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Reentrant behavior of the spinodal curve in a nonequilibrium ferromagnet
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The metastable behavior of a kinetic Ising-type ferromagnetic model system in which a generic type of
microscopic disorder induces nonequilibrium steady states is studied by computer simulation and a mean-field
approach. We pay attention, in particular, to the spinodal curve or intrinsic coercive field that separates the
metastable region from the unstable one. We find that, under strong nonequilibrium conditions, this exhibits
reentrant behavior as a function of temperature. That is, metastability does not happen in this regime for both
low and high temperatures, but instead emerges for intermediate temperature, as a consequence of the nonlin-
ear interplay between thermal and nonequilibrium fluctuations. We argue that this behavior, which is in contrast
with equilibrium phenomenology and could occur in actual impure specimens, might be related to the presence
of an effective multiplicative noise in the system.
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I. INTRODUCTION In this paper we therefore deal with aspects of metastabil-

The concept of metastability1,2] is crucial to many ity in a kinetic Ising-type model with nonequilibrium steady
branches of science. Metastable states occur in liquids ar@fates. Our interest is on the effects of the nonequilibrium
glassed3], quark/gluon plasmaf4], globular proteing5],  condition on the properties of the metastable state as one
cosmological phase transitiofi§], the “standard model” of varies the system parameters. In particular, we study the
particle physicg7], climate modelg8], black holes and pro- magnetic-field strength for the onset of instability. This is the
toneutronic star$9], for instance. Understanding metastabil- intrinsic coercive field[20] which locates in magnets the
ity from a microscopic point of view is therefore most inter- spinodal curve which is familiar from studies of density-
esting. It is also a difficult task, given that the concept is aconserved systemg1]. The system behavior around this
kinetic feature which is not described by the Gibbs ensembleurve is the consequence of a complex interplay between
theory [1]. Consequently, a lot of activity still focuses on thermal and nonequilibrium fluctuations. This results in a
very simple cases, particularly, kinetic Ising-type models.spinodal curve that depicts novel behavior as compared to
Some recent studies along this line concern the details dhe equilibrium case. An interesting observation is that meta-
nucleation during the relaxation proces$#6], some exact stability occurs in the strong nonequilibrium regime at inter-
results in the limit of zero temperatuf&l], the checking of mediate temperatures but not in the low temperature limit,
theoretical predictions by means of computer simulationpointing out that, in this regime, noise enhances metastabil-
[12], and analysis of the effects of open bordgds3], ity.
guenched impuritiefl4], and demagnetizing field45]. Recent studies on critical behavior of some nonequilib-

These studies deal with systems in which the metastableum models have predicted similar reentrance phenomena.
state decays towards the equilibrium stable state. In this cas€hat is, in a large class of model systems, one observes that,
some understanding can be achieved via nucleation theoriemder nonequilibrium fluctuations, a disordered phase which
in which Gibbs thermodynamicequilibrium) free energy characterizes the system at both low and high temperatures
plays a central role. However, more general and intriguing ivsecomes ordered at intermediate temperat(ites22—27.
the case in which relaxation is towards a nonequilibriumFurther research is still needed, however, before one may
steady state[16—19. Nonequilibrium conditions appear conclude on the relevance of such model behavior on the
ubiquitously in nature, and they characterize the evolution ofeentrance phenomena reported, for instance, in nonequilib-
most real systemgl7]. Under such conditions, no free en- rium phase transitions driven by competition between quan-
ergy can be defined in geneifdl7], and no coherent theoret- tum and thermal fluctuations in superconductors and vortex
ical framework exists that accounts for the observed farmatter[28—3(, and concerning different liquid, glassy and
from-equilibrium behavior. Some important questionsamorphous phases in water and sil[@1—-33. Despite the
regarding metastability concern the existence and propertiesmilarities between our results and these studies, they are
of a nonequilibrium macroscopic potential capturing the esdifferent in essence: the latter concern reentrance in phase
sential physics of the metastable-stable transition under noriagrams associated with nonequilibrium phase transitions,
equilibrium conditions, and the limit of metastability when while our work concern reentrance of the nonequilibrium
such conditions hold. spinodal curve, which characterizes the limit of metastability.
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The paper is organized as follows: Secs. Il and Il de-

scribe, respectively, the model and a dynamic mean-field ap- .."..

