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Abstract We study both analytically and numerically demagnetization via nucleation of
the metastable phase in a two-dimensional nonequilibrium Ising ferromagnet at temper-
ature T . Canonical equilibrium is dynamically impeded by a weak random perturbation
which models homogeneous disorder of undetermined source. We present a simple theoret-
ical description, in good agreement with Monte Carlo simulations, assuming that the decay
of the nonequilibrium metastable state is due, as in equilibrium, to the competition between
the surface and the bulk. This suggests one to accept a nonequilibrium free-energy at a
mesoscopic/cluster level, and it ensues a nonequilibrium surface tension with some pecu-
liar low-T behavior. We illustrate the occurrence of intriguing nonequilibrium phenomena,
including: (i) cooperative phenomena at low T which stabilize the metastable state as tem-
perature increases; (ii) reentrance of the limit of metastability under strong nonequilibrium
conditions; and (iii) noise-enhanced propagation of domain walls. We also studied metasta-
bility in the case of open boundaries as it may correspond to a magnetic nanoparticle. We
then observe the most irregular relaxation triggered by the additional surface randomness. In
particular, at low T , the relaxation becomes discontinuous as occurring by way of scale-free
avalanches, so that it resembles the type of relaxation reported for many complex systems.
We show that this results from the superposition of many demagnetization events, each with
a well-defined scale which is determined by the curvature of the domain wall at which it
originates. This is an example of (apparent) scale invariance in a nonequilibrium setting
which is not to be associated with any familiar kind of criticality.
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1 Introduction

Many different natural phenomena involve metastable states that, eventually, decay via nu-
cleation. Some familiar examples appear in the flow of electrical current through resistors,
relaxation in amorphous materials, glasses and gels, domain wall motion in hysteretic disor-
dered magnets, granular media evolution, earthquake dynamics, protein conformations, or
false vacuum states in quantum field theory. There is a great amount of information concern-
ing these situations but a full microscopic theory of metastability and nucleation is elusive
[1–10]. To begin with, there are two main coupled difficulties. One is that metastability con-
cerns dynamics [4, 5]. The systems of interest typically show a complex free-energy land-
scape with (many) local minima, which are metastable in the sense that they trap the system
for a long time. One may imagine that, eventually, relaxation occurs when the system after
long wandering finds a proper path between the minima. This results in a complicate cou-
pling of dynamics and thermodynamics [11]. A second difficulty is that many systems of
interest cannot reach thermal equilibrium after relaxation. In general, they are open to the
environment, which often induces currents of matter or energy, or they are subject to agents
which impose opposing tendencies which typically break detailed balance [12]. These per-
turbations result in a final steady state which cannot be described by a Gibbsian measure, i.e.
a nonequilibrium stationary state. Consequently, thermodynamics and ensemble statistical
mechanics do not hold in these systems, which is a serious drawback.

These difficulties make the field most suitable for simple-model analysis. Indeed, the
(two-dimensional) kinetic Ising model has been the subject of many studies of metastability
not only in the case of periodic boundaries [7, 13–20] but also for finite lattices with free
boundaries [21–24]. The latter try to capture some of the physics of demagnetization in very
dense media where magnetic particle sizes typically range from mesoscopic down to atomic
levels. On the other hand, if one keeps oneself away from specific models, metastable states
are often treated in the literature as rare equilibrium states, at least for times much shorter
that the relaxation time. In this way, it has been shown that one may define a metastable
state in a properly constrained (equilibrium) ensemble [3, 4, 10], and that most equilibrium
concepts may easily be adapted [5–9].

In this paper we continue those efforts and present a detailed study of metastability (and
nucleation) in a nonequilibrium model. In order to deal with a simple microscopic model
of metastability, we study a two-dimensional kinetic Ising system, as in previous studies.
However, for the system to exhibit nonequilibrium behavior, time evolution is defined here
as a superposition of the familiar thermal process at temperature T and a weak completely-
random process. This competition is probably one of the simplest, both conceptually and
operationally, ways of impeding equilibrium. Furthermore, one may argue that it captures
some underlying disorder in nature, induced by random impurities or other causes which are
unavoidable in actual samples. The specific origin for such dynamic randomness will vary
with the situation considered. We mention that a similar mechanism has already been used
to model the macroscopic consequences of rapidly-diffusing local defects [12] and quantum
tunneling [22] in magnetic materials, for instance.

The weakest perturbation of that kind happens to modify essentially the canonical equi-
librium. We observe, however, some structural similarity at the mesoscopic level which sug-
gests that cluster dynamics is, as in equilibrium, the consequence of a competition between
the surface and the bulk. Therefore, we postulate the existence of a nonequilibrium free-
energy and an associated nonequilibrium surface tension. These functions are formally sim-
ilar to the ones in equilibrium but behave peculiarly due to the different nature of the system
states. In fact, two main predictions follow that are counterintuitive. One is that, at low T ,
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the stability of the metastable state is enhanced by increasing temperature, as a consequence
of cooperation between thermal and nonequilibrium noises. The second main prediction
is that the limit of metastability or pseudospinodal, which separates the metastable phase
from the unstable one, exhibits reentrant behavior as a function of T for strong enough non-
equilibrium conditions. Our predictions are nicely confirmed in related Monte Carlo (MC)
simulations.

The theory above concerns an infinite system, and the related computer simulations are,
therefore, for lattices with periodic boundary conditions. However, we also studied other
types of boundary conditions, including free borders. Previous work showed that free bor-
ders, which are most relevant when dealing with magnetic nanoparticles, for instance, deter-
mine the particle demagnetization [23, 24]. We here confirm this and observe that, for free
borders, but not for periodic boundary conditions, demagnetization occurs, via avalanches,
through many different metastable-like configurations. These avalanches exhibit power-law
size and lifetime distributions in a way that closely resembles the relaxation in many cases
in nature. We show that this is a consequence in the model of the superposition of different
events, each with a typical scale which is determined by the curvature of the interface at
which the avalanche originates.

The paper is organized as follows. We define the model in the next section. In Sect. 3, we
set the basis of our approach. In particular, Sect. 3.1 concerns a mean-field approximation
which allows for a discussion in Sect. 3.2 of the nonequilibrium surface tension. The next
subsection introduces our ansatz for a nonequilibrium free-energy cost of excitations in the
metastable phase, and we test the ensuing predictions against MC simulations. Section 3.4 is
devoted to study the limit of metastability. In Sect. 4 we study the case of open boundaries.
The statistics of the resulting avalanches are analyzed in Sect. 4.1, and Sects. 4.2 and 4.3
are devoted to discussions, respectively, of our observations and of its possible extension to
interpret avalanche data from actual systems. Finally, Sect. 5 contains a brief conclusion.
Some technical details are left for the appendices.

2 The Model

Consider a two-dimensional square lattice of side L and, for the moment, periodic boundary
conditions (or, eventually, the thermodynamic limit condition L → ∞). We define a spin
variable si = ±1 at each node, i ∈ [1,N ≡ L2]. Spins interact among them, and with an
external magnetic field h, via the Ising Hamiltonian function

H(s) = −
∑

|i−j |=1

sisj − h

N∑

i=1

si, (1)

where s ={si} and the first sum runs over all nearest-neighbors (NN) pairs. Time evolution
proceeds by stochastic dynamics consisting of single-spin flips with the transition rate

ω(s → si ) = p + (1 − p)�(β�Hi ), (2)

where 0 < p < 1 is a parameter, s and si stand, respectively, for the system configuration
before and after flipping the spin at node i, �Hi is the energy cost of the flip, and β = 1/T .

The (arbitrary) function in (2) is set �(x) = e−x(1 + e−x)−1, corresponding to the so-called
Glauber rate, in our simulations. However, we shall also refer below to the case �(x) =
min[1, e−x] which corresponds to the Metropolis rate.
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Fig. 1 (Color online) Phase
diagram for the nonequilibrium
Ising ferromagnet of interest
here. The solid (red) line
corresponds to the critical
temperature as obtained from the
nonequilibrium surface tension in
Sect. 3.2. The order disappears at
T = 0 for
p > pc = (

√
2 − 1)2 ≈ 0.17.

Notice, however, the reentrant
blob for pc < p < p∗

c ≈ 0.186
and intermediate temperature.
The dashed (blue) line is derived
from a first-order (pair
approximation) mean-field
theory, namely, (8) in Sect. 3.1

For any p, two different heat baths compete in (2): One is at temperature T and operates
with probability (1 − p), while the other induces completely-random (infinite temperature)
spin flips with probability p. As a consequence of this competition, a nonequilibrium steady
state sets in asymptotically which cannot be characterized by a Gibbsian invariant measure
[12, 25, 26]. In particular, the rate (2) violates detailed balance for any p > 0. However, the
system reduces for p = 0 to the familiar Ising model with rate � which goes asymptotically
to the equilibrium state for temperature T and Hamiltonian H. This model is a particular
case of a more general class of systems, characterized by a coupling to a number of dif-
ferent heat baths leading to nonequilibrium behavior, whose static properties have received
considerable attention in recent years [12].

