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The metastable behavior of a kinetic Ising-type ferromagnetic model system in which a generic type of
microscopic disorder induces nonequilibrium steady states is studied by computer simulation and a mean-field
approach. We pay attention, in particular, to the spinodal curve or intrinsic coercive field that separates the
metastable region from the unstable one. We find that, under strong nonequilibrium conditions, this exhibits
reentrant behavior as a function of temperature. That is, metastability does not happen in this regime for both
low and high temperatures, but instead emerges for intermediate temperature, as a consequence of the nonlin-
ear interplay between thermal and nonequilibrium fluctuations. We argue that this behavior, which is in contrast
with equilibrium phenomenology and could occur in actual impure specimens, might be related to the presence
of an effective multiplicative noise in the system.
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I. INTRODUCTION

The concept of metastability[1,2] is crucial to many
branches of science. Metastable states occur in liquids and
glasses[3], quark/gluon plasmas[4], globular proteins[5],
cosmological phase transitions[6], the “standard model” of
particle physics[7], climate models[8], black holes and pro-
toneutronic stars[9], for instance. Understanding metastabil-
ity from a microscopic point of view is therefore most inter-
esting. It is also a difficult task, given that the concept is a
kinetic feature which is not described by the Gibbs ensemble
theory [1]. Consequently, a lot of activity still focuses on
very simple cases, particularly, kinetic Ising-type models.
Some recent studies along this line concern the details of
nucleation during the relaxation processes[10], some exact
results in the limit of zero temperature[11], the checking of
theoretical predictions by means of computer simulation
[12], and analysis of the effects of open borders[13],
quenched impurities[14], and demagnetizing fields[15].

These studies deal with systems in which the metastable
state decays towards the equilibrium stable state. In this case,
some understanding can be achieved via nucleation theories
in which Gibbs thermodynamic(equilibrium) free energy
plays a central role. However, more general and intriguing is
the case in which relaxation is towards a nonequilibrium
steady state[16–19]. Nonequilibrium conditions appear
ubiquitously in nature, and they characterize the evolution of
most real systems[17]. Under such conditions, no free en-
ergy can be defined in general[17], and no coherent theoret-
ical framework exists that accounts for the observed far-
from-equilibrium behavior. Some important questions
regarding metastability concern the existence and properties
of a nonequilibrium macroscopic potential capturing the es-
sential physics of the metastable-stable transition under non-
equilibrium conditions, and the limit of metastability when
such conditions hold.

In this paper we therefore deal with aspects of metastabil-
ity in a kinetic Ising-type model with nonequilibrium steady
states. Our interest is on the effects of the nonequilibrium
condition on the properties of the metastable state as one
varies the system parameters. In particular, we study the
magnetic-field strength for the onset of instability. This is the
intrinsic coercive field[20] which locates in magnets the
spinodal curve which is familiar from studies of density-
conserved systems[21]. The system behavior around this
curve is the consequence of a complex interplay between
thermal and nonequilibrium fluctuations. This results in a
spinodal curve that depicts novel behavior as compared to
the equilibrium case. An interesting observation is that meta-
stability occurs in the strong nonequilibrium regime at inter-
mediate temperatures but not in the low temperature limit,
pointing out that, in this regime, noise enhances metastabil-
ity.

Recent studies on critical behavior of some nonequilib-
rium models have predicted similar reentrance phenomena.
That is, in a large class of model systems, one observes that,
under nonequilibrium fluctuations, a disordered phase which
characterizes the system at both low and high temperatures
becomes ordered at intermediate temperatures[17,22–27].
Further research is still needed, however, before one may
conclude on the relevance of such model behavior on the
reentrance phenomena reported, for instance, in nonequilib-
rium phase transitions driven by competition between quan-
tum and thermal fluctuations in superconductors and vortex
matter [28–30], and concerning different liquid, glassy and
amorphous phases in water and silica[31–33]. Despite the
similarities between our results and these studies, they are
different in essence: the latter concern reentrance in phase
diagrams associated with nonequilibrium phase transitions,
while our work concern reentrance of the nonequilibrium
spinodal curve, which characterizes the limit of metastability.
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The paper is organized as follows: Secs. II and III de-
scribe, respectively, the model and a dynamic mean-field ap-
proximation. Section IV contains our main results on the
static properties of nonequilibrium metastability; in particu-
lar, we evaluate the intrinsic coercive field. In Sec. V we
measure this spinodal field in computer simulations, and nu-
merical results are compared in this section with our mean-
field theory. Section VI is devoted to conclusions.

