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Abstract

The chaotic hypothesis discussed in Gallavotti and Cohen (1995) is tested experimentally in a simple conduction model.
Besides a confirmation of the hypothesis predictions the results suggest the validity of the hypothesis in the much wider context
in which, as the forcing strength grows, the attractor ceases to be an Anosov system and becomes an Axiom A attractor. A
first text of the new predictions is also attempted.
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1. Introduction

A principle holding when motions have an empirically chaotic nature was introduced in [1]:

Chaotic hypothesis: A many-particle system in a stationary state can be regarded as a smooth dynamical system
with a transitive | Axiom A global attractor for the purpose of computing macroscopic properties. In the reversible
case it can be regarded, for the same purpose, as a smooth transitive Anosov system.

For an informal discussion of the properties of Anosov systems relevant for this work, in particular for the
“Boltzmanian representation” of the SRB distribution possible for them, see [1,2]. See [3,4] for a general discussion
on the basic geometrical ideas and [5—-8] for the original and complete descriptions of the mathematical notion and
properties of Anosov and Axiom A systems.

The results of this work mainly concern the reversible Anosov case: in the concluding remarks we discuss
various questions related to reversibility and to the Axiom A cases. Therefore the part of the hypothesis that refers

* Corresponding author.
[ The notion of transitivity used in [ 1], and in the related ones, is that the stable and unstable manifolds of each point of the attractor are
dense on the attractor.
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to reversible systems is essential for our applications. It can be rephrased in various ways and, by doing so, one
gains some insights into its meaning: see Section 6.

This implies that macroscopic time averages are described by a probability distribution w on the “phase space” C
of observed events, also called timing events (which could be, for instance, the occurrence of a microscopic binary
“collision”). The time evolution, or the dynamics, is a map S of C into itself. The map S is derived from the flow Q,
that solves the differential equations of motion of the system: the timing events C have to be thought as a surface
transversal to the flow and if 7 (x) is the time between the timing event x and the successive one Sx itis Q;)x = Sx.
Note that the points Q,x are not timing events (i.e. they are not in C) for the intermediate times 0 < ¢ < #(x). 2 We
call Q, the continuous time evolution and S the discrete time evolution.

Existence of the distribution w is assumed, in general, as stated by the following (extension) of the zeroth law [9]
giving a global property of motions generated by initial data chosen randomly with distribution wg proportional to
the volume measure on C.

Extended zeroth law: A dynamical system (C, §) modeling a many-particle system (or a continuum such as a
fluid) describes motions that admit a statistics u in the sense that, given any (smooth) macroscopic observable F
defined on the points x of the phase space C, the time average of F exists for all up-randomly-chosen initial data x
and is given by

1 M

-1
lim — Z F(S/x) = /,u(dx')F(x’)
=0 C

def
Y., 1.1
A (F)y (L)

where p is a S-invariant probability distribution on C.

The chaotic hypothesis was essentially proposed by Ruelle in the case of fluid turbulence, and it is extended to
non-equilibrium many-particle systems in [1]. If one assumes it, then it follows that the zeroth law holds, [5,6,8];
however, it is convenient to regard the two statements as distinct because the hypothesis we make is “only” that
one can suppose that the system is Anosov for “practical purposes”: this leaves the possibility that it is not strictly
speaking such, and some corrections (“negligible in the thermodynamic limit”’) may be needed on the predictions
obtained by using the hypothesis.

In the first references of [1] the generality of the hypothesis is discussed and in the second reference of [1],
we derived, as a rather general consequence, predictions testable at least by numerical or physical experiments in
systems with few degrees of freedom. The feature of the prediction relevant for numerical experiments, a large
deviation theorem or fluctuation theorem, is that it is parameter free; other results concern the Onsager reciprocity
in various classes of mechanical systems [10], or fluid models [11].

The theory was developed to understand the results in [12] which, therefore, provide also the first test. In this
paper we present the results of numerical experiments that we conducted in order to check the hypothesis in models
different from the shear flow model in [12].

Being a rather general principle, the chaotic hypothesis yields predictions that are sharp and inescapable, without
free parameters. Hence it is important to check it with the highest precision possible. This immediately leads one
to work at the limit of present day computer capability and to lengthy data elaboration.

In Section 2 we describe the models and give a quantitative description of their rough characteristics, discussing the
experiments that we perform. In Section 3 we explain, through an analogy with well-known Ising model properties,

20ne may wonder why we do not time observations at constant pace: this would indeed be possible. It is, however, convenient to time
observations on natural events (i.e. using the jargon, “to make observations on a Poincaré’s section™) so that one eliminates one degree of
freedom as well as the corresponding (trivially zero hence, strictly speaking, inconsistent with the chaotic hypothesis, because Anosov
systems are hyperbolic) Lyapunov exponent, as recognized very early [13].
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Fig. 1. General billiard structure with scatters of radius Ry and R; in a periodic box with side length L (case k x / =1 x 1).

the mechanism which allows us to acquire exact knowledge of some properties of ¢ without actually computing
itself (which might be a surprising “achievement” if one does not examine in some detail, see the second reference of
[1]). In Section 4 we present the raw experimental results; in Section 5 and in Appendix A we briefly summarize the
methods followed in the statistical analysis of the results. In Section 6 we discuss interpretation problems of some
suprising results obtained while performing various checks: in particular, one check is to verify that the number
of positive Lyapunov exponents equals that of negative exponents, because this is a consequence of the chaotic
hypothesis when the attractor is dense in phase space (a necessary condition for the fluctuation theorem to hold in
the form of [1]). This turns out not to be the case in one of our four main experiments and we discuss the reasons why,
nevertheless, the fluctuations theorem prediction holds within the errors. The analysis of Section 6 also presents
comments and perspectives, and some challenging pictures that seem to emerge from our experiments and which
led, after the present work was completed, to [10,14].

2. The models and a description of the experiments

The models contain thermostat mechanisms in order to enable the systems to reach a non-equilibrium stationary
state in the presence of an imposed external field: therefore they are related to electrical conductivity problems. They
represent a gas of N identical particles with mass m, interacting via a hard core pair potential ¢ with radius r and with
an external potential ¢® # 0. The gas is enclosed in a two-dimensional box [—%kL, kL) x [—él L, MLk =
1,2,..., and is subject to periodic boundary conditions and to a horizontal constant external field E; (i is a unit
vector in the x-direction). The external potential will also be just a hard core interaction excluding access to the
area covered by some obstacles or forbidding the crossing of the box walls. The obstacles are hard disks with
centers situated on two square lattices with spacing L shifted by %L relative to each other. The radii of the disks of
each sublattice are equal and given by R and Ry, respectively, so fixed that every rectilinear trajectory must suffer
collisions with them. An alternative setting could have been a collection of identical hard disks (with large radii)
with centers on a triangular lattice: the adopted geometry is the same as that of the previous paper [15].

The geometry is very simple and the position space is described in Fig. 1: The box [~%kL, %kL] x [— %IL, L)
consists of k& x / unit lattice cells with side L joined to form a square box: at the box boundary we impose
priodic boundary conditions ( pbc) or, alternatively, semiperiodic boundary conditions (% pbc): in the latter case the
“horizontal” box walls was reflecting. The experiments with different boundary conditions have been performed
“completely” independently, on different machines and with different codes.

The system is in contact with a “thermostat” which adds (or subtracts) energy so that the total internal energy
stays rigorously constant. The equations of motion are:

1

4;=—pp b=F +Ei-app. F ;Qijw(gj 4~ 8, @) @
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withj=1,....N;a(p)=Ei- > i E,'/ (Zj gf) and F i is the (implusive) force acting on particle j (which is due
only to the hard cores). The ¢—term incorporates the coupling to a “Gaussian thermostat” and it is assumed to obey

Gauss’ “principle of least constraint”, see [16]. The constraint here is the constancy of the internal (i.e. kinetic)
energy:
N p? def
Hp,g) =) 5= = eN, (2.2)

a typical non-holonomic constraint; it follows then from Gauss’ principle that the force corresponding to the
constraint is proportional to the gradient with respect to p. of H. This model has been studied in great detail, in
[17], in the case N = 1; a similar model has been investigated numerically in [18], and very recently in [19,20]. It
is part of a wide class of models, see the second reference of [1], whose interest in the theory of non-equilibrium
stationary states was pointed out in [21,22], where one can find the first studies performed in the context in which
we are interested.