For zero magnetic field, the model exhibits an order-disorder continuous phase transition
at critical temperature Tc(p) < Tc(p = 0) ≡ Tons, where Tons = 2/ ln(1+√

2) is the Onsager
temperature. Figure 1 shows the model phase diagram Tc(p) as obtained by two different ap-
proaches, as described in Sects. 3.1 and 3.2, respectively. In the former case, corresponding
to a first-order (pair) mean-field approximation, the predicted equilibrium (p = 0) critical
temperature is the Bethe temperature Tbethe = 4/ ln 4 ≈ 1.27Tons, and order disappears at
T = 0 for p > p(MF)

c = 5/32 ≈ 0.156. A more accurate estimation follows from the non-
equilibrium surface tension σ0 in Sect. 3.2. In this case, one recovers the correct equilibrium
limit, and order is predicted to disappear at T = 0 for p > p

(σ0)
c = (

√
2 − 1)2 ≈ 0.1716 (in

agreement with MC results [12]). However, the anomalous behavior of σ0 that we describe
in Sect. 3.2 implies the emergence of an intermediate-T region for pc < p < p∗

c ≈ 0.18625
where order sets in. This reentrant behavior of Tc(p), which is shown in Fig. 1, is reminis-
cent of the one in the phase diagram for systems subject to multiplicative noise [27].

3 Nonequilibrium Metastability and Nucleation

In order to produce metastability in the above nonequilibrium setting, we initialize the sys-
tem in a state with all spins up, si = +1, i = 1 . . .N. For small h < 0 and T < Tc(p), this
configuration quickly relaxes under dynamics (2) to a metastable state with magnetization
m = N−1

∑N

i=1 si > 0. There is, however, a tendency of the spins to line up in the direction
of the field, which competes with the tendency to maintain the local order induced by the
spins mutual interactions. The result for small |h| is a metastable state of long lifetime, i.e.,
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the system fluctuates around the metastable minimum for a long time, though eventually
decays toward the truly stable phase, which has m < 0.

3.1 The Metastable Phase: Mean-Field Theory (Pair Approximation)

The resulting metastable state is homogeneous at mesoscopic scales for times shorter than
its relaxation time, as expected [3, 4], and we can exploit this feature. In particular, we
shall assume that: (i) the system is completely homogeneous, and (ii) it can be described
by the average density of up spins, ρ(+), and by NN (pair) correlations as captured by
the density ρ(s, s ′) of NN spins. Under these assumptions, all the spins will behave in the
same manner, and the evolution of a spin will depend exclusively on its current state and its
four NNs. Denoting x ≡ ρ(+) and z ≡ ρ(+,+), we may write ρ(−) = 1 − x, ρ(+,−) =
ρ(+) − ρ(+,+) = x − z and ρ(−,−) = 1 + z − 2x. In this approximation, the probability
Q(s,n) of finding a spin in a state s = ±1 surrounded by n ∈ [0,4] up NN spins is

Q(s,n) =
(

4

n

)
ρ(s)ρ(+|s)nρ(−|s)4−n =

(
4

n

)
ρ(+, s)nρ(−, s)4−n

ρ(s)3
, (3)

where ρ(±|s) = ρ(±, s)/ρ(s) are marginal densities. The pair of indices (s, n) defines the
spin class the given spin belongs to. For periodic boundary conditions, there are 10 different
spin classes, as shown in Table 1. The cost �H(s, n) of flipping any spin within a class is
the same, so that the transition rate ω(s → si ) ≡ ω(s,n) in (2) only depends on s and n, the
spin at a node i and the number of its up NN neighbors, respectively.

This information may be used to write down rate equations for the two relevant observ-
ables in our mean field approximation, namely x and z. In particular, the change in x when
a spin s with n up neighbors flips is δx(s, n) = −s, whereas the change in z in the same
process is δz(s, n) = −sn/4. We thus obtain [12, 30]:

dx

dt
= G1(x, z) ≡

4∑

n=0

G(x, z;n), (4)

dz

dt
= G2(x, z) ≡

4∑

n=0

n

4
G(x, z;n), (5)

Table 1 Spin classes for the
two-dimensional Ising model
with periodic boundary
conditions. The last column
shows the energy cost of flipping
the central spin at each class

Class Central spin Number of up neighbors �H

1 +1 4 8 + 2h

2 +1 3 4 + 2h

3 +1 2 2h

4 +1 1 −4 + 2h

5 +1 0 −8 + 2h

6 −1 4 −8 − 2h

7 −1 3 −4 − 2h

8 −1 2 −2h

9 −1 1 4 − 2h

10 −1 0 8 − 2h
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where

G(x, z;n) ≡
(

4

n

)[
(x − z)n(1 + z − 2x)4−n

(1 − x)3
ω(−, n) − zn(x − z)4−n

x3
ω(+, n)

]
. (6)

Equations (4)–(6) correspond to a mean-field Pair Approximation [12, 31]. This is a
dynamic generalization of the first-order cluster variation method by Kikuchi [32], and has
been used to study other nonequilibrium systems with success. Our interest here is on the
stationary solutions, G1(xst, zst) = G2(xst, zst) = 0. Both stable and metastable solutions are
locally stable against small perturbations, which requires the associated Lyapunov exponents
to be negative. This yields the necessary and sufficient conditions

(∂xG1)st + (∂zG2)st < 0,

(7)
(∂xG1)st(∂zG2)st − (∂zG1)st(∂xG2)st > 0.

On the other hand, the condition (∂xG1)st = 0 signals for h = 0 an incipient or marginal
instability corresponding to an order-disorder phase transition with critical point (xc

st, z
c
st) =

(1/2,1/3). It follows that

Tc(p) = −4

[
ln

(
3

4

√
1 − 4p

1 − p
− 1

2

)]−1

. (8)

This function is depicted in Fig. 1 (see the related discussion above in Sect. 2). The station-
ary state (xst, zst) may be obtained numerically from the nonlinear equations G1(xst, zst) =
G2(xst, zst) = 0 subject to the local stability conditions in (7). For h = 0, the up-down sym-
metry leads to pairs of locally-stable steady solutions, namely (xst, zst) and (1 − xst,1 +
zst − 2xst). The result is illustrated in Fig. 2. This also illustrates the expected agreement
with Monte Carlo results at low and intermediate temperature for any p. In particular, this
agreement is good for temperatures below 0.75Tc(p). The fact that increasing p at fixed T

decreases the magnetization reveals that the nonequilibrium perturbation tends to increase
disorder, as expected. In this way we can identify the parameter p, which weights the com-
petition between different heat baths leading to nonequilibrium behavior, as a source of non-
equilibrium noise, as compared with thermal fluctuations induced by T . For small enough

Fig. 2 (Color online)
Temperature dependence of the
steady-state magnetization for
h = 0 and, from top to bottom,
p = 0, 0.001, 0.005, and 0.01.
Lines are results from the
mean-field (pair) approximation.
Inset: Magnetization in the
metastable phase vs. T for
h = −0.1 and the same values of
p as in the main graph
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fields, the situation closely resembles the case h = 0, but the up-down symmetry is now
broken, and locally-stable steady states with magnetization opposite to the applied field are
metastable, see inset to Fig. 2.

3.2 Nonequilibrium Surface Tension

The above mean-field approximation neglects fluctuations, so that it cannot account for the
relaxation of the metastable phase. One expects that, for long enough times, fluctuations
will allow for a decay toward the stable phase. Direct inspection of escape configurations as
the ones in Fig. 3 indicates that the metastable-stable transition is a highly inhomogeneous
process triggered by large stable-phase clusters, and a detailed comparison (not shown) sug-
gests that the nonequilibrium and equilibrium cases are characterized by the same type
of relevant excitations. These grow or shrink into the metastable sea depending upon the
competition between their surface, which hampers cluster growth, and their bulk, which
favors it.

The nucleation and growth of a cluster is controlled in equilibrium, p = 0, by the zero-
field interfacial free-energy, or surface tension. For p > 0, even though a proper bulk free-
energy function does not exist, it seems sensible to assume that the properties of the non-
equilibrium interface will be determined by a nonequilibrium or effective surface tension
σ0(φ;T ,p), where φ is the interface orientation angle with respect to one of the lattice
symmetry axes. This relies on the assumption that the normalization of the probability
measure for interface configurations can be interpreted as a nonequilibrium partition func-
tion.1 More formally, let y denote an interface microscopic configuration—e.g., the set of
heights yk , k = 1 . . .L, that characterize the steps of the interface, see right panel in Fig. 4—

Fig. 3 (Color online)
Configurations as the system
escapes from the metastable state,
at different times as indicated, for
L = 128, p = 0.01, h = −0.25,

and, from left to right, T = 0.1,

0.3 and 0.7 in units of Tons

1There are two other implicit hypothesis in this approach. First, we assume that the nonequilibrium partition
function, for large systems, still depends exponentially on the length of the interface. A second implicit
assumption is that the interfacial nonequilibrium free energy for a closed interface still is given (up to finite
size corrections) by the integral of the nonequilibrium surface tension along the interface.
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Fig. 4 (Color online) Left: The nonequilibrium surface tension as a function of T for, from top to bottom,
p = 0,10−6,10−5,10−4,10−3,5 × 10−3,10−2,2 × 10−2,3 × 10−2, and 4 × 10−2. For any p > 0, the
surface tension behaves non-monotonously, contrary to the equilibrium case. Inset: The effective interface

temperature T
(I)
ef (T ,p), as defined in the main text, versus T for the same values of p as in the main graph.