II. THE MODEL

Consider the two-dimensional Ising model on the square
lattice of sideL, L=h1, . . . ,Lj2,Z2, with periodic(toroidal)
boundary conditions. There is a spin variable at each lattice
site with two possible states,si = ±1, i PL, and spin-spin
interactions and influence of an external magnetic fieldh as
described by the function

Hssd = − o
ki,jl

sisj − ho
iPL

si , s1d

wheres;hsij and the first sum runs over all nearest-neighbor
pairs. Futhermore, the spin system evolves with time via
stochastic single-spin-flip dynamics as determined by the
master equation:

dPss;td
dt

= o
iPL

fvssi → sdPssi ;td − vss→ sidPss;tdg. s2d

Here,Pss; td is the probability of configurations at timet, si

stands fors after performing a flip ati, i.e., si →−si, and
vss→sid stands for the corresponding transition rate. In or-
der to ensure nonequilibrium conditions, we introduce a
weighted competition between two different temperatures
(one “infinite” and the other finite). This has been shown to
be the simplest way of inducing nonequilibrium behavior in
lattice models[17]. The rate is then chosen to be

vss→ sid = p + s1 − pd
e−bDHssi,nid

1 + e−bDHssi,nid
, s3d

where b=1/T stands for the lattice (inverse)
temperature—so that we are fixing the Boltzmann’s constant
to unity—and DHssi ,nid;Hssid−Hssd=2sif2sni −2d+hg,
whereni P f0,4g is the number of up nearest-neighbors ofsi.

The rate(3) describes spin-flips under the action of two
competing heat baths. Forp=0, the system goes asymptoti-
cally towards the unique Gibbs, equilibrium state for tem-
peratureT and energyH. This has a critical point ath=0 and
T=Tcsp=0d=Tons<2.2691, the Onsager, equilibrium critical
temperature. For 0,p,1, the conflict in(3) impedes ca-
nonical equilibrium, and the system evolves asymptotically
towards a nonequilibrium steady state which may essentially
differ from a Gibbs state[17,34]. In this case, no equilibrium
thermodynamic global temperature can be defined. Now pa-
rameterT can be thought as a source of thermal fluctuations,
which compete with the nonthermal(nonequilibrium) noise
induced byp. The system now exhibits a critical point, at
h=0 andT=Tcspd,Tcs0d, which is apparently of the Ising
universality class[35,36], but only as far asp is small

enough. In fact, the nonequilibrium disorder which is im-
plied by (3) washes out the critical point for anyp.pc
<0.17 [17]. One may think of the dynamic random pertur-
bation parameterized byp as an extra source of(nonequilib-
rium) disorder and randomness which is likely to occur also
in many actual systems in nature[16,17]. A main question
here is how the metastable states in the system depend on the
competition between this nonthermal noise and the standard
thermal fluctuations parameterized byT.

