Notes about the Macroscopic Fluctuating Theory

P.L. Garrido*

Instituto Carlos I de Física Teórica y Computacional.
Universidad de Granada. E-18071 Granada. Spain

(Dated: June 15, 2020)

Abstract

The Macroscopic Fluctuating Theory is presented from a practical and self consistent point of view. We take as starting point the assumption that a system at a mesoscopic scale is described by a field $\phi(x,t)$ that evolves by a Langevin equation that locally either conserves or not the field. Its dynamic behavior may also depend on the action of external agents on the bulk or/and at the system’s boundaries. We derive the corresponding Fokker-Planck equation and the probability of a path and we use them to study general properties of the system’s stationary state. In particular we focus on the study of the quasi-potential that defines the stationary distribution at the small noise limit. We argue that the system is at equilibrium when it is macroscopic reversible, that is when the most probable path to create a fluctuation from the stationary state is equal to the time reversed path that relaxes it. When this doesn’t occur the system is in a nonequilibrium stationary state whose quasi-potential may present some lack of differentiability and/or long range action. We also derive closed equations for the two-body correlations at the stationary state and we apply them to some typical cases. Finally we obtain generalized Green-Kubo class of formulas by using the Large Deviation Principle.

* garrido@onsager.ugr.es
I. INTRODUCTION

When we study systems at nonequilibrium states we immediately realize the hard task we face in order to get some general result, a prediction to be checked by experiments (numerical or not) or just to reproduce some observation. That is so even when we define very simple theoretical models at microscopic level that, once defined their interactions with some external agents or boundary conditions, they develop a collective nonlinear behavior that strongly depends on such external influences. A typical set of nonequilibrium models that have been extensively studied in the last decade are just driven by boundary agents. They have a microscopic bulk hamiltonian dynamics with boundary conditions that produce some type of current that flows along the system. The typical example is a container filled with interacting gas particles attached to thermal baths with different temperatures at some of its boundaries. These kind of systems are specially interesting because when the thermal baths have equal temperatures the system stationary state is the well known thermal equilibrium. At equilibrium we have the Thermodynamics and the Boltzmann-Gibbs ensemble theories to understand and predict the system macroscopic and mesoscopic (fluctuating) behavior. The existence of just a set of parameters that drives a system from equilibrium to a nonequilibrium state make these system very adequate to be studied theoretically. In fact there has been much effort in the last decades in order to extend the powerful equilibrium theories to them. However the problem to unveil their nonequilibrium properties is very difficult even in these cases. Let us remind, for instance, that it is only partially resolved the rigorous derivation of their corresponding hydrodynamic (macroscopic) equations starting from a Boltzmann equation as their microscopic description [1].

There are many techniques, theoretical approaches and/or computer simulated models that permits to get some insight of some particular nonequilibrium model in physics, ecology, biophysics,... Each of them present different characterizations of their nonequilibrium state where there are measured a variety of observables that are assumed to be the optimal ones to describe the particular problem. In our opinion, actually the main problem is to find a common theoretical background flexible enough that could permit us to apply it to different situations. That would permit us to compare different approaches, results or ideas in trying to find the essential properties that characterize nonequilibrium steady states.

In the last years a very interesting effort has been done by Bertini at al. [2]. They have
developed a mesoscopic theory for diffusive systems that they called *Macroscopic Fluctuating Theory (MFT)*. MFT is mainly based in three main assumptions. First, the existence of a well defined system’s hydrodynamic (macroscopic) description. Second, it is assumed that the fluctuating behavior of the macroscopic variables follows a Large Deviation Principle. And third, it is used the *Fundamental Principle* (as they call it) that it is a kind of generalized *detailed balance condition* that connects the way the system relax from a fluctuation to how it was created. All those assumptions are based in previous rigorous results in some one dimensional microscopic stochastic nonequilibrium models as for example the Symmetric Simple Exclusion Process (SSEP), the Weakly Asymmetric Exclusion Process (WASEP) or the Kipnis Marchioro Presutti model (KMP) (see for instance the review by Bertini et al. [3]). From this solid starting point MFT intends to obtain general properties on a variety of systems in a very serious attempt to globally understand the behavior of diffusive systems from a theoretical point of view.

In this paper we want to extend (in a non-rigorous way) their seminal work to more general nonequilibrium systems. In order to do that, we assume that our system is defined at the mesoscopic level by a continuous Langevin equation with a local white noise field that it is uncorrelated in time. This set up allows us to reproduce the results from MFT and to study more general systems than the diffusive ones. In fact we have studied non-conservative and more general conservatives systems. Obviously in many cases we lack of any rigorous connection of such equations from a microscopic model. Nevertheless, the goal in this paper is to look for general properties and concepts that maybe useful to the overall understanding of nonequilibrium systems.

In our paper we have focused in one component Langevin equations with conserved or non-conserved dynamics. In section II we define the basic starting equations, some notations and a set of basic definitions and relations. For example we define the corresponding Fokker-Planck equations and the Path Probability expressions. Section III is devoted to study the stationary probability distribution in the small noise limit that is defined by a functional of the fields that is called *quasi-potential*. We use the stationary Fokker-Planck equation to obtain a Hamilton-Jacobi partial differential equation for the quasi-potential that can be formally solved by using the method of characteristics. That permits to find some general quasi-potential properties. We also derive the effective dynamic equations describing the most probable path to create a given fluctuation (the *dual dynamics*). We observe that the
dual dynamics differs, in general, from the time reversed deterministic dynamics. That is, the most probable path that the system uses to relax to the stationary state is different to the one it follows to create the fluctuation from it. We know this difference is intimately related to the existence of a non-zero entropy production (see for instance [4]). We introduce in Section IV the macroscopic reversibility property that it is defined when the system dual dynamics and the time reversed deterministic dynamics coincide. We argue that only the systems at equilibrium are macroscopic reversible and we show in this case that their quasi-potentials has existing and continuous first and second functional derivatives with respect to the fields. That was Onsager’s idea when studying dynamic fluctuations of systems at equilibrium, where microscopic reversibility was assumed to extend to the mesoscopic level. Finally we also show that the original MFT Fundamental Principle always holds in our context in the small noise limit and we interpret it as a generalized detailed balance condition on paths. In Section V we study the spatial correlations at the stationary state. We obtain the general set of closed equations to study them for the conserved and non-conserved cases and we apply them to some well known situations in order to make explicit the power of this theoretical scheme. In section VI we use those equations to try to build the conditions in which conserved and non-conserved situations develop the same quasi-potential. That is an attempt to build nonequilibrium dynamical ensembles. Finally in section VII we show how to use the Large Deviation Principle to obtain generalized Green-Kubo relations.

II. LANGEVIN DESCRIPTION OF MESOSCOPIC SYSTEMS

We assume that our system, at a hydrodynamic level of description, is completely defined by a unique scalar field \(\phi_D(x,t) \in \mathbb{R} \) where \(x \in \Lambda \subset \mathbb{R}^d \), \(d \) is the spatial dimension and \(t \) is the time. In this paper we have restricted ourselves to this case for the sake of simplicity but one can straightforward generalize all the results below to systems described by vector fields. The field evolution is obtained as the solutions of a nonlinear partial differential equation. Along this work we are going to consider two separate family of dynamics: the reaction dynamics (RD) that doesn’t conserve the field locally, and the diffusive dynamics (DD) where the field is locally conserved under the evolution:

\[
\partial_t \phi_D(x,t) = F[\phi_D; x, t] \quad \text{(RD case)}
\]
\[
\partial \phi_D(x,t) + \nabla \cdot G[\phi_D; x, t] = 0 \quad \text{(DD case)}
\]

\((1) \)
Our set of equations are solved typically for a given boundary conditions \(\phi_D(x,t) = \tilde{\phi}(x), x \in \partial \Lambda, \forall t \), and an initial state \(\phi_D(x,0) = \tilde{\phi}(x), x \in \Lambda \). That determines (hopefully) the solution \(\phi_D(x,t) \) that is also called *Deterministic or Classical solution*. The stationary state, \(\phi^*(x) \), is the stationary solution of the hydrodynamic equation:

\[
F[\phi^*;x] = 0 \quad \text{(RD case)} \quad \text{or} \quad \nabla \cdot G[\phi^*;x] = 0 \quad \text{(DD case)}
\] (2)

We assume that \(\phi^* \) is unique (in all cases) and it is dynamically stable in the sense that all the Lyapunov exponents have a nonzero and negative real part. More precisely, let us expand the hydrodynamic equation around the stationary state: \(\phi(x,t) = \phi^*(x) + \epsilon(x,t) \).

Then we get

\[
\partial_t \epsilon(x,t) = \int_\Lambda dy A(x,y) \epsilon(y) + O(\epsilon^2)
\] (3)

where

\[
A(x,y) = \frac{\delta F[\phi; x]}{\delta \phi(y)} \bigg|_{\phi = \phi^*} \quad \text{(RD case)} \quad \text{or} \quad A(x,y) = \frac{\delta \nabla G[\phi; x]}{\delta \phi(y)} \bigg|_{\phi = \phi^*} \quad \text{(DD case)}
\] (4)

then we assume that all the eigenvalues \(\lambda \) of the operator \(A \) which are solution of the equation \(\det(A - I \lambda) = 0 \) are such that \(Re(\lambda) < 0 \). This property guarantees that the stationary state is not time dependent. These are the class of stationary states we are going to study in this paper. Obviously there are many other stationary states but they are out the scope of this paper.

The mesoscopic description is built from the hydrodynamics of the system. We assume that in this level the system dynamics is given by a Langevin equation with a white noise:

- **Reaction dynamics (RD):**

\[
\partial_t \phi(x,t) = F[\phi; x,t] + h[\phi; x,t] \xi(x,t)
\] (5)

- **Diffusion dynamics (DD):**

\[
\partial_t \phi(x,t) + \nabla \cdot j = 0
\] (6)

with

\[
j_\alpha[\phi; x, t] = G_\alpha[\phi; x, t] + \sum_{\beta=1}^d \sigma_{\alpha,\beta}[\phi; x, t] \psi_\beta(x, t) \quad \alpha = 1, \ldots, d
\] (7)
Where j_α is the current field. Here F, G, h and σ are given local functionals of $\phi(x,t)$, $\nabla \phi(x,t)$, The boundary conditions and the initial state are the ones given for ϕ_D. We take $\xi(x,t)$ and $\psi_\alpha(x,t)$ to be uncorrelated gaussian random variables:

$$
\langle \xi(x,t) \rangle = 0
$$

$$
\langle \xi(x,t)\xi(x',t') \rangle = \frac{1}{\Omega} \delta(x-x')\delta(t-t')
$$

$$
\langle \psi_\alpha(x,t) \rangle = 0
$$

$$
\langle \psi_\alpha(x,t)\psi_\beta(x',t') \rangle = \frac{1}{\Omega} \delta_{\alpha,\beta}\delta(x-x')\delta(t-t')
$$

(8)

where $\Omega > 0$ is the parameter that controls the time and spatial separation between the mesoscopic and hydrodynamic descriptions. It is assumed that Ω is large and therefore, the fluctuations are going to be just perturbations to the deterministic or macroscopic case ($\Omega \to \infty$). That is why we call this setup Macroscopic Fluctuating Theory (MFT). As we will see, the assumption of small fluctuations does not imply small effects in a nonequilibrium stationary state. In fact the structure of many observables and potentials change dramatically with respect to their equilibrium counterpart even if we are very near to an equilibrium reference state. Therefore, even in the most simple cases, we should keep in mind that a nonequilibrium stationary state is going to be related with the existence of long range correlations and non-local and singular probability distributions.

The presence of the random variables ξ or ψ_α implies that the system evolution is characterized by probabilities. In particular we are interested in two of them: the probability to find the system at time t at a given configuration ϕ and in the probability that the system follows a given ϕ evolution in a time interval. From the Langevin equations we can explicitly construct the equations for these probabilities that contains most of the interesting physics of the system: the Fokker-Planck equation and the Path Probability.

A. The Fokker-Planck equation

The probability to find the system at a configuration ϕ at time t from a given configuration ϕ_0 at the initial time t_0, $P[\phi; t|\phi_0; t_0]$, is given by:

$$
P[\phi; t|\phi_0; t_0] = \langle \prod_{x \in \Lambda} \delta \left(\phi(x,t; \phi_0) - \phi(x,t) \right) \rangle_{\xi,\psi}
$$

(9)
where $\tilde{\phi}(x, t; \phi_0)$ is the solution of the Langevin equation for a fixed noise realization and with initial condition: $\phi(x, t_0) = \phi_0(x) \forall x \in \Lambda$. That is, $\tilde{\phi}$ depends on the set of $\{\xi(x, t')\}_{t'=t_0}^{t}$ or $\{\psi_\alpha(x, t')\}_{t'=t_0}^{t}$ values for the RD and DD cases respectively. The average, $\langle \cdot \rangle_{\xi, \psi}$, is done with respect the Gaussian distribution associated to the random variables. Obviously except for a few very simple cases we cannot explicitly solve the Langevin equation to get $\tilde{\phi}$ for a fix and arbitrary noise field and then to do the average over the noise to obtain $P[\phi; t|\phi_0; t_0]$. Nevertheless we can construct a self contained differential equation from its definition. The idea is to discretize the time in the Langevin equation, $t_n = t_0 + n\Delta t$, and to connect $P[\phi; t_{n+1}|\phi_0; t_0]$ with the previous one distribution, $P[\phi, t_n|\phi_0; t_0]$ by using the fact that the noise is time uncorrelated (truly a Markov chain). There is not an unique way to discretize the continuous Langevin equation and therefore the final form of the Fokker-Planck equation depends on the discretization scheme used. In any case we should stress that the averaged values of the observables is always the same independently on scheme the used. That is, during their computation one should have in mind the kind of discretization used in order to solve some of the technical problems we can find (for instance what to do if we find a Heaviside function evaluated at zero). In the Appendix I we have derived a generic Fokker-Planck equation for a family of discrete schemes in order to show explicitly such effects. In this paper we use the Ito’s discretization scheme. The corresponding Fokker-Planck equation for the RD and DD cases are:

1. **Reaction dynamics (RD):**

$$\partial_t P[\phi; t] = \int_{\Lambda} dx \frac{\delta}{\delta \phi(x, t)} \left[-F[\phi; x, t]P[\phi; t] + \frac{1}{2\Omega} \frac{\delta}{\delta \phi(x, t)} \left(h[\phi; x, t]^2 P[\phi; t] \right) \right]$$ \hspace{1cm} (10)

2. **Diffusion dynamics (DD):**

$$\partial_t P[\phi; t] = \int_{\Lambda} dx \sum_{\alpha=1}^{d} \left(\partial_\alpha \frac{\delta}{\delta \phi(x, t)} \right) \left[-G_\alpha[\phi; x, t]P[\phi; t] \right.$$
$$+ \frac{1}{2\Omega} \sum_{\beta=1}^{d} \left(\partial_\beta \frac{\delta}{\delta \phi(x, t)} \right) \left(\chi_{\alpha, \beta}[\phi; x, t]P[\phi; t] \right) \]$$ \hspace{1cm} (11)

where

$$\chi_{\alpha, \beta}[\phi; x, t] = \sum_{\gamma=1}^{d} \sigma_{\alpha, \gamma}[\phi; x, t]\sigma_{\beta, \gamma}[\phi; x, t]$$ \hspace{1cm} (12)
and the operator is defined in the discrete version of the Langevin equation (see the Appendix I)
\[
\left(\frac{\partial}{\partial \phi(x)} \frac{\delta}{\delta \phi} \right) = \lim_{a \to 0} \frac{1}{2a} \left(\frac{\partial}{\partial \phi(n + i_{\alpha})} - \frac{\partial}{\partial \phi(n - i_{\alpha})} \right)
\]
where \(x = na \). This operator has the nice property
\[
\left(\frac{\partial}{\partial \phi(x,t)} \right) H[\phi; x, t] = \partial_{\alpha} \left(\frac{\delta}{\delta \phi(x,t)} H[\phi; x, t] \right) - \frac{\delta}{\delta \phi(x,t)} (\partial_{\alpha} H[\phi; x, t])
\]

B. The Path Probability

We can also ask ourselves about the probability to observe a particular time evolution of the field values or path. Let us first deduce it for the RD case. An arbitrary path is defined by the set: \(\{\phi\} [t_0, t_1] = (\phi(x,t), x \in \Lambda, t \in [t_0, t_1]) \). The probability to see such path is just the product of the probabilities to get the adequate set of random values of \(\xi(x,t) \) to recreate the path:
\[
P[\{\phi\} [t_0, t_1]] = \text{cte} \int D\xi \exp \left[-\frac{\Omega}{2} \int_{t_0}^{t_1} dt \int_{\Lambda} dx \xi(x,t)^2 \right] \prod_{t \in [t_0, t_1]} \prod_{x \in \Lambda} \delta \left(\xi(x,t) - \frac{\partial_t \phi(x,t) - F[\phi; x, t]}{h[\phi; x, t]} \right)
\]
\[
= \text{cte} \exp \left[-\Omega L[\phi; t_0, t_1] \right]
\]

where
\[
L[\phi; t_0, t_1] = \int_{t_0}^{t_1} dt L[\phi], \quad L[\phi] = \frac{1}{2} \int_{\Lambda} dx \left(\frac{\partial_t \phi(x,t) - F[\phi; x, t]}{h[\phi; x, t]} \right)^2
\]

To find a similar equation for the DD case we should do a little more work. First, let us define the random variable \(\nu(x,t) \) for a fix value of \(\phi(x,t) \):
\[
\nu(x,t) = \sum_{\alpha=1}^{d} \partial_{\alpha} \left(\sum_{\beta=1}^{d} \sigma_{\alpha,\beta}[\phi; x, t] \psi_\beta(x,t) \right)
\]
\[
\text{we observe that } \nu(x,t) \text{ is a sum of Gaussian random variables and therefore it is a Gaussian random variable. Its probability distribution is characterized just by its first two moments that we can compute explicitly:}
\]
\[
\langle \nu(x,t) \rangle = 0
\]
\[
\langle \nu(x,t)\nu(x',t') \rangle = \frac{1}{\Omega} L[\phi; x, x', t] \delta(t - t')
\]
where
\[L[\phi; x, x', t] = \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \partial_\alpha \partial'_\beta \left[\chi_{\alpha \beta}[\phi; x, t] \delta(x - x') \right] \] (19)

Therefore the probability distribution for the \(\nu(x, t) \) random variables is of the form:
\[P[\nu; \phi] = cte \exp \left[-\frac{\Omega}{2} \int_{-\infty}^{\infty} dt \int_\Lambda dx \int_\Lambda dx' M[\phi; x, x', t] \nu(x, t) \nu(x', t) \right] \] (20)

where \(M[\phi; x, x', t] \) is the inverse of \(L[\phi; x, x', t] \):
\[\int_\Lambda d\bar{x} L[\phi; x, \bar{x}, t] M[\phi; \bar{x}, x', t] = \delta(x - x') \] (21)

This last property can be easily proven in a discrete version. Let us assume that we have a Gaussian distribution of the form:
\[P[\xi] = Z^{-1} \exp \left[-\frac{\Omega}{2} \sum_n \sum_{n'} A(n, n') \xi(n) \xi(n') \right] \]
\[Z = \frac{C(\Omega)}{(\det A)^{1/2}} \] (22)

then
\[\langle \xi(n) \xi(n') \rangle = -\frac{2}{\Omega} \frac{\partial}{\partial A(n, n')} \log Z = \frac{1}{\Omega} (A^{-1})(n', n) \] (23)

That is the relation given in eq. (21).

Finally the Langevin equation corresponding to the DD case can be rewritten by:
\[\partial_t \phi(x, t) + \nabla \cdot G[\phi; x, t] + \nu(x, t) = 0 \] (24)

At this point we can apply the same the argument we used in the RD case to find:
\[P[\{\phi\} [t_0, t_1]] = cte \exp \left[-\frac{\Omega}{2} \int_{t_0}^{t_1} dt \int_\Lambda dx \int_\Lambda dx' \left(\partial_t \phi(x, t) + \nabla G[\phi; x, t] \right) M[\phi; x, x', t] \left(\partial_t \phi(x', t) + \nabla' G[\phi; x', t] \right) \right] \] (25)

Observe that in the DD case the current field \(j_\alpha \) cannot be derived from the knowledge of \(\phi(x, t) \) for dimensions higher than one (any current \(j + q \) such that \(\nabla q = 0 \) implies the same Langevin Equation). Therefore we can naturally define the probability for a given \(\phi \) and \(j \) path: \(\{\phi, j\} [t_0, t_1] = (\{\phi(x, t), j(x, t)\}, x \in \Lambda, t \in [t_0, t_1]) \): \(P[\{\phi, j\} [t_0, t_1]] \). That probability is related with \(P[\{\phi\} [t_0, t_1]] \) by:
\[P[\{\phi\} [t_0, t_1]] = cte \int D j P[\{\phi, j\} [t_0, t_1]] \] (26)
where
\[
P[\{\phi, j\} [t_0, t_1]] = cte \exp \left[-\frac{\Omega}{2} \int_{t_0}^{t_1} dt \int_{\Lambda} dx \int_{\Lambda} dx' \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} (j_\alpha(x, t) - G_\alpha[\phi; x, t]) \right. \\
\left. \left(\partial_\alpha \partial'_\beta M[\phi; x, x', t] \right) (j_\beta(x', t) - G_\beta[\phi; x', t]) \right] \prod_{t \in [t_0, t_1]} \prod_{x \in \Lambda} \delta(\partial_t \phi + \nabla \cdot j) \tag{27}
\]

This expression can be simplified. Let us substitute the definition of \(L\) in eq. (19) into eq. (21):
\[
- \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \partial_\alpha \chi_{\alpha\beta}[\phi; x, t] \partial_\beta M[\phi; x, x', t] = \delta (x - x') \tag{28}
\]

We multiply both sides by a test function \(f(x)\), integrate with respect to \(x\) and derivate with respect to \(\partial'_\gamma\):
\[
\sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} \int_{\Lambda} dx \partial_\alpha f(x) \chi_{\alpha\beta}[\phi; x, t] \partial'_\gamma \partial_\beta M[\phi; x, x', t] = \partial'_\gamma f(x') \quad \forall \gamma, f \tag{29}
\]

therefore
\[
\sum_{\beta=1}^{d} \chi_{\alpha\beta}[\phi; x, t] \partial'_\gamma \partial_\beta M[\phi; x, x', t] = \delta (x - x') \tag{30}
\]

and we find the relation
\[
\partial_\alpha \partial'_\beta M[\phi; x, x', t] = (\chi[\phi; x, t]^{-1})_{\alpha\beta} \delta (x - x') \tag{31}
\]

We can substitute this expression into eq.(27) and we find
\[
P[\{\phi, j\} [t_0, t_1]] = cte \exp \left[-\frac{\Omega}{2} \int_{t_0}^{t_1} dt \int_{\Lambda} dx \int_{\Lambda} dx' \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d} (j_\alpha(x, t) - G_\alpha[\phi; x, t]) \right. \\
\left. \left(\chi[\phi; x, t]^{-1})_{\alpha\beta} (j_\beta(x, t) - G_\beta[\phi; x, t]) \right] \prod_{t \in [t_0, t_1]} \prod_{x \in \Lambda} \delta(\partial_t \phi + \nabla \cdot j) \tag{32}
\]

After setting up all these equations and definitions we can attempt to extract some general behavior for these systems. Let us begin by studying the stationary state.

III. THE STATIONARY STATE AND THE QUASI-POTENTIAL

The stationary probability distribution is solution of the Fokker-Planck equation with \(\partial_t P_{st}[\phi] = 0\). Except for some very simple models we do not know how to solve such equation in general. However we can use the fact that the noise intensity is very small to
significantly simplify the problem. When $\Omega \to \infty$ the stationary probability distribution can be written as:

$$P_{st}[\phi] \simeq \exp \left[-\Omega V_0[\phi] \right]$$ \hspace{1cm} (33)

where $V_0[\phi]$ is the so called \textit{quasi-potential}. Observe that in the strict limit $\Omega \to \infty$ we should get the stationary deterministic solution given by eq. (2):

$$P_{st}[\phi] = \prod_{x \in \Lambda} \delta(\phi(x) - \phi^*(x))$$ \hspace{1cm} (34)

This implies that $\phi^*(x)$ should be the absolute minimum of the quasi potential:

$$\frac{\delta V_0[\phi^*]}{\delta \phi^*(x)} = 0 \quad \forall x \in \Lambda$$ \hspace{1cm} (35)

We can obtain V_0 from two different ways, by using the Fokker-Planck equation as we already commented or from the path probability. Both methods give us some insight about the properties and structure of V_0.

A. V_0 for RD:

We substitute eq.(33) into eq.(10) and for $\Omega \to \infty$ we get:

$$\int_{\Lambda} dx \left[F[\phi; x] \frac{\delta V_0[\phi]}{\delta \phi(x)} + \frac{1}{2} h[\phi; x]^2 \left(\frac{\delta V_0[\phi]}{\delta \phi(x)} \right)^2 \right] = 0$$ \hspace{1cm} (36)

This is a \textit{Hamilton-Jacobi} type of equation that it can be solved by the method of characteristics [5] (see Appendix II). The Hamiltonian associated to the Hamilton-Jacobi equation is:

$$H[\pi, \phi] = \int_{\Lambda} dx \pi(x) \left[F[\phi; x] + \frac{1}{2} h[\phi; x]^2 \pi(x) \right]$$ \hspace{1cm} (37)

where

$$\pi(x) = \frac{\delta V_0[\phi]}{\delta \phi(x)}$$ \hspace{1cm} (38)

The corresponding Hamilton evolution equations are then given by:

$$\partial_{\tau} \phi(x, \tau) = \frac{\delta H[\pi, \phi]}{\delta \pi(x, \tau)} = F[\phi; x, \tau] + h[\phi; x, \tau]^2 \pi(x, \tau)$$

$$\partial_{\tau} \pi(x, \tau) = -\frac{\delta H[\pi, \phi]}{\delta \phi(x, \tau)} = -\int_{\Lambda} dy \pi(y, \tau) \left[\frac{\delta F[\phi; y, \tau]}{\delta \phi(x, \tau)} + \frac{1}{2} \frac{\delta h[\phi; y, \tau]}{\delta \phi(x, \tau)} \pi(y, \tau) \right]$$ \hspace{1cm} (39)
The quasi-potential V_0 is obtained first by solving such evolution equations with initial conditions: $\bar{\phi}(x, -\infty) = \phi^*(x)$ and $\pi(x, -\infty) = 0$ and then using such solutions into the expression:

$$V_0[\phi] = V_0[\phi^*] + \int_{-\infty}^{0} d\tau \int_{\Lambda} dx \pi(x, \tau) \partial_\tau \bar{\phi}(x, \tau)$$

(40)

where $\bar{\phi}(x, 0) = \phi(x)$. Let us mention that the evolution equations are nonlinear and it could be that for a given field value ϕ_0 there are several trajectory points such that $(\bar{\phi}(\tau) = \bar{\phi}_0, \pi(\tau))$ and $(\bar{\phi}(\tau') = \bar{\phi}_0, \pi(\tau'))$ for $\tau' > \tau$ that pertain to the same time trajectory: $\{(\pi(\tau), \bar{\phi}(\tau))\}_{\tau = -\infty}^{0}$. Obviously, all such values give rise to the same $V_0[\phi_0]$. In these cases, we should choose the π values that minimize the action that defines the probability of this path (as we will see). In other words, we will choose the path with higher probability. The main consequence of this phenomena is that at such $\bar{\phi}_0$ the derivatives would be typically discontinuous (there are two different $\pi(x) = \delta V_0/\delta \phi(x)$ depending on how we approach to $\bar{\phi}_0$ with the time parameter τ).