Notice that T
(I)
ef (T ,p > 0) strongly deviates from T in the low-temperature regime. Right: Example of inter-

face for L = 12 with steps y = (1,−2,−1,2,2,−2,1,−2,1,1,−1,0). The numbers shown in the squares
indicate the spin class of the corresponding spin as defined in Sect. 3.1. Notice that interfacial spins can only
belong to classes 2, 3 and 4 (equivalently, 9, 8 and 7 for h = 0)

and Z−1μ(y;T ,p) the associated invariant measure, which for 0 < p < 1 is non-Gibbsian.
Then, we define σ0 ≡ −(βL)−1 lnZ. Similar hypotheses have already been tested in rela-
tion with other nonequilibrium phenomena. For instance, concerning nonequilibrium phase
transitions, the distribution of complex zeros of the invariant measure normalization factor
has recently been shown to obey the Lee-Yang picture in the case of the asymmetric simple
exclusion process [28] and for systems with absorbing states [29]; see also [30, 33]. Inter-
estingly, the normalization factor is defined in general up to a multiplicative constant. This
is related to the fact that one has to arbitrarily choose a reference configuration from which
to measure the relative probabilities of all other microscopic configurations. However, in the
case of our model, the ambiguity in Z can be easily resolved by noting that a well-defined
equilibrium limit exists, p = 0. In this way, demanding Z to converge to the right equi-
librium limit for p = 0, the ambiguity disappears.2 In more general nonequilibrium cases,
where no proper equilibrium limit can be defined, it is expected that the spurious multiplica-
tive factor won’t play any relevant physical role [28].

Computing analytically the exact interfacial invariant measure Z−1μ is beyond our goals,
but a solid-on-solid approximation [34] will suffice (see below). In particular, we are mainly
interested in σ0(T ,p) ≡ σ0(φ = 0, T ,p), the surface tension defined along a primitive lattice
vector, which controls the free-energy cost of a cluster in nucleation theory [5–8], see (11)
below. It thus follows [33] that σ0(T ,p) has non-monotonous T dependence for any p > 0
and a maximum at a non-trivial value of T which depends on p, see left panel in Fig. 4. This
peculiar behavior can be understood in simple terms. From low- and high-T expansions of

2In general, the surface tension is standardly defined through the logarithm of the ratio of two bulk partition
functions (e.g., Z+−/Z++ in the Ising model), so the normalization ambiguity wouldn’t play in principle
any role here. However, in interfacial models such as the solid-on-solid approach we use below, where the
interface is defined with no reference to the bulk, a single partition function enters the definition of the surface
tension, and in this case the normalization ambiguity is certainly an issue.
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σ0(T ,p), one obtains that

σ0 ≈ T

T
(I)

ef

σe + small corrections, (9)

where T
(I)

ef (T ,p) is an effective interfacial temperature and σe(T ) is the exact equilibrium
surface tension [35]. At high-T , where thermal fluctuations dominate over the nonequi-
librium perturbation, T

(I)
ef is proportional to T —see inset to left panel in Fig. 4—so that

σ0 is proportional to σe which decreases with T . However, T
(I)

ef saturates to a constant as
T → 0, namely, limT →0 T

(I)
ef (T ,p) = 2/ ln[(1 − √

p)/(p + √
p)]. This is a consequence of

the dynamics (2) becoming temperature independent at low T , where only nonequilibrium
random fluctuations survive, and implies that σ0 is a linearly-increasing function of T at
low-T . Consequently, it follows a non-monotonous T -dependence of σ0 with a maximum
which roughly agrees with the crossover observed in T

(I)
ef .

The properties of the nonequilibrium interface may be obtained from the resulting
σ0(T ,p). For instance, the temperature dependence of this function leads to the phase di-
agram Tc(p). In equilibrium, the interface free energy goes to zero as T increases toward
Tons, and there is no surface tension in the disordered phase for T > Tons [36]. Therefore,
one may identify Tc(p) as the (finite) temperature for which σ0(T ,p) = 0. We thus obtain
the result in Fig. 1. On the other hand, σ0 is linear in T as T → 0 (see left panel in Fig. 4),
namely σ0(T ,p) ≈ α(p)T , with [33]

α(p) = ln

(
1 − √

p

p + √
p

)
. (10)

The condition α(pc) = 0 thus signals the onset of disorder at low temperature. This yields
pc = (

√
2 − 1)2 ≈ 0.1716, in excellent agreement with previous MC simulations [12, 25].

We can now give a clear meaning to the concept of nonequilibrium surface tension by
deriving (10) in a low temperature and small p limit. At the same time, this calculation
shows how detailed balance arguments can be restored within our nonequilibrium model.
For low temperature and small p, stable-phase clusters in our system are typically rectan-
gular, with almost flat interfaces along the main axes. For low T , the cluster growth or
shrinkage process can be characterized by the addition or removal of an outer column or
row [13–18]. For the addition, at low T one requires a random flip along the boundary (with
probability p), followed with overwhelming probability by thermal spin flips which fill up
the line. On the other hand, for p 
 exp(−2|h|/T ), the removal process is done in almost all
cases by a sequence of only thermal spin flips, in exactly the opposite sequence compared to
the creation sequence. The ratio of probabilities of opposite sequences in all cases scales as
p exp(2n|h|/T ), with n the length of the segment added, and where we have used Metropo-
lis dynamics for simplicity, approximating p+(1−p) exp(−2|h|/T ) ≈ exp(−2|h|/T ). The
factor exp(2n|h|/T ) precisely corresponds to the Boltzmann factor associated to the change
in bulk energy. The remaining correction can be associated to a surface tension by assum-
ing detailed balance in this mesoscopic process and writing the stable-phase cluster energy
as a surface contribution which increases with the cluster contour plus a bulk contribution
which decreases with cluster volume, see (11) below. The net effect of the process on the
interface is the addition or removal of two units of length, so the effective surface tension is
σ0 ≈ − T

2 lnp. Therefore we obtain α(p) ≈ − 1
2 lnp, which corresponds to the small p limit

of (10). This argument offers a good underpinning for the concept of nonequilibrium surface
tension in connection with a detailed balance condition for cluster evolution.
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3.3 Effective Free-Energy and Nucleation

The structural similarities between equilibrium and nonequilibrium excitations responsible
for the metastable-stable transition allows one to write an effective free energy associated to
a cluster of radius R along one of the lattice axes. In formal analogy with the equilibrium
case [7], we assume that

F (R) = γ [2Rσ0 − R22m0|h|]. (11)

Here, σ0(T ,p) is the macroscopic nonequilibrium surface tension averaged over all possi-
ble orientations,3 m0(T ,p) is the zero-field spontaneous magnetization, which follows from
the mean-field scheme in Sect. 3.1, and (T ,p) is the cluster form factor, which relates
the cluster half diameter R along one of the axes to its volume, C = R2. This may be
computed from the angular dependence of σ0(φ;T ,p) via the Wulff construction [37, 38].
The multiplicative factor in (11), γ � 1, is a phenomenological parameter, which might
have a very weak dependence on T and p, intended to capture small corrections to classical
nucleation theory due to correlations between different clusters, inhomogeneous magnetiza-
tion profiles within a cluster, finite-size effects due to the mesoscopic character of clusters
surface, etc. [8].

The first term in F (R) measures the cost of the cluster interface, while the second term
stands for the bulk gain. In this way, small clusters—with a large surface/volume ratio—
tend to shrink, while large clusters tend to grow. The critical cluster radius, Rc, which cor-
responds to the maximum of F (R), separates these two tendencies. One has that

Rc = σ0

2m0|h| . (12)

We measured this quantity in MC simulations. With this aim, one produces an initial state
with a single square cluster of down spins and side 2R (the stable phase) in a sea of up
spins. This is highly unstable, so that any subcritical initial cluster, R < Rc(T ,p), will very
quickly shrink, while supercritical ones, R > Rc(T ,p), will rapidly grow to cover the whole
system. Since our dynamics is stochastic, we define the probability that a cluster of size R

is supercritical, Pspc(R). This is measured in practice by simply repeating many times the
simulation and counting the number of times that the initial cluster grows to cover the sys-
tem. Rc is then defined as the solution of Pspc(Rc) = 0.5. As illustrated in the inset to Fig. 5,
Pspc(R) shows a sharp transition from 0 to 1, which allows for a relatively accurate estimate
of Rc .4 The agreement shown in Fig. 5 between these results and our analytical predictions
is excellent for temperatures well below Tc(p). Interesting enough, Rc(T ,p > 0, h) exhibits
non-monotonous T -dependence, as expected from the anomalous low-T behavior of σ0.

3This average surface tension can be well approximated by the surface tension defined along a primitive
lattice vector. To see this, notice that for not very low temperatures the surface tension is almost isotropic
(clusters have a spherical shape on average, see Fig. 3), so the average surface tension coincides with the
surface tension along one of the lattice axes. On the other hand, for very low temperatures the surface tension
is strongly anisotropic (clusters have a rectangular shape, Fig. 3). In this limit, the average of σ0(φ;T ,p) over
all orientations would be dominated by interfaces aligned with the lattice axes, which make up most of the
cluster contour. Therefore, σ0 can be interpreted again as the surface tension along one of the lattice primitive
vectors in this limit.
4Our numerical results on Rc depend in principle on the shape of the initial excitation, which we choose
squared. However, we checked that using spherical initial excitations (good at high T ) one obtains estimates
for Rc which are very close to those obtained with squared excitations (expected at low T ).
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Fig. 5 (Color online) Rc vs.
T −1 for L = 53, h = −0.1 and,
from top to bottom, p = 0, 0.001,
0.005 and 0.01. Symbols are MC
results. Lines correspond to the
theoretical prediction. The nth

curve (from bottom to top) has
been shifted (4 − n) units in the
ŷ-axis. Inset: MC results for
Pspc(R) as a function of R for
L = 53 at T = 0.4Tons, p = 0,
and h = −0.1. All the data in
these graphs correspond to an
average over 1000 independent
experiments