The timing events that we choose to follow are simply the collisions; whether with the walls or with the obstacles or
with other parties. The boundary conditions will be periodic in both directions or reflecting in the one perpendicular
to the field (“vertical”’) and periodic in the other (“horizontal”).

The initial data will be fixed by a random choice with absolutely continuous distribution on the full phase space
F (i.e. on the full energy surface).

The dimension of the phase space F of this system is that of the energy surface, i.e. 4NV — 1, and that of the set of
timing events C is 2D with D = 2N — 1, i.e. one unit less than the dimension of F. The phase space “contraction”
rate, i.e. the divergence of the right-hand side of (2.1), is ¥ (x) = Da(x). It can be written in the form

€(x)
ksT (x) + (2N /2D)(1/2m)p*’

y(x) = Da(x) = (2.3)

where p = (1/N) 3 i Ej is the average momentum, €(x) the work done on the system per unit time by the
external field and %kBT (x)is(1/D)Y j (1 /2m)(£j — @2 which, if kg is Boltzmann’s constant, defines the kinetic
temperature: hence the name of entropy production rate per (kinetic) degree of freedom that will be occasionally
given to a(x). Note that v (x) does not have a definite sign. In dimension d > 2 the factor 2N /2D would become
2N/dD.

The above contraction corresponds to a contraction of the volume in the full phase space F, between one collision
and the next, given by e /0 @) with

t(x)
1
o(x)=£ f y(Qrx)de (2.4)

0

if @, is the continuous time evolution (see Section 1) and #y denotes the mean collision time to = (t(-)) 4.
We shall be concerned mostly with the contraction rate o; (x) occurring during t time steps as the system evolves
between S™7/% and §7/2x:
1 /21 ]
o = 3 o(sin. 2.5)
[
It has been proved [17] that for N = 1 and small E # 0 the average (o) is positive, i.e. the system is dissipative.
There seems to be no reason to think that (o) is not positive when N > 1 and our experiments show that indeed
this is the case.
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Recently, in fact, it has been shown that under very general conditions (essentially under assumptions of smooth-
ness and that the extended zero-th law holds) it must be (o)4+ > 0 [23]. In the latter paper it is also shown that
(o)+ > 0if the SRB distribution u gives probability 1 to set which has zero Liouville measure (i.e. if the attractor
is “really” smaller than the full phase space)> and no Lyapunov exponent vanishes (note that smoothness zero-th
law and no vanishing exponent hold if the system is Anosov, hance if the chaotic hypothesis is assumed).

Therefore it is natural to write

o7(x) = {o)4+ p(x) (2.6)

so that the contraction of the phase space volume, while the system evolves between S~7/2x and §7/2x, is
e Tl P™) and (p), = 1.

In this case the time reversal map i defined by i : (g, p) — (g, —p) is such that o- (ix) = —o; (x).

The number k x [ of unit lattice cells forming the box contai_ning— the gas will be called the size of the box. We
define the density as p = N/kIL? and the energy density as eg = (1/N)Y_ i (1/2m) Ej? and we take units so that

m=1,e = % L = 1. The properties of the system are thus governed by the values of the parameters Ry, Rz, r
and p; in place of p one could use the occupied volume § = NVy/(V — Vops), where Vy is the particles volume,
V = kIL? the box volume and Vg, is the total volume of the obstacles, so that 8 is the ratio between the volume
occupied by the particle cores and the free volume where they can roam (i.e. the volume of the cell outside the
volume Vs occupied by the obstacles).

The field intensity E is fixed to E = 1 in all experiments. We shall consider systems with N = 2, N = 10, radii
R1 =0.2, Ry = 0.4 and r = 0.005 or r = 0.01 depending on the type of boundary conditions denoted, above, by
pbc and % pbc. Here is a list of the above kinematic quantities in the cases that we shall consider:

Density P N/V
1

Energy density I 5

Mass m 1

Box side L 1

Obstacles radit Ri,R; 02,04

Particles radii r 0.005(pbc) or 0.01(5 pbc)

Occupied volume § NV/(V — Vi)

Size kx! 1x1(pbc)or2 x 2(ipbe, N =2) or 4 x5(1pbc, N = 10)
Particle number N 20r10

The following dynamical quantities are particularly interesting for the qualitative picture of the motions:

o The average timing 1y of the collisions, equal to the future average (t(-))+ of the time ¢ (x) elapsing between two
successive collisions.

o The collision rate v will be the number of collisions between moving particles divided by the total number of
collisions including the ones with the obstacles and the walls (the latter are present only in the %pbc case).

o The average entropy creation per collision, equal to the future average to{(c) ..

e The Lyapunov exponents Amax and Anin defined, respectively, by the largest expansion rates of the elements under
the action of the positive iterates of the evolution map S or by the minimum absolute value of the expansion or
contraction rates.

3 We call arractor a set G with minimal {Hausdorff) dimension which has the property that £(G) = 1, i.e. which has probability 1 in
the stationary state. In general the closure clos(G) of the attractor may be the whole space C while the dimension of G may be much less.
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o The entropy correlation time defined by the decay rate (o ($"x)o, (x))4 = O(e®") of the entropy autocorrelation
(recall that Q; denotes the continuous time evolution, see Section 1), see [15,24] for an discussion of how
reasonable it is to expect an exponential decay rate.

The data below have been obtained empirically, i.e. without any attempt at estimating errors, and are useful to
get an idea of the basic qualitative properties of the system. For N = 2 particles with ¢y = % m=L=1F=1,
density, k, [, and radii as above:

pbe, k=1 $pbe k=2
0 Density 2 0.5
8 Occup. vol. 423x107* 423 x107*
A 1.32 1.31
At 1.53 x 10! 2.16 x 10! @
By vr <20 <20
fo Timing pace 150 x 107" 1.35 x 107!
v Collision rate 1.09x 1072 493x107?
2N’°_ (o)~ E—:;%% 175 % 1072 1.49 x 1072

where only the errors (not shown, but amounting to less than 0.1%; see below) on fy, {0} have been measured
with care since we need them in our experiments. The other data are purely indicative of the orders of magnitude;
V1 means for all values of 7 considered below.

For 10-particle systems we chose very different densities, for the cover with the test some “extreme” cases:

pbc.k =1 ipbe k=2

P Density 10 0.5
8 Occup. vol. 211 x 1072 423 x107*
Mo 3.50 4.71
Al 3.12 x 107 2.20 x 10° 2.8)
N %2 <20 <20
f0 Timing pace 287 %1072 28x1072
v Pair collision 895x1072  8.92x107°

e Ent d.
0oy, SMOPYPOC 4 07x 1073 352x 1073
2N —1 Deg. freedom

with the same comments on the errors and the symbols as presented in (2.7).
We shall study the probability distribution 7, (p) dp, in the stationary state u, of the variable p that is defined

by (2.5) above for t large. In fact the theory of the chaotic hypothesis foresees that, if 7 is large compared to }»;ﬁ'n,
then 7, (p) verifies

7 (p)
mr(—p)

= Tio(0)+p. @9)

This is the content of the fluctuation theorem discussed in [1,2,25] and it means that the odd part of log . (p) is
linear in p with an a priori determined slope. Nothing is known about the even part.