Nevertheless there is a family of Langevin equations in which we know the solution. Let us choose F having the form:

$$F[\phi; x] = -\frac{1}{2} h[\phi; x]^2 \frac{\delta V[\phi]}{\delta \phi(x)}$$

(41)

for any given functional $V[\phi]$. We can check directly in the evolution equations that in this case $\pi(x, \tau) = \delta V[\phi]/\delta \phi(x)|_{\phi(x, \tau)}$ and therefore $V_0[\phi] = V[\phi]$. This particular case is relevant because permits us to build Langevin equations with an a priori given stationary state.

In general we can study the eq. (39) near the initial condition $(0, \phi^*)$. The linear approximation is

$$\partial_\tau \epsilon(x, \tau) = \int_{\Lambda} dy A(x, y) \epsilon(y, \tau) + h[\phi^*; x]^2 \eta(x, \tau)$$

$$\partial_\tau \eta(x, \tau) = -\int_{\Lambda} dy A(y, x) \eta(y, \tau)$$

(42)

where $\epsilon(x, \tau) = \bar{\phi}(x, \tau) - \phi^*(x)$ and $\eta(x, \tau) = \phi(x, \tau)$, $A(x, y) = \delta F[\phi; x]/\delta \phi(y)|_{\phi = \phi^*}$. The Lyapunov exponents, λ, of these set of linearized equations are solutions of:

$$det(A + \lambda I)det(-A + \lambda I) = 0$$

(43)

Therefore the possible values appear in pairs ($-\lambda, \lambda$) which is typical of a Hamiltonian flow. That is, we can define a stable and unstable manifolds crossing the stationary point
\(P^* : (0, \phi^*). \) All the trajectories solution of eq. (39) starting from the stationary point should pertain to the unstable manifold, \(M_u. \) This is important from a practical (numerical) point of view if we want to solve the equations of motion: whenever we choose as initial condition \(P^* \) we will stay there forever. Moreover, only the initial points \(P_0 : (\pi_0, \phi_0) \) that pertain to \(M_u \) will evolve to any given \(\phi \) for \(\tau > 0. \) Therefore, the right strategy is to reconstruct the unstable manifold around \(P^* \) then taking points \(P_0 \) pertaining to \(M_u \) as initial conditions for solving the equations of motion (see for instance [6]).

We could also obtain the stationary state distribution from the probability of a path. The main idea is to use the fact that the probability to go from any given starting and end points in a time interval is just the sum of all the probabilities of each path that connects both states. Therefore we can write

\[
P_{st}[\phi] = P_{st}[\phi^*] \int D\psi P[\{\psi\}[-\infty, 0]] \prod_{x \in \Lambda} \delta(\psi(x, 0) - \phi(x)) \prod_{x \in \Lambda} \delta(\psi(x, -\infty) - \phi(x)^*) \quad (44)
\]

where \(P[\{\psi\}[t_0, t_1]] \) is given by eq.(15). In the limit \(\Omega \to \infty \) the path integral is dominated by the most probable path \(\{\tilde{\phi}(x, t)\}[-\infty, 0] \) which is solution of

\[
\frac{\delta L[\phi; -\infty, 0]}{\delta \phi(x, t)} \bigg|_{\phi=\tilde{\phi}} = 0 \quad \forall \, x \in \Lambda, \, t \in [-\infty, 0] \quad (45)
\]

That is, the equation we explicitly get from (45) to find the most probable path is:

\[
\partial_t \left(\frac{\partial_t \tilde{\phi}(x, t) - F[\tilde{\phi}; x, t]}{h[\tilde{\phi}; x, t]^2} \right) =
- \int_{\Lambda} dy \frac{\partial_t \tilde{\phi}(x, t) - F[\tilde{\phi}; x, t]}{h[\tilde{\phi}; x, t]^2} \left[\frac{\delta F[\tilde{\phi}; y, t]}{\delta \phi(x, t)} + \frac{1}{2} \frac{\delta h[\tilde{\phi}; y, t]}{\delta \phi(x, t)} \partial_t \tilde{\phi}(x, t) - F[\tilde{\phi}; x, t] \right] \quad (46)
\]

with boundary conditions \(\tilde{\phi}(x, -\infty) = \phi(x)^* \) and \(\tilde{\phi}(x, 0) = \phi(x). \) Finally, the quasi-potential is given by:

\[
V_0[\phi] = V_0[\phi^*] + L[\tilde{\phi}; -\infty, 0] \quad (47)
\]

Let us remark several issues:

- (1) \(\tilde{\phi} \) is the most probable path to create a given fluctuation \(\phi \) and it has its own dynamics that it can be compared with the deterministic evolution equation (1) with boundary conditions \(\phi_D(x, 0) = \phi(x) \) and \(\phi_D(x, \infty) = \phi(x)^* \) which describes the most probable path to relax from an arbitrary \(\phi \) to the stationary state. The time reversed equation of motion for \(\tilde{\phi} \) is called the dual dynamics [3]. At equilibrium both dynamics
are related by a time inversion operation: \(\tilde{\phi}(x, t) = \phi(x, -t) \) as we will see below but in general they differ.

- (2) Equation (46) can be derived from the Hamilton-Jacobi scheme (39) by just eliminating the \(\pi \)-field in order to build an unique effective evolution equation for \(\phi \)'s. That is, the effective Hamiltonian dynamics we got from the Hamilton-Jacobi equation is equivalent to the Lagrangian dynamics we find from the path integral scheme. In fact both objects are related by a Lagrange transformation.

\[
L[\phi] = \int_\Lambda dx \partial_t \phi(x,t) \pi(x,t) - H[\pi, \phi], \quad \frac{\delta H[\pi, \phi]}{\delta \pi(x,t)} = \partial_t \phi(x,t) \quad (48)
\]

- (3) The quasi-potential has a nice dynamic property: It is a Lyapunov functional for the deterministic and the dual dynamics. Let

\[
S[\phi] = V_0[\phi] - V_0[\phi^*] \quad (49)
\]

then

\[
\frac{dS[\phi_D(t)]}{dt} \leq 0 \quad \text{and} \quad \frac{dS[\tilde{\phi}(-t)]}{dt} \leq 0 \quad (50)
\]

where \(\phi_D(t) = \{\phi_D(x,t), x \in \Lambda\} \) and \(\tilde{\phi}(t) = \{\tilde{\phi}(x,t), x \in \Lambda\} \) are the solutions of equations (1) and (46) respectively. Moreover,

\[
\lim_{t \to \infty} \frac{dS[\phi_D(t)]}{dt} = 0 \quad \text{and} \quad \lim_{t \to \infty} \frac{dS[\tilde{\phi}(-t)]}{dt} = 0 \quad (51)
\]

In other words, the time evolutions under the deterministic and the dual dynamics tend to minimize the quasi-potential at all times. Let us prove these relations. From the definition of \(S \) we write:

\[
\frac{dS[\phi(t)]}{dt} = \int_\Lambda dx \frac{\delta V_0[\phi(t)]}{\delta \phi(x,t)} \partial_t \phi(x,t) \quad (52)
\]

we know that \(\partial_t \phi_D(x,t) = F[\phi_D; x, t] \) and \(\partial_t \tilde{\phi}(x,-t) = -F[\tilde{\phi}; x,-t] - h[\tilde{\phi}; x,-t]^2 \pi(x,-t) \) for the deterministic and the dual dynamics respectively. Therefore:

\[
\frac{dS[\phi_D(t)]}{dt} = \int_\Lambda dx \frac{\delta V_0[\phi_D(t)]}{\delta \phi_D(x,t)} F[\phi_D; x, t]
\]

\[
\frac{dS[\tilde{\phi}(-t)]}{dt} = \int_\Lambda dx \frac{\delta V_0[\tilde{\phi}(-t)]}{\delta \tilde{\phi}(x,-t)} (-F[\tilde{\phi}; x,-t] - h[\tilde{\phi}; x,-t]^2 \pi(x,-t)) \quad (53)
\]
Finally we use the Hamilton-Jacobi equation (36) and we get the desired result:

\[
\frac{dS}{dt}[\phi_D(t)] = -\frac{1}{2} \int dx h[\phi_D; x, t] \left(\frac{\delta V_0[\phi_D(t)]}{\delta \phi_D(x, t)} \right)^2 \leq 0
\]

\[
\frac{dS}{dt}[\bar{\phi}(-t)] = -\frac{1}{2} \int dx h[\bar{\phi}; x, -t] \pi(x, -t)^2 \leq 0
\]

(54)

The unique state in which such derivatives are equal to zero is the stationary state \(\phi^* \). \(S \) is a positive defined functional that decrease monotonously with time until it reaches the stationary state.

B. \(V_0 \) for DD:

We follow similar steps as we did in the RD case. First we substitute eq.(33) into the Fokker-Planck equation for DD systems (eq.(11)) and we get the corresponding Hamilton-Jacobi type of equation:

\[
\int dx \left[G[\phi] \cdot \nabla \delta V_0[\phi] + \frac{1}{2} \nabla \delta V_0[\phi] \cdot \chi[\phi] \nabla \delta V_0[\phi] \right] = 0
\]

(55)

where we remind that \(G = (G_\alpha[\phi; x])_{\alpha=1}^d \), \(\nabla = (\partial_\alpha)_{\alpha=1}^d \) and \(\chi = (\chi_{\alpha,\beta}[\phi; x, t])_{\alpha,\beta=1}^d \). The associated hamiltonian is now:

\[
H(\pi, \phi) = \int dx \left[G[\phi] \cdot \nabla \pi + \frac{1}{2} \nabla \pi \cdot \chi[\phi] \nabla \pi \right]
\]

(56)

and the evolution equations for the \(\bar{\phi} \) dynamics are:

\[
\partial_t \bar{\phi}(x, t) = -\nabla \cdot G[\bar{\phi}; x, t] - \nabla \left(\chi[\bar{\phi}; x, t] \nabla \pi(x, t) \right)
\]

\[
\partial_t \pi(x, t) = -\int dy \nabla \pi(y, t) \cdot \left[\frac{\delta G[\bar{\phi}; y, t]}{\delta \phi(x, t)} + \frac{1}{2} \frac{\delta \chi[\bar{\phi}; y, t]}{\delta \phi(x, t)} \nabla \pi(y, t) \right]
\]

(57)

where the initial conditions are: \(\bar{\phi}(x, -\infty) = \phi^*(x) \) and \(\pi(x, -\infty) = 0 \). Where we remind that \(\phi^* \) is solution of \(\nabla \cdot G[\phi^*; x] = 0 \). As in de RD case, we can show that these equations of motion are equal to the ones we obtain by looking for the *most probable path* from the definition of \(P_{st}[\phi] \) using the path probabilities (see eq.(44)). That is, now

\[
L[\phi; t_0, t_1] = \frac{1}{2} \int_{t_0}^{t_1} dt \int d\lambda \int d\alpha \int d\alpha' \int d\alpha'' \int dx' \int dx'' \int dx''' \int dx'''
\]

\[
M[\phi; x, x', t] (\partial_\alpha \phi(x', t) + \nabla' \cdot G[\phi; x', t])
\]

(58)
and the most probable path is given by eq.(45) that in this case is:

\[
\partial_t \left[\int_\Lambda dx' M[\bar{\phi}; y, x', t] \left(\partial_t \bar{\phi}(x', t) + \nabla' \cdot G[\bar{\phi}; x', t] \right) \right] = \int_\Lambda dx \int_\Lambda dx' \left(\partial_t \bar{\phi}(x', t) + \nabla' \cdot G[\bar{\phi}; x', t] \right)

\left[\nabla \frac{\delta G[\bar{\phi}, x, t]}{\delta \phi(y, t)} M[\bar{\phi}; x, x', t] + \frac{1}{2} \left(\partial_t \bar{\phi}(x, t) + \nabla \cdot G[\bar{\phi}; x, t] \right) \frac{\delta M[\bar{\phi}; x, x', t]}{\delta \phi(y, t)} \right]
\]

(59)

All the comments and remarks we did for the RD model are translated in this case. For instance one can show again that \(V_0[\phi] \) is a Lyapunov functional for the deterministic and the dual dynamics.

IV. EQUILIBRIUM VS NON-EQUILIBRIUM: THE MACROSCOPIC TIME SYMMETRY

We have exposed the way to compute the quasi-potential, \(V_0 \), from the Langevin equation that defines the system mesoscopic dynamics. At this point, it seems that there is no formal distinction between being in an equilibrium or in a non-equilibrium stationary state. In any case we have to build \(V_0 \) from our Hamilton-Jacobi type of equations. Then, from this point of view, there are many questions that arise: how can we know whether a system in an equilibrium stationary state or in a nonequilibrium one? Is it necessary to get explicitly \(V_0 \) in order to know it? We already commented above about the possibility that \(V_0 \) had some non-analyticities in its domain of definition. That fact contrast with the regular behavior we know from the equilibrium ensemble theory where it is expected that the coarse-grained hamiltonian to be regular (think for instance in the free energy density functional far from a critical point). Is therefore, a systematic non-analytic behavior the main difference between an equilibrium and a nonequilibrium stationary state? Are there any other differences between the two cases? We could try to create a catalog of \(V_0 \)'s by observing the different mathematical properties that can arise from the equations we explicitly got and then we could discuss about which ones are compatible with an equilibrium state or not. This mathematical *tour the force* could be possible, but we think that trying to characterize equilibrium or nonequilibrium via the structural form of \(V_0 \) is not the correct approach. We think that there should be a clear cut between the two cases and therefore, the mathematical peculiarities of \(V_0 \) should be a consequence of it. We are convinced that there should be a priori property under which we should know whether or not our system is in an equilibrium state or not.
We can get some hint from the equilibrium mesoscopic theory from Onsager and Machlup about fluctuations and relaxation to equilibrium [7]. There they assumed that the underlying time reversibility of the microscopic equations of motion should appear in the mesoscopic equations in order to derive the properties of the mesoscopic fluctuations near the equilibrium state. We think this micro-macro connection is subtle but in any case we are convinced that the time reversibility concept at the mesoscopic level should be the essential item that characterizes a system in an equilibrium state. It remains to define what means time reversibility in this context.