III. A MEAN-FIELD APPROXIMATION

We first study a mean-field solution of(2) in the pair
approximation[17,37]. This approach is a dynamic generali-
zation of Kikuchi’s method known as cluster variation
method[38]. Consider a partitionP of the lattice such that
resulting domains,qj PPsLd, satisfy qj ùqj8=x if j Þ j8,
andø j qj =L. We define the surfaceS j of qj as the set of all
its spins that have at least one nearest neighbor outside the
domain[39]; the rest is the interior, namely,I j ;qj −S j and it
follows that qj =I j øS j. These definitions are illustrated in
Fig. 1. Next, consider a local observableAssqj

; jd which ex-
clusively depends on spins belonging toqj. One readily has
from (2) for the averagekAs jdlt;osAssqj

; jdPss; td that

dkAs jdlt

dt
= o

sqj

o
iPI j

DAssqj
; j ; idvssqj

→ sqj

i dQssqj
;td

+ o
s

o
iPS j

DAssqj
; j ; idvss→ sidPss;td, s4d

where sqj
is the configuration of the domain spins,

DAssqj
; j ; id=Assqj

i ; jd−Assqj
; jd, and Qssqj

; td;os−sqj
Pss; td

is the probability of having the configurationsqj
at time t.

The notationvssqj
→sqj

i d in Eq. (4) stresses the fact that flip-
ping a spin in the interior only depends on the spins belong-
ing to the domain.

Let us assume that the system is spatially homogeneous,
namely, thatkAs jdl;kAl, qj ;q, I j ;I, andS j ;S for any j .
Equivalently, the partitionPsLd is regular, so that all do-
mains are topologically identical. One notices that the two
r.h.s. terms in Eq.(4) concern the domain interior and sur-
face, respectively; the latter couples the domain dynamics to

FIG. 1. Two examples of spin domains, each following from a
different lattice partitionPsLd; see the main text. The spins that do
not belong to the domain are in black, surface spins are gray, and
the spins forming the domain interior are empty.
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its surroundings. Our second approximation consists in ne-
glecting this surface term, i.e., any correlation during time
evolution which extends outside the domain. Under these
two approximations, homogeneity and kinetic isolation, Eq.
(4) reduces to

dkAlt

dt
= o

sq

o
iPI

DAssq; idvssq → sq
i dQssq;td. s5d

Next, one needs to estimateQssq; td in terms ofn-body
correlation functions. Assuming that onlyksl andksisjl, with
i and j nearest-neighbor sites inside the domain, matter,
Qssq; td may be written as a function of the spin densityrssd
and the densityrss,s8d of nearest-neighbors pairs only. Fur-
thermore, as only nearest-neighbors correlations are taken
into account, we consider a domain with only one spin in its
interior, which has four surface spins; see Fig. 1(b). With this
choice, our mean-field theory turns out to be a nonequilib-
rium analog of the equilibrium Bethe-Peierls approximation.
It follows that the probability of finding the central spin in
states surrounded byn up nearest-neighbor spins is

Qssq;td ; Qss,nd = S4

n
Drs+ ,sdnrs− ,sd4−n

rssd3 . s6d

Therefore, using the relationsrs+,−d=rs−, +d=rs+d−rs+,
+d andrs−,−d=1+rs+, +d−2rs+d, and writingx;rs+d and
z;rs+, +d, Eq. (5) reads

dkAlt

dt
= o

n=0

4 S4

n
DFDAs+ ,nd

znsx − zd4−n

x3 vs+ ,nd

− DAs− ,nd
sx − zdns1 + z− 2xd4−n

s1 − xd3 vs− ,ndG , s7d

wherevss,nd;vssq→sq
i d. This is for local isotropic observ-

ables for which the dependence onsq is through the pair
ss,nd only, Assq; td;Ass,nd.

One may apply(7) to the observablesA1ss,nd= 1
2s1+sd

and A2ss,nd= 1
8ns1+sd whose averages arex and z, respec-

tively. Then,DA1ss,nd=−s, DA2ss,nd=−1
4sn, and

dx

dt
= F1sx,zd ; o

n=0

4

Gsx,z;nd, s8d

dz

dt
= F2sx,zd ; o

n=0

4
n

4
Gsx,z;nd, s9d

where

Gsx,z;nd ; S4

n
DF sx − zdns1 + z− 2xd4−n

s1 − xd3 vs− ,nd

−
znsx − zd4−n

x3 vs+ ,ndG .

Together with(3) and (7), these equations providexstd and
zstd as well as any other local isotropic magnitude.