One may think that the even part of proportional to p2, ie. log(m (p)/m. (1)) = —%(p — 1)?t1y(o) +; therefore
it is interesting to check whether the kurtosis
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_ (= DYy = 3(p - D3
((p - 122

vanishes if ()4 denotes average with respect to the SRB distribution w in (1.1) (recall that «, = 0 for a Gaussian
distribution and the value «, can be taken as a quantitative dimensionless estimate of the “non-gaussian” nature of
the distribution). The central limit theorem for transitive Anosov systems [5] implies a Gaussian distribution for the
variable o, for large t; this yields information about the deviations of 7o, from its average t (o) by quantities of
order /7 but (2.9) describes properties of large deviations, proportional to 7. Therefore there is no a priori reason
to expect that the 7 (p) is Gaussian; hence we do not expect that x; = 0; and the evaluation of «, once (2.9) is
established, is of considerable interest.

Note that the variable o, varies on a finite range, at fixed N. This means that p varies in a finite interval {— p*, p*],
symmetric by the time reversal symmetry, whose size can be easily measured and an idea of its value can be obtained
from the following rough data for t = 20:

(2.10)

T

pbe,N=2  Spbc, N=2  pbe,N=10 ipbc,N =10

2.11
p* 991 9.25 7.92 8.55 @11

that give the values of p* on the actually observed trajectories. The definition of « and (2.4), by using the Schwartz
inequality, imply a bound

2N "‘1 E tmax
T o)+ V2 1o

if eg is the energy per particle and #yax is the maximum time between collisions. Also the bound is saturated when
all the particles have the same velocity parailel to the field.

Finally result (2.9) is valid in the limit T — oo and this means that, in order to check it, one has to perform many
experiments with various values of 7: one expects that T should be large compared to !, at least at fixed p (but
the errors are not expected to be uniform in p so that one should not be surprised to see still corrections at large
values of p for values of t for which (2.9) holds without appreciable corrections at small values of p).

In this experiment we have computed the distribution 7, ( p) at fixed 7 (using the discrete evolution §) by measuring
p over time intervals of length T but spaced by a fixed number of collisions A during which no measurement is
made. The time interval A has been taken large compared to the relevant characteristic times of the system, i.e. the
average free flight time or the inverse of the time decay constant for the entropy autocorrelation function, The latter
times being of the same order of magnitude and of the order of 1-10 collision times, we took A = 50 collisions,
see (2.7) and (2.8). Large A would have been better: but we would lose statistics. We then assume, in the statistical
analysis, that the data so obtained are uncorrelated.

We made some empirical tests that this time delay was sufficiently large by investigating, in various cases, how
important the time correlations were in the evaluation of the errors. Not unexpectedly we found that the statistical
errors decrease by increasing the sampling delay A, in spite of the smaller statistical samples: so as far as statistical
errors are concerned there is some (small) advantage in taking measurements spaced by A large. But mainly this was
a test of our independence assumption used in the errors theory. If there had been a drastic change in the statistical
errors, we would have concluded that the correlation time for the entropy production was not of the order of 10
collision times.

Another timescale of interest is A;ﬁln: this is, however, very difficult to measure and it has value +oo for some
values of E (see Fig. 9). There is no evidence that this timescale is related to the entropy autocorrelation: which
appears to be short ranged, as far as we can see. On the other end there is evidence that as E grows the number of
positive Lyapunov exponents decreases.

*

(2.12)



F. Bonetto et al./ Physica D 105 (1997) 226-252 233

In Section 6 we try to establish a connection between this observation and the fluctuation theorem. This is very
important for us as it leads to think that the chaotic hypothesis may hold in a far stronger sense than originally meant
in the second reference of [1]. One can see that if the dimension of the stable manifold of the attractor points is not
equal to that of the unstable manifold, then the closure of attractor for the forward motion cannot be the same as that
of the attractor for the backward motion. Hence time reversal cannot leave the attractor invariant: but the chaotic
hypothesis, as formulated in Section 1, tells us that nevertheless the motion on the attractor is reversible in the sense
that there is a map i* which leaves the attractor invariant and changes S into S~!. The map i* (whose existence is far
from obvious) will be called the local time reversal on the attractor. As a consequence of this proposal, a scenario
for an a priori explanation of the existence of i* has been developed in [14] where the existence of i * is linked to a
general geometric property (called Axiom C: a global version of the notion of Axiom A).

3. Ising model analogy

The fluctuation theorem as expressed by (2.9) and the subsequent comments on the Gaussian nature of the function
7. (p) may seem somewhat strange and unfamiliar.

It is therefore worth pointing out that the phenomenon of a “linear fluctuation law” on the odd part of the
distribution, in the sense of (2.9), without a globally Gaussian distribution, is in fact well known in statistical
mechanics and probability theory. Moreover, an example of what the fluctuation theorem means in a concrete case,
in which 7 (p) is not Gaussian, can be made by using the Ising model on a one-dimensional lattice Z.

We consider the space C of the spin configurations ¢ = {og},& € Z and the map § that translates each
configuration to the right (say). The “time reversal” is the map i: {g} — {—g} that changes the sign to each spin.

The probability distribution that approximates the SRB distribution is the finite volume Gibbs distribution:

exp(J ZI-;I_T 0joj+1 t+h Z-Tz_r aj)
normalization ’

(o) = (3.1

where A = [T, T]is alarge interval, J, h > 0. The configuration ¢ outside A is distributed independently on the
one inside the box A, to fix the ideas.

Calling (m) the average magnetization in the thermodynamic limit we define the magnetization in a box
[37,37] to be My = 7{m) p and we look at the probability distribution ] (p) of p in the limit T — oc. The
Gibbs distribution corresponding to the limit of (3.1) will play the role of the SRB distribution. Calling this limit
probability 7, (p) it is easy to see that

Tep) — ethimp, (3:2)
T (—p) 7T

This is in fact obvious if we take the two limits 7 — oo and T — oo simultaneously by setting T = %r. In such
acase, if } ;. , denotes summation over all the configurations with given magnetization in [T, T, i.e. such that

Z]T/: 2;1/2 oj = {m)p the distribution (3.1) gives us immediately that

-1 T
=I'(p) _ Zg,p(eXP J Zj:-—T 0joj+1 +h) i _r0j)
T = T-1
S ICT RN SN YTD S RE Y 5
if we use the symmetry of the pair interaction part of the energy under the “time reversal” (i.e. under spin reversal).

The error involved, in the above argument, in taking 7 = %1: rather than first T — oo and then T — oc, can be
easily corrected since the corrections are “boundary terms”, and in one-dimensional short-range spin systems there

= e?thim+p 3.3)
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are no phase transitions and the boundary terms have no influence in the infinite volume limit (i.e. they manifest
themselves as corrections that vanish, as T — oo followed by t — 00).

One may not like that the operation i commutes with S rather than transforming it into S~'. Another example in
which the operation i does also invert the sign of time is obtained by defining i as {ig}|; = —o_;: Eq. (3.3) can be
derived also by using this new symmetry operation.

The above examples show why there is a priori independence between any Gaussian property of 7, (p) and the
fluctuation theorem. The theory of the fluctuation theorem in [1] is in fact based on the possibility (discovered
in [5]) of representing a chaotic system as a one-dimensional short-range system of interacting spins (in general
higher that %); and the argument is, actually, very close to the above one for the Ising model with, however, a rather
different time reversal operation. See [25] for mathematical details on the boundary condition question.

4. Experimental results

Each of the measurements made is quite delicate and time consuming, hence the reader will probably forgive
us for not having done all the experiments that one finds natural to do. Each experiment requires several days of
CPU time on the computers that we used (and several months to prepare the final runs). The statistical errors have
been measured by three times the standard deviation, and the other errors are estimated by following the criteria
discussed in [15] and resumed in Appendix A. Thus the experiments should be reproducible within our error bars
if the latter are defined as we do. Hopefully the data we give can be of use even if one decides (for mathematical
reasons or to test other theoretical ideas) to change the assignments of the errors. In all the following graphs the
error bounds are always marked although sometimes they may not be visible.

