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Molecular hints of two-step transition to convective flow via streamline percolation
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Convection is a key transport phenomenon important in many different areas, from hydrodynamics and ocean
circulation to planetary atmospheres or stellar physics. However, its microscopic understanding still remains
challenging. Here we numerically investigate the onset of convective flow in a compressible (non-Oberbeck-
Boussinesq) hard disk fluid under a temperature gradient in a gravitational field. We uncover a surprising two-step
transition scenario with two different critical temperatures. When the bottom plate temperature reaches a first
threshold, convection kicks in (as shown by a structured velocity field) but gravity results in hindered heat
transport as compared to the gravity-free case. It is at a second (higher) temperature that a percolation transition
of advection zones connecting the hot and cold plates triggers efficient convective heat transport. Interestingly,
this picture for the convection instability opens the door to unknown piecewise-continuous solutions to the
Navier-Stokes equations.
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I. INTRODUCTION

When a fluid is heated from below in a gravitational field,
there exists a critical temperature beyond which it develops
a distinctive roll flow pattern which transports cold fluid
from the upper, denser layers to the hotter, lighter regions
near the bottom plate and vice versa. This is the well-known
Rayleigh-Bénard (RB) convection phenomenon [1,2], one of
the simplest and most studied instabilities in fluid dynamics
[3]. The importance of convection is difficult to overstate. It
plays a key role in a wide range of phenomena, from, e.g.,
atmospheric [4,5] and oceanic [6] circulation or planetary
mantle dynamics [7,8] to stellar physics [9–11] or granular
flow [12,13], to mention just a few. Convection can also be
harnessed for technological applications such as, e.g., cooling
solutions in nanoelectronics [14,15] and heat sinks [16–18],
convection ovens [19] or metal-production processes [20,21].
At the fundamental level, convection has been instrumental in
the development of stability theory in hydrodynamics [22] and
a paradigm for pattern formation [1,23] and spatiotemporal
chaos [2]. Moreover, recent advances in convection physics
include large-scale circulation [24,25] and superstructures
[26,27] in convective flow, steady-state degeneracy [28], or
the role of periodic modulations [29]. However, and despite
more than a century of detailed investigation, the microscopic
understanding of this ubiquitous fluid instability still remains
elusive.

At the theoretical level, the RB instability can be ratio-
nalized within the Oberbeck-Boussinesq (OB) approximation
to the Navier-Stokes equations [22,30,31], which assumes
that the properties of the fluid do not depend on the lo-
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cal temperature, except for the density profile (for which a
linear approximation is used). This approximation has also
been used to understand the role of fluctuations on the con-
vection transition [32–35], becoming the standard theoretical
framework to understand the RB instability. Indeed, in some
contexts the term RB convection is meant to encompass both
the RB setup and the OB theoretical approximation. Here,
however, we prefer to distinguish the physical phenomenon
from the theoretical framework traditionally used to describe
it. In fact, the range of validity of the strong assumptions
underlying OB theory is still unclear, as demonstrated, e.g.,
by the appearance of non-OB effects [2,36] and deviations
for compressible fluids [37,38], thus demanding an atom-
istic, microscopic assessment of the instability. Early heroic
works in molecular dynamics studied the RB instability from
a microscopic point of view [38–44], though large velocity
fluctuations prevented the accurate measurement of local ob-
servables and the precise characterization of the transition.
Modern computer power and techniques have overcome these
issues, see, e.g., Refs. [26,29,45,46], but there is a surprising
lack of detailed studies of the onset of convection from a
microscopic viewpoint. This paper fills this gap by numeri-
cally investigating the nature of the convection instability in a
two-dimensional compressible (non-OB) hard disk fluid under
a temperature gradient in a gravitational field. Strikingly, we
find a clear-cut two-step transition scenario with two different
critical temperatures. Initially, convection kicks in when the
bottom plate temperature reaches a first threshold, as demon-
strated by a structured but still roll-free velocity field. At this
point, local coherent motions emerge, but they are disordered
and disconnected and hence unable to promote energy transfer
against the gravitational field. We call this regime semiconvec-
tive due to its inefficient transport properties as compared to
the gravity-free case. Increasing the bottom plate temperature,
a second critical point is reached where efficient heat transport
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is triggered, leading to a fully convective regime. We show
that this second critical point, at which a clear roll structure
emerges, is related to an underlying percolation transition of
advection zones connecting the hot and cold plates. Note that
related percolation phenomena have been recently linked to
different transitions to turbulent behavior, as, e.g., in Cou-
ette and pipe flows [47–50]. Interestingly, the emergence of
structured but disordered flow patterns in the semiconvective
regime, also hinted at in experiments [35] and simulations
[51,52] on fluctuations below the RB instability, suggests the
existence of unknown piecewise-continuous solutions to the
Navier-Stokes equations in between the two critical tempera-
tures. Finally, we stress that the existence of a semiconvective,
gravity-suppressed transport regime seems to be linked to the
compressibility of the underlying flow field.

II. MODEL AND SIMULATION

Hard-particle systems are among the most inspiring, suc-
cessful, and prolific models of physics, as they contain the
key ingredients to understand a large class of complex phe-
nomena [53–55]. Here we consider a two-dimensional fluid
of N hard disks moving in a square box of unit side L =
1 under the action of a constant gravitational field g =
(0,−g). Each disk has unit mass (m = 1) and a radius r̃
chosen so the packing fraction ρ = Nπ r̃2/L2 is fixed, i.e.,
r̃ = [ρL2/(Nπ )]1/2. Disks move freely in between collisions
along trajectories ri(tk + �t ) = ri(tk ) + vi(tk )t + 1

2 g�t2 and
vi(tk + �t ) = vi(tk ) + g�t , where ri(tk ) and vi(tk ) are the
values of the ith-disk position and velocity, respectively, right
after its last collision event at time tk . Disks collisions are
elastic, conserving both energy and linear momentum, and
no internal rotational degrees of freedom are considered. In
addition, boundary conditions in the square box include re-
flecting walls along the x direction and stochastic thermal
walls [56–59] at the top and bottom boundaries at temper-
atures T0 and T , respectively. Note that for any nonzero
temperature gradient �T ≡ |T − T0|/L, we expect a net heat
current flowing from the hot plate to the cold one [56–59].