IV. STATIC PROPERTIES

Our main interest here is on the steady solutions

F1sxst,zstd = 0, F2sxst,zstd = 0, s10d

and on their stability[40]. Both stable and metastable states
are locally stable under small perturbations, which requires
the (necessary and sufficient) condition [41]

S ] F1

] x
D

st
+ S ] F2

] z
D

st
, 0,

S ] F1

] x
D

st
S ] F2

] z
D

st
− S ] F1

] z
D

st
S ] F2

] x
D

st
. 0. s11d

The condition

F ] F1sx,zd
] x

G
st

= 0, s12d

on the other hand, characterizes incipient or marginal stabil-
ity, i.e., the presence of a critical pointsxst

c ,zst
c d for h=0, xst

c

= 1
2 andzst

c = 1
3, and it follows that

Tcspd = − 4FlnS3

4
Î1 − 4p

1 − p
−

1

2
DG−1

. s13d

This is the critical temperature for the nonequilibrium model
in the present first-order mean-field approximation[17]; see
Fig. 2. The existence is noticeable of a critical value ofp
such thatTcspcd=0, which givespc=5/32=0.15625(to be
compared with the exact valuepc.0.17).

The stationary statesxst,zstd may be obtained numerically
from the nonlinear differential equations(10) subject to the
local stability condition(11). For h=0; the up-down symme-
try leads to pairs of locally-stable steady solutions, namely
sxst,zstd and s1−xst,1+zst−2xstd. The result is illustrated in

FIG. 2. Variation withp of the critical temperature for the non-
equilibrium ferromagnetic system in the first-order mean-field ap-
proximation. The solid line in the inset stands for the locally-stable
steady magnetization as a function of temperature(in units of the
equilibrium critical value) for h=0 and, from top to bottom,p=0,
0.001, 0.005, and 0.01. The symbols in the inset are Monte Carlo
results for a 53353 lattice.
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the inset of Fig. 2; this also shows a comparison with Monte
Carlo results which confirms the expected agreement at low
and intermediate temperatures for anyp. The fact that in-
creasingp at fixedT decreases the magnetization implies that
the nonequilibrium perturbation tends to increase disorder.
For small enough fields, the situation closely resembles the
caseh=0; the up-down symmetry is now broken, however,
and locally-stable steady states with magnetization oriented
opposite to the applied field are metastable.

The locally-stable steady magnetization exhibits two
branches as a function ofh; see inset in Fig. 3. This hyster-
esis loop reveals that metastability does not occur for any
uhu.h*sT,pdù0, where h*sT,pd is the intrinsic coercive
field [42]. Let z=zsxd the solution of Eq.(9), and write Eq.
(8) as

dx

dt
= −

dVsxd
dx

. s14d

This definesVsxd, a (nonequilibrium) bimodal potential that
controls the system time evolution. An increase in the field
tends to attenuate the local minimum inVsxd associated with
the metastable state. This minimum exists only for
uhu,h*sT,pd; the set of Eqs.(10) has only one solution, with
magnetization sign equal to that of the applied field, for
uhu .h*sT,pd.

In order to evaluateh*sT,pd, one may study how the
metastable state responds to small perturbations of the ap-
plied field. If sxst

h0,zst
h0d is a locally-stable stationary state for

T, p, andh0, with magnetization opposed toh, and we per-
turb h=h0+dh, the new locally-stable stationary solution is
modified:xst