Let us first make a definition. A system is *macroscopically time-reversible* when \(\bar{\phi}(x, t) \), solution of the dual dynamics, is also solution of the time reversed deterministic dynamics. In other words, the most probable path to create a fluctuation is just the time reversed one to relax the fluctuation using the deterministic dynamic equation. Then we assume the following propositions: *any system at equilibrium is macroscopically time-reversible* and vice versa: *the stationary state of any system macroscopically time-reversible is the equilibrium*. Obviously, we cannot rigorously prove these propositions but we can give some arguments that support them. First, we know that a system at equilibrium is described by the Thermodynamics that it is invariant under a time reversal operation. Thus, the macroscopic properties in which we include observables and fluctuations (think for instance the specific heat that it is related with the energy fluctuations) are invariant under the the time reversal. Therefore, it is reasonable to think that the creation of a spontaneous fluctuation from the stationary state or the relaxation of it to the stationary state shouldn’t depend on the time arrow if we are at equilibrium. Second, we can use the Boltzmann’s ideas of how a system reaches the equilibrium stationary state. Once the system is in equilibrium, the system evolves in typical microstates (states compatible with the macroscopic observables that define the equilibrium) with probability one with respect the other non-typical ones. That’s just because the number of typical microstates are by far much larger than the others. Such typical trajectories include the time-reversed ones because be typical has nothing to do with the system evolution (another problem is how the system evolves from a non-typical state to a typical one). The mesoscopic description level is, somehow, an average over microscopic states with a time and space rescaling (if it could be done). In this process the mesoscopic fields at the stationary state represent the behavior of only the individual trajectories that are typical (probability one) and so they should contain the time reversibility property.
Let us finally remark that macroscopic reversibility has nothing to do directly with the time symmetry properties of the microscopic underlying dynamics. For instance, there are systems defined at the microscopic level by stochastic markovian Master equations that they have the so-called detailed balance property (which it is also known as microscopic reversibility) that implies an equilibrium stationary state (with the appropriate boundary conditions). In this context, we know that all microscopic reversible systems are macroscopically reversible. However there are Markov processes that do not have such detailed balance condition but their stationary state is an equilibrium one and therefore they are also macroscopically reversible. We think that in the process to connect the microscopic description to the macroscopic one, such systems recover the macroscopic reversibility property. Moreover we may also think on systems of particles that are time reversible at the microscopic level (for instance with Nose-Hoover like thermostats) but that their phase space contracts and therefore they stationary state is a non-equilibrium one. We expect in those cases that the corresponding mesoscopic description (if any) would be non-macroscopic reversible.

Let us to see the consequences in a system that is macroscopic reversible in the RD and DD cases.

A. RD case:

Let us assume that our system is macroscopically reversible. In such case, the solution of eq. (39) should be also solution of the deterministic equation of motion time reversed:

$$\bar{\phi}(x,t) = \phi(x,-t) \Rightarrow \partial_t \bar{\phi}(x,t) = -F[\bar{\phi};x,t]$$

with $\bar{\phi}(x,-\infty) = \phi(x)^*$ and we have assumed that the functional F only depends on t through the field $\phi(x,t)$. Then,

$$\partial_t \bar{\phi}(x,t) = F[\bar{\phi};x,t] + h[\phi;x,t]^2 \pi(x,t) = -F[\bar{\phi};x,t] \Rightarrow \pi(x,t) = -\frac{2F[\bar{\phi};x,t]}{h[\phi;x,t]}$$

The $\pi(x,t)$ should be solution of the second of the equations of motion in (39). After we substitute on it we get the condition:

$$\int_\Lambda dy F[\bar{\phi};y] \left(\frac{\delta}{\delta \phi(y)} \left[\frac{F[\bar{\phi};x]}{h[\phi;x]^2} \right] - \frac{\delta}{\delta \phi(x)} \left[\frac{F[\bar{\phi};y]}{h[\phi;y]^2} \right] \right) = 0$$

This equation defines the family of all RD Langevin equations with the macroscopic time-reversible property and therefore, with equilibrium stationary states if our proposition is
We see that an important subfamily is obtained by asking the more restrictive property:

$$\frac{\delta}{\delta \phi(y)} \left[\frac{F[\phi; x]}{h[\phi; x]^2} \right] = \frac{\delta}{\delta \phi(x)} \left[\frac{F[\phi; y]}{h[\phi; y]^2} \right] \quad \forall x, y \in \Lambda$$ \hspace{1cm} (63)

In this case we can use the fact that \(\pi(x, t) = \delta V_0[\phi]/\delta \phi(x, t) = -2F[\phi; x, t]/h[\phi; x, t]^2\) and therefore

$$\frac{\delta^2 V_0[\phi]}{\delta \phi(x) \delta \phi(y)} = \frac{\delta^2 V_0[\phi]}{\delta \phi(y) \delta \phi(x)} \quad \forall x, y \in \Lambda$$ \hspace{1cm} (64)

That is, the quasi-potential for this family is continuous and probably also are their first derivatives (NOTE: Clairaut’s Theorem states: If \(f(x, y), \partial_x f(x, y), \partial_y f(x, y), \partial_x \partial_y f(x, y)\) and \(\partial_y \partial_x f(x, y)\) are defined in an open region containing the point \((a, b)\) and they are \textit{continuous} at \((a, b)\) then \(\partial_x \partial_y f(x, y) = \partial_y \partial_x f(x, y)\). This indicates that equal mixed derivatives is a common property of functions with existent and continuous first derivatives. Obviously, different mixed derivatives would imply non continuity on the derivatives but we are unable to find an \textit{if only in} result: equal mixed derivatives in an open set implies continuity of the derivatives on that set).

With the above results we can build \(F[\phi; x, t]\) functionals having an \textit{a priori} given stationary equilibrium potential \(V_0[\phi]\) and a noise intensity \(h[\phi; x, t]\) by using

$$F[\phi; x, t] = -\frac{1}{2}h[\phi; x, t]^2 \frac{\delta V_0[\phi]}{\delta \phi(x, t)}$$ \hspace{1cm} (65)

The systems so defined follow the property (64) whenever \(V_0\) is twice differentiable. Therefore such systems are macroscopically reversible with the appropriate set of boundary conditions. A typical example of equilibrium potentials are the ones of the form:

$$V_0[\phi] = \int_{\Lambda} dx v[\phi; x]$$ \hspace{1cm} (66)

with \(v[\phi; x]\) having the property

$$\frac{\delta^2 v[\phi; x]}{\delta \phi(v) \delta \phi(z)} = \frac{\delta^2 v[\phi; x]}{\delta \phi(z) \delta \phi(v)} \quad \forall \ v, z \in \Lambda$$ \hspace{1cm} (67)

then

$$F[\phi; x] = -\frac{1}{2}h[\phi; x]^2 \int_{\Lambda} dy \frac{\delta v[\phi; y]}{\delta \phi(x)}$$ \hspace{1cm} (68)

For instance if we choose the Ginzburg-Landau form:

$$v[\phi; x] = \frac{1}{2} (\nabla \phi)^2 + w(\phi(x))$$ \hspace{1cm} (69)
with \(w(\lambda) \) just any one dimensional function. Then we find

\[
F[\phi; x] = \frac{1}{2} h[\phi; x]^2 \left(\Delta \phi(x) - \frac{dv(\lambda)}{d\lambda} \bigg|_{\lambda=\phi(x)} \right)
\]

The corresponding Langevin dynamics is the well known Hohenberg-Halpering model A [8].

B. DD case:

In this case, a system is macroscopic reversible when the dual dynamics is solution of the equation:

\[
\partial \bar{\phi}(x, t) = \nabla \cdot G[\bar{\phi}; x, t]
\]

with \(\bar{\phi}(x, -\infty) = \phi(x)^* \). Similarly to the RD case we substitute the last definition into the first equation of (57) and we obtain:

\[
G = -\frac{1}{2} \chi \nabla \pi \Rightarrow \nabla \pi = -2 \tilde{G}
\]

where

\[
\tilde{G}_\alpha[\bar{\phi}; x] = \sum_\beta \chi_{\alpha\beta}[\bar{\phi}; x] G_\beta[\bar{\phi}; x]
\]

The \(\pi(x, t) \) so defined is plugged into the second equation of of (57) and we get the general condition for macroscopic reversibility in conservative systems:

\[
\int_\Lambda dy \sum_\gamma G_\gamma[\bar{\phi}; y] \left[\left(\partial_{y,\gamma} \frac{\delta}{\delta \bar{\phi}(y)} \right) \tilde{G}_\alpha[\bar{\phi}; x] - \left(\partial_{x,\alpha} \frac{\delta}{\delta \bar{\phi}(x)} \right) \tilde{G}_\gamma[\bar{\phi}; y] \right] = 0 \quad \forall \alpha
\]

Again, we can define a more restrictive subfamily that is macroscopically reversible if the following condition holds:

\[
\left(\partial_{y,\gamma} \frac{\delta}{\delta \bar{\phi}(y)} \right) \tilde{G}_\alpha[\bar{\phi}; x] = \left(\partial_{x,\alpha} \frac{\delta}{\delta \bar{\phi}(x)} \right) \tilde{G}_\gamma[\bar{\phi}; y] \quad \forall x, y \in \Lambda \quad \forall \alpha, \gamma
\]

and using the fact that \(\nabla \phi(x) = \nabla \delta V_0[\phi]/\delta \phi(x) = -2G[\phi; x] \) we get again that the quasi-potential should be a \(C_1 \) functional (64).

Observe the the minimum of the potential \((\pi^* = 0 \) corresponds, in this case, to have all the currents equal to zero at the stationary state \((G[\phi^*; x] = 0) \) that is a natural property for macroscopic systems being at equilibrium. Let us remark that there are nonequilibrium systems with zero net currents (as we will see below).
We can use this property to build diffusive Langevin equations with an \textit{a priori} equilibrium stationary state. In particular, if we choose $V_0[\phi]$ of the form (66) with $v[\phi; x]$ given by eq. (69), we get:

$$G_\alpha[\phi; x] = \frac{1}{2} \sum_{\beta=1}^{d} \chi_{\alpha \beta}[\phi; x] \partial_\beta \left(\Delta \phi(x) - \frac{dv(\lambda)}{d\lambda} \bigg|_{\lambda=\phi(x)} \right)$$

This expression corresponds to the Hohenberg-Halpering model B [8].

\section{The Fundamental Principle}

Bertini and co-workers obtained the dual dynamics by extending large deviation properties of several microscopic stochastic models to diffusive mesoscopic systems [3]. In fact they generalize the Einstein proposal about fluctuations of systems at equilibrium in which he connected the probability of having a fluctuation with the minimum reversible work necessary to create it. Their idea is to assume that the probability of any path from an initial stationary state is equal to the probability of the \textit{time reversed} path that follows a \textit{dual dynamics}. They use this principle to define the dual dynamics. In this section we show that the dual dynamics obtained through the Fundamental Principle is the same to the time reversed most probable path to create a fluctuation from the stationary state we already obtained (in the small noise limit).

Let us define the joint probability of a given path from t_0 to t_1 knowing that $\phi[t_0]$ is chosen from the stationary distribution:

$$P(\{\phi\}[t_0, t_1]|\phi[t_0]) = P_{st}[\phi[t_0]]P[\{\phi\}[t_0, t_1]]$$

Let us fix a path $\{\phi\}[t_0, t_1]$ and its time reversed image: $\{\tilde{\phi}\}[-t_1, -t_0]$ where $\tilde{\phi}(x, t) = \phi(x, -t)$. The \textit{Fundamental Principle} states that

$$P(\{\phi\}[t_0, t_1]|\phi[t_0]) = P^*(\{\tilde{\phi}\}[-t_1, -t_0]|\tilde{\phi}[-t_1])$$

We may consider this principle as a generalization of the \textit{detailed balance condition} for the stationary markovian Master equation: the probability to go from a stationary state to another arbitrary state is equal to the probability to go from the later being stationary to the first. However in that case the dynamics did not change for the time reversed path as it now occurs.
We use our path probability description to obtain the dual dynamics. Let us start with the RD case. For \(\Omega \rightarrow \infty \) we can be write:

\[
P(\{\phi\}[t_0, t_1]|\phi[t_0]) \propto \exp \left[-\Omega V_0[\phi[t_0]] - \frac{\Omega}{2} \int_{t_0}^{t_1} dt \int_\Lambda dx \left(\frac{\partial_t \phi(x, t) - F[\phi; x, t]}{h[\phi; x, t]} \right)^2 + O(\Omega^0) \right]
\]

(79)

If we time reverse our system we do not expect that the corresponding dynamics being the same as the original one for any general non-equilibrium system. That is due to the irreversible and dissipative character of non-equilibrium phenomena. However, let us assume that such dynamics will follow a similar Langevin equation:

\[
\partial_t \tilde{\phi}(x, t) = F^*[\tilde{\phi}; x, t] + h^*[\tilde{\phi}; x, t] \xi(x, t)
\]

(80)

Therefore we can define the stationary probability, path probability,... in a similar way we did for the original dynamics. In particular we can define the joint probability as above:

\[
P^*(\{\tilde{\phi}\}[t_0, t_1]|\tilde{\phi}[t_0]) = P_{st}[\tilde{\phi}[t_0]] P^*[\{\tilde{\phi}\}[t_0, t_1]]
\]

\[
\propto \exp \left[-\Omega V_0[\tilde{\phi}[t_0]] - \frac{\Omega}{2} \int_{t_0}^{t_1} dt \int_\Lambda dx \left(\frac{\partial_t \tilde{\phi}(x, t) - F^*[\tilde{\phi}; x, t]}{h^*[\tilde{\phi}; x, t]} \right)^2 + O(\Omega^0) \right]
\]

(81)

for any given path \(\{\tilde{\phi}\}[t_0, t_1] \). Observe that we are using the fact that the time reversed dynamics relaxes to the same stationary probability as before: \(P_{st}[\tilde{\phi}] \propto \exp[-\Omega V_0[\tilde{\phi}]] \).