proximation. Section IV contains our main results on the ‘9100000 . "O
static properties of nonequilibrium metastability; in particu- e A AN P e P
lar, we evaluate the intrinsic coercive field. In Sec. V we ? ? {:} C.} ? * , et ‘. ‘ .
measure this spinodal field in computer simulations, and nu-  -@1@-O-0O-@1@®- -O1O-O-0®-
merical results are compared in this section with our mean- ale o o olae. rY ' Yy
field theory. Section VI is devoted to conclusions. . . ' ' . . ’ ’ ’ ‘ ’
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Il. THE MODEL FIG. 1. Two examples of spin domains, each following from a

Consider the two-dimensional Ising model on the squaréjiﬁerem lattice partition(A); see the main text. The spins that do
lattice of sidel, A={1 L}ZCZZ with periodic(toroidal) not belong to the domain are in black, surface spins are gray, and

boundary conditions. There is a spin variable at each Iatticéhe spins forming the domain interior are empty.
site with two possible stateg==1, i e A, and spin-spin o . L
interactions and influence of an external magnetic fiefs enough. In fact, the nonequilibrium disorder which is im-

described by the function plied by (3) washes out the critical point for ang>p,
~0.17[17]. One may think of the dynamic random pertur-

H(S)=- >, SS; — hY s, (1) bation parameterized hyy as an extra source gfhonequilib-
) icA rium) disorder and randomness which is likely to occur also

wheres={s} and the first sum runs over all nearest-nei hborin many actual systems in natufe6,17. A main question

airs F_utr?ermore the spin svstem evolves with timge Vi here is how the metastable states in the system depend on the
pairs. Futhet , the Spin Syst : a}:ompetition between this nonthermal noise and the standard
stochastic single-spin-flip dynamics as determined by th?hermal fluctuations parameterized By

master equation:

dP(s; : ) )
P((; v D [w(s —9P(E;t) - w(s— S)P(s;D]. (2) lll. A MEAN-FIELD APPROXIMATION
ieA

. . . . . ; We first study a mean-field solution @R) in the pair

Here,P(s;t) is the probabl_llty of cpnflgur_atlos at timet, s approximatior[17,37. This approach is a dynamic generali-

stands fors after performing a flip ai, i.e., §—-5, and  zation of Kikuchi's method known as cluster variation

w(s— ) stands for the corresponding transition rate. In O-method[38]. Consider a partitio” of the lattice such that

der to ensure nonequilibrium conditions, we introduce &esulting domainsg; e P(A), satisfy g;Nq, =@ if j#j’,

weight.ed. _competition betwe_en two_ different temperatures; g U; q;=A. We define the surfacs; of q; as the set of all

(one “infinite” and the other finite This has been shown t0 ji5 gpins that have at least one nearest neighbor outside the

be 'the simplest way of |ndug:|ng nonequilibrium behavior in domain[39]; the rest is the interior, namelg;=g; - S; and it

lattice model§(17]. The rate is then chosen to be follows thatq;=Z;US;. These definitions are illustrated in

_ e BAH(s,m) Fig. 1. Next, consider a local observab\ésqj;j) which ex-
w(s—8)=p+(1- p)m, (3 clusively depends on spins belongingdo One readily has
from (2) for the averageﬁA(j))tEEsA(sqj;j)P(s;t) that
where B=1/T stands for the lattice (inversg dAG))
temperature—so that we are fixing the Boltzmann’s constant AN _ i .
P 9 2 2 AA(sy i asy — 53)Q(sq0)

to unity—and AH(s,n)=H(s)-H(s)=2s[2(n;—2)+h], dt S i<l
wheren; € [0,4] is the number of up nearest-neighborssof ' .