h =xst
h0+ex andzst

h =zst
h0+ez. One obtains at first or-

der that

ex = 3
] F2

] h

] F1

] z
−

] F1

] h

] F2

] z

] F1

] x

] F2

] z
−

] F2

] x

] F1

] z
4

x
st
h0,z

st
h0,h0,T,p

dh. s15d

This (linear) response diverges for

F ] F1

] x

] F2

] z
−

] F2

] x

] F1

] z
G

x
st
h0,z

st
h0,h0,T,p

= 0, s16d

which corresponds to a discontinuity in the metastable mag-
netization as a function ofh. For fixedT andp, the field for
which (16) holds ish*sT,pd. Figure 3 shows the mean-field
result for h*sT,pd. In particular, for p=0 (the equilibrium
case) we recover the standard equilibrium mean-field spin-
odal curve: converging to 2 asT→0, linearly decreasing
with temperature for smallT, and vanishing assTc−Td3/2 at
the mean-field equilibrium critical point. A main result de-
rived from Fig. 3 is the existence of two different low tem-
perature limits forh*sT,pd. For small enough values ofp,
namely,pP f0,0.031g, which includes the equilibrium case,
p=0, the fieldh*sT,pd monotonously grows and extrapolates
to 2 asT→0. For largerp, namely,pPf0.032,5

32
g, however,

h*sT,pd→0 asT→0, exhibiting a maximum at intermediate
T. The value p=pc<0.0315 separates the two types of
asymptotic behavior.

When we cool the system in the regimep,pc, the field
h*sT,pd increases, so in this case we require a stronger field
to destroy the metastable state. This may be understood on
simple grounds. The tendency of spins to line up in the di-
rection of the field competes with the tendency to maintain
order implied by their mutual interactions. A metastable state
lasts for a long time because the latter prevails over the ac-
tion of the field. BothT and p induce disorder; therefore,
lowering T increases order, so that a stronger field is needed
to destroy the metastable state, which is in fact observed for
p,pc. On the other hand, asp is increased, the disorder
increases, andh*sT,pd needs to decrease for a fixedT, ac-
cording to our observations.

The picture forp.pc is more intriguing. Consider the
caseuhu=0.25 andp=0.05.pc. As illustrated in Fig. 3, one
may define two temperatures,T1,T2, such that metastable
states only occur forTP sT1,T2d. The fact thath*sT,pd ex-
trapolates to zero in the low temperature limit forp
=0.05.pc indicates that such amount of nonequilibrium
noise is able to destroy on its own any metastability. Follow-
ing the above reasoning, increasingT adds disorder, so that
no metastability should, in principle, show up in this case.
However, there is a regime of intermediate temperatures,T
P sT1,T2d, for which metastability occurs. This noise-
enhanced metastability is a consequence of the complex in-
terplay between the standard thermal fluctuations and non-
equilibrium noise: although both noises add independently
disorder, their combination determines the existence of re-
gions in the parameter spacesT,pd in which no metastable
states occur at lowT but only at intermediate temperatures.
This reentrance phenomenon is reminiscent of the one ob-
served in the annealed Ising model[22] and other closely

FIG. 3. h*sT,pd, as a function ofT for, from top to bottom,p
=0, 0.01, 0.02, 0.03, 0.031, 0.032, 0.035, 0.04, 0.05, and 0.1. The
qualitative change of behavior in the low temperature region occurs
for pP s0.031,0.032d. Inset: The two locally-stable steady magne-
tization branches as a function ofh for T=0.7Tcs0d and p=0.005.
The solid (dashed) line represents stable(metastable) states. The
dotted-dashed line signals the discontinuous transition, ath
=h*sT,pd, where metastable states disappear.

HURTADO, MARRO, AND GARRIDO PHYSICAL REVIEW E70, 021101(2004)

021101-4



related systems[17,23–27] where multiplicative noise seems
to play an essential role[25].

V. MONTE CARLO SIMULATIONS: GROWTH AND
SHRINKAGE OF THE STABLE PHASE

In this section, we check further our theoretical predic-
tions against computer simulation data. With this aim, we
need a simple criterion to conclude that the model system
exhibits metastable states. Let us first characterize all the
possible local configurations in terms of the spin state,s
= ±1, and the number of its up nearest neighbors,nP f0,4g.
For periodic boundary conditions, there are 10 different spin
classes, as shown in Table I. The costDHss,nd of flipping
any spin within a class is the same. That is, the rate(3) only
depends ons and n, which define the class. Ifnkssd is the
number of spins in classk when the system is is configura-
tion s, and noticing that classeskP f1,5g are characterized
by a central up spin, we may write the number of up spins
which flip per unit time in the states as

Gssd = o
k=1

5

nkssdvk. s17d

As far ash,0, this is the growth rate of the stable phase in
states. The shrinkage rate of the stable phase follows simi-
larly as [43]

Sssd = o
k=6

10

nkssdvk. s18d

Given a phase-space points, the ratesGssd andSssd yield the
local tendency of the system to evolve toward the stable or
metastable phases, respectively.