When we substitute the explicit form of \(P \) and \(P^* \) we get:

\[
V_0[\phi[t_0]] + \frac{1}{2} \int_{t_0}^{t_1} dt \int_\Lambda dx \left(\frac{\partial_t \phi(x, t) - F[\phi; x, t]}{h[\phi; x, t]} \right)^2
\]

\[= V_0[\phi[t_1]] + \frac{1}{2} \int_{t_0}^{t_1} dt \int_\Lambda dx \left(\frac{\partial_t \phi(x, t) + F^*[\phi; x, t]}{h^*[\phi; x, t]} \right)^2
\]

(82)

for any given path. This equation fixes the form of \(F^* \) and \(h^* \), that is, the form of the time reversed dynamics. Let us assume that along the path it is chosen \(V_0 \) is differentiable. Then

\[
\int_{t_0}^{t_1} dt \partial_t V_0[\phi[t]] = \int_{t_0}^{t_1} dt \int_\Lambda dx \frac{\delta V_0[\phi[t]]}{\delta \phi(x, t)} \partial_t \phi(x, t)
\]

and then by using equation (82) we get:

\[
\int_{t_0}^{t_1} dt \int_\Lambda dx \left\{ \frac{1}{2} \left(\frac{1}{h^*[\phi; x, t]} - \frac{1}{h[\phi; x, t]} \right) \partial_t \phi(x, t) + \frac{F^*[\phi; x, t]}{h^*[\phi; x, t]} + \frac{F[\phi; x, t]}{h[\phi; x, t]} \right\}
\]

\[= 0
\]

(84)
for any path and any time interval. Then, we can fix any \(t \) and we can take any arbitrary value for \(\partial_t \phi(x,t) \). Therefore the coefficients of the time derivatives should be equal to zero and also the independent term:

\[
(\partial_t \phi(x,t))^2 : h^*[\phi;x,t] = h[\phi;x,t]
\]

\[
(\partial_t \phi(x,t))^1 : F^*[\phi;x,t] = -F[\phi;x,t] - h[\phi;x,t]^2 \frac{\delta V_0[\phi]}{\delta \phi(x,t)}
\]

\[
(\partial_t \phi(x,t))^0 : \int_{\Lambda} dx \frac{F^*[\phi;x,t] - F[\phi;x,t]}{h[\phi;x,t]^2} = 0
\]

(85)

The first equation indicate that the dual dynamics has the same noise intensity as the direct dynamics. The second one shows that its deterministic part is different. Therefore, the Langevin equation corresponding to the dual dynamics is:

\[
\partial_t \tilde{\phi}(x,t) = -F[\tilde{\phi};x,t] - h[\tilde{\phi};x,t]^2 \frac{\delta V_0[\tilde{\phi}]}{\delta \tilde{\phi}(x,t)} + h[\tilde{\phi};x,t] \xi(x,t)
\]

(86)

The last equation is just the Hamilton-Jacobi equation (36). Observe that the deterministic part of eq.(86) (i.e. most probable path) is just the time reversed most probable path that connects the deterministic stationary state with any other described by \(P_{st}(\tilde{\phi}) \) (see eq.(39)): \(\tilde{\phi}(x,t) = \tilde{\phi}(x,-t) \). That is, the Fundamental Principle contains the description we did at section III: the effective dynamics that follows the most probable path to create a fluctuation is just the dynamics that defines the relaxation towards the stationary state for the time reversed system.

We can follow a similar argument for the DD Langevin type of equations. Let us assume that the time-reversed Langevin dynamics is:

\[
\partial_t \tilde{\phi}(x,t) + \nabla \cdot \tilde{j}[\tilde{\phi};x,t] = 0
\]

(87)

where

\[
\tilde{j}_\alpha[\tilde{\phi};x,t] = G^*_\alpha[\tilde{\phi};x,t] + \sum_{\beta=1}^{d} \sigma^*_{\alpha,\beta} \tilde{\phi}(x,t) \psi_{\beta}(x,t) \quad \alpha = 1, \ldots, d
\]

(88)

The Fundamental Principle implies now:

\[
V_0[\tilde{\phi}[t_0]] + \frac{1}{2} \int_{t_0}^{t_1} dt \int_{\Lambda} \int_{\Lambda} \int_{\Lambda} \left(\partial_t \tilde{\phi}(x,t) + \nabla G[\tilde{\phi};x,t] \right) dx \right) dx' \left(\partial_t \tilde{\phi}(x,t) + \nabla' G[\tilde{\phi};x',t] \right)
\]

\[
M[\tilde{\phi};x,x',t] \left(\partial_t \tilde{\phi}(x',t) + \nabla' G[\tilde{\phi};x',t] \right)
\]

\[
= V_0[\tilde{\phi}[t_1]] + \frac{1}{2} \int_{t_0}^{t_1} dt \int_{\Lambda} \int_{\Lambda} \int_{\Lambda} \left(\partial_t \tilde{\phi}(x,t) + \nabla G^*[\tilde{\phi};x,t] \right) dx \right) dx' \left(\partial_t \tilde{\phi}(x',t) + \nabla G^*[\tilde{\phi};x',t] \right)
\]

\[
M^*[\tilde{\phi};x,x',t] \left(\partial_t \tilde{\phi}(x',t) + \nabla G^*[\tilde{\phi};x',t] \right)
\]

(89)
and using eq.(83) and identifying powers of $\partial_t \tilde{\phi}$ we get:

$$M^*[\tilde{\phi}; x, x', t] = M[\tilde{\phi}; x, x', t] \Rightarrow \sigma^*[\tilde{\phi}; x, t] = \sigma[\tilde{\phi}; x, t]$$

$$G^*_\alpha[\tilde{\phi}; x, t] = -G_\alpha[\tilde{\phi}; x, t] - \sum_{\beta=1}^d \chi_{\alpha\beta}[\tilde{\phi}; x, t] \partial_\beta \frac{\delta V_0[\tilde{\phi}[t]]}{\delta \tilde{\phi}(x, t)}$$

(90)

and the last (order zero) is again the Hamilton-Jacobi equation for the V_0 potential. The same comments done in the RD case apply here.

Let us remark that the Fundamental Principle implies that all macroscopic reversible systems follows the detailed balance condition (65). We have shown that the Fundamental Principle holds for all the RD and DD Langevin type of equations (at least for the dynamics of the most probable path). It remains an open issue to see if it is a more general principle that goes beyond this Langevin mesoscopic descriptions at the small noise limit.

V. CORRELATIONS

We have seen some global properties of systems described by continuous Langevin equations. At some point it is necessary to connect the theory with measurements and observations done in real systems. We are going to focus into stationary two body correlations that are directly related to the V_0 potential. Let us define first the Generating Functional:

$$Z[b] = Z[0] \int D\phi P_{st}[\phi] \exp \left[\Omega \int_\Lambda dx b(x) \phi(x) \right]$$

(91)

where $b(x)$ is a kind of external field. We know from this expression that the n-body correlations at the stationary state (without external field) are given by

$$\langle \phi(x_1) \ldots \phi(x_n) \rangle_{st} = \frac{1}{\Omega^n Z[0]} \frac{\delta^n Z[b]}{\delta b(x_1) \ldots \delta b(x_n)} \bigg|_{b=0}$$

(92)

The truncated n-body correlations are defined by:

$$\langle \phi(x_1) \ldots \phi(x_n) \rangle_{st}^c = \frac{1}{\Omega^n \delta b(x_1) \ldots \delta b(x_n)} \frac{\delta^n W[b]}{\delta b(x_1) \ldots \delta b(x_n)} \bigg|_{b=0}$$

(93)

where $W[b] = \ln Z[b],$

$$\langle \phi(x_1) \ldots \phi(x_n) \rangle_{st}^c = \langle (\phi(x_1) - \langle \phi(x_1) \rangle_{st}) \ldots (\phi(x_n) - \langle \phi(x_n) \rangle_{st}) \rangle_{st} \quad n > 1$$

(94)

and $\langle \phi(x) \rangle_{st}^c = \langle \phi(x) \rangle_{st}.$
Therefore, in order to obtain the correlations we just need to compute the generating functional that depends on V_0. There are two main strategies: (1) We can assume that V_0 is a convex analytic function around the deterministic stationary solution ϕ^* and then we use the Legendre transformation to solve the corresponding Hamilton-Jacobi equation or (2) obtain explicitly the quasi-potential V_0 around ϕ^* by solving the linearized Hamilton equations that define the most probable path. The second strategy is more general and it includes the computation of correlations when V_0 is non analytic near the deterministic stationary solution. Let us show here the first way of reasoning for the RD case and we leave the other one to the Appendix III.

A. RD case:

Let us take $P_{st}[\phi] \propto \exp[-\Omega V_0[\phi]]$ when $\Omega \to \infty$. Then the Generating functional can be written:

$$Z[b] \propto \int D\phi \exp[-\Omega F[\phi]] \quad , \quad F[\phi] = V_0[\phi] - \int_\Lambda dx b(x)\phi(x) \quad (95)$$

Let us define $\phi^*[b]$ as the field that minimizes F and let us assume that $F[\phi]$ is differentiable around $\phi^*[b]$, then

$$F[\phi] = F[\phi^*[b]] + \frac{1}{2} \int_\Lambda dxdy \frac{\delta^2 F[\phi]}{\delta \phi(x) \delta \phi(y)} \bigg|_{\phi=\phi^*[b]} (\phi(x) - \phi^*[x; b])(\phi(y) - \phi^*[y; b]) + \ldots \quad (96)$$

where $\phi^*[b]$ is solution of

$$\frac{\delta F[\phi]}{\delta \phi(x)} \bigg|_{\phi=\phi^*[b]} = 0 \quad \Rightarrow \quad \frac{\delta V_0[\phi]}{\delta \phi(x)} \bigg|_{\phi=\phi^*[b]} = b(x) \quad (97)$$

we observe that $\phi^*[0] = \phi^*$, the minimum of $V_0[\phi]$.

We can substitute this expansion on the Generating Functional and we obtain:

$$Z[b] \propto e^{-\Omega F[\phi^*[b]]} \int D\omega \exp \left[-\frac{1}{2} \int_\Lambda dxdy \frac{\delta^2 V_0[\phi]}{\delta \phi(x) \delta \phi(y)} \bigg|_{\phi=\phi^*[b]} \omega(x)\omega(y) + O(\Omega^{-1/2}) \right] \quad (98)$$

where we have done the change of variables $w(x) = \sqrt{\Omega}(\phi(x) - \phi^*[x; b])$. We see that this expression has some meaning whenever V_0 is differentiable and convex around $\phi^*[b]$. Convexity also guarantees that there is a one to one relation between b and $\phi^*[b]$. It may also shown that

$$\frac{\delta F[\phi^*[b]]}{\delta b(x)} = -\phi^*[x; b] \quad (99)$$
That is, \(F[b] \equiv F[\phi^*[b]] \) is the Legendre transform of \(V_0[\phi] \). We can now relate \(F \) with the correlations:

\[
W[b] = -\Omega F[\phi^*[b]] + O(\Omega^0)
\]

and

\[
\lim_{\Omega \to \infty} \Omega^{n-1} \langle \phi(x_1) \ldots \phi(x_n) \rangle_{st}^c = -\frac{\delta^n F[\phi^*[b]]}{\delta b(x_1) \ldots \delta b(x_n)}_{b=0} \equiv C_n(x_1, \ldots, x_n)
\]

where \(\langle \phi(x) \rangle_{st}^c = \langle \phi(x) \rangle_{st} = \phi^*[x; 0] \).

At this point we can use a trick to build hierarchy of closed equations for the correlation functions. Let us write down the Hamilton-Jacobi equation (36) applied to \(\phi(x) = \phi^*(x; b) \):

\[
\int \Lambda dx \left[F[\phi^*[b]; x] \frac{\delta V_0[\phi]}{\delta \phi(x)} \bigg|_{\phi=\phi^*[b]} + \frac{1}{2} h[\phi^*[b]; x]^2 \left(\frac{\delta V_0[\phi]}{\delta \phi(x)} \bigg|_{\phi=\phi^*[b]} \right)^2 \right] = 0
\]

(102)

We can use the Legendre transform relations to convert the last equation into:

\[
\int \Lambda dx \left[F[- \frac{\delta F[\phi^*[b]]}{\delta b(x)}; x] b(x) + \frac{1}{2} h[\phi^*[b]; x]^2 b(x)^2 \right] = 0
\]

(103)

that is valid for any value of \(b \). Finally we can expand these functionals around \(b = 0 \). We observe that:

\[
\frac{\delta F[b]}{\delta b(x)} = -\phi^*[x; b] = -\phi^*(x) - \int \Lambda dy C_2(x, y) b(y) + O(b^2)
\]

\[
F[\phi^*[b]; x] = \int \Lambda dy dz \frac{\delta F[\phi; x]}{\delta \phi(z)} \bigg|_{\phi=\phi^*} C_2(y, z) b(y) + O(b^2)
\]

(104)

and the expansion on \(b \) of eq.(103) becomes:

\[
\int \Lambda dx dy \ b(x) \ b(y) \left[\int \Lambda \ dz \left(\frac{\delta F[\phi; x]}{\delta \phi(z)} \bigg|_{\phi=\phi^*} C_2(z, y) + \frac{\delta F[\phi; y]}{\delta \phi(z)} \bigg|_{\phi=\phi^*} C_2(z, x) \right)
\]

\[
+h[\phi^*[x] \ b(x)]^2 \delta(x - y) \right] + O(b^3) = 0 \quad \forall b
\]

(105)

and therefore, the two body correlations \(C_2(x, y) \) is solution of the equation:

\[
\int \Lambda \ dz \left(\frac{\delta F[\phi; x]}{\delta \phi(z)} \bigg|_{\phi=\phi^*} C_2(z, y) + \frac{\delta F[\phi; y]}{\delta \phi(z)} \bigg|_{\phi=\phi^*} C_2(z, x) \right) = -h[\phi^*[x] \ b(x)]^2 \delta(x - y)
\]

(106)

or in a more compact form:

\[
C_2(x, y) = h[\phi^*[x] \ h[\phi^*[y] \bar{C}(x, y)
\]