The rate(3) describes spin-flips under the action of two +2 2 AA(sy;JiDe(s—S)P(sit),  (4)
competing heat baths. Fp=0, the system goes asymptoti- s i

caIIyttov_\:_ard(sj the ur);i?u_lt_ah_GiEbs, eql.Jti_Iib:ium .:,t:tteofor gem'where S is the configuration of the domain spins,
peratureT and energyH. This has a critical point d1=0 an N ard ey . ) — .
T=T.(p=0)=Tys=2.2691, the Onsager, equilibrium critical ,AA(S“'J"J ’I)_A,@QJ’J) A(S‘?J’J)’ and Q('qu,t)'—Es_sqj I,D(S’t)
temperature. For € p<1, the conflict in(3) impedes ca- IS the probability of having the configuratics, at time t.
nonical equilibrium, and the system evolves asymptoticallyThe notationw(sy, —s;) in Eq. (4) stresses the fact that flip-
towards a nonequilibrium steady state which may essentiallping a spin in the interior only depends on the spins belong-
differ from a Gibbs stat§17,34. In this case, no equilibrium ing to the domain.

thermodynamic global temperature can be defined. Now pa- Let us assume that the system is spatially homogeneous,
rameterT can be thought as a source of thermal fluctuationspamely, thatA(j))=(A), 9;=q, Z;=Z, andS; =S for anyj.
which compete with the nontherm@ionequilibrium noise  Equivalently, the partition’(A) is regular, so that all do-
induced byp. The system now exhibits a critical point, at mains are topologically identical. One notices that the two
h=0 andT=T(p) <T.(0), which is apparently of the Ising r.h.s. terms in Eq(4) concern the domain interior and sur-
universality class[35,36, but only as far asp is small face, respectively; the latter couples the domain dynamics to
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its surroundings. Our second approximation consists in ne- 3 ; . ; . ; .
glecting this surface term, i.e., any correlation during time
evolution which extends outside the domain. Under these 2.5
two approximations, homogeneity and kinetic isolation, Eq.

(4) reduces to

d _
% =2 2 AA(sy ) o(sg — ) Q(sy:h).

SqieI

Next, one needs to estima@(s,;t) in terms ofn-body
correlation functions. Assuming that onlg) and(ss;), with
i and j nearest-neighbor sites inside the domain, matter, 0.5

(5
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Ordered phase Disordered phase

Q(sy;t) may be written as a function of the spin dengitg) i 02 0»4T/T' 06
and the density(s,s’) of nearest-neighbors pairs only. Fur- 0 . Lo
thermore, as only nearest-neighbors correlations are take ~ ° 0.05 o ! 0.15

into account, we consider a domain with only one spin in its

interior, which has four surface spins; see Fig)1With this FIG. 2. Variation withp of the critical temperature for the non-
choice, our mean-field theory turns out to be a nonequilib-equilibrium ferromagnetic system in the first-order mean-field ap-
rium analog of the equilibrium Bethe-Peierls approximation.proximation. The solid line in the inset stands for the locally-stable
It follows that the probability of finding the central spin in steady magnetization as a function of temperatumeunits of the

states surrounded by up nearest-neighbor spins is

p(+,9)"p(=,9)*™"

4
Qlsg;t) =Q(s,n) = <n> (5

equilibrium critical value for h=0 and, from top to bottomp=0,
0.001, 0.005, and 0.01. The symbols in the inset are Monte Carlo
results for a 5% 53 lattice.