Fig. 6 (Color online) Cluster
distribution P(C) for
T = 0.2Tons, L = 53, h = −0.1
and, from bottom to top,
p = 0.001, 0.005, 0.01, 0.02,
with γ = 0.815, 0.82, 0.83, 0.85,
respectively. Lines are theoretical
predictions and points are MC
results. The nth curve (from
bottom to top) has been rescaled
by a factor 10(n−1) in the ŷ-axis

Our ansatz in (11) also implies that the fraction of stable-phase clusters of volume C =
R2 in the metastable phase follows a Boltzmann distribution

P (C) = M−1 exp
[
−2βγ

(
σ0

√
C − m0|h|C

)]
(13)

Here, the normalization M = 2�/(1 − m), where � = ∑C∗
C=1 C exp[−βF (C)] with C∗ =

R2
c , is defined so that the metastable state has magnetization m(T ,p,h) as derived in

Sect. 3.1. The cluster distribution P (C) which is obtained in MC simulations for times much
shorter than the relaxation time is shown in Fig. 6. This compares very well with the ana-
lytical prediction, (13). For p = 0.001, we observe a non-trivial structure in P (C) which is
not captured by our continuous description. This is due to the underlying lattice anisotropy,
which for low-T and small p gives rise to resonances in P (C) for clusters with complete
shells, i.e. 2 × 2, 3 × 2, 3 × 3; see Fig. 6. For larger p and/or T , fluctuations smear out
these resonances. Notice in Fig. 6 that the nonequilibrium perturbation p enhances fluctua-
tions and favors larger clusters. Similar good agreement for P (C) is found in a wide range
of values for T , p and h. On the other hand, systematic corrections in P (C) show up for
microscopic clusters. These appear because our main ansatz, (11), is based on mesoscopic
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considerations and therefore is only valid for large enough clusters. The observed deviations
won’t play however a relevant role in our discussion, as far as the critical cluster remains
large enough, as it is the case here, see Fig. 5.

The assumption above on F (R) implies a force per unit area which controls the growth
of supercritical clusters. It follows that the propagation velocity of a cluster in the large-size
limit will obey the Allen-Cahn expression [5, 6]:

v0 = 2�′m0|h|
σ0

, (14)

where �′ is a non-universal constant. We measured v0 in MC simulations of an infinitely-
large cluster. This was implemented in practice by a flat interface separating the stable phase
from the metastable one which constantly propagates. The results, which are shown in Fig. 7,
agree with our predictions. We also observe that v0 exhibits non-monotonous T -dependence,
as expected given the behavior described above for σ0. This implies, in particular, that,
at low T , cooling the system favors the interface propagation or, in other words, that the
interface dynamics becomes more sluggish as we raise the temperature in the low-T regime.

As discussed before, σ0 increases linearly with T at low temperature, namely, σ0 ≈
α(p)T as T → 0 with α(p) given in (10). Therefore we expect in this regime that
v0 ≈ [��α(p)](Tons�T ) with � = 2�′|h|T −1

ons assuming that m0(T → 0,p) ∼ O(1). This
low-T behavior, linear in T −1, is also confirmed by simulations, see the inset to Fig. 7, with
� ≈ 0.0077.

The nucleation rate I , i.e., the probability that a critical cluster nucleates per unit time
and per unit volume, may be written as

I = A|h|δ exp[−βF (Rc)], (15)

where A(p) is a non-universal amplitude and δ ≈ 3 for random updatings [7]. Two main
relaxation patterns arise depending on the interplay between the relevant length scales in the
problem. In fact, one needs to deal with the competition between the system size, L, and
the mean cluster separation, R0(T ,p,h). The two other important length scales, namely the
critical radius, Rc , and the thermal correlation length in the metastable phase, ξms, do not
compete with the former two because they are much smaller in the most interesting regime,

Fig. 7 (Color online)
Propagation velocity v0 vs. T −1

for h = −0.1 and
p = 0,0.001,0.005,0.01,0.02,

0.03,0.04,0.05 (from bottom
to top). Curves are linear fits to
data. Inset: Slope of linear fits
vs. p. The line is the theoretical
prediction
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ξms 
 Rc 
 R0,L. Now R0 can be calculated together with its associated time scale t0 by
requiring that R0 = v0t0, which states that a supercritical cluster propagating with velocity
v0 will grow a distance R0 in a time t0, and that R2

0t0 I = 1, which states that the probability
of nucleating a volume R2

0 in a time t0 is (by definition) one. Therefore, R0 = (v0/I)1/3.
For R0  L, the random nucleation of a single critical cluster is the relevant excitation.
In this regime, known as Single-Droplet (SD) region, the lifetime of the metastable state is
τSD = (L2 I)−1. On the other hand, for R0 
 L, the metastable-stable transition proceeds
via the nucleation of many critical clusters, a regime known as Multi-Droplet (MD) region,
and τMD = [v2

0 I/(3 ln 2)]−1/3 [7]. Summing up,

τ(T ,p,h) ∝
{(

L2 I
)−1 R0  L(SD),(

v2
0 I

)−1/3 R0 
 L(MD).
(16)

The crossover between these regimes, given by the condition R0 = L, characterizes the
dynamic spinodal point, namely,

|hDSP|(T ,p) = γσ 2
0

6m0T lnL
. (17)

That is, one should observe the SD regime for |h| < |hDSP|, while the MD regime is expected
to dominate otherwise.

We estimated τ from MC simulations by defining it as an average of the first-passage time
to zero magnetization. Due to the strong local stability that characterizes the metastable state
at low temperature, τ may be extremely large in practice. (For example, this goes up to 1040

MC step per spin in Fig. 8. Assuming the MC time unit corresponds to the inverse of the
typical phonon frequency,5 which is of order of 10−12 s, this corresponds to τ ∼ 1028 s!)
Therefore we needed to use an efficient rejection-free algorithm. Our choice was the s − 1
variant of the MC algorithm with absorbing Markov chains, together with the slow-forcing

Fig. 8 (Color online) Lifetime τ

of the metastable state vs. T for
the same values of p and
conditions as in Fig. 5. The nth

curve (from top to bottom) is
rescaled by a factor 10−2(n−1) .
Solid lines are theoretical
predictions for (from top to
bottom) γ = 1,0.85,0.77,0.65.
Amplitudes A(p) are in the range
[10−3,10−2]. Dashed lines are
predictions for γ = 1

5Certain rare-earth magnetic materials can be modeled to a good approximation by the Ising Hamil-
tonian [39]. When we talk here about the phonon frequency we refer to the phonon frequency in one of
these real magnetic system with Ising-like properties.
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Fig. 9 (Color online) The
dynamic spinodal |hDSP|, as
defined in (17), versus T for
p = 0, 0.001, 0.005, 0.01, and
0.02 from top to bottom,
respectively. We explicitly
indicate the T ranges
corresponding to the SD and MD
regimes in the case of the
example in Fig. 3, namely, for
|h| = 0.25 and p = 0.01. The
symbols × mark the temperatures
T/Tons = 0.1,0.3 and 0.7 for
|h| = 0.25. Notice that, unlike at
equilibrium, there is here a low-T
regime where the MD scenario
holds. This is confirmed in Fig. 3

approximation [40–42]. Figure 8 shows our results for τ vs. T and different values of p, to-
gether with theoretical predictions. Interesting enough, we observe that τ increases with T at
low-T for fixed p > 0.6 That is, the local stability of nonequilibrium metastable states is en-
hanced at low-T as the strength of the thermal noise (T ) increases. This, which is in contrast
with the Arrhenius curve observed in equilibrium, closely resembles the noise-enhanced sta-
bility (NES) phenomenon reported in experiments on unstable systems [43]. On the other
hand, increasing p for fixed T always results in shorter τ . This complex phenomenology is
captured by our simple ansatz (11), which traces back the NES phenomenon to the low-T
anomaly in σ0, which in turn is a nonlinear cooperative effect due to the interplay between
thermal and nonequilibrium fluctuations. That is, though any of these two noise sources
(T and p) will separately induce disorder, their combined effect results in a (cooperative)
stabilization of the nonequilibrium metastable state.

This interesting effect is also evident in the morphology of the metastable-stable tran-
sition. In particular, |hDSP| inherits the non-monotonous T -dependence of σ0, see Fig. 9,
resulting in a novel MD regime at low-T not observed in equilibrium. For instance, for
h = −0.25 and p = 0.01, we expect from Fig. 9 MD morphology for, e.g., T = 0.1Tons and
T = 0.7Tons but SD behavior for T = 0.3Tons, which is confirmed by direct inspection of
escape configurations such as the ones in Fig. 3. Notice that the SD decay mechanism is
a finite-size effect, and that MD will be the only relevant mechanism for large enough L.

However, the relevance of the SD regime vanishes logarithmically with L—see (17)—so
that it could be observable in mesoscopic samples, at least [7].