(107)
with $\mathcal{C}(x,y)$ solution of
\[
\int_{\Lambda} dz \left[B(x,z)\mathcal{C}(z,y) + B(y,z)\mathcal{C}(z,x) \right] = -\delta(x-y)
\tag{108}
\]
with
\[
B(x,y) = \frac{h[\phi^*;y]}{h[\phi^*;x]} \frac{\delta F[\phi;x]}{\delta \phi(y)} \bigg|_{\phi=\phi^*}
\tag{109}
\]
Observe that B maybe non-symmetric on its arguments while $\bar{\mathcal{C}}$ is symmetric by construction. We can think this equation as a representation of the linear operator equation:
\[
B \bar{\mathcal{C}} + \bar{\mathcal{C}} B = -I
\tag{110}
\]
with I the identity operator. The formal solution can be found by using the fact that \(\partial/\partial \alpha e^{\alpha B} = B e^{\alpha B} \). Then
\[
\frac{\partial}{\partial \alpha} \left[e^{\alpha B} \bar{\mathcal{C}} e^{\alpha B^T} \right] = -e^{\alpha B} e^{\alpha B^T} \Rightarrow \bar{\mathcal{C}} = \int_0^\infty d\alpha e^{\alpha B} e^{\alpha B^T}
\tag{111}
\]
where we have assumed that B is negative defined. A simple representation of this equation can be obtained in the case that B is diagonalizable, in other words, when we can apply to B some spectral theorem. Let $v(x;\lambda_n)$ and $w(x;\lambda_n)$ be the set of right and left eigenvectors of B with eigenvalues λ_n and λ_n^* (complex conjugate of λ_n) respectively:
\[
\int_{\Lambda} dy B(x,y) v(y;\lambda_n) = \lambda_n v(x;\lambda_n)
\]
\[
\int_{\Lambda} dy B(y,x) w(y;\lambda_n) = \lambda_n^* w(x;\lambda_n)
\tag{112}
\]
The eigenvalues may have real or complex values but because B is real valued they appear in pairs when they are complex: $(\lambda, v(x;\lambda)), (\lambda^*, v(x;\lambda^*) = v(x;\lambda)^*)$. We assume that each set form a complete basis on the functional space and that they follow the orthogonality conditions:
\[
\int_{\Lambda} dx w(x;\lambda_n)^* v(x;\lambda_m) = \delta_{n,m}
\]
\[
\sum_n w(x;\lambda_n)^* v(y;\lambda_n) = \delta(x-y)
\tag{113}
\]
Finally, the solution (111) can be written:
\[
\bar{\mathcal{C}}(x,y) = -\sum_{n,m} \frac{v(x;\lambda_n) v(y;\lambda_m)}{\lambda_n + \lambda_m} \int_{\Lambda} dz \bar{w}(z;\lambda_n) \bar{w}(z;\lambda_m)
\tag{114}
\]
We see that the solution is symmetric, \(\tilde{C}(x, y) = \tilde{C}(y, x) \), and real, \(\tilde{C}(x, y)^* = \tilde{C}(x, y) \), due to the pairing property of the eigenvalues.

The solution (114) can be further simplified if \(B \) is symmetric: \(B(x, y) = B(y, x) \). In this case the right and left eigenvalues and eigenvectors coincide, all of them are real and the eigenvectors form an orthonormal base on the functional space. Therefore

\[
\tilde{C}(x, y) = -\frac{1}{2} \sum_n \frac{1}{\lambda_n} v(x; \lambda_n) v(y; \lambda_n) = -\frac{1}{2} B^{-1}(x, y)
\]

(115)

where

\[
\int_{\Lambda} dz B(x, z) B^{-1}(z, y) = \delta(x - y)
\]

(116)

Let us apply these results to some particular cases.

- **Equilibrium**: Let us choose

\[
F[\phi; x] = -\frac{1}{2} h[\phi; x] \frac{\delta V_0[\phi]}{\delta \phi(x)}
\]

(117)

We know in this case that for a given \(C^2 \) potential \(V_0[\phi] \) the stationary state of the system is the equilibrium state. To compute the two-body correlations we first obtain the \(B \) operator:

\[
B(x, y) = -\frac{1}{2} h[\phi^*; x] h[\phi^*; y] \frac{\delta^2 V_0[\phi]}{\delta \phi(x) \delta \phi(y)} \bigg|_{\phi=\phi^*} = -\frac{1}{2} h[\phi^*; x] h[\phi^*; y] V_2(x, y)
\]

(118)

We see that \(B \) is symmetric and therefore:

\[
\tilde{C}(x, y) = \frac{V_2^{-1}(x, y)}{h[\phi^*; x] h[\phi^*; y]} \Rightarrow \quad C_2(x, y) = V_2^{-1}(x, y)
\]

(119)

Let us remark that for all quasi potentials that are differentiable around the deterministic stationary state the last relation always holds. We know that in general

\[
C_2(x, y) = -2 \frac{\delta \log Z_0[V_2]}{\delta V_2(x, y)}, Z_0[V_2] = \int D\omega \exp \left(-\frac{1}{2} \int_{\Lambda} dx dy V_2(x, y) \omega(x) \omega(y) \right)
\]

(120)

and we can compute \(Z_0 \) explicitly because is a gaussian-like integral:

\[
Z_0[V_2] = cte (\det(V_2))^{-1/2}
\]

(121)

and after we do the derivative we get the result: \(C_2(x, y) = V_2^{-1}(x, y) \).
Small deviations from the equilibrium: Let us assume that our system slightly deviates from the equilibrium due to an unbalanced noise term:

\[F[\phi; x] = -\frac{1}{2} \tilde{h}[\phi; x]^{2} \frac{\delta \tilde{V}[\phi]}{\delta \phi(x)} , \quad h[\phi; x]^{2} = \tilde{h}[\phi; x]^{2} \tilde{g}[\phi; x] \]

\[(122) \]

with

\[\tilde{g}[\phi; x] = 1 + \epsilon g[\phi; x] \]

\[(123) \]

\(\tilde{V}[\phi], g[\phi; x] \) and \(\tilde{h}[\phi; x] \) are given functionals and \(\epsilon \) can be used as a perturbative parameter. When \(\epsilon = 0 \) \(V_{0}[\phi] = \tilde{V}[\phi] \) and \(C_{2} = V_{2}^{-1} \). When \(\epsilon \neq 0 \) we see that \(\phi^{*} \) is solution of the equation \(\delta \tilde{V}[\phi]/\delta \phi(x)|_{\phi=\phi^{*}} = 0 \) and therefore, the extremal points of \(\tilde{V} \) and the quasi-potential \(V_{0} \) coincide. The matrix \(B \) is in this case:

\[B(x, y) = \tilde{g}[\phi; x] \tilde{B}(x, y) \]

\[(124) \]

and the equation for the correlations is now:

\[\tilde{G} \tilde{B} \tilde{C} + \tilde{C} \tilde{G} \tilde{B} = -I \]

\[(125) \]

where \(\tilde{G}(x, y) = \tilde{g}[\phi; x] \delta(x - y) \). We look for perturbative solutions of this equation:

\[\tilde{C} = \sum_{n=0}^{\infty} \epsilon^{n} \tilde{C}_{n} \]

\[(126) \]

After substituting the last expression into eq.(125) we obtain order by order in \(\epsilon \) the following hierarchy of equations:

\[\tilde{B} \tilde{C}_{0} + \tilde{C}_{0} \tilde{B} = -I \]

\[\tilde{B} \tilde{C}_{n} + \tilde{C}_{n} \tilde{B} = -\tilde{G} \tilde{B} \tilde{C}_{n-1} - \tilde{C}_{n-1} \tilde{B} \tilde{G} \quad n > 0 \]

\[(127) \]

where \(\tilde{G} = I + \epsilon G \) and \(G(x, y) = g[\phi; x] \delta(x - y) \). The solutions are:

\[\tilde{C}_{0} = -\frac{1}{2} \tilde{B}^{-1} \]

\[\tilde{C}_{n} = \int_{0}^{\infty} d\alpha e^{\alpha \tilde{B}} \left(G \tilde{B} \tilde{C}_{n-1} + \tilde{C}_{n-1} \tilde{B} G \right) e^{\alpha \tilde{B}} \quad n > 0 \]

\[(128) \]

and, in particular,

\[\tilde{C}_{1} = -\int_{0}^{\infty} d\alpha e^{\alpha \tilde{B}} G e^{\alpha \tilde{B}} = QAQ^{T} \]

\[(129) \]
where Q is the matrix that diagonalizes \tilde{B}: $\tilde{B} = QDQ^T$, that is $Q_{ij} = v_i(\lambda_j)$ where $v(\lambda)$ is the eigenfunction of \tilde{B} with eigenvalue λ (all in a formal discrete notation) and

$$A_{i,j} = \frac{(Q^T G Q)_{ij}}{\lambda_i + \lambda_j}$$ \hspace{1cm} (130)

Observe that \tilde{B} is, typically, a local functional. However its eigenfunctions (depending on the boundary conditions and/or the form of \tilde{V}, for instance, if we choose one with the Ginzburg-Landau form) may be long range. Therefore the first correction to the correlations may by already quite singular. We can get more corrections \tilde{C}_n in the same spirit and we could study some general properties of \tilde{C} depending on the G and V_0. However this is beyond the scope of this paper.

B. DD case:

We can follow the same scheme here as we did in the RD case. We apply the Hamilton-Jacobi equation (55) to the field $\phi(x) = \phi^*(x; b)$ and we expand the equation up to second order in b-fields. The equation for the two-body correlations is found to be:

$$\int d\lambda [K(x, z)C_2(z, y) + K(y, z)C_2(z, x)] = -\sum_{i,j} \frac{\partial}{\partial x_i} \frac{\partial}{\partial y_j} [\chi_{ij}[\phi^*; x] \delta(x - y)]$$ \hspace{1cm} (131)

where

$$K(x, y) = \frac{\delta}{\delta \phi(y)} \left(-\nabla \cdot G[\phi; x] \right) \bigg|_{\phi = \phi^*}$$ \hspace{1cm} (132)

with ϕ^* solution of $\nabla \cdot G[\phi^*; x] = 0$.

In the DD case, the most popular nonequilibrium models are designed by the action of boundary conditions that drives an equilibrium at bulk or just by a bulk dynamic mechanism. Let us discuss both cases separately.

- **Nonequilibrium via boundary conditions:** Let us assume first that the stationary state of our system is the equilibrium one with a given $V_0[\phi]$ for an appropriate set of boundary conditions. Let us assume that the bulk dynamics is:

$$G_i[\phi; x] = -\frac{1}{2} \sum_j \chi_{ij}[\phi; x] \delta V_0[\phi] \frac{\delta V_0[\phi]}{\delta \phi(x)}$$ \hspace{1cm} (133)

We know that the corresponding two-body correlations are given by:

$$C^e_2(x, y) = V^{-1}_2(x, y; \phi^e)$$, \hspace{0.5cm} $V_2(x, y; \phi) = \frac{\delta^2 V_0[\phi]}{\delta \phi(x) \delta \phi(y)} \bigg|_{\phi = \phi^e_2}$ \hspace{1cm} (134)
with ϕ_{eq}^* solution of $G[\phi_{eq}^*, x] = 0$ (the current is equal to zero). If we change the boundary conditions the system develops non zero currents and therefore we have a nonequilibrium stationary state. The deterministic solution ϕ^* is given now by the solution of the equation:

$$
-\frac{1}{2} \sum_j \chi_{ij}[\phi; x] \partial_j \frac{\delta V_0[\phi]}{\delta \phi(x)} \bigg|_{\phi=\phi^*} = J_i \quad , \quad + \text{boundary conditions} \quad (135)
$$

where J_i are constants that depend on the boundary conditions.

Let us break the two body correlation into two terms:

$$
C_2(x, y) = C_{eq}^2(x, y) + C_D(x, y) \quad , \quad C_{eq}^2(x, y) = V_2^{-1}(x, y; \phi^*) \quad (136)
$$

The first term is the local equilibrium correlation. It corresponds to consider that the correlation are the equilibrium one evaluated with the local values of the field ϕ^*. $C_D(x, y)$ evaluates the deviation from the local equilibrium. Obviously, $C_D = 0$ when $J_i = 0$. When we substitute eq. (136) into (131) we get a closed equation for C_D:

$$
\sum_i \frac{\partial}{\partial x_i} \left[\alpha_i[\phi^*; x] C_D(x, y) + \frac{1}{2} \sum_j \chi_{ij}[\phi^*; x] \frac{\partial}{\partial x_j} \int_\Lambda dz C_{eq}^{2-1}(x, z) C_D(z, y) \right] \\
\sum_i \frac{\partial}{\partial y_i} \left[\alpha_i[\phi^*; y] C_D(x, y) + \frac{1}{2} \sum_j \chi_{ij}[\phi^*; y] \frac{\partial}{\partial x_j} \int_\Lambda dz C_{eq}^{2-1}(y, z) C_D(z, x) \right] \\
= - \sum_i \frac{\partial}{\partial x_i} \left[\alpha_i[\phi^*; x] C_{eq}^2(x, y) \right] - \sum_i \frac{\partial}{\partial y_i} \left[\alpha_i[\phi^*; y] C_{eq}^2(x, y) \right] \quad (137)
$$

where α is a d-dimensional vector

$$
\alpha[\phi; x] = \chi'[\phi; x] \chi^{-1}[\phi; x] J \quad (138)
$$

and we have considered $\chi_{ij}[\phi; x]$ being a function dependent only on $\phi(x)$, that is $\chi_{ij}[\phi; x] = \chi_{ij}(\phi(x))$. Therefore $\chi_{ij}'[\phi; x] = \partial \chi_{ij}(u) / \partial u \big|_{u=\phi(x)}$.

