Þ
ð2;0Þ þð1Þ

ð2Þ χ
ð0;1Þ
ð2;0Þ ¼ ð1Þ

ð2Þχ
ð1;0Þ
ð0;2Þ þð1Þ

ð2Þ χ
ð0;1Þ
ð0;2Þ) and the set of relations

continues to arbitrary high orders. In this way hierarchies [15–17],
which derive from microreversibility as reflected in the IFR, pro-
vide deep insights into nonlinear response theory for nonequili-
brium systems (28).

The IFR and the above hierarchies all follow from the invar-
iance of optimal profiles under certain transformations. This idea
can be further exploited in more general settings. In fact, by writ-
ing explicitly the dependence on the external field E in Eq. 5 for
the optimal profile, one realizes that if δ

δρðr0Þ ∫Q½ρðrÞ�dr ¼ 0, to-
gether with the time-reversibility condition, Eq. 7, the resulting
optimal profiles are invariant under independent rotations of
the current and the external field. It thus follows that the current
LDFs for pairs ðJ;EÞ and ðJ0 ¼ RJ;E� ¼ SEÞ, withR,S indepen-
dent rotations, obey a generalized isometric fluctuation relation

GEðJÞ −GE� ðJ0Þ ¼ ε · ðJ − J0Þ − ν · ðE − E�Þ þ J · E − J0 · E�;
[11]

where we write explicitly the dependence of the current LDF
on the external field. The vector ν≡ ∫Q½ρðrÞ�dr is now another
constant of motion, independent of ρðrÞ, which can be easily com-
puted (SI Text). For a fixed boundary gradient, the above equation
relates any current fluctuation J in the presence of an external
field E with any other isometric current fluctuation J0 in the pre-
sence of an arbitrarily rotated external field E�, and reduces to
the standard IFR for E ¼ E�. Condition δ

δρðr0Þ ∫Q½ρðrÞ�dr ¼ 0 is
rather general, as most time-reversible systems with a local mo-
bility σ½ρ� do fulfill this condition (e.g., diffusive systems).

The IFR can be further generalized to cases where the current
profile is not constant, relaxing hypothesis (ii) above. Let Pτ½JðrÞ�
be the probability of observing a time-averaged current field
JðrÞ ¼ τ−1∫ τ

0dtjðr;tÞ. This vector field must have zero divergence
because it is coupled via the continuity equation to an optimal
density profile that is assumed to be time-independent; see SI
Text and hypothesis (i) above. Because of time-reversibility,
QE½ρðrÞ�∕σ½ρðrÞ� ¼ −∇ δH½ρ�∕δρ and it is easy to show in the
equation for the optimal density profile that the term linear in
JðrÞ vanishes, so ρ0½r;JðrÞ� remains invariant under (local or
global) rotations of JðrÞ; see SI Text. In this way, for any diver-
gence-free current field J0ðrÞ locally isometric to JðrÞ, so
J0ðrÞ2 ¼ JðrÞ2 ∀r, we can write a generalized isometric fluctua-
tion relation

lim
τ→∞

1

τ
ln
�
Pτ½JðrÞ�
Pτ½J0ðrÞ�

�
¼

Z
∂Λ

dΓ
δH½ρ�
δρ

n̂ · ½J0ðrÞ −JðrÞ�; [12]

where the integral (whose result is independent of ρðrÞ) is taken
over the boundary ∂Λ of the domain Λ where the system is
defined, and n̂ is the unit vector normal to the boundary at each
point. Eq. 12 generalizes the IFR to situations where hypothesis
(ii) is violated, opening the door to isometries based on local (in
addition to global) rotations. As a corollary, we show in SI Text
that a similar generalization of the isometric fluctuation symme-
try does not exist whenever optimal profiles become time-depen-
dent, so the IFR breaks down in the regime where hypothesis (i)
is violated. In this way, we may use violations of the IFR and its
generalizations to detect the instabilities that characterize the
fluctuating behavior of the system at hand (2, 9).