Since the results for the two boundary conditions are very similar (in spite of the density differences), including
the error sizes we describe in detail only the cases of periodic boundary conditions which cover the two extreme
densities considered. Other experiments at varying field intensity are described in Section 6.

4.1. N =2 (periodic boundary conditions)

The values of Ry, R, are, respectively, 0.2, 0.4; the particle radius is 0.005 and the electric field is fixed £ = 1, a
value that seems to be quite large (see, however, Section 6). The qualitative data of the resulting evolution are given
in the first column of Table (2.7).

4.1.1. The probability distribution . (p)

The evolution is studied over 1.08 x 10 collisions. In Fig. 2 we give the graph of 7. (p) for various 7. The error
bars are very small particularly for the data at the edge of the observability interval because the data are very many
(and normalized). But the relative errors (not shown) are very small at the center and they are very large at the
edges, of course.

We have attributed to each point on the above histograms a statistical error as explained in Section 5 (essentially
they have been supposed independent variables and they have been given an error of three times the standard
derivation). In fact the analysis of dispersion of each value shown that the “law of large numbers” is obeyed, and

the standard deviation m, (1) &f {(p —{p)o)"), n = 2, and the third-order deviation, n = 3, approach 0 with an
apparent decay given by

1 1
ma(t) = —0.005(+0.002) + 39.80(:*:0.05)—;, m3(t) = —0.002(£0.004) + 93(:i:1.5)?2~. 4.1
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n(p) ~(p)

r=20 7=40
0.70 0.70 T
0.60 ' 0.60 ‘I
0.50 : 0.50 :
0.40 \ 0.40 |."\‘
0.30 | 0.30 ¢
0.20 ;f/\\ 0.20 LI
0.10 Al 0.10 FANEERY
0.00 ___/L.l___¥_ 0.00 __—le__k.___
, ! .
-6.00 —3.00 0.00 3.00 6.00 p -6.00 -3.00 0.00 3.00 6.00 ,
x
() =60 (p) =100
0.70 T 0.70 T
0.60 ' 0.60 '
I

0.50 ' 0.50 A

(A Iy
0.40 o 0.40 Wy

4

0.30 Y 0.30 |“ '

4
0.20 [ 0.20 b
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0.10 i Y 0.10 ,4 |
000 — — L1 _ No . _ ] o.ool—~-—_f‘l—'—\——~—

, ] . 1

~6.00 —3.00 0.00 3.00 6.00 ~6.00 ~3.00 0.00 3.00 6.00

Fig. 2. The histograms for s, (py at various values of the observation time r = 20, 40, 60 and 100. Each vertical bar is the error bar

centered around the measured point. The dots on the axis mark the extremes of the interval where the observed data differ from 0 within
the statistical error.

The error analysis leading to (4.1) follows the same scheme of [15]. We can also use here the notion of “goodness”
introduced in [15] to measure how good a fit is (reproduced in Appendix A), and we measured the goodness of
the above fits. We do not use the word “reliability test”, and use the unusual “goodness™ instead, to avoid inducing
the reader to think that we rely on some sophisticated standard error analysis. The goodness is 2.45 x 1073 and
4.94 x 1073, respectively.

The results are given in Fig. 3. The question of whether the probability distribution 7, (p) is Gaussian is in-

vestigated by computing the kurtosis as a function of 1: the latter quantity defined in (2.10) can be fitted by a
law

i
ma(t)?’

k(T) = [0.00(j:0.0l) + 2.3(:!:0,3)%] X 4.2)
The data are reported in Fig. 3. But, unlike the cases of m(t) and m3(t) the goodness of this fit is 1.63 x 1072
and it is comparable with the goodness of fits with a law 1/72 or even 1/73: the errors are too large so that many
fits are “‘as good” (and also very good: this only shows that the notion of goodness has shortcomings as much as
any other accuracy test).

We conclude that the distribution seems compatible with a Gaussian. Of course one expects a Gaussian behavior
for the small deviations, i.e. for (p — 1) ~ 7~1/2: if one assumes that the system is Anosov (or just that it has an
Axiom A attractor) then this follows, as a theorem, from the results of [5] (or [7]).

However, we know that it cannot be Gaussian beyond the range O(t ~!/2), because it has support between +p*
with p* < +o0, see (2.11) and Section 3. Hence the apparent closeness to a Gaussian distribution might be an
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accident, that might disappear as t increases. If it does not then this is an interesting question to examine, see
Section 6.
In Fig. 4 we show the main quantity of interest here, i.e. the graph of

1 T (p)
*#) Tho{o) ¢ log i (=p) @)
versus p (recall that (o) 4 is (2N — 1) if j is the electric current).
The abscissae axis is discretized and the number of events in which p falls in a given interval is taken as
proportional to 7, (p). Therefore Fig. 4 is a histogram.
All values corresponding to different 7 collapse on a single straight line in the interval p € [0, 1.5] in the worst
cases (i.e. largest 7). For higher values of p (depending on 7) the statistics becomes gradually poorer as the deviations

from the mean value of p become too large.

4.1.2. Conclusions

From the above data we infer that one cannot exclude that the distribution is Gaussian. Assuming that it is Gaussian
then the fluctuation theorem predicts a standard deviation m(t) = 2/t19(0’)+ = A/T, see the lines preceding (2.10)
and the above experimental data give:

A =37.96+0.21 (Gaussian assumption),

4.4
A =39.80+0.05 (experiment), @4

where the Gaussian value is computed from the experimentally measured (o), and ty (to which we attribute a
statistical error of three times the standard deviation), while the experimental value is computed from m (1), see
(4.1); the error on the second line is as implied by (4.1).
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The standard deviations of p from the value 1 are for T = 20, 40, 60, 80 and 100, respectively, 1.41, 0.99, 0.81,
0.70 and 0.63. Such values, multiplied by 3 (recall that our conventional statistical errors are three times the standard
deviation), can be arbitrarily assumed to be the boundary between the small and the large deviations.

Note that, as already mentioned in Section 2, if the chaotic hypothesis is assumed then we know from the theory
of Sinai that the small deviations obey a Gaussian law as T — o0o: but the theory in general does not predict the
standard deviation. The example of Section 3 is a good illustration, we believe, of the situation: in that case too we
have a good understanding of the odd part of the distribution, but no grip on the even part and no reason to know a
priori the distribution of the magnetization (i.e. also its even part). The results may mean that the values of t that we
reach are not large enough to test the validity of the central limit theorem. On the other hand the fluctuation theorem
that follows from the chaotic hypothesis is independent of the central limit theorem (as the example in Section 3
suggests and illustrates) and therefore, the above results are, in our opinion, a good test of the chaotic assumption.
We shall examine this point in more detail in Section 6.

Of course the choice, mentioned above, of three standard deviations to measure the statistical errors and the large
deviations “threshold” is arbitrary. One could, as very often done, decide to use one standard deviation instead.
Then we could say that we can go quite far in the large deviation region, but on the other hand many error bars
become too small to be compatible with the data. This is a well-known problem with all experiments and we can
just report that it appears also in the present experiment. It could only be solved by better experiments: hence we
decided to perform experiments in which the computing facilities available to us were pushed further: the results
of the (somewhat) more refined experiments were performed by using semiperiodic boundary conditions to extend
the range of the test at the same time. The results did confirm the above picture and we do not discuss them in
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detail: however, the new boundary conditions showed us an unexpected anomaly in the Lyapunov exponents, in the
N = 10 case, of apparently minor importance for the purpose of the present discussion, but which stimulated (and
in fact forced) us to widen considerably the scope of our investigations.

4.2. N = 10 (periodic boundary conditions)

The geometry is the same as in the previous case. The values of R}, R, are, respectively, 0.2, 0.4; the particle
radius is 0.005 and the electric field is fixed E = 1. The qualitative data of the resulting evolution are given in the
first column of Table (2.8).