The solution of this equation is very complex and it depends on the particular system and boundary conditions used. Let us work out explicitly a well known particular case: the pure diffusive system by taking:

$$
V_0[\phi] = \int_\Lambda dx \left[V(\phi(x)) - 2E \cdot x\phi(x) \right] \quad (139)
$$
where E is an external constant vector. With this choice we get:

$$G_i[\phi; x] = - \sum_j [D_{ij}[\phi; x]\partial_j \phi(x) - \chi_{ij}[\phi; x]E_j]$$

(140)

where

$$D[\phi; x] = \frac{1}{2} V''(\phi(x))\chi[\phi; x]$$

(141)

that is the so called Einstein Relation. We observe that in equilibrium (with the appropriate boundary conditions) we find that $\phi^*_\text{eq}(x)$ is solution of the barometric equation:

$$\nabla \phi^*_\text{eq}(x) = - \frac{2}{V'(\phi^*_\text{eq}(x))}E$$

(142)

Moreover,

$$C^*_\text{eq}(x, y) = \frac{1}{V'(\phi^*_\text{eq}(x))}\delta(x - y)$$

(143)

In a non equilibrium setup we obtain that the stationary state is solution of the equation:

$$- \sum_j [D_{ij}[\phi^*; x]\partial_j \phi^*(x) - \chi_{ij}[\phi^*; x]E_j] = J_i$$

(144)

and the equation for C_D is, in this case:

$$\sum_{ij} \left[\frac{\partial}{\partial x_i} \left[\frac{\partial(D_{ij}[\phi^*; x]C_D(x, y))}{\partial x_j} - \chi'_{ij}[\phi^*; x]C_D(x, y) \right] \right]$$

$$+ \frac{\partial}{\partial y_i} \left[\frac{\partial(D_{ij}[\phi^*; y]C_D(x, y))}{\partial y_j} - \chi'_{ij}[\phi^*; y]C_D(x, y) \right]$$

$$= \frac{1}{2} \left(\nabla \cdot \bar{\alpha}[\phi^*; x] \right) \delta(x - y)$$

(145)

where

$$\bar{\alpha}[\phi; x] = \chi'[\phi; x]D^{-1}[\phi; x]J$$

(146)

In particular let us restrict to one dimension, $D = \text{cte}$, $E = 0$ and $\chi[\phi; x]$ a positive second order polynomial of the form $\chi[\phi; x] = c_0 + c_1 \phi(x) + c_2 \phi(x)^2$. We find in this case that $J = -Dd\phi^*(x)/dx$. That implies $\phi^*(x) = \phi^*(0) - Jx/D$, $J = D(\phi^*(L) - \phi^*(0))/L$, where we have fixed the values of ϕ at the boundaries of the segment $[0, L]$. Moreover

$$C_2(x, y) = \frac{\chi[\phi^*; x]}{2D} \delta(x - y) + C_D(x, y)$$

(147)
where the equation for C_D is:

$$\frac{d^2}{dx^2} + \frac{d^2}{dy^2} \left[C_D(x, y) = -\frac{J^2}{D^3} c_2 \delta(x - y) \right]$$

(148)

and the solution is

$$C_D(x, y) = -\frac{J^2}{D^3} c_2 \Delta^{-1}(x, y)$$

(149)

with

$$\frac{d^2 \Delta^{-1}(x, y)}{dx^2} = \delta(x - y)$$

(150)

whose solution is (see for instance Ref.[9]):

$$\Delta^{-1}(x, y) = -\frac{1}{L} [(L - x) y \theta(x - y) + x(L - y) \theta(y - x)]$$

(151)

where $\theta(x)$ is the Heaviside function. Observe that the sign of the correction to local equilibrium depends on the sign of c_2.

Finally we can also explicitly get in this case the fluctuations of the averaged field value:

$$\rho[\phi] = \frac{1}{L} \int_0^L dx \phi(x)$$

(152)

$$\Sigma \equiv \Omega \langle (\rho[\phi] - \rho^*)^2 \rangle_{st} = \frac{1}{L^2} \int_0^L dx \int_0^L dy C_2(x, y)$$

(153)

where $\rho^* = \rho[\phi^*]$. In this particular case we obtain:

$$\Sigma = \Sigma_{ieq} + \Sigma_D$$

(154)

where

$$\Sigma_{ieq} = \frac{1}{2DL} \left[c_0 + c_1 \rho^* + \frac{c_2}{3} (\phi^*(0))^2 + \phi^*(0) \phi^*(1) + \phi^*(1)^2 \right]$$

$$\Sigma_D = \frac{c_2}{12DL} (\phi^*(0) - \phi^*(L))^2$$

(155)

Observe that the deviation from the local equilibrium is proportional to the square of the external gradient. This result has been found in the Symmetric Simple Exclusion Process (SSEP) and in the Kipnis-Marchioro-Presutti model (KMP) [9–11].

- **Bulk nonequilibrium**: Let us focus in a very simple nonequilibrium model at the bulk level that develops highly nontrivial correlations. Let

$$G[\phi; x] = -D \nabla \phi$$

(156)
where we assume that D and χ are constant arbitrary d-dimensional matrices. One can easily check that this system is time reversible if D is proportional to χ. In general $\phi^*(x) = cte$ is solution for any homogeneous boundary condition. Therefore the currents are zero: $J = 0$. The equation for C_2 is:

$$\sum_{ij} D_{ij} \frac{\partial^2 \tilde{C}_2(x-y)}{\partial x_i \partial x_j} = \frac{1}{2} \sum_{ij} \chi_{ij} \frac{\partial^2 \delta(x-y)}{\partial x_i \partial x_j} \quad (157)$$

where we have assumed that the correlations are translational invariant: $C_2(x,y) = \tilde{C}_2(x-y)$. Then, the solution is given by:

$$\tilde{C}_2(u) = \int dk e^{iku} \hat{C}_2(k), \quad \hat{C}_2(k) = \frac{k \cdot \chi k}{k \cdot D k} \quad (158)$$

We observe that \hat{C}_2 is non-analytic at $k = 0$ when D is not proportional to χ (this also implies D and χ to be anisotropic) and $\tilde{C}_2(u)$ has a power law decay behavior [12]. Let us remark the fact that this very simple non-isotropic conservative dynamics, with no macroscopic current can create long range correlations just by breaking the proportionality between D and χ. We can think that equilibrium is, in this example, a fine tuning of the system’s parameters and, the normal behavior, is the non-equilibrium one.

VI. AN INITIAL APPROACH TO DEFINE NONEQUILIBRIUM DYNAMICAL ENSEMBLES

We know from the ensemble theory for systems at equilibrium that there are several probability densities defined in the configurational space that give rise to the same macroscopic equilibrium description in the thermodynamic limit. For instance we know the micro-canonical, canonical and grand canonical ensembles. Moreover, we can also build different stochastic dynamics (conserved or non-conserved) by using, for instance, the detailed balance condition in such a way that all of them drive the system to the same equilibrium state. Here we question ourselves about the possibility to build a couple of RD and DD dynamics driving the system to the same nonequilibrium stationary state. This problem so defined is highly nontrivial due to the way we formally obtain V_0: by solving a Hamilton-Jacobi equation in each case which is equivalent (as we already saw above) to solve a set of Hamilton nonlinear kinetic equations.
We know that near the deterministic solution \(\phi^* \) the nonequilibrium quasi-potential \(V_0 \) is characterized by the correlations \(C_2 \) (assuming differentiability of it around \(\phi^* \)). Then the first approach to the general problem is to look for the conditions on the RD and DD dynamics to get equal correlation functions. Let us also assume that the RD dynamics, defined by \(F[\phi; x] \) and \(h[\phi; x] \) functionals, has the following property:

\[
B(x, y) \equiv \frac{h[\phi^*_1; y]}{h[\phi^*_1; x]} \frac{\delta F[\phi; x]}{\delta \phi(y)} \bigg|_{\phi=\phi^*_1} = B(y, x)
\]

(159)

where \(\phi^*_1 \) is solution of \(F[\phi^*_1; x] = 0 \). This class of dynamics include the equilibrium ones.

We know that in this case the two body correlations are given by:

\[
C_2(x, y) = -h[\phi^*_1; x]h[\phi^*_1; y]B^{-1}(x, y)
\]

(160)

If we substitute this \(C_2 \) in the equation for the two body correlations in the DD case (defined by \(G[\phi; x] \) and \(\chi_{ij}[\phi; x] \) functionals) we get the relation between both dynamics in order to have the same \(C_2 \) correlation:

\[
h[\phi^*_1; y] \int_{\Lambda} dz K(x, z)h[\phi^*_1; z]B^{-1}(z, y) = \sum_{ij} \frac{\partial}{\partial x_i} \frac{\partial}{\partial y_j} [\chi_{ij}[\phi^*_2; x] \delta(x - y)]
\]

(161)

where

\[
K(x, y) = \frac{\delta}{\delta \phi(y)} (-\nabla \cdot G[\phi; x]) \bigg|_{\phi=\phi^*_2}
\]

(162)

with \(\phi^*_2 \) solution of \(\nabla \cdot G[\phi^*_2; x] = 0 \). We are assuming that the boundary conditions are equal in both cases. After some trivial algebra we get the sufficient condition that relates RD and DD dynamics to have the same \(C_2 \) correlation function:

\[
\frac{\delta G_i[\phi; x]}{\delta \phi(y)} \bigg|_{\phi=\phi^*_2} = \sum_j \chi_{ij}[\phi^*_2; x] \frac{\partial}{\partial x_j} \left[\frac{1}{h[\phi^*_1; x]^2} \frac{\delta F[\phi; x]}{\delta \phi(y)} \bigg|_{\phi=\phi^*_1} \right]
\]

(163)

If we ask \(\phi^*_1 = \phi^*_2 = \phi^* \) we can find a more restrained condition:

\[
G_i[\phi; x] = \sum_j \chi_{ij}[\phi; x] \frac{\partial}{\partial x_j} \left[\frac{F[\phi; x]}{h[\phi^*_1; x]^2} \right]
\]

(164)

We can apply this relation to the equilibrium case. In this case \(F \) is of the form:

\[
F[\phi; x] = -\frac{1}{2} h[\phi; x]^2 \frac{\delta V[\phi]}{\delta \phi(x)}
\]

(165)
for any arbitrary \(h \) and \(V \) functionals. Where we know that \(V_0[\phi] = V[\phi] \). The corresponding conservative dynamics with equal two body correlations is the expected:

\[
G_i[\phi; x] = -\frac{1}{2} \sum_j \chi_{ij}[\phi; x] \frac{\partial}{\partial x_j} \left[\frac{\delta V[\phi]}{\delta \phi(x)} \right]
\]
(166)

obviously in this case the quasi-potential for this dynamics is again \(V_0[\phi] = V[\phi] \). That is, in equilibrium the condition to have equal two body correlations between both dynamics is sufficient to show that they drive to the same equilibrium state.

Let us see what happens for a simple RD system with nonequilibrium stationary state. We assume that

\[
F[\phi; x] = -\frac{1}{2} g[\phi; x] \delta V[\phi] \quad \text{with} \quad h[\phi; x]
\]
(167)

for a given \(V[\phi] \) functional and \(h[\phi; x] \) is also given. We know that if \(g[\phi; x] \neq h[\phi; x] \) then \(V_0[\phi] \neq V[\phi] \). The DD dynamics with the same two body correlations as the RD is:

\[
G_i[\phi; x] = -\frac{1}{2} \sum_j \chi_{ij}[\phi; x] \frac{\partial}{\partial x_j} \left[\frac{g[\phi; x]^2 \delta V[\phi]}{h[\phi; x]^2 \delta \phi(x)} \right]
\]
(168)

for any given \(\chi_{ij} \). It is an open problem to see if the quasipotential for this DD mechanism coincide with the one for RD. Nevertheless, these simple examples opens the possibility to find dynamics of different character (conservative or non-conservative) that have the same quasipotential. However, much more work in this direction is needed.

VII. LARGE DEVIATIONS AND GREEN-KUBO RELATIONS

A natural and useful set of magnitudes to be computed at the stationary state are the space and time averages of fields or functions of them. They are naturally computed in the path’s probability framework by using the Large Deviation Principle (assuming that it can be applied). These relations are a kind of generalized Green-Kubo relations for systems at nonequilibrium stationary states.

Let us define the bulk average of an observable \(a[\phi; x, t] \) for a given time \(t \):

\[
a[\phi; t] = \frac{1}{\Lambda} \int_{\Lambda} dx \ a[\phi; x, t]
\]
(169)

Its time average over the time interval \([0, T]\) is then

\[
a_T[\phi] = \frac{1}{T} \int_0^T dt \ a[\phi; t]
\]
(170)
If the stochastic model is well behaved we can apply the Law of Large Numbers in the sense that

\[a^* \equiv \langle a[\phi; 0]\rangle_{ss} = \lim_{T \to \infty} a_T[\phi] \] (171)

where we assume that at time \(t = 0 \) the system is at the stationary state and it fluctuates around it for later times. Under this condition, the probability to observe a certain value of \(a_T[\phi] = a \) is given by:

\[P(a; T) = \int D\phi[0, T] P_{ss}[\phi(0)] P[\{\phi\}[0, T]] \delta(a - a_T[\phi]) \] (172)

The Large Deviation Principle states that for large values of \(T \) this distribution should be very peaked around \(a^* \). In fact in such limit it should be of the form:

\[P(a; T) \simeq e^{-TR(a)} \quad T \to \infty \] (173)

with

\[R(a^*) = 0 \quad R'(a^*) = 0 \] (174)

Therefore

\[\lim_{T \to \infty} T \langle (a - a^*)^2 \rangle_P = R''(a^*) \] (175)

where \(\langle \cdot \rangle_P \) means the the average is done with the \(P(a; T) \) distribution. We can now substitute \(P(a, T) \) by its path definition and we get the Green-Kubo relation:

\[\frac{1}{2R''(a^*)} = \int_0^\infty d\tau \langle (a[\phi; 0] - a^*)(a[\phi; \tau] - a^*) \rangle \] (176)

where now \(\langle \cdot \rangle \) is the path average defined above.

We can apply this scheme to our RD and DD models and obtain (for a given \(a[\phi; x, t] \)) the function \(R(a) \). As an example, let us just study a RD system with

\[a[\phi; x, t] \to \phi(x, t) \]
\[a[\phi; t] \to \rho[\phi; t] = \frac{1}{\Lambda} \int_\Lambda dx \phi(x, t) \]
\[a_T[\phi] \to \rho_T[\phi] = \frac{1}{T} \int_0^T dt \rho[\phi; t] \] (177)

and \(P[\{\phi\}[0, T]] \) is given by eq.(15). The probability to observe a given average density over the space and a time interval \(T \) at the stationary state, \(\rho_T[\phi] = \rho \), is:

\[P[\rho; T] = \int D\phi[0, T] P_{ss}[\phi(0)] \int_{c+i\infty}^{c-i\infty} \frac{d\lambda}{2\pi i} \exp \left[-\Omega T R[\{\phi\}[0, T]] \right] \] (178)
where
\[R[\{\phi\}[0,T],\lambda] = \frac{1}{2T} \int_0^T dt \int_\Lambda dx \left(\frac{\partial_t \phi(x,t) - F[\phi;x,t]}{h[\phi;x,t]} \right)^2 + \lambda (\rho - \rho_T[\phi]) \] (179)
and we have used in eq. (172) the representation of the Dirac delta by the integral on λ.