Checking the Isometric Fluctuation Relation We have tested the
validity of the IFR in extensive numerical simulations of two dif-
ferent nonequilibrium systems. The first one is a simple and very
general model of energy diffusion (7, 8, 22) defined on a two-
dimensional (2D) square lattice with L2 sites. Each site is char-
acterized by an energy ei, i ∈ ½1;L2�, and models a harmonic os-
cillator that is mechanically uncoupled from its nearest neighbors
but interact with them via a stochastic energy-redistribution pro-
cess. Dynamics thus proceeds through random energy exchanges
between randomly chosen nearest neighbors. In addition, left and
right boundary sites may interchange energy with boundary baths
at temperatures TL and TR, respectively, while periodic boundary
conditions hold in the vertical direction. For TL ≠ TR the systems
reaches a nonequilibrium steady-state characterized, in the ab-
sence of external field (the case studied here), by a linear energy
profile ρstðrÞ ¼ TL þ xðTR − TLÞ and a nonzero average current
given by Fourier’s law. This model plays a fundamental role in
nonequilibrium statistical physics as a testbed to assess new the-
oretical advances, and represents at a coarse-grained level a large
class of diffusive systems of technological and theoretical interest
(7, 8). The model is described at the macroscopic level by Eq. 2
with a diffusive current term Q½ρðr;tÞ� ¼ −D½ρ�∇ ρ with D½ρ� ¼ 1

2

and σ½ρ� ¼ ρ2, and it turns out to be an optimal candidate to test

Hurtado et al. PNAS Early Edition ∣ 3 of 6

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013209108/-/DCSupplemental/pnas.1013209108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013209108/-/DCSupplemental/pnas.1013209108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013209108/-/DCSupplemental/pnas.1013209108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013209108/-/DCSupplemental/pnas.1013209108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013209108/-/DCSupplemental/pnas.1013209108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013209108/-/DCSupplemental/pnas.1013209108_SI.pdf?targetid=STXT


the IFR because: (i) the associated hydrodynamic fluctuation
theory can be solved analytically (29), and (ii) its dynamics is
simple enough to allow for a detailed numerical study of current
fluctuations.

To test the IFR in this model we performed a large number of
steady-state simulations of long duration τ > L2 (the unit of time
is the Monte Carlo step) for L ¼ 20, TL ¼ 2, and TR ¼ 1,
accumulating statistics for the space- and time-averaged current
vector J. The measured current distribution is shown in Fig. 2,
Bottom Inset, together with a fine polar binning that allows us
to compare the probabilities of isometric current fluctuations
along each polar corona, see Eq. 1. Taking GðJÞ ¼
ðτLdÞ−1 ln PτðJÞ, Fig. 2 confirms the IFR prediction that
GðJÞ −GðJ0Þ, once scaled by jJj−1, collapses onto a linear func-
tion of cos θ − cos θ0 for all values of jJj, see Eq. 8. Here θ, θ0 are
the angles formed by the isometric current vectors J, J0 with the
x-axis (E ¼ 0 in our case). We also measured the average energy
profile associated to each current fluctuation, ρ0ðr; JÞ, see Fig. 2,
Top Inset. As predicted above, profiles for different but isometric
current fluctuations all collapse onto a single curve, confirming
the invariance of optimal profiles under current rotations.

Standard simulations allow us to explore moderate fluctua-
tions of the current around the average. To test the IFR in the far
tails of the current distribution, corresponding to exponentially
unlikely rare events, we implemented an elegant method recently
introduced to measure large-deviation functions in many-particle
systems (30). The method, which yields the Legendre transform
of the current LDF, μðλÞ, is based on a modification of the dy-
namics so that the rare events responsible of the large-deviation
are no longer rare (30), and has been recently used with success to
confirm an additivity conjecture regarding large fluctuations in
nonequilibrium systems (7, 8). Using this method we measured
μðλÞ in increasing manifolds of constant jλþ ϵj, see Fig. 3. The
IFR implies that μðλÞ is constant along each of these manifolds,
or equivalently μðλÞ ¼ μ½Rϕðλþ ϵÞ − ϵ�, ∀ϕ ∈ ½0;2π�, with Rϕ a
rotation in 2D of angle ϕ. Fig. 3 shows the measured μðλÞ for
different values of jλþ ϵj corresponding to very large current
fluctuations, different rotation angles ϕ and increasing system
sizes, together with the theoretical predictions (29). As a result
of the finite, discrete character of the lattice system studied here,
we observe weak violations of IFR in the far tails of the current
distribution, specially for currents orthogonal to ϵ. These weak
violations are expected because a prerequisite for the IFR to hold
is the existence of a macroscopic limit (i.e., Eq. 2 should hold

strictly), which is not the case for the relatively small values of
L studied here. However, as L increases, a clear convergence to-
ward the IFR prediction is observed as the effects associated to
the underlying lattice fade away, strongly supporting the validity
of IFR in the macroscopic limit.