(6)

IV. STATIC PROPERTIES

Therefore, using the relationg+,-)=p(—, +)=p(+) —p(+,

+) andp(=,-)=1+p(+, +)—2p(+), and writingx= p(+) and

z=p(+, +), Eq. (5) reads

4 Ny _ -\4-n
983 () smie 202

Our main interest here is on the steady solutions
Fl(xsti Zst) = O, FZ(Xstyzst) = 0, (10)

and on their stabilityf40]. Both stable and metastable states
are locally stable under small perturbations, which requires

dt  o\n the (necessary and sufficiontondition [41]
X—2)"(1+z-2x)4™"
_ A XA 20T Gl @) (a—Fl) +(LF2) <o,
(1-x) IX /&t JdZ /g
wherew(s,n) = (,L)(Sq*)S;). This is for local isotropic observ-
ables for which the dependence gpis through the pair (‘9—':1) (8—FZ> - (a—F1> (a—FZ) >0. (11
(s,n) only, A(sy;t) =A(s,n). IX/\ 0Z ) \ IZ )\ IX /g
One may apply(7) to the observableﬁl(s,n):%(hs) The condition
and Az(s,n):én(1+s) whose averages areand z, respec- IFL(x.2)
tively. Then,AA(s,n)=-s, AAZ(s,n):—‘—llsn and {;—} =0, (12
X st

4
dx_ Fi(x,2) = 2 G(x,z;n),
dt n=0

4
dz n
a =F,(x,2) = go ZG(X,Z; n),

where
(4| x-9"@+z-29 T
G(x,z;n) = (n)[ T w(=,n)

2(x-2*™"

2 w(+ ,n)]

(®) on the other hand, characterizes incipient or marginal stabil-

ity, i.e., the presence of a critical poifis, z5) for h=0, x¢,
=3 andZ=3, and it follows that

(3 e Tt
(9) T(p) = 4[In(4 1-p 2)} . (13

This is the critical temperature for the nonequilibrium model
in the present first-order mean-field approximatjai]; see
Fig. 2. The existence is noticeable of a critical valuepof
such thatT.(p,) =0, which givesp,=5/32=0.15625(to be
compared with the exact valyg =0.17).

The stationary statéxg;, z;) may be obtained numerically
from the nonlinear differential equatiori$0) subject to the
local stability condition(11). For h=0; the up-down symme-

Together with(3) and (7), these equations providdt) and  try leads to pairs of locally-stable steady solutions, namely

z(t) as well as any other local isotropic magnitude.

(XstrZsp) and (1—xg, 1+24—2Xg). The result is illustrated in
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1 dh dz dh 9z
. &= oh. (15
15 . IF19F, _dF0F,
1 dx dz  dIX dz xlo.2% o, Tp
E L 5 This (linear response diverges for
=
dF10F, dF,0F
grivtz2 Yr27%71 =0, (16)
sl | IX 9z IX IZ Ly Fon T
which corresponds to a discontinuity in the metastable mag-
T/T,.. TT netization as a function df. For fixedT andp, the field for
) B s e e~ which (16) holds ish"(T,p). Figure 3 shows the mean-field
0 0.25 0.5 0.75 1 1.25 . . o
T/T result for h'(T,p). In particular, forp=0 (the equilibrium