The focus of this paper is not on hydrodynamic pattern
formation [45] but instead on the accurate, detailed measure-
ment of different order parameters and transport properties
across the RB instability. We hence choose a moderate num-
ber of particles, N = 957, to gather the extensive amounts
of data needed to perform significant averages. Hard-sphere
systems of N = O(103) particles have been shown to exhibit
clear macroscopic hydrodynamic behavior fully compatible
with (nonlinear) Navier-Stokes equations [38–44,55,60–62].
Indeed, the relevance of our results in the large system size
limit is strongly supported by the recently discovered bulk-
boundary decoupling phenomenon in hard particle systems
[60–62], which enforces the macroscopic hydrodynamic laws
in the bulk of the computational finite-size fluid. Nevertheless,
the absence of noticeable finite-size effects has been carefully
checked by measuring in equilibrium (T0 = T ) both hydro-
static density and pressure profiles and the local equation of
state (EoS) for different g’s (see Fig. 8 in Appendix B and
related discussion), all exhibiting excellent agreement with
macroscopic formulas.

Initially, the disks are placed regularly on the box with
an initial velocity vector of random orientation and modulus√

T0 + T . We then evolve the system during 5 × 104 colli-
sions per particle (we set the time unit to one collision per
particle on average) to guarantee that the correct steady state
has been reached. Only then, measurements of the differ-
ent local and global observables start, every 100 collisions
per particle, for a total time of 107 collisions per particle
(∼1010 total collisions), thus collecting a total of M ∼ 105

data for averages. We use a 3σ convention for error bars,
so observables have typical errors of 3σ/

√
M � 0.01σ that

suffice to accurately analyze the emergent behavior. For local
measurements, we divide the unit box (L = 1) into nc × nc

virtual square cells of side � = 1/nc, each one labeled by
its center position r, and we use here nc = 30 to capture the
fine details of the hydrodynamic fields. The resulting total
number of cells is comparable to N , so on average a cell
contains only a few particles in each snapshot of the dynam-
ics, thus requiring a very large number of measurements to
distill the relevant hydrodynamic behavior. Note, however,
that despite being far from the ideal continuum limit of fluid
dynamics [30], the excellent self-averaging properties of the
hard disk fluid [53–55,60,61] guarantee the proper conver-
gence of local averages to the macroscopic behavior predicted
by nonlinear hydrodynamics. In particular, we measure the
average hydrodynamic velocity field 〈u(r)〉 and the pack-
ing fraction field 〈η(r)〉 among other magnitudes, as well as
global hydrodynamic observables as the total hydrodynamic
kinetic energy 〈e〉 = �2

2ρ

∑
r〈η(r)〉〈u(r)〉2 or the heat current

〈Jg〉 traversing the fluid, which can be measured as the kinetic
energy exchange in either thermal wall. In addition, we also
measure some molecular observables as the average kinetic
energy per particle in the fluid, 〈ε〉 = N−1 ∑N

i=1
1
2 〈v2

i 〉, as
well as its variance σ 2(ε). Appendix A describes some de-
tails on the measurement of these and other local and global
observables.

To choose the range for (ρ, g, T0, T ), where the
phenomenology of interest may emerge, we explore parameter
space using linearized Navier-Stokes equations under the
Oberbeck-Boussinesq approximation [22,30] together with
the Henderson EoS [63] and the Enskog transport coefficients
[53,55] for hard disks; see Appendix C. This exploration sug-
gests performing measurements for a fixed packing fraction
ρ = 0.2, gravity fields g = 5, 10, and 15 (together with the
gravity-free case g = 0), and temperatures T0 = 1 and T =
1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3, 4, . . . , 19, 20
for the top and bottom plates, respectively.

To put our simulations into context, note that if we assume
a physical disk radius of r̃ = 3 Å, then the corresponding
simulation box length scale is L = 367.8 Å for a packing
fraction ρ = 0.2 and N = 957 disks. Moreover, the maxi-
mum relative temperature gradient (T − T0)/T0 = 19 in our
simulations corresponds to a physical temperature gradient of
order �T ≡ |T − T0|/L ≈ 1.55 × 1011 K/m assuming room
temperature conditions T0 ≈ 300 K and the previous physical
value for L = 367.8 Å. These extreme conditions differ quan-
titatively from those observed in typical convective fluids,
but still lead to flow fields that resemble those of real fluids
[42], being at the same time the optimal conditions to explore
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in fine detail the convection instability from a fundamental,
microscopic viewpoint.

Note also that under such strong driving the hard disk
fluid is compressible and the resulting hydrodynamic fields
are highly nonlinear, with a nontrivial asymmetric structure
in the gradient direction (see Figs. 1–3 below). Moreover, the
nonlinear dependence of the different transport coefficients on
the local hydrodynamic fields becomes apparent and essential
to understand the emergent macroscopic behavior [60,61].
These effects signal a clear departure from the standard OB
hydrodynamic theory of the convection instability, making
difficult the estimation of the different dimensionless num-
bers (as, e.g., Nusselt or Knudsen numbers, etc.) which are
typically used to characterize the instability within this ap-
proximation. However, to facilitate the connection with the
classical hydrodynamic description, we can define locally
some of these adimensional numbers [36] (as, e.g., the Nusselt
or Knudsen numbers), though the nonlinear effects described
above will lead to depth variations in these numbers. We hence
provide in Appendix D local estimations of both the Knudsen
and Nusselt numbers near the center of the simulation box
for three representative state points of the fluid and discuss
their values in light of our results. We also report the Nusselt
number near the top plate for different state points to discuss
its depth variations.

III. ONSET OF CONVECTION

A main observable of interest in the RB instability is the
average hydrodynamic velocity field 〈u(r)〉 and its emergent
spatial structure. Figure 1 shows 〈u(r)〉 as measured for five
different bottom plate temperatures T and the three values of
g > 0. First, note that the magnitude of 〈u(r)〉 is typically very
small compared with the average mean particle velocity (e.g.
0.1 vs 3 for g = 10 and T = 20), a result of the hydrodynamic
separation of scales which difficults the numerical analysis of
convective structures. A clear transition from a structureless
velocity field, consistent with laminar transport, to an ordered
roll pattern is observed for all values of g as T increases. On
closer inspection, however, while disorder dominates for the
smallest values of T considered in Fig. 1 ∀g, some incipient
local order (but still roll-free) seems to emerge for interme-
diate values of T (second row in Fig. 1), though fluctuations
still dominate, paving the way to fully developed convective
rolls for large enough T ’s. Note also that convective rolls
are noisier for lower values of g (e.g., g = 5 in Fig. 1), in
particular, near the hot bottom plate.