We also measured current fluctuations in a Hamiltonian hard-
disk fluid subject to a temperature gradient (23). This model is a
paradigm in liquid state theory, condensed matter and statistical
physics, and has been widely studied during last decades. The
model consists in N hard disks of unit diameter interacting via
instantaneous collisions and confined to a box of linear size L
such that the particle density is fixed to Φ ¼ N∕L2 ¼ 0.58. Here
we choose N ¼ 320. The box is divided in three parts: a central,
bulk region of width L − 2α with periodic boundary conditions in
the vertical direction, and two lateral stripes of width α ¼ L∕4

Fig. 2. Confirmation of IFR in a diffusive system. The IFR predicts that
jJj−1½GðJÞ − GðJ0Þ� collapses onto a linear function of cos θ − cos θ0 for all values
of jJj. This collapse is confirmed here in the energy diffusion model for a wide
range of values for jJj. (Bottom Inset) Measured current distribution together
with the polar binning used to test the IFR. (Top Inset) Average profiles for
different but isometric current fluctuations all collapse onto single curves,
confirming the invariance of optimal profiles under current rotations. Angle
range is jθj ≤ 16.6°, see marked region in the histogram.

Fig. 3. IFR for large current fluctuations. Legendre transform of the current
LDF for the energy diffusion model, for different values of jλþ ϵj correspond-
ing to very large current fluctuations, different rotation angles ϕ such
that λ0 ¼ Rϕðλþ ϵÞ − ϵ, and increasing system sizes. Lines are theoretical
predictions. The IFR predicts that μðλÞ ¼ μ½Rϕðλþ ϵÞ − ϵ� ∀ϕ ∈ ½0;2π�. The iso-
metric fluctuation symmetry emerges in the macroscopic limit as the effects
associated to the underlying lattice fade away.

Fig. 4. IFR in a hydrodynamic hard-disk fluid. Confirmation of IFR in a
two-dimensional hard-disk fluid under a temperature gradient after a polar
binning of the measured current distribution. As predicted by IFR, the differ-
ence of current LDFs for different isometric current fluctuations, once scaled
by the current norm, collapses in a line when plotted against cos θ − cos θ0.
(Top Inset) Optimal temperature profiles associated to different current
fluctuations. Profiles for a given jJj and different angles θ ∈ ½−7.5°;þ 7.5°�
all collapse onto a single curve, thus confirming the invariance of optimal
profiles under current rotations. Notice that the profiles smoothly penetrate
into the heat baths. (Bottom Inset) Snapshot of the 2D hard-disk fluid with
Gaussian heat baths.
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that act as deterministic heat baths, see Fig. 4, Bottom Inset. This
is achieved by keeping constant the total kinetic energy within
each lateral band via a global, instantaneous rescaling of the ve-
locity of bath particles after bath-bulk particle collisions. This
heat bath mechanism has been shown to efficiently thermostat
the fluid (23), and has the important advantage of being deter-
ministic. As for the previous diffusive model, we performed a
large number of steady-state simulations of long duration
(τ > 2N collisions per particle) for TL ¼ 4 and TR ¼ 1, accumu-
lating statistics for the current J and measuring the average tem-
perature profile associated to each J. Fig. 4 shows the linear
collapse of jJj−1½GðJÞ −GðJ0Þ� as a function of cos θ − cos θ0
for different values of jJj, confirming the validity of the IFR
for this hard-disk fluid in the moderate range of current fluctua-
tions that we could access. Moreover, the measured optimal pro-
files for different isometric current fluctuations all nicely collapse
onto single curves, see Fig. 4, Top Inset, confirming their rota-
tional invariance.

It is interesting to notice that the hard-disk fluid is a fully hy-
drodynamic system, with 4 different locally conserved coupled
fields possibly subject to memory effects, defining a far more
complex situation than the one studied here, see Eq. 2. Therefore
the validity of IFR in this context suggests that this fluctuation
relation, based on the invariance of optimal profiles under sym-
metry transformations, is in fact a rather general result valid for
arbitrary fluctuating hydrodynamic systems.

A few remarks are now in order. First, as a corollary to the
IFR, it should be noted that for time-reversible systems with
additive fluctuations (i.e., with a constant, profile-independent
mobility σ) the optimal profile associated to a given current
fluctuation is in fact independent of J, see Eq. 5, and hence
equal to the stationary profile. In this case it is easy to show that
current fluctuations are Gaussian, with GðJÞ ¼ ϵ · ðJ − hJiϵÞþ
σ−1ðJ2 − hJi2ϵÞ. This is the case, for instance, of model B in the
Hohenberg–Halperin classification (25)*. On the other hand,
it should be noticed that the time-reversibility condition for
the IFR to hold, Eq. 7, is just a sufficient but not necessary
condition. In fact, we cannot discard the possibility of time-
irreversible systems such that, only for the optimal profiles,
δω1½ρðrÞ�∕δρðr0Þjρ0 ¼ 0.