cas@ we recover the standard equilibrium mean-field spin-
FIG. 3. h'(T,p), as a function ofT for, from top to bottomp odal curve: converging to 2 a—0, linearly decreasing
=0, 0.01, 0.02, 0.03, 0.031, 0.032, 0.035, 0.04, 0.05, and 0.1. Thwith temperature for small, and vanishing a§T.—T)%? at
qualitative change of behavior in the low temperature region occurshe mean-field equilibrium critical point. A main result de-
for pe(0.031,0.032 Inset: The two locally-stable steady magne- rived from Fig. 3 is the existence of two different low tem-
tization branches as a function bffor T=0.7T¢(0) and p=0.005.  perature limits forh*(T,p)_ For small enough values ¢f,
The solid (dashedl line represents stablgnetastable states. The  namely,p [0,0.031], which includes the equilibrium case,
dot}ed—dashed line signals the di_scontinuous transition,h at p=0, the fieldh" (T, p) monotonously grows and extrapolates
=N'(T.p), where metastable states disappear. to 2 asT— 0. For largem, namely,p e [0.032 3%] however,
h'(T,p) —0 asT— 0, exhibiting a maximum at intermediate
the inset of Fig. 2; this also shows a comparison with Monter  The value p=7.~0.0315 separates the two types of
Carlo results which confirms the expected agreement at lowsymptotic behavior.
and intermediate temperatures for amyThe fact that in- When we cool the system in the regirpe< ., the field
creasingp at fixedT decreases the magnetization implies thaty* (T ) increases, so in this case we require a stronger field
the nonequilibrium perturbation tends to increase disordet, destroy the metastable state. This may be understood on
For small enough fields, the situation closely resembles thgimple grounds. The tendency of spins to line up in the di-
caseh=0; the up-down symmetry is now broken, however, qction of the field competes with the tendency to maintain
and locally-stable steady states with magnetization orientegqer implied by their mutual interactions. A metastable state
opposite to the applied field are metastable. . lasts for a long time because the latter prevails over the ac-
The locally-stable steady magnetization exhibits tWoyjon of the field. BothT and p induce disorder; therefore,
branches as a function of see inset in Fig. 3. This hyster- |5y ering T increases order, so that a stronger field is needed
esis loop reveals that metastability does not occur for any, gestroy the metastable state, which is in fact observed for
[h[>h"(T,p)=0, where h’(T,p) is the intrinsic coercive - "On the other hand, as is increased, the disorder
field [42]. Let z=z(x) the solution of Eq(9), and write Eq. increases, anti’(T,p) needs to decrease for a fixad ac-

(8) as cording to our observations.
The picture forp> . is more intriguing. Consider the
dx  SV(X) caselh|=0.25 andp=0.05> 7. As illustrated in Fig. 3, one
i (149 may define two temperature$; <T,, such that metastable

states only occur fofl e (T;,T,). The fact thath"(T,p) ex-

) ] o ) ] trapolates to zero in the low temperature limit far
This definesV(x), a (nonequilibrium bimodal potential that -q g5~ 7. indicates that such amount of nonequilibrium

controls the system time evolution. An increase in the fieldhjse is able to destroy on its own any metastability. Follow-
tends to attenuate the local minimum\ix) associated with ing the above reasoning, increasifigadds disorder, so that
the metastable state. This minimum exists only forng metastability should, in principle, show up in this case.
Ih|<h"(T,p); the set of Eqs(10) has only one solution, with However, there is a regime of intermediate temperatuFes,
magnetization sign equal to that of the applied field, fore (T;,T,), for which metastability occurs. This noise-
lh|>h"(T,p). enhanced metastability is a consequence of the complex in-
In order to evaluateh'(T,p), one may study how the terplay between the standard thermal fluctuations and non-
metastable state responds to small perturbations of the apeguilibrium noise: although both noises add independently
plied field. If (XQ?, 9) is a locally-stable stationary state for disorder, their combination determines the existence of re-
T, p, andhg, with magnetization opposed tg and we per- gions in the parameter spac€,p) in which no metastable
turb h=hg+ 6h, the new locally-stable stationary solution is states occur at loW but only at intermediate temperatures.
modified: X=X+ €, andZ,=20+¢,. One obtains at first or- This reentrance phenomenon is reminiscent of the one ob-
der that served in the annealed Ising mod@P] and other closely
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TABLE I. Spin classes for the two-dimensional Ising model 2 ¥ T y T y T y T
with periodic boundary conditions. The last column shows the en- :
ergy cost of flipping the central spin.
1.5
Class Central spin Number of up neighbors AH
1 +1 4 8)+2h a
2 +1 3 4)+2h S
3 +1 2 Yyl
4 +1 1 -4+2h 05
5 +1 0 -8+2h ’
6 -1 4 -8-2h
%
7 -1 3 -4-2h
8 -1 2 -4
9 -1 1 4-2h FIG. 4. Monte Carlo results fan"(T,p) as a function ofT for
10 -1 0 8-2h L=53 and, from top to bottomp=0, 0.01, 0.03, 0.0305, 0.0320,