The emergence of the nontrivial structure as the bottom
plate temperature increases is also apparent in other hy-
drodynamic fields. In particular, Fig. 2 shows the average
temperature field 〈T (r)〉, as well as average temperature pro-
files along the vertical and horizontal directions, T̄ (y) and
T̄ (x), respectively, for a particular gravity field g = 10 and
different bottom plate temperatures, while Fig. 3 displays
equivalent measurements for the packing fraction field 〈η(r)〉
and its vertical and horizontal profiles. Interestingly, these
measured hydrodynamic fields clearly signal a strong de-
parture from the traditional OB picture for the convection
instability [22,30,31]. Indeed, temperature profiles along the
vertical direction, T̄ (y), are clearly asymmetric and nonlinear

FIG. 1. Onset of convection. Average hydrodynamic velocity
field 〈u(r)〉 for hard disks measured across the Rayleigh-Bénard
instability. Color indicates velocity modulus from umin (blue)
to umax (red). The (umin, umax) interval changes among panels.
Left column: g = 5 and T = 1.4, 2.6, 4, 10, 20, for which
(umin, umax) = (0.000043, 0.016), (0.00025, 0.025), (0.00021, 0.04),
(0.0016, 0.11), (0.0032, 0.15). Central column: g = 10 and T =
1.8, 4, 6, 15, 20 for which (umin, umax) = (0.00018, 0.029),
(0.00017, 0.031), (0.001, 0.045), (0.0087, 0.24), (0.004, 0.3). Right
column: g = 15 and T = 2, 6, 8, 15, 20, for which (umin, umax) =
(0.00029, 0.051), (0.00019, 0.033), (0.0011, 0.053), (0.0023, 0.25),
(0.015, 0.44), all from top to bottom. Note the typical roll structure
associated to the Rayleigh-Bénard instability, most apparent for the
largest T

for all values of the bottom plate temperature T , see Fig. 2.
Moreover, the temperature field also exhibits a structure along
the x direction for large enough T , as shown, e.g., by the
averaged profiles T̄ (x). The packing fraction field also devel-
ops a nontrivial spatial structure, see Fig. 3, signaling again
a clear departure from the standard OB theory. In particular,
there is a nonlinear density gradient in the vertical direction
for all values of T . Note also that, while high (low) packing
fractions dominate near the bottom (top) plate for low T ’s,
see Figs. 3(a)–3(c), this packing fraction gradient structure is
reversed as T grows, see Figs. 3(d)–3(f), accompanied by a
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FIG. 2. Temperature field. Color maps for the average tempera-
ture field 〈T (r)〉 measured for gravity g = 10 and different values of
the bottom plate temperature T , together with the average profiles
across the vertical and horizontal directions. Note the nontrivial
spatial structure of 〈T (r)〉 for strong enough temperature gradients,
as well as the asymmetric, nonlinear shape of temperature profiles
along the vertical direction.

marked depletion effect around the central region at x = 1/2.
For completeness, Appendix B contains additional data for
the reduced pressure field for the same parameter points as
in Figs. 2 and 3.

To characterize unambiguously the emerging structure, we
now define an order parameter for the RB transition. In gen-
eral, we expect 〈u(r)〉 = 0 ∀r for nonconvective states, while
〈u(r)〉 
= 0, at least in some regions once convection kicks in.
This suggests using the average hydrodynamic kinetic energy
〈e〉 = �2

2ρ

∑
r〈η(r)〉〈u(r)〉2 as an order parameter to charac-

terize the RB instability [64]. Figure 4 shows the measured
〈e〉/g2 as a function of T for all g > 0. A first observation is
that the numerical values for 〈e〉 are about three orders of mag-
nitude smaller than the average kinetic energy per particle 〈ε〉,
another fingerprint of the hydrodynamic separation of scales
mentioned above. However, the large amount of data gathered
allows for a significant characterization of the transition point.
In particular, while 〈e〉 remains very close to zero for low
values of T , there exists a nontrivial critical temperature Tc(g)
where 〈e〉 starts growing steadily, as expected for a proper
order parameter. To estimate this critical temperature, we fit
a piecewise-defined polynomial to the data, i.e., 〈e〉fit(T ) =

FIG. 3. Packing fraction field. Color maps for the average pack-
ing fraction field 〈η(r)〉 measured for gravity g = 10 and different
values of T , together with the average profiles across the vertical and
horizontal directions. The packing fraction field exhibits a nontrivial
spatial structure, with nonlinear profiles and clear boundary effects.
Note also the density gradient inversion in the vertical direction for
intermediate values of T .

[T − Tc(g)]2 ∑8
k=1 akT k for T � Tc(g) and 〈e〉fit(T ) = 0 oth-

erwise, in the ranges T ∈ [2.6, 12], T ∈ [4, 13] and T ∈
[5, 16] for g = 5, 10 and 15, respectively, where the fitting
parameters are Tc(g) and the ak coefficients, see solid curves in
Fig. 4. We choose a leading [T − Tc(g)]2 scaling as a minimal
assumption to have both continuity and zero first-derivative at
T = Tc(g), as suggested by the data. The fits are excellent in a
broad region around the transition in all cases, and the critical
temperatures so obtained are Tc(g = 5) = 2.1, Tc(g = 10) =
3.4, and Tc(g = 15) = 4.3. These critical temperatures, that
change only slightly when varying the polynomial degree, the
scaling exponent or the fitting ranges, hence signal the onset of
convection for the different values of g in the hard disk fluid.

The clear-cut change of regime happening at Tc(g) is also
evident from the analysis of some molecular properties of the
fluid. For instance, the inset to Fig. 4 shows the scaled relative
fluctuations of the kinetic energy per particle, Nσ 2

ε /〈ε〉2 (see
Appendix A) as a function of T ∀g explored. In the absence
of gravity, g = 0, the relative kinetic energy fluctuations grow
monotonically with T . This contrasts starkly with all g 
= 0
cases, for which Nσ 2

ε /〈ε〉2 exhibits a clear minimum at a non-
trivial T . To estimate the minima locations, we fit a generic

014144-4



MOLECULAR HINTS OF TWO-STEP TRANSITION TO … PHYSICAL REVIEW E 106, 014144 (2022)

FIG. 4. Order parameter. Scaled average hydrodynamic kinetic
energy, 〈e〉/g2, as a function of T for different values of g. Solid
curves are polynomial fits (see text). Vertical dashed lines locate the
critical temperatures obtained from these fits. Inset: Scaled relative
fluctuations Nσ 2

ε /〈ε〉2 for the kinetic energy per particle. Solid curves
are fits to the data, and vertical dashed lines locate their minima.
Error bars are included in both plots.

ninth-degree polynomial to the data for each g > 0 and look
for the temperature where its first derivative vanishes. In this
way, we estimate that the minima appear at temperatures
T = 2.2, 3.3, and 4.6 for g = 5, 10, and 15, respectively,
which agree closely with the critical temperatures Tc(g) de-
rived above from hydrodynamic measurements. We hence
conclude that Tc(g) separates different hydrodynamic regimes
in the fluid.