3.4 The Limit of Metastability

When the magnetic field |h| is increased, the strength of the metastable state decreases.
That is, the local minimum in the free-energy functional associated to the metastable phase
becomes less pronounced. Upon further increasing |h|, such local minimum eventually dis-
appears. At this point, the metastable state becomes unstable, which means that its relax-
ation toward the final stable configuration is no longer hampered by any free-energy bar-

6Notice that for any p > 0, τ will become independent of T as T → 0, simply because the dynamics (2)
becomes essentially T -independent in this limit.
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Fig. 10 (Color online) Left panel: Mean-field result for h∗(T ,p) as a function of T for, from top to bottom,
p = 0, 0.01, 0.02, 0.03, 0.031, 0.032, 0.035, 0.04, 0.05 and 0.1. The qualitative change of behavior in
the low temperature region occurs for p ∈ (0.031,0.032). We also indicate for |h| = 0.25 the temperatures
T1 < T2 which, as discussed in the main text, comprise the metastable region for p = 0.05. The inset shows
the two locally-stable steady magnetization branches as a function of h for T = 0.7Tc(0) and p = 0.005.
The solid (dashed) line represents stable (metastable) states. The dot-dashed line signals the discontinuous
transition, at h = h∗(T ,p), where metastable states disappear. Right panel: Monte Carlo results for h∗(T ,p)

as a function of T for L = 53 and, from top to bottom, p = 0, 0.01, 0.03, 0.0305, 0.0320, 0.0350, 0.04
and 0.05. The change of asymptotic behavior in the low-T limit happens for p ∈ (0.03,0.0305). The inset
shows the probability of occurrence of metastability, as defined in the main text, as a function of h < 0 for
L = 53, T = 0.7Tons and p = 0. Data here correspond to an average over 500 independent demagnetization
runs for each value of h

rier. The magnetic field strength h∗(T ,p) at which this metastable-unstable transition oc-
curs is known as the spinodal [44–46] or, sometimes (see Appendix A) pseudospinodal or
intrinsic-coercive field.

As |h| is increased, the metastable phase remains homogeneous on a coarse-grained
length scale for times shorter than τ , so that the mean-field approach in Sect. 3.1 is suit-
able within this context. The locally-stable steady magnetization, as computed from the
stationary solution of (4) and (5), exhibits two branches as a function of h, see the inset in
the left graph of Fig. 10. This hysteresis loop reveals that, at the mean-field level, metasta-
bility disappears abruptly for any |h| > h∗. In order to evaluate h∗(T ,p), one may study
how the metastable state responds to small perturbations of the applied field. If (x

h0
st , z

h0
st )

is a locally-stable stationary state for T , p and h0, with magnetization opposed to h0, and
we perturb h = h0 + δh, the new locally-stable stationary solution is modified according to
xh

st = x
h0
st + εx and zh

st = z
h0
st + εz. One obtains to first order that

εx =
[

∂hG2∂zG1 − ∂hG1∂zG2

∂xG1∂zG2 − ∂xG2∂zG1

]

0

× δh, (18)

and a similar expression for εz, where the quantity in brackets is evaluated at (x
h0
st , z

h0
st ) for

given values of the parameters T , p, and h0, and the functions G1,2(x, z) are defined in (4)
and (5). This (linear) response diverges for

[
∂xG1∂zG2 − ∂xG2∂zG1

]
0
= 0, (19)

which corresponds to a discontinuity in the metastable magnetization as a function of h.
For fixed T and p, the field for which (19) holds is h∗. The left graph of Fig. 10 shows the
mean-field result for h∗(T ,p) as obtained numerically from (19). In particular, for p = 0,
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we recover the standard equilibrium mean-field spinodal curve: Converging to 2 as T → 0,
linearly decreasing with temperature for small T , and vanishing as (Tbethe − T )3/2 at the
mean-field equilibrium critical point. For p > 0, an instability separates two different low-T
behaviors of h∗(T ,p) depending on the amplitude of the nonequilibrium fluctuations. For
small enough values of p, namely, p ∈ [0,0.031], which includes the equilibrium case, the
field h∗(T ,p) monotonously grows and extrapolates to 2 as T → 0. For larger p, up to
p = 5/32, however, h∗(T ,p) → 0 as T → 0, with a maximum at some intermediate value
of T .

The value p = πc ≈ 0.0315 separates these two types of asymptotic behavior. The p < πc

regime can be understood on simple grounds. In this case, h∗(T ,p) increases as T drops,
meaning that a stronger field is needed to destroy metastability. In a metastable state, the
tendency to maintain spin order prevails over the tendency of the individual spins to follow
the external field. Since both T and p induce disorder, one should expect that decreasing
T and/or p a stronger field will be needed to destroy the metastable state, as confirmed in
Fig. 10 for p < πc .

The p > πc regime is more intriguing. Consider, for instance, p = 0.05 > πc and
|h| = 0.25. According to the left graph in Fig. 10, we can define two temperatures such
that metastability only occurs for T ∈ [T1, T2]. The fact that h∗ goes to zero as T → 0 in this
regime means that, at low temperature, the nonequilibrium fluctuations are strong enough to
destroy on their own the metastable phase. Based on the above argument, one would expect
that increasing T should avoid metastability. However, there is metastability for intermediate
temperatures, T ∈ [T1, T2]. This reentrant behavior of the spinodal field suggests once more
a cooperation between thermal and nonequilibrium fluctuations: despite the intrinsic disor-
dering effect of both noise sources, T and p, they cooperate to produce metastability, for
which local order prevails. We measured h∗ in MC simulations, confirming this; see the right
graph in Fig. 10 and Appendix A. In particular, we find the instability for p = πc ≈ 0.03025
in simulations, which is very close to the mean-field result.

There is an important difference between the two cooperative phenomena above, i.e., the
noise-enhanced stabilization of nonequilibrium metastable states and the reentrant behavior
of the spinodal field. That is, while the former occurs for any p > 0, the latter only occurs
for p > πc . In order to understand this fact, one can study the limit of metastability at low
temperatures for small p. In this regime, one can check that for |h| < 2 clusters of size 1
or 2 will typically shrink. Clusters of size 3 will typically grow to size 4 (unless they are
elongated, then they will shrink), so the smallest possible critical cluster is 2×2. For T → 0
and small p, such that spin flips which increase (resp. decrease) energy have a transition
rate p (resp. 1), see (2), a 2 × 2 cluster will grow with high probability. However, this does
not mean that the system is already unstable. To see how this is possible, let’s take a typi-
cal ultralow-temperature configuration with a 2 × 2 cluster of down spins already nucleated
(recall h < 0). Together with this cluster, for T → 0 and small p, we will find with high
probability a number of isolated down spins in the sea of up spins. On average, the total
number of down spins in this configuration will be pN , so we have (pN − 4) isolated down
spins and a cluster of 2×2 down spins. For this typical configuration s we can then compute
the growing and shrinkage rates of the stable phase, G(s) and S(s) respectively (see Appen-
dix A). These rates measure the probability that the current configuration evolves toward
the stable or metastable basin, respectively. For our typical configuration s, the growing rate
of the stable phase is G(s) = p(1 − p), while the shrinking rate is S(s) = p − 4(1 − p)/N ,
which goes to p as N increases. Therefore, for large enough N , S(s) > G(s). That is, though
the 2 × 2 cluster is more prone to grow than to shrink, the global configuration s tends to
evolve towards the metastable basin and not to the stable one. This is the consequence of
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a free-energy barrier (of entropic origin in this case) which hampers the system evolution
toward the stable phase. We identify this hampering as the signature of metastability, see
Appendix A, and we conclude that, even as T → 0, the system shows (entropic) metastabil-
ity for small enough p. More generally, for T → 0 and small p there will be a p-dependent
density ρ(p) of 2 × 2 stable-phase clusters coexisting with isolated down spins. The above
argument can be repeated in this case, and we find that for p < 2[√ρ(1 − ρ)−ρ] the system
will exhibit entropic metastability, becoming unstable only for p > 2[√ρ(1 − ρ) − ρ].

The limit of metastability can be studied within the cluster nucleation scheme of Sect. 3.3.
A way to estimate h∗(T ,p) in this case is to impose the condition that the critical cluster
is microscopic, Rc(T ,p,h∗) = 1, so any microscopic fluctuation can trigger the transition
toward the stable state. However, as explained above, we may still have metastability of
entropic origin even when microscopic clusters become unstable against surface growth.
In this way, the nucleation theory prediction, h∗(T ,p) = σ0/2m0 according to (12), yields
the wrong result, i.e. that h∗(T ,p) shows reentrant behavior for any p, as opposed to our
measurements and mean-field predictions.

4 Small Particles

The above concerns bulk metastability, i.e., a property of macroscopic systems or models in
the thermodynamic limit. However, the case of finite systems, in which surface effects are
relevant, is of great interest. This occurs for magnetic particles in many applications, e.g.,
magnetic recording media where one often needs to deal with particle sizes ranging from
mesoscopic to atomic levels, namely, clusters of 104 to 102 spins. We therefore also studied
our model with open circular boundary conditions. The system is now defined on a square
lattice, where we inscribe a circle of radius r , and assume that the bonds to any spin outside
the circle are broken; see the left graph in Fig. 11. In what follows we refer to this model
system as magnetic particle, or simply model particle.

Fig. 11 (Color online) Left: Schematic representation of the model particle with open circular boundary
conditions. Spins at the border do not have nearest neighbor spins outside the circle. Right: Typical evolution
in which the magnetization is observed to decay by jumps to the final stable state. This is for a single particle
of radius r = 30 (∼ 103 spins) at low temperature, and for small values of h and p (see the main text). The
time axis shows t − τ0 in MCSS (Monte Carlo steps per site) with τ0 = 1030 MCSS; this is of order of the
duration of the initial metastable state. The inset shows a significant detail of the relaxation
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The effects of free borders on the metastable-stable transition have already been stud-
ied in equilibrium systems [21, 23, 24]. In this case, the system evolves to the stable state
through the heterogeneous nucleation of one or several critical clusters, which always de-
velop at the border, where it is energetically favorable. Apart from this, the properties of the
metastable-stable transition do not change qualitatively as compared to the case of periodic
boundaries. In our nonequilibrium system we also observe this kind of heterogeneous nucle-
ation. However, in closer inspection, one notices that the randomness of the decay process
is importantly enhanced, which results in some unexpected phenomenon.