4.2.1. The probability distribution . (p)

The evolution is studied over 7.57 x 107 collisions. In Fig. 5 we give the graph of 7, (p) for various 7, and in
Fig. 6 we give the standard deviation and the third-order deviation, as in the previous case as functions of 7! and
772, respectively.

The fits give

1 1
ma(t) = 0.009(£0.005) + 25.24(£0.4)—, m3(t) = —0.0002(£0.0003) + 54.3(£1.5) — 4.5)
T T
and the goodness of the above fits is 1.2 x 107> and 3.4 x 10™*, respectively, for the data with t > 25. The data

with T < 25 deviate from the above law and we interpret this as finite size effects (expected from the theory but
absent in the previous case already for t < 25).
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In Fig. 6 the kurtosis graph is reported for which we attempted a best fit as

k(t) = —0.01(+0.02) — 4.8(:&:0.9)% (4.6)
with a goodness of 4.03 x 10~*. The data are not many because the experiment is hard (in terms of CPU time).

Finally the main quantity of interest, i.e. the graph of x(p) = (1/ttp{0)+) log(mw.(p)/m:(—p)) versus p. The
abscissae axis is discretized and the number of events in which p falls in a given interval is taken as proportional to
7. (p). Therefore Fig. 7 is a histogram.

It is remarkable that the finite size effects, i.e. the manifestation of important deviations from the linear law for
“small” t (as we interpret them), are here very clear: the case t = 20 does not follow the scaling, in contrast to
Tt = 40, 60, 80, 100 (t = 80 is not shown).

4.2.2. Conclusions (N = 10)

The case N = 10 is very similar to the case N = 2 as the theory predicts. From the above data we cannot exclude
that the distribution is Gaussian in the observed range of values of p. Assuming that it is Gaussian then the theory
gives a standard deviation m,(t) = 2/tfg{c)+ = A/, see (2.10) and the above experimental data give

A =125.82+0.02 (Gaussian assumption),

4.7
A=2524+04 (experiment), @D

where the theoretical value is computed from the experimentally measured (o), to, while the experimental value
is computed from the graphs for m, (7). The error analysis is carried along the same lines as that of the case N = 2
above.
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The standard deviations of p from the value 1 are for T = 20, 40, 60, 80 and 100 respectively /A/t = 1.05,
0.79, 0.66, 0.57 and 0.51. Such values, multiplied by 3, can be arbitrarily assumed to be the boundary between the
small and the large deviations.

The same comments presented in the case N = 2 can be made here and therefore the data, in our opinion, yield
a good test of the chaotic assumption in the case N = 10 too.

The same experiments have been performed in the case of semiperiodic boundary conditions: the results are so
similar that we do not report their details. The reader can find them described in the preprints [26].

5. Error analysis of the distribution 7, (p)

A brief description of the methods that we use to define the errors follows. For a given 7, we build a time sequence
of different p values

01 (Xp)

, n=1,..., M, ;.1
()M

Pn = p(xny) =

where x,p = S"'x, 1’ = %r + A with x randomly chosen in phase space with absolutely continuous distribution and
we have chosen A = 50 in order to decorrelate contiguous evolution data points. The (a)f is fixed by normalization

so that the property M ™! Z:’{__l p(xn) = 1 holds, see (2.7).
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That A = 50 is a sufficient delay is warranted by the size of the entropy autocorrelation decay rate (denoted
¥ in Tables (2.7) and (2.8) Section 2). In general we would expect that A should be large compared to 9 ~!. An
accurate determination of ¢ (including a verification of the validity of an exponential law of decay, which is not a
priori obvious: see the similar problems arising for the one particle case in [15]) is a major enterprise and we have
only made a few empirical tests on the order of magnitude of ¢: and our choice A = 50 was dictated by purely
numerical reasons as a reasonable compromise between small statistics, accuracy and computer availability. It is
justified, in all our experiments, only by the empirically determined independence of the results (apart from the size
of the errors) in the cases A = 20 and A = 50. We reported only the A = 50 results.

We define the discrete probability distribution:

anel(l) 1

P M) = i

, [=-100,..., 100, (5.2)
where I(I) =[Ir,( + Dr]land r = %. The relation between the discrete and the continuous distribution when
M — c0is

7P 00) = f dp 7 (p). (5.3)
1)

Assuming that r is small enough we can expand the right-hand side of (5.3):

2 52
- re 9°m.(p)
r P00 = mUr + 40 + o S e + OGY), 5:4)
24 9p
We have checked that this O(r2) correction is in all our cases negligible compared to other sources of error: this has
been done by approximating in (5.3) the function 7, (p) by a Gaussian distribution (which, a posteriori, is a good
approximation to ¢ (p) in the range of p’s that we study):

1 —1)?
e (p) = W exp {'—(—32—;2-)—*} , (5.5

where o = m; is the experimental standard deviation of the distribution. By substituting (5.5) into the term with
the second derivative in (5.4) we get

2 2
-1 r (p—-1
m(p) =r~ 7P 00) {1 ~ 53 [T ~1{+0¢h (5.6)
with p = Ir + 3r.
We also have to estimate the error involved in approximating 72 (/; 00) by n2(/; M). Let us define

Py i(m; M) = (’,‘n’) n 21 00)™ (1 — L (15 c0))M ™, 5.7

where P;;(m; M) is the probability that in M elements of a sequence there exists m in the interval defined by /.
this means that we regard the various measurements of m as independent: because the empirical autocorrelation of
the entropy production decays on scales smaller than A, the interval between successive measurements.

Then the average values of m and its mean square displacement are given by

72 (U5 00)[1 — 215 00)]

(myes = MaP(;00),  ((m—(m). )% = o

(5.9
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When M is large enough, we shall assume that

(5.9)

2Pt My(1 — w2 t; M)
M

Pl 00) =l M)+ 3 [

is an appropriate measurement of the error. Egs. (5.6) and (5.9) are the relations used in the distribution analysis.
The error analysis of the fits for m;, m3, « is the same as the one used in [15] and it is repeated, with some minor
changes to adapt it to the present sistuations, in Appendix A.

6. Problems and further results (outlook)

(i) Consistency and CODES: The above experiments, see Figs. 4 and 6, seem in “good” agreement with the
theoretical predictions, and as mentioned, we do not report (for brevity) the experiments performed in the case of
semiperiodic boundary conditions because they simply confirm the agreement: see Fig. 10. We have attempted at a
very accurate test compatibly with our computer resources and the need of a natural time cut-off on the experiments’
duration. The only real limitation was the computer time available; not so much as available to us but to present
day technology. By using the largest existing computers our results do not seem to be substantially improvable: the
motion being chaotic there is not much that one can really do without really new ideas.

Our attitude is that the theory is general and it should apply to any system like the ones described in (2.1).
So in particular to our computer programs, that we can refer to as the CODES. For such dynamical systems our
experiments are, by definition, exact and the systems are also by construction “close” to (2.1).

Therefore on such grounds we could say that we can think that the only errors in our theory are the statistical
errors, i.e. our experiment is as “perfect” as one could wish.

Nevertheless, not surprisingly, the situation is more subtle. The reason is mainly that we have been unable to
write CODES which “solve” (2.1) (in “some sense”, which is not very relevant for us here) and at the same time
verify the time reversibility property.

This is a serious flaw: because the theory, see [1], rests on time reversal. Strictly speaking, then, we should apply
the first part of the chaotic hypothesis and only assume that the attractor verifies Axiom A.

However, for this we have no theory: the only argument that one could give, and which we do not find convincing,
is that the CODES are certainly “close” approximations to (2.1). Further, we are used to think that close systems
behave closely. The abundance of counterexamples has not deterred people to have the feeling that there is some
truth in such belief (natura non-facit saltus).

But since it might be simply impossible to write reversible, energy preserving, CODES what we have done looked
to us to be the only possibility we had to test the principle.