IV. CONVECTIVE HEAT TRANSPORT

Another way of studying the transition to convective flow
is to characterize how the fluid’s transport changes with T .
With this aim in mind, we also measured the average heat
current 〈Jg〉 flowing through the fluid using the energy ex-
change with the thermal walls during hard disk collisions
(see Appendix A). As expected, the heat current measured at
the bottom and top plates has equal magnitude and opposite
signs, since no energy accumulation happens in the system.
Figure 5 shows 〈Jg〉 measured at the bottom plate as a function
of T for all g’s. In all cases, 〈Jg〉 grows with T smoothly
and nonlinearly, implying a nonconstant fluid’s thermal con-
ductivity depending on the local temperature field. Moreover,
〈Jg〉 ∼ T 3/2 for large enough values of T ∀g, while its initial
slope for small T decreases with increasing g. This gives rises
to a remarkable phenomenon for intermediate values of T ,
which helps us to understand the complex role of gravity in
transport. In particular, all curves 〈Jg〉 with fixed g > 0 go
below the gravity-free curve 〈J0〉 up to a nontrivial temper-
ature TJ (g) where they intersect [65]. This is apparent by
plotting the excess current �Jg = 〈Jg〉 − 〈J0〉, see bottom inset
in Fig. 5. In this way, TJ (g) separates two different regimes
for each g > 0: (i) a gravity-suppressed transport regime 1 <

T < TJ (g) where gravity hinders heat transport (〈Jg〉 < 〈J0〉)
and (ii) a gravity-enhanced transport regime T > TJ (g) where
〈Jg〉 > 〈J0〉. We can measure TJ (g) by fitting a curve agT +

FIG. 5. Convective heat transport. Average reduced heat current
r̃〈Jg〉 as a function of T and different g, with r̃ the disks radius. Lines
are fits to the data, see text. Bottom inset: Excess current compared
to the gravity-free case, �Jg = 〈Jg〉 − 〈J0〉, as a function of T and
different g 
= 0. Vertical lines mark the temperatures TJ (g), where
�Jg[TJ (g)] = 0. Top inset: Tc(g) (©) and TJ (g) (�) as a function of
g. The different transport regimes are highlighted in color.

bgT 3/2 to the 〈Jg〉 data for each g, with excellent results in all
cases. The top inset in Fig. 5 shows the measured values for
TJ (g) (=3.1, 5, 6.8 for g = 5, 10, 15, respectively) as well
as the critical temperatures Tc(g) obtained above, and they
are clearly different, TJ (g) > Tc(g) ∀g > 0. This shows that
convection not always enhances heat transfer. In particular, for
each g there is a temperature range Tc(g) < T < TJ (g) within
the gravity-suppressed transport regime where convection has
already kicked in (as reflected by a structured velocity field)
yet it is not efficient enough to improve the transfer of energy
with respect to the gravity-free (g = 0), conductive case. We
call this region Tc(g) < T < TJ (g)the semiconvective regime,
see top inset in Fig. 5, to distinguish it from the fully convec-
tive regime appearing for T > TJ (g).

V. PERCOLATION AND STREAMLINE DISTRIBUTION

How can convection result in suppressed energy transport?
What is the mechanism triggering efficient heat conduction?
To answer these questions, we explore in more detail the
structure of the average hydrodynamic velocity field 〈u(r)〉
as T is varied. In particular, we investigate the amount of co-
herent motion that a given velocity field 〈u(r)〉 can sustain by
measuring the number �g(T ) of local cells where the modulus
of the local velocity vector is larger than its standard devia-
tion, i.e., |〈u(r)〉| > σ [u(r)] (Appendix A), see right panels
in Fig. 6. This measures the number of active advection zones
in the fluid, i.e., local regions where net flow happens and
hydrodynamic motion is significant against the naturally oc-
curring fluctuations. The top inset in Fig. 7 shows the fraction
πg(T ) = �g(T )/n2

c of active advection zones, which grows
monotonously with T ∀g > 0, as expected. For T < TJ (g), the
fraction of active advection zones is not only relatively small
but also local advection is mostly disordered, see dark arrows
in the upper-right panels of Fig. 6. Such disordered hydrody-
namic flow is not efficient to promote heat transport against
the gravitational field, and hence 〈Jg〉 < 〈J0〉 in this regime.
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FIG. 6. Active advection zones and streamlines. Right: Average
hydrodynamic velocity field 〈u(r)〉 for g = 10 and T = 1.8, 4, 6, 20
(from top to bottom). For g = 10, we have Tc = 3.4 and TJ = 5.
Active advection cells (|〈u(r)〉| > σ [u(r)]) are marked with dark
vectors. The red lines correspond to 102 streamlines sampled from
the associated 〈u(r)〉. Left: Streamline length distribution in each
case. Solid lines are fits to the data.

However, as T increases and approaches TJ (g), the fraction
πg(T ) grows but so does the ratio of orientationally aligned
active advection zones, leading to a sudden growth of the
length scale of coherent motion, as we will see below. Most
remarkably, the fraction active advection zones at the temper-
ature TJ (g) where convection transport becomes efficient takes
an universal, g-independent value πg[TJ (g)] ≈ 0.67 ∀g > 0,
see dashed lines in the top inset of Fig. 7. This value is
very close to the critical covered area fraction φc ≈ 0.666
for two-dimensional continuous percolation of overlapping
randomly placed (aligned) cells [66], strongly suggesting that
the transition to efficient convective heat transport is nothing

FIG. 7. Percolation transition in convection. Main: Log-log plot
of the fraction πg(T ) of active advection zones as a function of
the average streamline length 〈
g〉(T ) ∀g > 0. Notice the striking
collapse observed for all curves. The thick dashed line is a power
law πg ∼ 〈
g〉1/4. Top inset: πg(T ) vs T ∀g > 0. Bottom inset: 〈
g〉
vs T ∀g > 0. The dashed vertical lines mark TJ (g) for each g in both
insets, while the horizontal lines signal 〈
g〉 = 0.5 (bottom inset) and
the critical covered area fraction φc = 0.666 (top inset).

but a percolation transition of active advection zones which
form a spanning cluster connecting the hot and cold bound-
ary layers, see right panels in Fig. 6. Interestingly, similar
percolation phenomena have been recently related with other
hydrodynamic instabilities, as in, e.g., Couette and pipe flows
[47–50].