0.0350, 0.04, and 0.05. Notice the change of asymptotic behavior in
the low temperature limit fop e (0.03,0.030% Inset: The prob-
related systemgl7,23—-27 where multiplicative noise seems ability of the metastable state, as defined in the main text, as a
to play an essential rolg5]. function of h<<0 for L=53, T=0.7T.(0), andp=0. Data here cor-
respond to an average over 500 independent demagnetization ex-
periments for each value &f Error bars are smaller than the sym-
V. MONTE CARLO SIMULATIONS: GROWTH AND bol sizes.

SHRINKAGE OF THE STABLE PHASE . . .
through certain path in phase space, which we note;as

In this section, we check further our theoretical predic—E{sl,sg), ,s%.)}. Hereq(j) is thelth configuration, starting

tions against computer simulation data. With this aim, wefrom s;, of a total number of (j) configurations which make
need a simple criterion to conclude that the model SystéMyp the path in experimerjt At any stages ) of this path, the
exhibits metastable states. Let us first characterize all th@ifferenceG(q(”)—S(q(j)) defines the net tendency of the sys-
possible local configurati_ons in terms of_the spin state, tem to evolve toward the final steady stable state. A meta-
=+1, and the number of its up nearest neighbars[0,4].  1p10 state is characterized by the presence of free energy
For periodic boundary conditions, there are 10 different spiny, riers hampering the relaxation toward the truly stable
classes, as shown in Table I. The cast(s,n) of flipping  giate In this case, relaxation is an activated process con-
any spin within a class is the same. That is, the (@Je@nly  yq|ied by large fluctuations. On the other hand, an unstable
depends ors and n, which define the class. Wiy(s) is the  gate decays without any hindrance. Therefore, we may di-
number of spins in clask when the system is is configura- yide relaxation paths in two different types. On one hand,
tion s, and noticing that classese [1,5] are characterized qiastaplelike paths, in which at least one configuragidn

by a central up spin, we may write the number of up spins_ o} exists, excluding the final stable one, such W )

which flip per unit time in the state as —S(g(j))<0, and on the other hand, unstablelike paths, such
5 that G(s))-S(s)) >0 Os) € o}, excluding again the final
G(S) = 2 (S ey (17)  stable state.
k=t For fixed T, p and h<0, given the stochasticity of the
As far ash<0, this is the growth rate of the stable phase indynamics, one needs to be concerned with the probability of
states. The shrinkage rate of the stable phase follows simi-occurrence of metastability, defined &ge{T,p,h)/Ney,
larly as[43] wheren,(T,p,h) is the number of experiments out of the
total N, in which the relaxation path in phase space belongs
_ to the class of metastablelike paths. This is shown in the inset
Sls) = génk(s)“’k' (18) of Fig. 4. The intrinsic coercive field,h"(T,p), is
B defined in this scheme as the field for which
Given a phase-space posjtthe rates3(s) andS(s) yield the (T, p,h")/Ne,=0.5; this is shown in Fig. 4 for a system
local tendency of the system to evolve toward the stable owith L=53.
metastable phases, respectively. A detailed comparison of these numerical results with the
For h<0, a state with all spins ups;={s=+1,i theory in Fig. 3 depicts semiquantitative agreement, namely,
=1,... N=L2, will relax after some time toward the stable the agreement is excellent except—as one should have
steady state, which corresponds in this case to a configuraxpected—near the critical temperature. In particular, the nu-
tion with negative magnetizatiom< 0. For a given experi- merical critical valuer, for p is.wg”%o.osoza rather close
mentj of a total of Ng, runs, this relaxation will proceed to the theoretical predictiom?®'~0.0315. This nicely con-