Discussion
The IFR is a consequence of time-reversibility for systems in the
hydrodynamic scaling limit, and reveals an unexpected high level
of symmetry in the statistics of nonequilibrium fluctuations. It
generalizes and comprises the Gallavotti–Cohen fluctuation the-
orem for currents, relating the probabilities of an event not only
with its time-reversal but with any other isometric fluctuation.
This has important consequences in the form of hierarchies
for the current cumulants and the linear and nonlinear response
coefficients, which hold arbitrarily far from equilibrium and can
be readily tested in experiments. A natural question thus con-
cerns the level of generality of the isometric fluctuation relation.
In this paper we have demonstrated the IFR for a broad class of
systems characterized at the macroscale by a single conserved
field, using the tools of hydrodynamic fluctuation theory (HFT).
This theoretical framework, summarized in the path large-devia-
tion functional, Eq. S3, has been rigorously proven for a number
of interacting-particle systems (2–5), but it is believed to remain
valid for a much larger class of systems. The key is that the Gaus-
sian nature of local fluctuations, which lies at the heart of the
approach, is expected to emerge for most situations in the appro-
priate macroscopic limit as a result of a central limit theorem:
Although microscopic interactions can be extremely complicated,

the ensuing fluctuations of the slow hydrodynamic fields result
from the sum of an enormous amount of random events at
the microscale that give rise to Gaussian statistics. There exist
of course anomalous systems for which local fluctuations at the
macroscale can be non-Gaussian. In these cases we cannot dis-
card that a modified version of the IFR could remain valid,
though the analysis would be certainly more complicated.
Furthermore, our numerical results show that the IFR remains
true even in cases where it is not clear whether the HFTapplies,
strongly supporting the validity of this symmetry for arbitrary fluc-
tuating hydrodynamic systems.

A related question is the demonstration of the IFR starting
frommicroscopic dynamics. Techniques similar to those in refs. 16
and 31, which derive the Gallavotti–Cohen fluctuation theorem
from the spectral properties of the microscopic stochastic evolu-
tion operator, can prove useful for this task. However, to prove
the IFR these techniques must be supplemented with additional
insights on the asymptotic properties of the microscopic transi-
tion rates as the macroscopic limit is approached. In this way
we expect finite-size corrections to the IFR that decay with
the system size, as it is in fact observed in our simulations for
the energy diffusion model, see Fig. 3. Also interesting is the pos-
sibility of an IFR for discrete isometries related with the under-
lying lattice in stochastic models. These open questions call for
further study.

We have shown in this paper how symmetry principles come
forth in fluctuations far from equilibrium. By demanding invar-
iance of the optimal path responsible of a given fluctuation under
symmetry transformations, we unveiled a remarkable and very
general isometric fluctuation relation for time-reversible systems
that relates in a simple manner the probability of any pair of
isometric current fluctuations. Invariance principles of this kind
can be applied with great generality in diverse fields where fluc-
tuations play a fundamental role, opening the door to further
exact and general results valid arbitrarily far from equilibrium.
This is particularly relevant in mesoscopic biophysical systems,
where relations similar to the isometric fluctuation relation might
be used to efficiently measure free-energy differences in terms of
work distributions (32). Other interesting issues concern the
study of general fluctuation relations emerging from the invar-
iance of optimal paths in full hydrodynamical systems with several
conserved fields, or the quantum analog of the isometric fluctua-
tion relation in full counting statistics.