To quantify the range of coherent motion observed in the
fluid, we now investigate the streamline statistics for a given
velocity field using integration techniques routinely used in
imaging processing [67,68]. In particular, given a fixed 〈u(r)〉,
we define a streamline starting at some initial point as the
trajectory whose tangent at any point corresponds to the local
velocity (see Appendix E). Streamlines end whenever the
underlying velocity vector field breaks the continuity of a
trajectory. In this way, for a given average hydrodynamic
velocity field 〈u(r)〉, we generate 104 streamlines with ran-
dom initial points uniformly distributed in the simulation box
and compute the probability distribution P(
) of streamline
path lengths 
. The right panels in Fig. 6 show samples of
102 streamlines obtained for g = 10 and varying T , and the
corresponding left panels show the measured P(
) in each
case. Interestingly, P(
) changes appreciably as we move from
the nonconvective to the fully convective regime. As expected,
the length distribution in the nonconvective regime T < Tc(g)
is strongly peaked at small 
 (∼0.1). In this regime, P(
)
is well fitted ∀g by a gamma distribution, namely, P(
) =
A
α−1e−
/β , with α and β fitting parameters. As T increases
beyond Tc(g), P(
) widens but maintains its gamma-shaped
form, see second left panel in Fig. 6. However, as we move
to T � TJ (g), the length distribution broadens drastically and
develops a fat tail in 
, another signature of critical behavior
around TJ (g). This sharp change coincides with the onset
of rolls in the streamline structure, see Fig. 6. Streamlines
capture coherent motion in the flow, and hence it is no surprise
that for T � TJ (g) streamlines densely concentrate on top
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of the spanning clusters of aligned active advection zones,
see Fig. 6, associated to the roll pattern. Finally, for T = 20
P(
) peaks at large values of 
 ∼ 2, exhibiting a sharp cutoff
around the maximal length 
 ∼ 3. A direct measure of the
range of coherent motion in the fluid is given by the aver-
age streamline length 〈
g〉 = ∑


 
 P(
). The bottom inset in
Fig. 7 shows the measured 〈
g〉, which grows as a function
of T ∀g > 0 and takes a universal, g-independent value at
the onset of efficient convective transport, 〈
g〉[TJ (g)] ≈ 0.5
∀g > 0. This is half the system size and the length scale of
the emerging roll structure at TJ (g) connecting the bottom and
top boundary layers. Indeed, plotting the fraction of active
advection zones πg(T ) against the average streamline length
〈
g〉(T ), we find a striking collapse of data ∀g > 0, see main
panel in Fig. 7. Furthermore, both observables are related via
a power-law scaling πg ∼ 〈
g〉1/4 in a broad region around
the transition temperature TJ (g). Such collapse and power-
law scaling are additional fingerprints of universal behavior
strongly supporting the existence of an underlying percolation
transition.

VI. DISCUSSION

In this paper, we have investigated at the molecular level
the onset of convection in a two-dimensional compressible
hard disk fluid under a temperature gradient in a gravitational
field, finding a surprising two-step transition scenario. As the
bottom plate temperature increases, the fluid reaches a first
critical temperature Tc(g) where the hydrodynamic velocity
field develops an incipient (but still roll-free) structure, and
coherent local motions kick in. This first instability, apparent
in the average flow field, is clearly detected both by hydrody-
namic order parameters and fluid’s molecular properties. The
observed coherent flow is, however, local and disconnected,
and hence unable to promote energy transfer against the grav-
itational field, thus resulting in inefficient heat transport. As
the bottom plate temperature keeps increasing, the density
and orientational order of active advection zones increase,
eventually leading to a continuous percolation transition at a
second critical temperature TJ (g) > Tc(g), where a spanning
cluster of active advection zones emerges, connecting the hot
and cold boundary layers and thus leading to efficient heat
transport. Evidence of this percolation transition appears in
the precise value of the critical covered area fraction at the
transition point ∀g > 0, but also in the streamline length distri-
bution, which develops fat tails near TJ (g), and the power-law
scaling of the fraction of active advection zones in terms of
the average length scale for coherent motion. Overall, our
data strongly support the existence of two different critical
temperatures Tc(g) < TJ (g), with different physical origin for
the onset of convection in a two-dimensional compressible
fluid. This two-step behavior seems to be linked to the com-
pressibility of the underlying flow field, so we do not expect
the two-step transition to be observable in experiments which
satisfy the OB approximation [31].

A finite-size scaling analysis of both transitions with
increasing number of particles N would be of course desir-
able. However, going beyond N ∼ 103 while reaching the
massive statistics and high levels of precision needed to

discriminate and fully characterize both transitions seems
challenging nowadays. In any case, the bulk-boundary de-
coupling phenomenon reported for hard particle systems
[55,60–62] suggests that this two-step picture for the convec-
tion transition, that can be tested in laboratory experiments,
indeed survives in the thermodynamic limit N → ∞. A larger
N would allow us also to approach in simulations the ideal
continuum limit where many particles coexist at once in a
local mesoscopic cell of size �. However, as demonstrated re-
peatedly in the past [53–55,60–62], hard particle fluids exhibit
excellent self-averaging properties that, when supplemented
by extensive local statistics, allow us to distill the relevant
hydrodynamic fields even for moderate values of N , thus
strongly supporting the macroscopic character of the observed
behavior. Moreover, the simplicity and versatility of the two-
step transition scenario here described suggests that it can also
be present in more realistic models of fluid physics in three
dimensions.

What happens at the hydrodynamic level in the semicon-
vective regime Tc(g) < T < TJ (g)? Our simulations support
the possible existence of piecewise-continuous solutions to
the fully nonlinear, compressible Navier-Stokes equations,
different from the well-known regular convective ones, bridg-
ing the laminar (purely conductive) fluid state for T <

Tc(g) with the fully convective, rolling state for T > TJ (g)
once the Rayleigh instability is triggered. This possibility
is worth exploring from a theoretical perspective, possibly
within the fluctuating hydrodynamics framework [69], see
also Refs. [32–34], as it challenges fundamental results in
hydrodynamics, opening the door to hidden solutions and a
deeper knowledge of the internal structure of Navier-Stokes
equations. At the experimental level, we want to stress that
small discrepancies were found in the critical Rayleigh num-
ber obtained in experiments measuring the RB transition
using the velocity field as order parameter [70,71] and those
obtained in experiments based on heat flux measurements
(Nusselt number) [72]. The chances are that such discrep-
ancies are due to the two-step nature of the RB transition
here uncovered. Moreover, experiments on fluctuations below
the RB instability [35] have found evidence of a fluctu-
ating flow regime right before the instability, characterized
by the appearance of fluctuating convection rolls of random
orientation that resemble the coherent but disordered flow
patterns that characterize the semiconvective regime here
reported.
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APPENDIX A: MEASUREMENTS IN SIMULATIONS