For h,0, a state with all spins up,s1;hsi = +1,i
=1, . . . ,N;L2j, will relax after some time toward the stable
steady state, which corresponds in this case to a configura-
tion with negative magnetization,m,0. For a given experi-
ment j of a total of Nexp runs, this relaxation will proceed

through certain path in phase space, which we note ass j

;hs1,s2
sj d , . . . ,sGsj d

sj d j. Heresl
sj d is thelth configuration, starting

from s1, of a total number ofGs jd configurations which make
up the path in experimentj . At any stagesl

s jd of this path, the
differenceGssl

sj dd−Sssl
sj dd defines the net tendency of the sys-

tem to evolve toward the final steady stable state. A meta-
stable state is characterized by the presence of free energy
barriers hampering the relaxation toward the truly stable
state. In this case, relaxation is an activated process con-
trolled by large fluctuations. On the other hand, an unstable
state decays without any hindrance. Therefore, we may di-
vide relaxation paths in two different types. On one hand,
metastablelike paths, in which at least one configurationsk

sj d

Ps j exists, excluding the final stable one, such thatGssk
sj dd

−Sssk
sj dd,0, and on the other hand, unstablelike paths, such

that Gssk
sj dd−Sssk

sj dd.0 ∀sk
sj dPs j, excluding again the final

stable state.
For fixed T, p and h,0, given the stochasticity of the

dynamics, one needs to be concerned with the probability of
occurrence of metastability, defined asnmetsT,p,hd /Nexp,
wherenmetsT,p,hd is the number of experiments out of the
total Nexp in which the relaxation path in phase space belongs
to the class of metastablelike paths. This is shown in the inset
of Fig. 4. The intrinsic coercive field,h*sT,pd, is
defined in this scheme as the field for which
nmetsT,p,h*d /Nexp=0.5; this is shown in Fig. 4 for a system
with L=53.

A detailed comparison of these numerical results with the
theory in Fig. 3 depicts semiquantitative agreement, namely,
the agreement is excellent except—as one should have
expected—near the critical temperature. In particular, the nu-
merical critical valuepc for p is pc

MC<0.03025, rather close
to the theoretical predictionpc

pair<0.0315. This nicely con-

TABLE I. Spin classes for the two-dimensional Ising model
with periodic boundary conditions. The last column shows the en-
ergy cost of flipping the central spin.

Class Central spin Number of up neighbors DH
1 +1 4 8J+2h

2 +1 3 4J+2h

3 +1 2 2h

4 +1 1 −4J+2h

5 +1 0 −8J+2h

6 −1 4 −8J−2h

7 −1 3 −4J−2h

8 −1 2 −2h

9 −1 1 4J−2h

10 −1 0 8J−2h
FIG. 4. Monte Carlo results forh*sT,pd as a function ofT for

L=53 and, from top to bottom,p=0, 0.01, 0.03, 0.0305, 0.0320,
0.0350, 0.04, and 0.05. Notice the change of asymptotic behavior in
the low temperature limit forpP s0.03,0.0305d. Inset: The prob-
ability of the metastable state, as defined in the main text, as a
function of h,0 for L=53, T=0.7Tcs0d, andp=0. Data here cor-
respond to an average over 500 independent demagnetization ex-
periments for each value ofh. Error bars are smaller than the sym-
bol sizes.
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firms that the addition of sufficient thermal noise in the pres-
ence of a large enough nonequilibrium perturbation,p.pc,
tends to restore metastability. We have also looked for finite-
size corrections to the measured spinodal field by simulating
larger systems, finding that these corrections are very small,
and can be neglected for all practical purposes.