Materials and Methods
We now exploit the IFR (1) to derive a set of hierarchies for the current
cumulants and the linear and nonlinear response coefficients. The mo-
ment-generating function associated to PτðJÞ, defined as ΠτðλÞ ¼
∫ PτðJÞ expðτLdλ · JÞdJ, scales for long times as ΠτðλÞ ∼ exp½þτLdμðλÞ�, where
μðλÞ ¼ maxJ½GðJÞ þ λ · J� is the Legendre transform of the current LDF.
The cumulants of the current distribution can be obtained from the deriva-
tives of μðλÞ evaluated at λ ¼ 0 (i.e., μðnÞðn1 :::nd Þ ≡ ½∂nμðλÞ∕∂λn1

1 :::λnd
d �λ¼0 ¼

ðτLdÞn−1hΔJn1

1 :::ΔJnd
d iϵ for n ¼ ∑ini ≥ 1) where ΔJα ≡ Jα − ð1 − δn;1ÞhJαiϵ and

δn;m is the Kronecker symbol. The IFR can be stated for the Legendre trans-
form of the current LDF as μðλÞ ¼ μ½Rðλþ ϵÞ − ϵ�, where R is any d-dimen-
sional rotation. Using this relation in the definition of the n-th order
cumulant in the limit of infinitesimal rotations, R ¼ Iþ ΔθL, it is easy to
show that

nαLβαμ
ðnÞ
ðn1 :::nα−1.::nβþ1.::ndÞ þ ϵνLγνμ

ðnþ1Þ
ðn1:::nγþ1.::ndÞ ¼ 0; [13]

where L is any generator of d-dimensional rotations, and summation over
repeated Greek indices (∈ ½1;d�) is assumed. The above hierarchy relates in a
simple way cumulants of orders n and nþ 1 ∀n ≥ 1, and is valid arbitrarily far
from equilibrium. As an example, Eqs. 9 and 10 above show the first two sets
of relations (n ¼ 1;2) of the above hierarchy in two dimensions. In a similar
way, we can explore the consequences of the IFR on the linear and nonlinear
response coefficients. For that, we now expand the cumulants of the current
in powers of ϵ

*Notice that ρ-dependent corrections to a constant mobility σ, which are typically
irrelevant from a renormalization-group point of view (25), turn out to be essential
for current fluctuations as they give rise to non-Gaussian tails in the current distribution.
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μðnÞðn1 :::ndÞðϵÞ ¼ ∑
∞

k¼0

1

k! ∑
k

k1 :::kd¼0

∑
i

ki¼k

ðkÞ
ðnÞχ

ðk1 :::kdÞ
ðn1:::ndÞϵ

k1
1 :::ϵ

kd
d [14]

Inserting expansion [14] into the cumulant hierarchy, Eq. 13, and matching
order by order in k, we derive another interesting hierarchy for the response
coefficients of the different cumulants. For k ¼ 0 this reads

nαLβα
ð0Þ
ðnÞχ

ð0.::0Þ
ðn1 :::nα−1.::nβþ1.::ndÞ ¼ 0; [15]

which is a symmetry relation for the equilibrium (ϵ ¼ 0) current cumulants.
For k ≥ 1 we obtain

∑
k

k1 :::kd¼0

∑
i

ki¼k≥1

�
nα
k
Lβα

ðkÞ
ðnÞχ

ðk1:::kdÞ
ðn1 :::nα−1.::nβþ1.::ndÞ þLγν

ðk−1Þ
ðnþ1Þχ

ðk1:::kν−1.::kdÞ
ðn1 :::nγþ1.::ndÞ

�
¼ 0;

[16]

which relates k-order response coefficients of n-order cumulants with ðk − 1Þ-
order coefficients of ðnþ 1Þ-order cumulants. Relations [15] and [16] for

the response coefficients result from the IFR in the limit of infinitesimal
rotations. For a finite rotation R ¼ −I, which is equivalent to a current inver-
sion, we have μðλÞ ¼ μð−λ − 2ϵÞ and we may use this in the definition of

response coefficients, ðnÞ
ðkÞχ

ðk1 :::kd Þ
ðn1 :::nd Þ ≡ k!½∂nþkμðλÞ∕∂λn1

1 :::λnd
d ∂ϵk1

1 :::ϵkdd �λ¼0¼ϵ, see

Eq. 14, to obtain a complementary relation for the response coefficients

ðkÞ
ðnÞχ

ðk1 :::kdÞ
ðn1:::ndÞ ¼ k! ∑

k1

p1¼0

::: ∑
kd

pd¼0

ð−1Þnþp2p

ðk − pÞ!
ðk−pÞ
ðnþpÞχ

ðk1−p1:::kd−pdÞ
ðn1þp1:::ndþpdÞ; [17]

where p ¼ ∑ipi . A similar equation was derived in (28) from the standard
fluctuation theorem, although the IFR adds further relations. All together,
Eqs. 15–17 imply deep relations between the response coefficients at
arbitrary orders that go far beyond Onsager’s reciprocity relations and
Green–Kubo formulae. As an example, we discuss in the main text some
of these relations for a two-dimensional system.
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