In this Appendix, we discuss technical details on the mea-
surement of different local observables in simulations. A
similar discussion and definitions apply for global observ-
ables, so we focus only on local ones. To characterize the
spatial structure of the nonequilibrium steady state, we hence
measure locally different magnitudes of interest. For that, we
divide the unit box (L = 1) into nc × nc virtual square cells of
side � = 1/nc, and here we use nc = 30 to capture the fine de-
tails of the hydrodynamic fields. A given cell is characterized
by a pair of integer indexes (nx, ny), with nx, ny = 1, . . . , nc,
which correspond to a macroscopic point r ≡ (x, y) in the
system, with x, y ∈ [0, L = 1], such that x = (nx − 1/2)/nc

and y = (ny − 1/2)/nc. In this way, we use the center of each
virtual cell as the macroscopic position of the local hydrody-
namic fields. Hereafter, we will refer indistinctly to a given
cell by giving its macroscopic position r or its pair of indices
(nx, ny). Let ā(ri, vi ) be a microscopic observable depending
on a particle position ri and/or velocity vi. This observable
can be, for instance, the velocity of a particle ā(ri, vi ) = vi, its
kinetic energy ā(ri, vi ) = v2

i /2, or the local potential energy
ā(ri, vi ) = gyi, with ri = (xi, yi ). The extensive value of this
observable on cell (nx, ny) at time t or, equivalently, at position
r ≡ (x, y), is given by

A(r; t ) =
N∑

j=1

ā[r j (t ), v j (t )] I(r)[r j (t )], (A1)

where (r) = (nx, ny) is the spatial domain associated to
cell (nx, ny) with the center at r, and I(r)[r j (t )] is the charac-
teristic function associated to this domain, i.e., I(r)[r j (t )] =
1 ∀r j (t ) ∈ (r) and I(r)[r j (t )] = 0 otherwise. Note that the
number of particles at cell (nx, ny) at time t is simply

N (r; t ) =
N∑

j=1

I(r)[r j (t )]. (A2)

Once the steady state has been reached in the simulation,
we perform M measurements of A(r; tk ) at equispaced times
tk , k ∈ [1, M] during the system evolution. The (extensive)
average of the local observable of interest is thus trivially
defined as

〈A(r)〉 = 1

M

M∑
k=1

A(r; tk ), (A3)

while the (intensive) average per particle is now given by

〈a(r)〉 = 〈A(r)〉
〈N (r)〉 , (A4)

where we have defined the average number of particles ob-
served in cell r as 〈N (r)〉 = M−1 ∑M

k=1 N (r; tk ). Note that,
when compared with the time average of A(r; tk )/N (r; tk ), the
previous averaging method for intensive magnitudes exhibits
a better convergence to the limiting M → ∞ ensemble value
〈a〉∞, also yielding smaller fluctuations for the same M.

For the error analysis, we assume that the set {A(r; tk )}M
k=1

of M measurements of a given local observable is decorrelated
in time so the law of large numbers applies. In this case, we

expect for the average value of A in the large-M limit

〈A(r)〉 � 〈A(r)〉∞ + σ [A(r)] ξ, (A5)

where ξ is a Gaussian random variable with zero mean and
unit variance, and

σ [A(r)] = 1

M

√√√√ M∑
k=1

[A(r; tk ) − 〈A(r)〉]2. (A6)

In this paper, our estimate for the asymptotic ensemble av-
erage will be 〈A(r)〉∞ = 〈A(r)〉 ± 3σ [A(r)], so 99.7% of the
data are within the error bars shown in the analysis of the main
text. Errors for intensive observables and derived magnitudes
follow from the standard quadratic propagation of errors. Note
also that the same discussion and definitions apply for global
observables.

In this paper we are interested in a number of local hy-
drodynamic observables, as e.g. the average hydrodynamic
velocity field 〈u(r)〉 or the packing fraction field 〈η(r)〉. Fol-
lowing our previous discussion, 〈u(r)〉 is defined as

〈u(r)〉 = 1

〈N (r)〉
1

M

M∑
k=1

N∑
j=1

v j (tk )I(r)[r j (tk )], (A7)

while the packing fraction field is

〈η(r)〉 = 〈N (r)〉π r̃2

�2
, (A8)

where we recall that r̃ is the disk radius and � = 1/nc is the
linear size of each local square cell. We will be also interested
in the total hydrodynamic kinetic energy

〈e〉 = �2

2ρ

∑
r

〈η(r)〉〈u(r)〉2. (A9)

In addition, we measure some average global molecular prop-
erties, as, e.g., the average kinetic energy per particle,

〈ε〉 = 1

M

M∑
k=1

1

N

N∑
j=1

1

2
v j (tk ), (A10)

as well as its variance:

σ 2(ε) = 〈ε2〉 − 〈ε〉2 = 1

M

M∑
k=1

(
1

N

N∑
j=1

1

2
v j (tk )

)2

− 〈ε〉2.

(A11)
Finally, the energy current 〈Jg〉 traversing the fluid in the
stationary state for gravity g also plays an important role in
this problem, and can be measured in each thermal wall as
the accumulated sum of kinetic energy variation when disks
collide with the bath wall divided by the total measurement
time and the boundary length. In particular, if the steady-state
simulation lasts for a total time τ , and letting {in, tn}τ be the set
of all particles colliding with the bottom thermal wall during
this time interval τ , such that particle in collides at time tn, we
define the average heat current at the bottom plate for a given
g as

〈Jg〉 = 1

2τL

∑
in∈{in}τ

[
v′

in,y(tn)2 − vin,y(tn)2
]
, (A12)
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FIG. 8. Top: Average reduced pressure profiles measured along
the vertical direction for a bottom plate temperature T = 1 (equal
to the top plate temperature) and different values of gravity g. Full
lines correspond to the macroscopic prediction in each case. Inset:
Macroscopic local equilibrium and equation of state (EoS) for hard
disks. The measured local reduced pressure over the local tempera-
ture, P(y)/T (y), versus the local packing fraction η(y) for different
values of g. The line represents the Henderson macroscopic EoS
approximation [63]. Bottom: Average packing fraction profiles along
the vertical direction for different values of g, together with the
macroscopic prediction derived from the hydrostatic formula and the
Henderson’s EoS.

where v′
in,y(tn) [respectively, vin,y(tn)] is the y component of

the velocity of disk in right after (respectively, right before)
the collision with the bottom plate happening at time tn.

APPENDIX B: ADDITIONAL DATA

In this Appendix, we present additional measurements
which complement the results described in the main text.