Finally, let us remark that the stable phase growth and
shrinkage rates have been introduced in literature as pro-
jected on the slow observable characterizing the relaxation
process, namely the system magnetizationm [43]. In this
case, the rateGsmd (Ssmd) yields the average number of up
(down) spins which flip per unit time when magnetization is
m. One may then define

Gsmd = o
hsumj

PssdGssd, Ssmd = o
hsumj

PssdSssd, s19d

wherehsumj are all system configurations with fixed magne-
tization m, and Pssd is the probability of observing a con-
figuration s during the relaxation from the initial state,s1,
toward the stable one. Steady states are usually determined
by the conditionGsmd=Ssmd. However, the lack of intersec-
tion between the curvesGsmd andSsmd for h,0 in them.0
interval does not contain information about the limit between
metastable and unstable states. Instead, the magnetic field for
which such lack of intersection first develops defines the so-
called dynamic spinodal field,hDSPsT,pd, which divides the
metastable region of parameter spacesT,p,hd for finite sys-
tems in two subregions characterized by different relaxation
morphologies [44]. In particular, for uhu,hDSPsT,pd the
metastable state relaxes through the nucleation of a single
droplet of the stable phase, while for
hDSPsT,pd, uhu,h*sT,pd the relaxation proceeds via the
nucleation of multiple stable-phase droplets.

VI. CONCLUSION

This paper deals with some of the static properties of
metastable states in a nonequilibrium Ising-type ferromag-
netic model system, as obtained from first-order mean-field
theory and computer(Monte Carlo) simulations. We studied,
in particular, the spinodal or intrinsic coercive field,h*sT,pd,
defined as the magnetic field strength for which the meta-
stable state becomes unstable. Our theoretical approximation
predicts reentrace phenomena as a function ofT in the strong
nonequilibrium regime,p.pc<0.0315, wherep controls
the dynamic, nonequilibrium perturbation. More specifically,
metastability is not observed at low temperatures forp.pc,

but it occurs as one increases the temperature. This noise-
enhanced metastability reveals the existence of a complex
interplay between the thermal and nonequilibrium noises.
That is, adding the two effects—which, independently, tend
to increase disorder—not always results in decreasing the
system ordering. The above is fully confirmed in computer
simulations, in whichh* may accurately be measured from
the stable phase growth and shrinkage rates.

The physical origin of the observed noise-driven metasta-
bility is intriguing. A clue to understand this behavior is to
notice that certain systems under the action of a multiplica-
tive noise exhibit a similar reentrant behavior, namely, disor-
der is dominant at the low and high temperature regimes
while well-defined order sets in at intermediate temperatures.
That the competition between thermal and nonequilibrium
fluctuations in (3) may induce an effective multiplicative
noise can be understood on simple grounds. The effect of the
nonequilibrium perturbation in our model may be described
by means of an effective temperatureTeff, which is inhomo-
geneous throughout the system for anyp.0 [19]. In fact, for
anyDHÞ0 we may write(3) as an equilibrium Glauber rate
with effective parameters, v;exps−beffDHd / f1+exp
3s−beffDHdg, and this defines an effective temperature[45]

Teffss,nd ;
DHss,nd

ln3
1

p + s1 − pd
e−bDHss,nd

1 + e−bDHss,nd

− 14
. s20d

As a matter of fact, the temperature a spin effectively feels
depends on the local order around it, i.e., on the number of
nearest neighbors pointing in the same direction;Teff is an
increasing function of local order and, consequently, the am-
plitude of the fluctuations depends on the local order param-
eter. This is a main feature of Langevin-type models with a
multiplicative noise[25]. Developing further this possibility
to treat the limit of metastability is an open question. This
work, which seems most interesting, is outside the scope of
the present paper.
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