It would be interesting to carry out experiments analogous to the above described ones for other types of systems
for which reversible algorithms can be written and implemented at least in the conservative case, as discovered in
[27]: it is unclear, however, if they can be extended to cover dissipative cases and, if so, if this can be done with the
accuracy necessary to the test of the chaotic hypothesis. 4

(ii) The pairing rule, Axiom A attractors and reversibility: If the chaoticity hypothesis, in the form given in
Section 1 for the reversible case, is interpreted as meaning that the system behaves as a transitive Anosov reversible
system, with the time reversal operation begin the “global time reversal” i, then the hypothesis implies that the

4 The important paper [27] had escaped our attention until very recently, too late to take it into account: it proves that reversible codes
do exist for systems not too far from ours and it is certainly important, and probably possible, to try to adapt them to test the chaotic
hypothesis in a truly reversible CODE.



F. Bonetto et al. / Physica D 105 (1997) 226-252 243

A
.
0.200 + . . 0.002
Y ~ — — <10.000
0.150 | .
. o m s oememe- - ~1 -0.002
0.100 | . . . —0.004
c . . : —0.006
0.050 1 .

—0.050 ¢+
-0.100 +
—-0.150 +

—0.200 4

!

!

|

|

!

|

1

|

|
—0.000-_:—,.-.-.-r_._._._T_._._r;—g-g_f-._._r1__

1

!

|

|

|

|

|

|

]

0 1 2 3 45 6 7 8 910111213 141516 17 18 1920
Fig. 8. The 38 Lyapunov exponents for 10 and %( pbc). The small picture is an enlargment of the tail of the larger one and it shows more
clearly the pairing rule and that the 19th exponent is slightly negative.

stable and unstable manifolds have the same dimension. So we would expect to have as many positive and negative
Lyapunov exponents.

It was therefore natural to perform a “last” consistency check by measuring the Lyapunov exponents. This was
necessary also because we became aware of the existence of the phenomenon in which, as E grows, some Lyapunov
exponent that is > 0 at small E becomes < 0 at larger E: that this could happen while the system was still chaotic
and at a not too large E-value was pointed out in [19]. Also tests showed, see Figs. 8 and 9, that in the case of 10
particles with semiperiodic boundary conditions the 19th (out of the 38) Lyapunov exponents is < 0.

The smaliness of the 19th exponent in Fig. 8 may leave doubts about it being actually < 0. We think that the
exponent is negative: however, the only method we know to estimate errors on the evaluation of Lyapunov exponents
is by repeating many times the experiment. The amount of time (4 CPU days) per experiment explains why we did
not do so (and why this is not done by other workers when studying such large systems): the errors on Lyapunov
exponents are considered, in the literature, equal to the fluctuation of their partial values as the experiment proceeds.
Of course we pushed the experiment until the fluctuation was comparable to 1 part in 10° so that such error would
not be visible in Fig. 9.

We nevertheless performed, just for program testing purposes, several runs and the 19th exponent, although
fluctuating from experiment to experiment, is systematically < 0 (while in the three other experiments, N = 2, 10
periodic and N = 2 semiperiodic, it is systematically positive).

A simple test to see how reliably we evaluate Lyapunov exponents can be, nevertheless, easily made: it consists in
testing the pairing rule, discovered in [28,29], verified to an almost unthinkable accuracy in experiments by Dellago
et al. [19], and recently proved for cases that include precisely our systems, see [20]. Although we did not push our
study to check the pairing with the remarkable precision reached in [19], we find that the pairing rule is obeyed, see
Fig. 8.

We stress, however, that the program we use to compute the Lyapunov exponents is very close (although not
identical) to the actual scheme followed in [20] to prove the pairing rule. The proof shows that not only the Lyapunov
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exponents are paired but also their local values (that depend on the phase space point) extending what happens at
E =0, i.e. in the Hamiltonian case when the local exponents are trivially paired with 0 average. Hence the pairing
rule has in fact to be fullfilled with high precision even if the precision reached in measuring the exponents is not
comparable to it (in other words the errors that one makes on each exponent of a pair compensate exactly, see [20],
if due to runs shortness).

The existence of one negative exponent (surprising for us, at the considered value of the field) in excess led us to
study the question in more detail.

We first investigated whether this was a real effect (to clear doubts about it that could be raised by the difficulty
to detect the sign of a small exponent). The experiment described below, see Fig. 9, shows that the effect is, in fact,
not at all delicate and as the field E grows certainly many exponents “become” negative and as E — oo even all
of them may become negative (and the attrator would cease to be chaotic).

In fact, at least if there are not too many particles and the field is large, it might even be possible to prove the
existence of a stable, periodic, attractor. In Fig. 9 is shown the graph of the Lyapunov exponents A ; j» with j =13
to 19 in the £ 5 pbc and 10 particles for E = 0.1 to E = 5.0 at steps of 0.1. The results are still “raw” in the sense
that we have not yet been able to make a satisfactory study of the errors, for the same reasons as in the case E = 1.
The computational method we used is the “usual method” [30] with a test trajectory of 0.5 x 10° collisions. The
errors (defined as the fluctuations of the average quantities that should tend to the exponents values) are, however,
quite large, and more accurate experiments are necessary to confirm the raw data (particularly for what concerns
the absolute sizes of the exponents).

The preponderance of negative Lyapunov exponents over the positive ones does not seem due, at least in the
cases where it appears clearly, to non-reversibility of our CODES (exponents do not change by varying the compu-
tations precision, within the limits of our experiments): hence existence of more negative than positive exponents
is experimentally a real phenomenon at large E (and fixed N).
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Fig. 10. The linear fluctuation test, v = 20, 40, 80 and 100. The dashed line is the fluctuation theorem prediction for T = +o0c. The
arrows mark the point at distance 1/ ((p ~ 1)) from 1.

Then one can ask: Is there any reason to think that the fluctuation theorem might hold even if the attractor is
“only” an Axiom A attractor (i.e. with closure smaller than phase space)?

We have not been able to test the fluctuation law at values of E where there was an apparent excess of negative
Lyapunov exponents (say at E = 2.5 in the case of 10 particles and %( pbc) where we see two negative Lyapunov
exponents in excess, see Fig. 9). The reason is that the estimated time for the corresponding numerical experiment
is well beyond the present day computer capacities. Large fluctuations may be very difficult to observe at very large
fields.

However, coming back to the case £ = 1 of Fig. 8, it is a fact, illustrated in Fig. 10, that the fluctuation is
consistent with the fluctuation theorem prediction.

The fluctuation law cannot hold by chance: but we see it well verified in a case where the experiments show
one negative Lyapunov exponents in excess over the positive ones, see Fig. 10 giving the linear fluctuation test for
N =10, 5 pbc (and Fig. 9 with E = 1),

This seems in conflict with the analysis given in the second reference of [1] whose validity appears very tightly
related to the existence of a time reversal symmetry leaving the closure of the attractor invariant, i.e. a map i*
defined on the closure of the attractor and such that Si* = i*S~!.

Therefore we conclude that a not unreasonable scenario would be that, when there are pairs of Lyapunov exponents
consisting of two negative exponents, then the closure of the attractor can be simply regarded as a smooth lower-
dimensional surface.> The motion on this lower-dimensional surface (whose dimension is smaller than that of phase

5 This does not preclude the possibility that the attractor has a fractal dimension (smoothness of the closure of an attractor has nothing
to do with its fractal dimensionality, see [1,2,32]).
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space by an amount equal to the number of paired negative exponents) will still have an attractor (with dimension
lower than the dimension of the surface itself, as suggested by the Kaplan—Yorke formula [32]). Moreover, on such
lower-dimensional attracting manifold the motion will still be reversible in the sense that there will be a map i* of
the attracting manifold into itself (certainly different from the global time reversal map i) which inverts the time on
the attractor and that can be naturally called a local time reversal.