The main observation is illustrated in the right graph of Fig. 11. That is, when observed on
the appropriate time scale, namely, after each MC step (per spin), the time relaxation of the
magnetization, m(t), from the metastable state occurs by well-defined abrupt jumps. There
is thus a sequence of strictly monotonic changes of m(t), which we will name avalanches
in the following, that resembles familiar relaxation processes in many complex systems in
nature. We checked that this is a general feature of the model relaxation at low T . A too
rapid relaxation and/or domains too diluted and interfaces too diffuse will tend to obscure
the observation. Consequently, it turned out preferable to deal with small values of temper-
ature, in order to have compact and well-defined clusters, and with values of h that do not
excessively accelerate the evolution. In addition, the parameter p can take a wide range of
values, provided that its effect is comparable to that of temperature. A perfect compromise
is T = 0.11Tons, p = 10−6, and h = −0.1, and most data below concern these parameter
values.

4.1 Avalanche Statistics

To be precise, consider an avalanche that begins at time ta , when the system magnetization
is m(ta), and finishes at tb . We define the avalanche duration as �t ≡ |ta − tb| and its size
as �m ≡ |m(ta) − m(tb)|, and we are interested on the associated respective distributions,
P (�t) and P (�m). It turns out to be most important for the reported result to remove from
the data some trivial extrinsic noise [47], namely, small thermal events of typical size (see
Appendix B)

�̄ =
{

ln
(1 + p)[1 + e2β|h|]

p + e2β|h|

}−1

. (20)

These events correspond to the short-length fluctuations that are evident by direct inspection
in the inset of the right graph in Fig. 11. These also correspond to avalanches that originate
at flat interfaces which, at low enough T , have a significant probability to form, as discussed
below.

The distribution P (�m) that results after deducting these small events is illustrated in the
left graph of Fig. 12. This is well described by

P (�m) ∼ �−τ(r)
m , (21)

with a size-dependent exponent given by

τ(r) = τ∞ +
(a1

r

)2
, (22)

where τ∞ = 1.71(4). The left graph in Fig. 12 depicts the corresponding duration distribu-
tions. This follows

P (�t) ∼ �
−α(r)
t , (23)
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Fig. 12 (Color online) Left: Log-log plot of the size distribution P(�m) of avalanches (i.e., the data after
subtracting “small events” as defined in the main text) for ensembles of independent model particles of
radius (from bottom to top) r = 30, 42, 60, 84 and 120, respectively. This corresponds to the O symbols
(green). Plots of the corresponding duration distribution P(�t ) vs. c�

γ
t for each r are also shown (×, red)

superimposed, with c ≈ 0.5 and γ ≈ 1.52 (see the main text). For visual convenience, the curves are shifted
vertically by 4n with n = 0 to 4 from bottom to top. Right: Log-log plot of the duration distribution P(�t )

for the same ensembles. For visual convenience, these curves are shifted vertically by 2n with n = 0 to 4 from
bottom to top. The inset shows a log-log plot of the size (top) and duration (bottom) cutoffs �̄∗ vs. r . Lines
are power-law fits. Running averages have been performed in all cases for clarity purposes

with

α(r) = α∞ +
(a2

r

)2
, (24)

where α∞ = 2.25(3). The constants are, respectively, a1 = 30.8(9) and a2 = 47.2(8). In
both cases, size and duration, the apparent power law ends with an exponential tail, i.e.,

P (�) ∼ exp
(−�/�̄∗) . (25)

The cutoffs that we observe follow �̄∗ ∼ rβ with βm ∼ 2.32(6) and βt ∼ 1.53(3), respec-
tively (see the inset in the left graph of Fig. 12).

In practice, we observed this behavior for several combinations of values of the parame-
ters T , p and h. The requirement for an easy observation is that, as indicated above, the
configurations need to be sufficiently compact and that none of the underlying processes
should predominate so that it obscures the others. That is, the above behavior is the conse-
quence of a competition between metastability, thermalization and the nonequilibrium per-
turbation. As a matter of fact, as it will be discussed below, observing power laws requires
both free borders and the nonequilibrium condition. That is, the distributions P (�) look
approximately exponential if the system has periodic borders and/or one sets p = 0 in (2).
It is also obviously convenient, in order to have good statistics, a choice of the parameter
values that selects a region of the phase diagram in which evolution proceeds by as many
jumps as possible. In any case, however, the behavior that we describe here is robust and
characterizes our model, so that no fine-tuning of parameters is needed.

4.2 Many Scales

We next show that the observed power laws are in the model a superposition of many in-
dividual processes, each with a well-defined scale, and that these may be traced back to
specific demagnetization events. Therefore, there is no need here to invoke for any critical
point, which is the familiar origin for scale invariance in equilibrium.
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Fig. 13 (Color online) Typical
time evolution of a circular
model particle of radius r = 120
as it decays from the metastable
state. Time increases from left to
right and from top to bottom. The
metastable (stable) phase is the
blue (red) region, and we
represent the specific avalanches
at each time as yellow regions.
As discussed in the main text, all
the large avalanches (the only
ones that are visible here to the
naked eye; the small others are
indicated by arrows) occur at the
curved parts of the interface. This
simulation is for T = 0.11Tons,
p = 10−6 and h = −0.1

Let us consider a relatively-large circular model particle. Inspection of configurations
then clearly reveals that, at sufficiently low T , the interesting events always occur at the
interface between the metastable and stable phases. One observes curved domain walls due
to the faster growth of the stable phase near the concave open borders. This is in accordance
with a previous conclusion that, in equilibrium, the critical cluster always nucleates at the
free border [23, 24]. Any curvature costs energy, so that the large avalanches tend to occur
at curved domain walls, which will tend to produce flatter interfaces; see Fig. 13. This is
confirmed when one monitors the mean avalanche size 〈�m〉 and the wall curvature 〈κ〉 as a
function of magnetization m(t). We define the curvature κ as the number of ascending steps
at the interface. That is, the number of up spins which have two ups and two downs at the
respective sides along the interface. (This definition requires well-defined compact clusters,
which are the rule at low T .) The left graph in Fig. 14 illustrates our results. After averaging
over many runs, definite correlations show up. That is, as one could perhaps have imagined,
the event typical size is determined by the curvature of the interface region at which the
avalanche occurs.

This is also confirmed by monitoring P (�m | κ), the conditional probability that an
avalanche of size �m develops at a wall of curvature κ . We studied this in detail by simu-
lating an interface of constant curvature that evolves according to the transition rate (2); see
Appendix C. The right graph of Fig. 14 shows that P (�m | κ) has two regions for given κ .
The first one corresponds to the small events of typical size (20) mentioned above. There
is also a region which, contrary to the situation in Fig. 12, exhibits (stretched-) exponential
behavior, namely, P (�m | κ) ∼ exp[−(�m/�̄m)η] with η ≈ 0.89. That is, a region of the
interface with curvature κ tends to induce avalanches of typical size �̄m(κ).

This fact turns out most relevant because, due to competition between the randomness in-
duced by free borders and the one induced by p in the transition rate (2), the interface tends
to exhibit a broad range of curvatures with time, as illustrated in Fig. 13 and the left graph in
Fig. 14. More specifically, relaxation proceeds via a series of different configurations, each
characterized by a typical curvature of the interface and by the consequent typical form of
the critical cluster which induces the avalanche. Therefore, what one really observes when
averaging over time is a random combination of many different avalanches, each with its
typical well-defined (gap-separated) size and duration, which results in an effective distrib-
ution. The fact that this combination depicts several decades (more the larger the system is)
of power-law behavior can be understood on simple grounds.
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Fig. 14 (Color online) Left: Semilogarithmic plot of the mean size 〈�m〉 (solid, green line) and mean cur-
vature 〈κ〉 (dotted, red line) as a function of magnetization. Notice the non-trivial structure uncovering a
high degree of correlation between the avalanche mean size and the average curvature of the wall at which
it originates. Right: Semilogarithmic plot of P(�m | κ), the size distribution for avalanches developing at a
wall of constant curvature, κ, where κ increases from bottom to top (see Appendix C). Here, Nm ≡ 1

2 N�m.
For visual convenience, the curves are shifted vertically by 10n with n = 0 to 4 from bottom to top. This
corresponds to an average over 3500 independent runs, and running averages have also been performed for
clarity purposes

Let Q(A) the probability of A, and P (x | A) = A exp(−Ax) the probability of an event
(or avalanche) of size x given A. The variable A determines the typical scale of the ensuing
avalanches, and depends on the domain wall curvature in our case. It can be however a
fluctuating external magnitude in the general case. Assume that A can take a finite number
of equally spaced values Ak , k = 0,1,2, . . . , n, in the interval [Amin,Amax], so that Ak =
Amin + kδ with δ = (Amax − Amin)/n (alternatively, one may assume randomly distributed
Aks), and that all of them have the same probability, Q(A) = const. One obtains that

P (x) = δe−xAmin

1 − e−xδ

[
Amin − Amaxe−(n+1)xδ − δ

1 − e−nxδ

1 − exδ

]
. (26)

The fact that even such a simple, uncorrelated ansatz describes qualitatively the data is il-
lustrated in Fig. 15. That is, the superposition of a large but finite number of exponential
distributions, each with a typical scale, yields an effective global distribution which is con-
sistent with apparent scale invariance. This distribution extends in practice up to a cutoff,
exp(−xAmin), which corresponds to the slowest exponential relaxation. Notice that (26)
predicts a size-independent exponent, τ(r) = τ∞ = 2, that differs somewhat from the ob-
served asymptotic one, τ∞ = 1.71(4). This reveals that a more complete explanation than
(26) would be suitable. This would require taking into account, for example, dynamic corre-
lations such as the ones revealed in the left graph of Fig. 14. The above, however, is already
semi-quantitative and there is no evidence that a more involved computation would modify
qualitatively this picture.