First, to check the absence of noticeable finite-size effects
in our simulations, we have measured under equilibrium con-
ditions (equal bottom and top plate temperatures, T = 1 = T0)
both hydrostatic density and pressure profiles, as well as the
local EoS for different gravity values and a global packing
fraction ρ = 0.2, comparing them with macroscopic formu-
las. In particular, the inset in the top panel of Fig. 8 shows the
measured local reduced pressure over the local temperature,
P(y)/T (y), versus the local average density ρ(y) for different

FIG. 9. Color maps for the reduced pressure field measured for
gravity g = 10 and different values of the bottom plate temperature
T , together with the average profiles across the vertical and horizon-
tal directions.

values of gravity g. This is nothing but a measurement of the
fluid’s EoS. All data collapse onto a well-defined curve, which
is captured to a high degree of accuracy by the Henderson EoS
[63], demonstrating the validity of macroscopic local equi-
librium for the hard disk system. Note that the local average
reduced pressure is defined as P(y) = π r̃2Q(y), with Q(y) the
local average pressure at height y and r̃ the disk radius. The
main panels in Fig. 8 show in turn the measured profiles along
the vertical direction for the reduced pressure (top) and the
packing fraction (bottom), together with the macroscopic pre-
dictions based on the hydrostatic formula and the Henderson
EoS. In all cases, the agreement between measured values and
macroscopic predictions based on the continuum hypothesis
are excellent.

When driven by a temperature difference in the presence of
gravity, the hard-disk fluid develops a nontrivial structure in
its hydrodynamic fields which changes across the convection
instability. In the main text, we have shown how this structure
evolves for the temperature and the packing fraction fields
as the bottom plate temperature T varies, see Figs. 2 and
3. We have done this for a particular gravity field g = 10
and different temperatures across the two-step transition. For
completeness, Fig. 9 shows the average reduced pressure field
for the same parameter points as in Figs. 2 and 3, as well

014144-9



P. L. GARRIDO AND P. I. HURTADO PHYSICAL REVIEW E 106, 014144 (2022)

as the associated reduced pressure profiles along the vertical
and horizontal directions. The pressure field clearly exhibits a
nontrivial spatial structure, mainly along the vertical direction,
as well as notorious boundary effects near the confining walls.

APPENDIX C: PARAMETER SPACE EXPLORATION

In this Appendix, we explore the parameter space for the
two-dimensional hard disk fluid in a gravitational field un-
der a vertical temperature gradient, to determine the range
for (ρ, g, T0, T ) where the phenomenology of interest may
emerge. Here ρ is the global packing fraction, g is the
magnitude of the gravitational field, and T0 and T are the
temperatures of the top and bottom plates, respectively.

First, note that the purely kinetic structure of the disks’
microscopic dynamics (i.e., they do not interact except for
collisions) makes it possible to fix one of the system external
parameters (T, T0, g) by just applying a time rescaling without
affecting the system dynamics. In other words, if we rescale
time, t = γ t ′, disk velocities are rescaled in turn by v = v′/γ
so, reparametrizing the temperature of the top and bottom
thermal plates as T ′

0 = γ 2T0 and T ′ = γ 2T , respectively, and
the gravity field as g′ = γ 2g, one can prove for a fixed ρ that
the dynamical evolution of a system of disks with parameters
(T, T0, g) is indistinguishable from that of a system with pa-
rameters (T ′, T ′

0 , g′). In this way, one can arbitrarily choose
γ = 1/

√
T 0 to fix to 1 the temperature of the cold, top plate.

This trick reduces the number of external control parameter
to just (ρ, g, T ). To obtain the behavior of any observable for
arbitrary values of T0, one just should apply the inverse time
rescaling to the dynamical variables defining the observable
of interest.

A key observable to study the RB instability is the di-
mensionless Rayleigh number (Ra), a magnitude whose value
controls the transition between the conductive and convec-
tive flow states within the OB hydrodynamics approximation.
The Rayleigh number is defined as the ratio of the typical
timescales for diffusive and convective thermal transport and
can be written as

Ra = αgδT L3

ν̃κ̃
, (C1)

where δT = T − T0 > 0 measures the external temperature
gradient (recall we choose T0 = 1 hereafter), α is the ther-
mal expansion coefficient, ν̃ = ν/ρ̃ is the kinematic viscosity
with ρ̃ = mρ/π r̃2 the mass density (r̃ is the disk radius),
κ̃ = κ/ρ̃ CP, and CP = cp/m is the specific heat capacity per
unit mass. For hard disks, linearizing the Navier-Stokes equa-
tions under theOB approximation [22], one arrives at a critical
Rayleigh number Rac = 27π4/4 � 657.51 above which con-
vection kicks in for the stress free boundary condition case.

To have some intuition on the range of parameters of
interest, we computed Ra using the Henderson EoS approx-
imation [63] and the Enskog transport coefficients for hard
disks [53,55] which work pretty well for low and moderate
densities, see Fig. 10. The top panel in this figure shows the
behavior of Ra as a function of the global packing fraction
ρ for T = 5 and different values of the gravity field, namely,
g = 5, 10, and 15. In all cases, the maximum of Ra(η) appears
for low packing fractions and is above the critical Rayleigh

FIG. 10. Top: Rayleigh number Ra in the Enskog approxima-
tion as a function of the global packing fraction ρ for T = 5,
T0 = 1 and g = 5 (bottom blue curve), g = 10 (middle green curve)
and g = 15 (top black curve). Dashed orange line signals the
critical Rayleigh number Rac = 27π 4/4 � 657.51 obtained using
Oberbeck-Boussinesq approximation on the Navier-Stokes equa-
tions [22]. Bottom: Rayleigh number as a function of the bottom
plate temperature T for fixed value of T0 = 1 and ρ = 0.2, and for
the same values of g on the top panel.

number Rac. It therefore seems convenient to fix the global
packing fraction to ρ = 0.2 in our simulations, see main text.

To gain some intuition on the value of the critical temper-
ature T for the bottom, hot plate separating nonconvective
and convective regimes, we plot in the bottom panel of
Fig. 10 Ra as a function of T for a fixed packing fraction
ρ = 0.2. From these plots, we obtain the following theoretical
estimations for the critical temperatures as a function of g,
namely, Tc(g = 5) = 1.6205, Tc(g = 10) = 1.2233 and
Tc(g = 15) = 1.1376. In this way, to cover the full range of
temperatures where the interesting phenomenology emerges
∀g > 0, our simulations will focus on the following bottom
wall temperatures across the RB instability, namely, T =
1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3, 4, . . . , 19, 20,
with g = 0, 5, 10, and 15, and ρ = 0.2, as mentioned above.
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It should be noted here that the critical temperatures Tc(g)
measured in simulations do not agree with the Rayleigh crit-
ical temperatures derived from hydrodynamic stability theory
in this Appendix. Moreover, the theoretical analysis predicts
that convection is expected to appear for lower temperatures
as we increase g, in stark contrast with measurements (see
main text), while the nonmonotonic behavior of Ra as a func-
tion of T clearly indicates that this is not the most suitable
parameter in describing the transition in the present case. The
reason for these (otherwise expected) discrepancies is that the
underlying theoretical approximation is linear and assumes
the fluid to be incompressible, while our numerical analysis
shows instead that the hard disk fluid in this strongly driven
parameter regime behaves as a fully nonlinear and compress-
ible (non-OB) fluid [37]. In any case, the analysis in this
Appendix provides a first approximation to detect the range of
parameters where the phenomenology of interest may emerge
and is validated a fortiori in our simulations.