Appropriate geometrical reasons for the existence of such local time reversal symmetry have later, stimulated by
the present paper, been proposed and discussed, see [14]. The appearance of a non-time reversal invariant attracting
manifold in a time reversible system can be regarded as spontaneous symmetry breaking: the existence of i* means
that in some sense time reversal cannot be broken: when it does spontaneously break then it is replaced by a lower
symmetry (i*) which “restores it”. The analogy with the symmetries T (broken) and TCP (valid) of Fundamental
Physics would be remarkable.

Then manifestly one would be back with an Anosov system (on a lower-dimensional manifold) and a version
of the fluctuation theorem would still hold. Furthermore one could say that this is only a different interpretation of
the chaotic principle of the second reference of [1] (which in such case does not even require to be reformulated to
apply).

If this picture is correct, we can write the phase space contraction rate (see (2.3) and (2.4)) o (x) = og(x) + 0oL (x)
where og(x) is the contraction rate on the attracting surface on which the attractor lies and o (x) is the contraction
rate of the part of the stable manifold of the attracting manifold points which is not on the manifold itself (the angle
between the part of the stable manifold sticking out of the manifold and the manifold itself is disregarded here, as
we think that is is bounded away from 0 and 7 since the attracting manifold is closed and bounded).

Of course local time reversal will change the sign only of o¢(x) and the fluctuation theorem should apply to the
fluctuations of ag. But o(x) is not directly accessible to measurement: nevertheless we can still study its fluctuations
via the following heuristic analysis. From the proof in [20] of the pairing rule one sees that the jacobian matrix J of
the map S is such that v J*J has D pairs of eigenvalues and the logarithms of each pair add up to fO' @) a(Q:x)ds
(see also (2.3) and (2.4)).

The simplest interpretation of this, in view of the above proposed picture of the attractor, is that the pairs with
elements of opposite signs describe expansion on the attracting manifold. While the M < D pairs consisting of two
negative eigenvalues describe the contraction of phase space in the directions transversal to the attracting manifold.
Then, by the pairing rule, we would have z0¢(x) = (D — M) fot @) a(Q:x) dr and we should have a fluctuation
law for the quantity p(x) associated with op(x) defined by (2.5) and (2.6) with oy replacing o, i.e. (accepting the
above heuristic argument):

D-M
007 (x) = (_D)(U)+P(X)v 6.1

i.e. a law identical to (2.9) up to a correcting factor 1 — M/ D:

g 7 (p)
T (—=p

M
) = 119{0)+ (1 - —5) p. (6.2)

The graphs of Fig. 10 are relative to an experiment (N = 10 and semiperiodic boundary conditions) in which we
see that there is one negative exponent in excess over the positive ones (as said above, see also Fig. 9): it is very
small (see Fig. 8), and it carries an error bar that we estimate to be so large to allow for positive values as well.
The graphs, however, show agreement with the experiment of Fig. 10 within the errors: had there been no negative
exponents we would have expected a siope 1. If there is one negative exponent in excess, we expect a slope 1 — %
which is within the error bars in Fig. 10 (had we drawn in Fig. 10 the best fit line rather than the line with slope 1
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the agreement with the slope 1 — % would have been even better). But an excess of two exponents would yield a

slope of 1 — 1% which is out of the error bars.

Note that since the exponent smallest in modulus is so small we may expect that it yields a clear effect only after
extremely long times have elapsed (i.e. for values of T > 4 x 10°: totally out of computability).

The difficulty of the above scenario is that there is no a priori reason to think that attractors should have the above
structure: i.e. fractal sets lying on smooth surfaces on phase space on which motion is reversible. But the picture is
very suggestive and it might be applicable to more general situations in which reversibility holds only on attractor
closure and not in the whole space (like “strongly dissipative systems”). As mentioned above a formal discussion
of this point can be found in [14], which followed the completion of the present work.

(iii) Smoothness of the closure of the attractor: The smoothness of the surface on which the attractor lies, so
that the attractor can be regarded, in itself, as an Anosov system, is very likely not necessary, from a mathematical
viewpoint. The more general assumption that the attractor verifies Axion A (and is transitive) would be sufficient if
accompanied by the (very strong) assumption that the attractor is mapped into itself by a symmetry i* such that on
the attractor i*S = S~ 1;i* (discussed in (ii) above). We stress again that i* cannot be the same as the global time
reversal i because the latter will map the attractor for the forward motion into the one for the backward motion:
however through simple examples of reversible motions with attractors closures smaller than the whole phase space
(hence verifying Axion A but not the Anosov property) one can see that the existence of i often (always?) induces
the existence of a map i* on the attractor, see [14].

We insist in talking about smoothness for the following two reasons:

(1) Because we think that the theory applies to general many-particle systems and we cannot see the relevance of a
possible fractional dimension over N = 10'? total dimensions: in other words we can proceed as if the dimension
was integer (in [1] the fractality is called “an unfortunate accident” that may happen in the problems that we
study), hence as if the system is Anosov, provided we accept that the attractor has a time reversal symmetry
(i.e. there is a map i * of the attractor into itself that anticommutes with the time evolution, S;i* = i*S_,).

(2) Because, as it partially appears from Fig. 9, the Lyapunov exponents seem to evolve, as a function of E, along
the following pattern. At smaller E they are all non-zero (as shown by Fig. 9): the dimension of the closure of
the attractor in 4N — 2 (i.e. that of the phase space C). Then as E grows one of them crosses continuously (and
with non-zero E derivative, i.e. transversally) the value 0 at some E1 > 0 becoming negative for larger values
of the field; the closure of the attractor has now dimension 4N — 4. At E; > E; a second Lyapunov exponent
crosses 0 (transversally) and the closure of the attractor has now dimension 4N — 6, etc. This suggests that, as
E varies, the attractor is characterized by more and more “constants of motion”, i.e. by the vanishing of more
and more observables. Every time one more “constant of motion” is born we see that the attractor loses two
dimensions. Nothing suggests to us that it becomes non-smooth, or appreciably so.

One should also bear in mind that the above analysis is, necessarily, carried over in systems with few degrees of
freedom. It might well be that the picture can considerably simplify at large N. See below for some thoughts on
that point.

(iv) Fluctuation theorem as a reversibility test. Since the very derivation [1,25] of the fluctuation theorem is so
intimately related to reversibility one could say that if the predictions of the fluctuation theorem are verified, perhaps
with a slope < 1 as suggested by (6.2), then this is a sign that the dynamics on the attractor is reversible in the
sense that it is mapped into itself by a map i* such that i*S = S~!i* (hence i # i* unless the system is Anosov
and the attractor is the whole space). It is clear that the above considerations give rise to several tests that can be
experimentally performed.

Note that not only the linearity in p is a strong statement, but also the predicted value < 1 is somewhat surprising:
naively one could be tempted to think that the contraction rate transversal to the attractor is uniform over the attractor:
this would lead to a slope > 1 (and the larger the stronger is the attraction from the attractor).
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(v) Gaussian? Central limit theorem? One may say, as a first reaction to the analysis, “of course we expected a
Gaussian distribution of the fluctuations because the dissipation ro, is a sum of many terms that are statistically
independent” if the motion is chaotic. Hence “everybody (reasonable)” would expect a Gaussian distribution for
the fluctuations. But this would mean that (p — 1) has a dispersion of order Ct~1/2 for some (non-trivial) constant
C related to the entropy autocorrelation function (o (S x)o (x)):

C*= Z (a(5")o (N4 —{(0)3) (6.3)
( )+ n=—
SO that calling ¢(p) = lim;— o (1/7) log w;(p), the central limit theorem only implies that (1) = 0, ¢"(1) =
—C~2: this neither implies any relation between (o) and C2 nor it 1mp11es any large fluctuation property. On the
other hand the fluctuation theorem tells us that { (p) has an odd part that is 5 ! pto(o o)+ so that

og 7 (p)
T (—p)
which, if the Gaussian distribution was assumed, would say that to(o); p = (2/C?)p hence, in general, it would
also be

=T({o)4p (6.4)

()4 = Z (o (S (N)+ — (0)3). (6.5)
6o
The latter sum rule would be a strange (and false in our case, see below) prediction in the context of the central
limit theorems where no a priori relation links the dispersion of a random variable and its average, in general.