Consider next P (�t | �m), i.e., the probability that the avalanche of size �m lasts a
time �t. As expected from the above, this exhibits well-defined peaks corresponding to
large correlations, i.e., avalanches of a given size have a preferred duration and vice versa.
Assuming �m ∼ �

γ
t , we obtain γ = βm/βt = 1.52(5). Using this relation, one may obtain

the duration distribution by combining (26) with P (�m)d�m = P (�t)d�t . A comparison
of the resulting curve with data in Fig. 15 leads to γ � 1.52, in perfect agreement with
the value obtained from the cutoff exponents β . More generally, a scaling plot of P (�t)

vs. c�
γ
t , with c some proportionality constant, must collapse onto the corresponding curve
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Fig. 15 (Color online) Left: Solid lines are the predictions, (26) for n = 200, Amin = 0.007 and Amax = 1.

The symbols stand for the avalanches duration (lower curve) and size (upper curve) when r = 60, i.e., two of
the data sets in Figs. 2 and 3. In this particular case, the finite-size exponent is τ(r = 60) = 2.06(2). Right:
The theoretical avalanche size distribution on the left panel, and the many exponentials which compose it

P (�m) for each particle radius r . This is confirmed in the left graph of Fig. 12 for γ � 1.52,
further supporting our description of scales superposition. Let us assume for a moment that,
as it would occur in the presence of a critical condition, both P (�m) and P (�t) are true (as
opposed to apparent) power-law distributions. It then follows the scaling relation (α − 1) =
γ (τ − 1) which, together with our values above for α and τ, implies that γ � 1.76, which
contradicts the value γ � 1.52 that follows by two methods. We believe this misfit simply
confirms our point that none of the distributions P (�) in this section exhibits true scaling
behavior.

4.3 Some Additional Comments

We conclude that the model particle relaxes via events, each with a well-defined scale, but
many of them randomly combine producing (apparent) power-law behavior. This is a con-
sequence in the model of two main features, namely, free borders and the nonequilibrium
perturbation. (For p = 0 and/or periodic boundary conditions, one just observes a well-
defined mean.) There is no indication of chaos, e.g., sensitivity of the dynamic relaxation
to the initial condition. We also discard that the observed power laws have any relation in
the model with criticality in the familiar, equilibrium sense. In fact, we do not observe any
relevant correlation other than the dynamic ones that we described in detail. The question,
given that our model is purposely oversimplified, is whether this picture applies to scale-free
fluctuations in natural phenomena. Demonstrating this, i.e., analysis of separate elementary
events in actual cases, is difficult. However, we argue next that there are some indications
that this may be the case in some occasions.

We first mention that our separation between small events—as described in (20) and
Appendix B—and (large) avalanches is also supported by experiments [47–51]. On the
other hand, it is remarkable that the statistical properties of the resulting distributions are
indistinguishable in practice from actual data [52]. For instance, size corrections similar
to the ones in (22) and (24) for τ and α, respectively, have been reported in avalanche
experiments on rice piles [53], and our asymptotic values are very close to the ones reported
in magnetic experiments, e.g., τ∞ = 1.77(9), α∞ = 2.22(8) and γ = 1.51(1) in [47] for
quasi-two dimensional samples; see also [51]. Moreover, our cutoff values in (25) follow
the precise trend observed, for instance, in magnetic materials [54, 55]. Our non-critical
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Fig. 16 (Color online) The
avalanche sizes as a function of
magnetization for six typical
independent runs. This is to
illustrate that large avalanches
tend to occur, approximately, at
the same value of magnetization.
This occurs here for the large
avalanche around m = 0.3 in four
of these runs and for the sequence
of large avalanches in all the runs
for m ∈ [−0.7,−1], for instance

scenario is also consistent with the fact that one variously observes either power-law or
exponential distributions, or a mixture of both, in different but closely related experiments
and even in different regimes of the same experiment; see, for instance, [56].

It is also remarkable that our picture does not imply universality; instead, microscopic
details matter, as it is the case in experiments. That is, universality is suspicious in a context
in which critical exponents seem to vary with conditions and materials [47, 55], and ap-
plications sometimes rely on sensibility to the sample microstructural details [57–59]. Our
picture also explains other features of natural signals such as, for instance, reproducibility.
This refers to the fact that experiments reveal that the avalanches, i.e., excluding the small
events, tend to occur at the same stages of evolution [60–63]. As shown in Fig. 16, our sys-
tem exhibits a high degree of reproducibility due to the strong tendency of the critical cluster
to nucleate at the border. Simulations indicate that this occurs more markedly the lower h

and T are, i.e., when the system is more efficient in selecting the most (energetically) favor-
able configuration.

Interesting enough, if our picture has a broad applicability, there would be more hope to
the goal of predicting large events. That is, the assumption of some underlying criticality
naturally implies that catastrophes, though relatively rare, occur in an strongly correlated
bulk and, consequently, have the same cause as the smaller avalanches [64–66]. Instead, in
our picture, events are characterized by their size, and each size follows from some spe-
cific microscopic configuration. The configurations that, under appropriate conditions, may
originate large events qualitatively differ from the ones corresponding to smaller events. In
summary, there is some specific cause for each event which depends on its size.

In spite of the extreme simplicity of the model, one should perhaps recognize that it is
likely that its basic features are present in some actual systems as well. In particular, one may
imagine that the model randomness mimics the causes for the random interface rearrange-
ments in magnets and for the slip complexity in earthquakes, for instance. Furthermore, in
these two cases, as in the model, time evolution is through a series of successive short-lived
states that constantly halt the system relaxation (apparent in Fig. 11, right). It is precisely
this what causes a constant change of scale which results in the (apparent) scale invariance
of the model.

It would be interesting to study the possible occurrence of these short-lived halt states
(see Fig. 11) in natural signals. These halts are associated in the magnetic particle with
flat interface regions. That is, once the initial metastability breaks down, the particle be-
comes inhomogeneous, and flat interfaces have a significant probability to form after each
avalanche (which aims at minimizing interfacial energy). As this is the most stable configu-
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ration against small perturbations, the system remains some time with constant magnetiza-
tion m(tb). This may be described as an entropic metastability. There is no energy barrier
but an unstable situation such that a given microscopic random event suffices to initiate the
next avalanche.

Finally, we mention that there are many other possible explanations for scale-invariant
noise based on non-critical mechanisms; see, for example, [60, 61, 67–73]. To our knowl-
edge, however, this is the most general one so far reported which has a physics content. Other
proposals are often restricted to specific situations and, in some cases, they may also be in-
terpreted at the light of a superposition of many different typical scales. A similar origin for
electronic 1/f noises was suggested in the past (see, for instance, [60, 61, 74–78]), though
this is perhaps the first time in which an explicit relation is drawn between elementary events
(avalanches) and microscopic physical processes.

5 Conclusion

This paper deals with metastability in a nonequilibrium environment. We studied a two-
dimensional Ising ferromagnet subject to competing dynamics, as if a completely random
processes were constantly perturbing a tendency to thermalization at temperature T . The
perturbation impedes equilibrium, even if it is extremely weak, and a nonequilibrium steady
state sets in asymptotically. This is a convenient background to investigate various questions,
and it could mimic certain nonequilibrium situations in nature.

In the light of the observed qualitative behavior, we argue that, at a mesoscopic level,
concerning both steady and time-dependent properties of clusters in metastable conditions,
it is sensible to assume that a nonequilibrium free-energy function exists for clusters which
is formally similar to the equilibrium concept. In particular, we assume that the metastable
phase results from a contest between surface and bulk terms of this function, and that a
nonequilibrium surface tension captures the (strongly nonlinear) interplay between thermal
and nonequilibrium noises.

Our theoretical approach predicts a cooperative coupling among the thermal and non-
equilibrium noises which results in novel phenomenology. For instance, there is noise-
enhanced propagation of domain walls and stabilization of the metastable state at low T ,

and reentrant behavior of the spinodal field under strong nonequilibrium conditions. These
phenomena are perfectly confirmed by Monte Carlo simulations.

We also explored the relaxation from a metastable state in the presence of open bound-
aries. This case also shows intriguing behavior at low T . That is, the decay occurs through
a series of many metastable-like states that repeatedly halt the dynamics, which resembles
the relaxation by avalanches reported for many complex systems, e.g., interface rearrange-
ments in magnets and fault slips causing earthquakes. We conclude that scale-free avalanche
distributions are not to be associated to any critical condition in the model but are simply
a superposition of many different classes of events, each with a well-defined scale. In the
model this is determined by the curvature of the domain wall at which the avalanche orig-
inates. This may be a property of any complex relaxation phenomena characterized by a
multiplicity of short-lived, metastable-like states.
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Appendix A: The Spinodal Field in MC Simulations

We briefly describe here a method to estimate the spinodal field h∗(T ,p) which separates
metastable from unstable states. To be precise, h∗ is a pseudo-spinodal given that the transi-
tion in the actual system (with fluctuations) is not sharp but a progressive crossover [44–46],
as illustrated in the inset to right graph in Fig. 10. Estimating h∗ allows in the main text a
confirmation of the corresponding mean-field prediction.