APPENDIX D: ADIMENSIONAL NUMBERS

To facilitate the connection between our simulations and
the classical hydrodynamic description of the convection in-
stability, based on the OB approximation, we now locally
define [36] some of the adimensional numbers that charac-
terize the instability as, e.g., the Nusselt or Knudsen numbers.
Note that under the strong driving conditions of these simu-
lations, the hard disk system behaves as a fully compressible
fluid, with highly nonlinear hydrodynamic fields displaying
a nontrivial, asymmetric structure in the gradient direction
(see Figs. 1–3 in the main text). Moreover, the nonlinear
dependence of the different transport coefficients on the local
hydrodynamic fields becomes apparent and essential to under-
stand the emergent macroscopic behavior. These effects signal
a clear departure from the standard OB approximation for the
convection instability and imply that the associated adimen-
sional numbers (Knudsen, Nusselt, etc.) all will exhibit depth
variations. Still, it seems meaningful to provide their local
value at some representative state points in the laminar, semi-
convective, and fully convective regimes, so as to facilitate
formal comparisons with other simulations or experiments.

We hence define the local Nusselt number at height
y as Nu(y) = 〈Jg〉/Jc(y), where 〈Jg〉 is the total energy
current measured across the vertical walls of the simu-
lation box capturing convective heat transfer, and Jc(y)
is the local conduction current at depth y, defined as
Jc(y) = |κ[η(y), T (y)]T ′(y)|, where T ′(y) is the measured
local temperature gradient along the vertical direction, and
κ[η(y), T (y)] is the Enskog kinetic theory expression for the
thermal conductivity of hard disks for local packing frac-
tion η(y) and temperature T (y) [53,55,73]. The local packing
fraction and temperature correspond to those measured in
simulations in each case. On the other hand, the local Knudsen
number is defined as Knu(y) = λ(y)/L, where L is the system
linear size (L = 1 in our units) and λ(y) is the molecular
mean-free path as obtained from Enskog kinetic theory for
values of the local packing fraction η(y) and temperature
T (y) measured in simulations [73]. Table I reports Nusselt
and Knudsen numbers measured locally near the center of
the simulation box (y = 0.42) for gravity g = 10 and differ-

TABLE I. Local Knudsen and Nusselt numbers, as measured
near the center of the simulation box (y = 0.42), for gravity g = 10
and different bottom plate temperatures T = 1.8, 4, and 20. Note
that, in all cases, the Knudsen number is around 0.1, meaning that
the flow field is that of a continuum fluid. On the other hand, Nusselt
numbers at the center of the simulation box are all above 1.

T = 1.8 T = 4 T = 20

Knudsen(y) 0.09 0.1 0.13
Nusselt(y) 1.07 1.07 1.23

ent bottom plate temperatures T = 1.8 (laminar flow), T = 4
(semiconvective flow) and T = 20 (fully convective flow), see
also top inset to Fig. 5 in the main text.

In all cases, the locally measured Knudsen number is
around 0.1, meaning that the associated flow is similar to that
of a continuum fluid phase, and hence we can safely say that
our simulations are close to the continuum limit and that we
are indeed observing a continuum phenomenon. On the other
hand, the local Nusselt number near the center is slightly
above 1 in all cases, see Table I. This local number hence
seems compatible with the bound Nu > 1 on Nusselt number
for incompresible fluids [30,72], though our model fluid is
compressible in this regime. Note, however, that both the
local Knudsen and Nusselt numbers are expected to exhibit
depth variations as a reflection of the nonlinear, asymmetric
character of temperature and packing fraction profiles along
the y direction, see Figs. 2 and 3 in the main text.

To confirm these depth variations, we also measured the lo-
cal Nusselt number near the top plate (y = 0.88) for the three
representative cases mentioned above, see Table II. Interest-
ingly, we observe local Nusselt numbers below 1 for T = 1.8
and 4 near the top plate, in a spatial region where packing
fraction is low for these values of T , see Fig. 3 in the main
text. This result is fully consistent with the observation of a
gravity-suppressed transport regime in both the laminar and
semiconvective regimes; see Fig. 5 in the main text. Moreover,
these local measurements confirm that the Nusselt number is
not bounded to be larger than 1 in our compressible, non-OB
fluid.

APPENDIX E: STREAMLINE COMPUTATION

In this Appendix, we describe the procedure to generate
streamlines from the measured flow field using integration
techniques routinely used in imaging processing [67,68]. For
a given velocity field u(r), we define a streamline starting

TABLE II. Local Nusselt number, as measured near the top plate
(y = 0.88) and near the center of the simulation box (y = 0.42), for
gravity g = 10 and different bottom plate temperatures T = 1.8, 4
and 20. Note the values of Nusselt number smaller than 1 near the
top plate for T = 1.8 and 4.

T = 1.8 T = 4 T = 20

Top Center Top Center Top Center

Nusselt(y) 0.88 1.07 0.98 1.07 1.09 1.23
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at some initial point as the trajectory whose tangent at any
point corresponds to the given fixed vector field. That is, let
u(x, y) = (u1(x, y), u2(x, y)) be a fixed vector field at a point
r = (x, y), and r0 = (x0, y0) an arbitrary initial point. Then,
the streamline associated to this point is the solution of the
following differential equation:

dy

dx
= u2(x, y)

u1(x, y)
, (E1)

or in parametric form

dx

ds
= u1(x(s), y(s)),

dy

ds
= u2(x(s), y(s)), (E2)

with initial condition at (x0, y0). Numerical solutions to
this problem can be simply found using, e.g., a standard

Runge-Kutta integrator [74]. Note that in our case the un-
derlying velocity vector field is defined over a discrete
nc × nc grid, with nc = 30, so in to reconstruct the vector
field at arbitrary points in the plane as needed by the stream-
line numerical integrator, we perform linear interpolations
from neighboring grid sites. Streamlines end whenever the
underlying velocity vector field breaks the continuity of a
trajectory. This can be detected by a simple stop condition
in the above integration scheme: a streamline ends whenever
the condition u(n + 1) · u(n) < 0 is satisfied, where u(n) =
[u1(x(sn), y(sn)), u2(x(sn), y(sn))] is the velocity vector in the
nth step of the integration scheme. Note that similar inte-
gration techniques to obtain streamlines from discrete vector
fields are routinely used in imaging processing, see, for in-
stance, Refs. [67,68] for some other technicalities.
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