Eq. (6.5) was found by us to be empirically verified, by examining the data in trying to understand a reason for
the apparent Gaussian shape of p — 7, (p).

We then noticed the relation between (6.5) and the formula of Green—Kubo: i.e. that, as E — 0, the two sides
of (6.5) have both size of order O(E?) and the formula of Green—Kubo is the relation obtained by dividing the two
sides by EZ and letting E — 0.

Once one sees that (6.5) reduces, in the lowest non-trivial order in E, to the formula of Green—Kubo then it
becomes clear that the apparent Gaussian nature of the distribution 7. (p) should rather be interpreted as a check of
the (expected) approximate validity of (6.5). In the graphs of Figs. 2 and 5 the central peak should be Gaussian by
the central limit theorem and (6.5) just shows that the dispersion of the Gaussian is compatible with the fluctuation
theorem (at least for small field £) so that the deviations from the Gaussian cannot be seen near the center of the
distribution and in the really large deviation region our errors are too large to detect non-Gaussian behavior (if (6.5)
is approximately verified).

In the case N = 1 (6.5) was proved, to lowest non-trivial order in £, by Chemov et al. [17] to hold for values of
E that, in our units, are extremely small compared to 1: the above argument is very general and it does not require
small field (but reversibility is always needed).

The relation between chaotic hypothesis and the formula of Green—Kubo had been explicitly noted in [10] (see
(10, Eg. (5.9)]): but the above argument leads to a conceptually different proof of it, based only on the fluctuation
theorem (which however follows from the chaotic hypothesis). The latter fact is explicitly noted in [33] (where,
of course, only the validity of (6.5) to lowest order in the fields was used): in [33] the above connection between
(6.5) and the formula of Green—Kubo has been made precise and extended to more general systems with several
external forces acting on them. This made it possible to see that the fluctuation theorem implies directly Onsager’s
reciprocity (for the reversible systems under consideration) and can be interpreted as a nonlinear version of it.

Still it is somewhat surprising that the distribution of p is sensibly Gaussian even at E = 1 which looks a very
large field (it should be noted that if the N particles in the periodic box are considered as model for a crystal, with
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N conduction electrons per cell, then the value E = 1 corresponds to an electric field of several millions of V/cm).
Since the theory of the fluctuation theorem does not really give explicit error estimates (in our generality) on the
remainders this does not raise any problem of principle (“how small is small”? i.e. which are the natural units for
measuring the size of E?).

In the “old” literature one can, however, find statements that today sound somewhat mysterious like:

“It is empirically known that for macroscopic values of ¢, i.e. for values of the ¢; much larger than their root
mean square values at equilibrium, the averages of these quantities frequently obey linear differential equations.”

which is then used to establish that relations between properties that hold for small fluctuations hold also for
large ones, at least in the average. In [34, p. 100] the above statement is the beginning of a classical derivation of
the Onsager reciprocity relations. Small and large fluctuations seem to have some common properties that one may
not expect a priori or, at least, that one may consider worth of being challenged and tested, see [34, p. 102].

It is worth stressing again that we know that the distribution in p cannot be Gaussian for all p’s: because there is
a maximum (t-independent) value that p can take, just from the finiteness of phase space. This value, called p* in
[25], can be easily measured in our experiments (see (2.11)) but it is very far away from the region where we have
enough statistics to make meaningful measurements, as it appears from the graphs reported above.

(vi) Timescales for large N: A somewhat more speculative scenario can be drawn for large N. We mention
it because we hope to receive some help in a program directed to test it. It seems reasonable to us that in the
thermodynamic limit the system exponents will fall into two classes each consisting of a pair of exponents. The sum
of the values of each pair is constant and equal to half the average entropy creation rate (this is the pairing rule, see
above).

A large number of pairs (O(N)) will consist of one vanishing exponent and its negative companion. The remaining
postive Lyapunov exponents will all be identical: marking the timescale of local approach to equilibrium, hence
also the other negative exponents will be identical (by the pairing rule). By identical we mean here that the ratio
between the largest and the smallest positive Lyapunov exponents is bounded uniformly in N (away from 0 and cc).

This is in perfect agreement with Fig. 5 of [19] describing a very high density system: it is not in agreement with
the other results of [19].

Nevertheless it is possible that the low density results are flawed in this respect as one would need far too large
systems to obtain Lyapunov exponents for a distribution close to the thermodynamic limit distribution x. Only in
the high density case a small sample of gas exhibits the features of a large sample.

The above picture merges with the ideas in [11] relating the 0 Lyapunov exponents to the macroscopic modes
described by macroscopic equations, while the non-zero exponents describe the approach to local equilibrium. It
also matches with Fig. 8 where a rather sharp drop of the Lyapunov exponents towards 0 appears between 10th and
11th exponent.

Since it is always assumed that there is only one microscopic timescale for local approach to equilibrium it is
perhaps a natural conjecture that Lyapunov exponents should have such structure.

(vii) We see that the above experiments raise perhaps more problems than expected: but the chaotic hypothesis
emerges as not inconsistent with the data.

Appendix A. Fits and errors

This appendix is adapted to the present experiments from the corresponding appendix in [15]. We get data sets
from our computer experiments, say y(x) = {y(x;)}i=1,~, where x = {x;};=1,n is in our case an independent
variable, say for instance a set of N collision numbers or time instants. To the latter experimental data set of points,
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we want to fit a given guessed function, say f(x; @), where @ = {a}a=1,p is a set of arbitrary parameters. Here
by fit we mean to find a set of parameters o* which optimizes some reasonable functional relation between the
experimental data and the fitting function.

In our case we use the least squares functional, i.e.

N
V), @) =Y [y — foi: F. (A1)
i=1

The set of parameters a*(y) is here obtained by asking that they should be the minima of the V function:
3=V (y, &*) = 0. We also define the goodness of our fit, G, by the average y-distance of our data to the function
fx;a®): G(y(x)) = (V(y(x), a*)/N)'/2. This parameter is only meaningful when it is compared with the one
from another fit. Given maHy fits, the one with smallest G value will be called best fit (among the considered fits).

The data have, in general, non-negligible errors, say £ = {&;};=1,n, due to the finite number of samples used in
the averaging (see comments in Section 2). Such errors induce errors on the parameter values. Therefore, a measure
of the error amplitude in &*(y) is given by

Aea*(y) = 3le* (y + &) —a*(y — o). (A2)

In the particular case in which the magnitude of the data error is much smaller than the measured value, |s; /y(x;)| <
1, we may expand the latter equation around € = 0

N
Asan(y) = Y (e, (A3)

i=1

The coefficients c(")

they are given by

are found by expanding V(y(x)+e&, @) around a* (y)ande = O and, if Dy, = 83* VO, a®),

¢ = Z D;\a? o, V(). (A4)
In particular for the linear fit. f(x, @) = a1 + a2x, the coefficients c(l) @ are given by
2 — 2
1 - 2 _
Cl( ) YV—A—(XZ - X.Xj), C[g ) = NAx (x,~ — x), (AS)

where Ax = (x —x%)2and X" = N~! ZlNzl x?.

The errors are random variables and we have to average them over their distribution. In all cases considered it
seemed reasonable to consider the errors ¢; as independent variables. Therefore we empirically estimate an upper
bound for their correlation values:

leie))] < \/(eD)(eF). (A.6)

The parameter errors in our analysis are defined by the equation

N
> eeMsi8; > (Acal), (A7)
1j=1

Mz

Aoy (y): =

i

where 53 = (5?‘) and their use and meaning is described entirely by the above comments.
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