Our method consists in following the system path in phase space as it evolves under
dynamics (2) from the initial state with all spins up toward the final stable state. With this
aim, we assign to each intermediate state along this path, say sk , a measure �(sk) of the
net tendency of the system to evolve toward the stable phase from that configuration. Using
the concept of spin class described in Sect. 3.1, it is straightforward to see that �(sk) =
G(sk) − S(sk), where

G(sk) ≡
4∑

n=0

ν(+, n; sk)ω(+, n); S(sk) ≡
4∑

n=0

ν(−, n; sk)ω(−, n)

are the growth and shrinkage rates of the stable phase in state sk , respectively (recall that
h < 0). Here, ν(s, n; sk) is the fraction of spins in class (s, n) for configuration sk, and
ω(s,n) is the spin-class transition rate.

Metastability is hampered by free-energy barriers, while unstable states evolve with-
out any impediment. Therefore, we may divide relaxation paths in phase space in two
sets: Metastable paths, for which at least one configuration exists such that �(sk) < 0,
and unstable paths, where �(sk) > 0 ∀k. Given the stochasticity of the dynamics, one
needs to be concerned with the probability of occurrence of metastability, defined as
�(T,p,h) = nmet/Nexp, where nmet(T ,p,h) is the number of experiments out of the to-
tal Nexp in which the relaxation path in phase space belongs to the class of metastable paths.
The limit of metastability is defined in this scheme as the field for which �(T,p,h∗) = 0.5.

This is illustrated in the right graph of Fig. 10 for a system size L = 53. (We studied finite-
size corrections to the spinodal field by simulating larger systems; however, these corrections
may be neglected for all practical purposes.) This confirms the reentrant behavior of h∗ for
low temperature under strong nonequilibrium conditions.

Appendix B: Small Events

We now determine the avalanche statistics for a flat interface under a magnetic field at low T .
Let us assume a macroscopic, perfectly flat interface between the metastable and stable
phases which, for h < 0, correspond to the up and down phases, respectively.

Flat interfaces are very likely at low T , since they minimize surface tension, and they
will tend to invade the metastable phase with time for any h < 0.

We are interested in the probability per unit time for a change in the state of a spin in
class (s, n), W(s,n), where s = ±1 and n ∈ [0,4] stands for the spin number of up NNs;
see Sect. 3.1. One has that W(s,n) = ν(s, n)ω(s, n), where ν(s, n) is the fraction of spins
of class (s, n) in the current configuration and ω(s,n) is the corresponding transition rate;
see (2) and Table 1. For the given initial condition, the only possible classes are (+1,4),

(+1,3), (−1,1) and (−1,0). For 0 ≤ |h| ≤ 2J and low T , ω(s, n) is very small for these
four classes, e.g., between 10−6 and 1.24 × 10−6 for T = 0.11Tons, p = 10−6 and h = −0.1.
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Fig. 17 Schematic representation of a flat interface in which a nucleation event originates and grows as
discussed in the main text. Notice in (c) that the only relevant spins during this kind of growth are the two
spins in class (−1,2) and the two spins in class (+1,2) at the respective ends of the cluster

Let us assume that a fluctuation nucleates as in Fig. 17a, i.e., one spin has been flipped.
This spin belongs to class (−1,3), and its two NN spins in the direction of the interface
belong to class (+1,2). It is straightforward to show that the probability that this fluctuation
either grows along the interface or shrinks is much larger than the probability of any other
event in the surrounding bulk.

Given that there are many more spins in the bulk than in a flat interface, there will be
many bulk fluctuations before anything happens at the interface. However, whenever an in-
terface fluctuation occurs, an avalanche will quickly develop along the wall before anything
disturbs the surrounding bulk.

Therefore we can safely assume that once the interfacial perturbation has appeared, the
system dynamics can be reduced to the growth and shrinkage dynamics of the interfacial
perturbation. Under this assumption, the most probable process to be observed consists in
the growth of the interfacial fluctuation via the flipping of the lateral spins in class (+1,2)

at the extremes, until one of the two spins in class (−1,2) which bound the interfacial
fluctuation flips, halting the avalanche (see Fig. 17c).

We now assume that the system is in the state depicted in Fig. 17b, with two up interfacial
spins flipped, and we want to compute the probability of finding a lateral avalanche of size
Nm, i.e. involving Nm spins. The restricted dynamics we assume only involves four different
spins (two in class (+1,2) and two in class (−1,2)). Within our constrained dynamics, the
probabilities for the fluctuation to grow or stop are

χgrow = 1

1 + p

[
p + (1 − p)

e2β|h|

1 + e2β|h|

]
,

χstop = 1

1 + p

[
p + (1 − p)

e−2β|h|

1 + e−2β|h|

]
.

The probability of finding a lateral avalanche of size Nm is hence P (Nm) = χNm
growχstop ≡

χstopexp(−Nm/�̄(−)
m ), which defines �̄(−)

m , the typical size characterizing avalanches in the
field direction

�̄(−)
m = 1

ln[ (1+p)(1+e2β|h|)
p+e2β|h| ]

. (27)
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Fig. 18 Semilog plot of the
avalanche size distributions
P(Nm) for avalanches in the
field direction (©) and against
the field (�), as obtained from
Monte Carlo simulations of a flat
domain wall of size L = 53 for
T = 0.11Tons, p = 10−6 and
h = −0.1. The slope of the lines
correspond to our theoretical
predictions in (27) and (28)

In a similar way we can compute the typical size �̄(+)
m of avalanches against the magnetic

field, i.e. avalanches involving spins in the stable (down) phase. The result is

�̄(+)
m = 1

ln[ (1+p)(1+e−2β|h|)
p+e−2β|h| ]

. (28)

As expected, �̄(+)
m < �̄(−)

m . Figure 18 shows the size probability distributions P (Nm) for
avalanches toward and against the field, as obtained in Monte Carlo simulations of a flat
domain wall of size L = 53, for T = 0.11Tons, p = 10−6 and h = −0.1. A comparison with
our predictions (27) and (28) is also shown, with excellent results.

The small avalanches here described, to be associated with the presence of flat domain
walls as the system demagnetizes from the initial metastable state, appear in our mag-
netic nanoparticle together with more structured events of large size. As shown in Sect. 4,
these structured events exhibit scale-invariant properties which stem from the interplay be-
tween the nonequilibrium perturbation and the free borders of the magnetic particle. A good
measurement of these large-scale avalanches involves filtering the above trivial noise, also
known as extrinsic noise [47].

Appendix C: Avalanches from Walls of Constant Curvature

We have shown in Sect. 4.2 that large avalanches originate due to domain wall curvature.7

Moreover, domain wall curvature appear in the system due to concave open borders, since
spins near the concave border flip faster than bulk spins.

The MC simulations reported in Sect. 4.2 show that the size of the avalanche is strongly
correlated with the curvature of the interface region at which the event originates. Here
we deep on this correlation, namely, the interest is on the probability that an avalanche of
size Nm originates at a wall of some specific curvature. With this aim, we modified our basic

7In this context, we define the amount of curvature of a domain wall as the number of kinks in the interface,
e.g., the number of up spins flanked, respectively, by two ups and by two downs at the sides along the
interface). This definition requires well-defined compact clusters, as for low temperature.
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Fig. 19 Sketch of the dynamic boundary conditions in the x̂-direction. Here we represent the first and last
columns of the system, and the local, dynamic magnetic field that each spin in these columns feels as the sys-
tem evolves in time. The effect of these dynamic boundary conditions is equivalent to eliminate the interaction
of each border spin with its up neighbor, i.e. concave open boundary conditions

Fig. 20 (Color online) Snapshots of an interface that evolves according to transition rate (2) subject to
concave open boundaries as described in the text. The stable (metastable) phase corresponds to the green
(orange) regions. We show the avalanches in light yellow. From top to bottom, Lx = 20, 40, and 100

system so that it shows an interface with constant, except for small fluctuations, non-zero
curvature.

Consider a semi-infinite, Lx × ∞ lattice with concave open boundary conditions in the
x̂-direction. This is done in practice starting with a Lx ×Ly lattice and fixing the spins at the
top row to +1, while spins in the lowest row are fixed to −1. On the other hand, boundary
conditions in the x̂-direction are dynamic: the lattice is also open in the x̂-direction, although
each spin in the first and last column suffers an additional dynamic magnetic field, equal at
any time to the negative value of its up neighbor. This is sketched in Fig. 19. For each
spin in the first and the last columns, the effect of these dynamic boundary conditions is to
effectively decouple this spin from its up neighbor. In this way we mimic a concave, stair-
like border (as the one found by the domain wall in the circular nanoparticle at some stages
of its evolution, see Fig. 13), with a fixed distance Lx between both concave borders.
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We initialize the system with a flat domain wall between the metastable and stable phases.
Under the action of the magnetic field, the domain wall propagates toward the metastable
phase. Due to the concave boundary conditions in the x̂-direction, the interface propagates
faster near the boundary. After a short transient, the initially flat domain wall reaches an
stationary state, with an almost constant (up to small fluctuations) non-zero curvature, which
depends linearly on the size Lx, see Fig. 20. In order to emulate an infinite system in the
ŷ-direction, we shift the observation window whenever the domain wall gets close to the
system extreme in the propagation direction, always keeping the interface inside the system.
In practice we generate a new region with up (metastable) spins in one extreme of the system
whenever the above condition is met, eliminating an equivalent region of down (stable) spins
in the opposite extreme. (In fact, in order to give time for the newly introduced spin region
to relax to the typical state of the metastable phase at the given T , p and h, we perform the
shift well in advance before the domain wall reaches the boundary.).

The above defined system evolves via avalanches, whose distribution we can measure.
In this way we obtain a reliable measure of avalanche statistics for a domain wall with
(approximately) constant curvature, see the right graph in Fig. 14. In particular, we observe
that domain walls with constant curvature exhibit avalanches with a well-defined typical
scale.
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