10
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firms that the addition of sufficient thermal noise in the pres-but it occurs as one increases the temperature. This noise-
ence of a large enough nonequilibrium perturbatior, 7, enhanced metastability reveals the existence of a complex
tends to restore metastability. We have also looked for finiteinterplay between the thermal and nonequilibrium noises.
size corrections to the measured spinodal field by simulatinghat is, adding the two effects—which, independently, tend
larger systems, finding that these corrections are very smallp increase disorder—not always results in decreasing the
and can be neglected for all practical purposes. system ordering. The above is fully confirmed in computer
Finally, let us remark that the stable phase growth angimulations, in whichh® may accurately be measured from
shrinkage rates have been introduced in literature as prdhe stable phase growth and shrinkage rates.
jected on the slow observable characterizing the relaxation The physical origin of the observed noise-driven metasta-
process, namely the system magnetizatiori43]. In this  bility is intriguing. A clue to understand this behavior is to
case, the rat&(m) (S(m)) yields the average number of up notice that certain systems under the action of a multiplica-
(down) spins which flip per unit time when magnetization is tive noise exhibit a similar reentrant behavior, namely, disor-
m. One may then define der is dominant at the low and high temperature regimes
while well-defined order sets in at intermediate temperatures.
G(m) =2 P(9G(s), M= P(9)S(s), (19  That the competition between thermal and nonequilibrium
{sim} {sim} fluctuations in(3) may induce an effective multiplicative
where{s|m} are all system configurations with fixed magne- N0iS€ can be understood on simple grounds. The effect of the
tization m, and P(s) is the probability of observing a con- nonequilibrium perturpauon in our model may b(_e described
figuration s during the relaxation from the initial stats,, ~ PY Means of an effective temperatdrgy, which is inhomo-

toward the stable one. Steady states are usually determin@§"€OUS throughout th_e system for *“’7.0 [.19]' In fact, for
by the conditionG(m)=S(m). However, the lack of intersec- any AH # 0 we may write(3) as an equilibrium Glauber rate

tion between the curves(m) andS(m) for h<<0 in them>0 Witﬁ eAffective d E)r?ra??ers, wE?fXd;BEff[AH)/[l:'eXp
interval does not contain information about the limit betweenx( BeiAT)], an Is defines an effective temperat{#s]

metastable and unstable states. Instead, the magnetic field for AH(s,n)

which such lack of intersection first develops defines the so- Ter(s,N) = . (20
called dynamic spinodal fieldpsg(T, p), which divides the 1

metastable region of parameter spé€ep,h) for finite sys- In N -1

tems in two subregions characterized by different relaxation R
morphologies[44]. In particular, for |h|<hpsdT,p) the p+(1 _p)m

metastable state relaxes through the nucleation of a single
droplet of the stable phase, while for As a matter of fact, the temperature a spin effectively feels
hoseT,p) <|h|<h"(T,p) the relaxation proceeds via the depends on the local order around it, i.e., on the number of

nucleation of multiple stable-phase droplets. nearest neighbors pointing in the same directidg; is an
increasing function of local order and, consequently, the am-
VI. CONCLUSION plitude of the fluctuations depends on the local order param-

) . ) ] eter. This is a main feature of Langevin-type models with a
This paper deals with some of the static properties ofnyltiplicative noise[25]. Developing further this possibility
metastable states in a nonequilibrium Ising-type ferromagto treat the limit of metastability is an open question. This

netic model system, as obtained from first-order mean-fielgyork, which seems most interesting, is outside the scope of
theory and computgiMonte Carlg simulations. We studied, the present paper.

in particular, the spinodal or intrinsic coercive field(T,p),

defined as the magnetic field strength for _which the meta- ACKNOWLEDGMENTS
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