We can compute explicitly $P[\rho;T]$ when $T \to \infty$ because the integrals are dominated by its minimum value over the fields and λ. That is
\[P[\rho,T] \simeq \exp[-\Omega TR[\{\tilde{\phi}\}[0,T],\tilde{\lambda}]] \] (180)
where $\tilde{\phi}$ and $\tilde{\lambda}$ are solutions of
\[
\frac{\delta R}{\delta \phi(y,\tau)} \bigg|_{\phi=\tilde{\phi},\lambda=\tilde{\lambda}} = 0 , \quad \frac{\partial R}{\partial \lambda} \bigg|_{\phi=\tilde{\phi},\lambda=\tilde{\lambda}} = 0 \] (181)

In general, these set of equations have many different type of solutions (see for instance [13]), static and dynamics that are local extremals of R. It is a daunting practical task to get some solutions and to check which is the one that is the absolute minimum for R. Let us assume the simplest case in which the deterministic solution of the Langevin equation is constant in space: $\phi^*(x,t) = \rho^* = cte$. Obviously, when $\rho = \rho^*$ we expect that $\tilde{\phi}(x,t) = \rho^*$.

For values of ρ near the stationary state solution ρ^* we can assume by continuity that $\tilde{\phi}(x,t)$ is still constant and then
\[\tilde{\phi}(x,t) = \rho \] (182)
is a solution of the equations. This is ansatz is equivalent to the so-called *additivity principle* [14]. In this case
\[R[\{\tilde{\phi}\}[0,T],\tilde{\lambda}] = \Lambda \frac{F[\rho]^2}{2h[\rho]^2} \equiv R[\rho] \] (183)
Therefore
\[R''[\rho^*] = \Lambda \frac{F''[\rho^*]^2}{h[\rho^*]} \] (184)
and the Green-Kubo relation is
\[
\frac{h[\rho^*]^2}{F''[\rho^*]^2} = 2\Omega \int_{R^d} dx \int_0^\infty d\tau \langle (\phi(0,0) - \phi^*)(\phi(x,\tau) - \phi^*) \rangle \] (185)
in the limit $\Lambda \to \infty$ and assuming spatial translation invariance.

We can study in the same way different observables. In the DD case it has been studied extensively the time averaged mean current in some 1-d systems [15]:
\[J_T[\phi] = \frac{1}{T\Lambda} \int_0^T dt \int_\Lambda dx \ j(x,t) \] (186)
In one dimension it is shown that the additivity principle is correct when we look for fluctuations of the current near the stationary value but, in general, it fails for large current fluctuations where the solutions that minimize the functional R are much more complex than the uniform solution. For instance, this occurs when we use periodic boundary conditions where such solutions are soliton-like functions that move around the system at constant speed. Moreover, it has been shown that in two dimensions the KMP model [10] with a thermal gradient in one direction and periodic boundary conditions in the other, presents a solution (weak additivity principle) that is not spatially uniform but is a better minimizer than the uniform solution even near the stationary value [16].

VIII. CONCLUSIONS

We have made an attempt to describe general properties of nonequilibrium systems at stationary states assuming that they are described by continuum Langevin equations. We have studied the stationary measure at the small noise limit through the quasi-potential. We show how the effective dynamics that is followed by the most probable path to create a fluctuation from the stationary state is, in general and for nonequilibrium systems, different from the one to relax from it. We propose this property, macroscopic time reversibility as the key difference between equilibrium and nonequilibrium stationary states at the mesoscopic level. Moreover we have explicitly built the equations to derive the two body correlations at the stationary state that are related to the quasi-potential second derivatives around the stationary deterministic state. After the overall work we see that there is a systematic way to study of nonequilibrium systems from a theoretical point of view. Moreover, it gives us the possibility to work under the same scheme in many different non-equilibrium models and so to compare them to look for regularities that may be common in many systems. These regularities will be very difficult to find. We know that each particular nonequilibrium system contains a very large amount of details, phenomena and complex structures that are hidden in the set of nonlinear differential equations that one derives from the theory. Moreover, they are usually very difficult to solve because they are typically strongly dependent on the system’s boundary conditions and the mathematical tools we can use are very scarce. It is also observed that small changes in the overall functionals may imply large differences in the kind of results we derive from the equations. Therefore one of the main questions to
be solved is to know, at some extent, the influence of the underlying microscopic details into the mesoscopic description. We know that in some important cases of boundary driven nonequilibrium systems (for example Fluctuating Hydrodynamics[18]) the mesoscopic theory contains most of the necessary elements to describe correctly many observed phenomena. Nevertheless we would like to have in general an “a priori” predictive way to connect safely the microscopic and mesoscopic descriptions.

IX. ACKNOWLEDGEMENTS

We thank to P.I. Hurtado and C.P. Espigares for very helpful comments. This work was supported by the Spanish government project funded by MINECO/AEI/FEDERFIS2013-43201P and in part by AFOSR [grant FA-9550-16-1-0037].

APPENDIX I: FROM LANGEVIN TO FOKKER PLANCK EQUATIONS THROUGH A FAMILY OF DISCRETIZATION SCHEMES

A. RD case:

Let us assume that the Langevin equation (5) is the continuous limit of its time discrete version:

$$ \dot{\phi}(x, s + 1) = \phi(x, s) + \epsilon [F[\phi; x, s, v] + h[\phi; x, s, v] \xi(x, s)] $$ \hspace{1cm} (187)

where we also assume:

$$ F[\phi; x, s, v] = F[v\phi(x, s) + (1 - v)\phi(x, s + 1); x] $$

$$ h[\phi; x, s, v] = h(v\phi(x, s) + (1 - v)\phi(x, s + 1)) $$ \hspace{1cm} (188)

with \(v \in [0, 1], x \in \Lambda \subset \mathbb{R}^d, s \in \mathbb{Z} \) and \(F[\phi; x] \) is a functional on \(\phi(y)’s \) with \(y \) pertaining to a finite open region around \(x \) while \(h(\lambda) \) is a function. The random field \(\xi \) is a Gaussian white noise characterized by:

$$ \langle \xi(x, s) \rangle = 0, \hspace{0.5cm} \langle \xi(x, s) \xi(x', s') \rangle = \frac{1}{\epsilon \Omega} \delta(x, x') \delta(s, s') $$ \hspace{1cm} (189)

Observe that for any value \(v \in [0, 1] \) the limit \(\epsilon \rightarrow 0 \) of this discrete equation gives rise to the continuous Langevin equation (5).
We can expand the Langevin equation (187) in powers of ϵ:

\[
\phi(x, s + 1) = \phi(x, s) + \epsilon h(\phi(x, s))\xi(x, s) + \epsilon F[\phi; x, s]
+ (1 - \nu)\epsilon^2 h(\phi(x, s))h'(\phi(x, s))\xi(x, s)^2 + O(\epsilon^{3/2})
\]

(190)

where we have assumed that ξ is of order $\epsilon^{-1/2}$.

The probability to find a given configuration ϕ at time s is defined by

\[
P[\phi; s + 1] = \langle \prod_{x \in \Lambda} \delta(\phi(x) - \phi(x, s + 1)) \rangle_{\xi}
\]

(191)

where $\phi(x, s)$ is the solution of the Langevin equation for a given random noise realization and $\langle \cdot \rangle_{\psi}$ is the average over all noise realizations with their corresponding Gaussian weight. We can substitute the ϵ expanded Langevin equation into eq.(191) and after some algebraic manipulation we get

\[
P[\phi; s + 1] = \int \prod_{x \in \Lambda} [d\bar{\phi}(x)] P[\bar{\phi}; s] \langle \prod_{x \in \Lambda} \delta(\phi(x) - \bar{\phi}(x) - \epsilon h(\bar{\phi}(x))\xi(x, s) - \epsilon F[\bar{\phi}; x]
- (1 - \nu)\epsilon^2 h(\bar{\phi}(x))h'(\bar{\phi}(x))\xi(x, s)^2 + O(\epsilon^{3/2}) \rangle_{\xi}
\]

(192)

where we have used the fact that $\phi(x, s)$ only depend on ξ’s of previous times $s' < s$ and we can break the averages over ξ’s. We now expand the last expression for $\epsilon \leq 1$ by using the formula

\[
\prod_{n} \delta(a(n) + b(n)\eta + c(n)\eta^2) = \left(\prod_{n} \delta(a(n)) \right) + \eta \sum_{m} \left(\prod_{n \neq m} \delta(a(n)) \right) \delta'(a(m))b(m)
+ \frac{1}{2} \eta^2 \sum_{m} \left[\left(\prod_{n \neq m} \delta(a(n)) \right) \left(\delta''(a(m))b(m)^2 + 2\delta'(a(m))c(m) \right)
\right.
\]

\[
+ \sum_{m' \neq m} \left(\prod_{n \neq m, m'} \delta(a(n)) \right) \delta'(a(m))\delta'(a(m'))b(m)\delta(m') \right] + O(\eta^3)
\]

(193)

that we get by doing the first two derivatives with respect η and then using the Taylor expansion up to second order in η. In our case we identify $\eta = \epsilon^{1/2}$.

Finally, we can do the averages over ξ’s and we get (in the limit $\epsilon \to 0$) the Fokker-Planck equation:

\[
\partial_t P[\phi; t] = \int_{\Lambda} dx \frac{\delta}{\delta \phi(x)} \left[-(F[\phi; x] + \frac{(1 - \nu)}{\Omega} h(\phi(x))h'(\phi(x))) P[\phi; t]
+ \frac{1}{2\Omega} \frac{\delta}{\delta \phi(x)} \left(h(\phi(x))^2 P[\phi; t] \right) \right]
\]

(194)
For \(v = 1 \) (Ito’s discretization) we obtain the Fokker-Planck equation (10). We also can compute the Lagrangian defining the path integral for a general \(v \):

\[
P[\{\phi\}[t_0, t_1]] = cte \exp \left[-\Omega L[\phi; t_0, t_1; v] \right]
\]

where

\[
L[\phi; t_0, t_1; v] = \int_{t_0}^{t_1} dt \int_{\Lambda} dx \left[\frac{(\partial_t \phi(x, t) - F[\phi; x, t])^2}{2h(\phi(x, t))^2} + (1 - v) \frac{\delta F[\phi; x, t]}{\delta \phi(x, t)} \right. \\
+ \left. \frac{(1 - v)^2}{2} h'(\phi(x, t))^2 + \frac{1 - v}{h(\phi(x, t))} h'(\phi(x, t)) (\partial_t \phi(x, t) - F[\phi; x, t]) \right]
\]

One can show that the observables (averages) computed with this Lagrangian do not depend on the \(v \) used [17].

B. DD case:

In this case it is necessary to define an space and time discretizations. The field at lattice site \(n \in \mathbb{Z}^d \) at discrete time \(s \in \mathbb{Z} \), \(\phi(n, s) \), is solution of the discrete Langevin equation:

\[
\phi(n, s + 1) = \phi(n, s) - \frac{\epsilon}{2a} \sum_{\alpha=1}^{d} \left[j_\alpha(\phi; n + i_\alpha, s) - j_\alpha(\phi; n - i_\alpha, s) \right]
\]

where \(i_\alpha \) is the unit vector in the direction \(\alpha \) and

\[
j_\alpha(\phi; n, s) = G_\alpha[\phi; n, s] + \sum_{\beta=1}^{d} \sigma_{\alpha\beta}[\phi; n, s] \psi_\beta(n, s)
\]

\[
\langle \psi_\alpha(n, s) \psi_\beta(n', s') \rangle = \frac{1}{\Omega \epsilon a^d} \delta_{\alpha,\beta} \delta_{n,n'} \delta_{s,s'}
\]

where \(a \) and \(\epsilon \) are the lattice node separation in space and time respectively. For simplicity we are considering just the Ito scheme.

The probability to find a given configuration \(\phi \) at time \(s \) is defined by

\[
P[\phi; s + 1] = \prod_{n \in \Lambda} \delta(\phi(n) - \phi(n, s + 1))
\]

where \(\phi(n, s) \) is the solution of the Langevin equation for a given random noise realization, that is, it depends on \(\psi \) and \(\langle \cdot \rangle_\psi \) is the average over all noise realizations with their corresponding Gaussian weight. We can insert the right hand side of the Langevin equation and
we introduce an auxiliary field $\bar{\phi}$:

$$P[\phi; s + 1] = \langle \int \prod_{n \in \Lambda} [d\bar{\phi}(n)\delta(\bar{\phi}(n) - \phi(n, s))] \prod_{n \in \Lambda} \delta \left(\phi(n) - \bar{\phi}(n) + \frac{\epsilon}{2a} \sum_{\alpha = 1}^{d} [j_{\alpha}(\bar{\phi}; n + i_{\alpha}) - j_{\alpha}(\bar{\phi}; n - i_{\alpha})] \right) \rangle_{\psi}$$

(201)

now we use the fact that the noise ψ is time uncorrelated and the Ito’s prescription. Moreover, $\phi(n, s)$ only depend on ψ’s with times strictly smaller than s. Therefore we can break the average over ψ and we get:

$$P[\phi; s + 1] = \int \prod_{n \in \Lambda} [d\bar{\phi}(n)] P[\bar{\phi}; s] \prod_{n \in \Lambda} \delta \left(\phi(n) - \bar{\phi}(n) + \frac{\epsilon}{2a} \sum_{\alpha = 1}^{d} [j_{\alpha}(\bar{\phi}; n + i_{\alpha}) - j_{\alpha}(\bar{\phi}; n - i_{\alpha})] \right) \rangle_{\psi}$$

(202)

We now expand the last expression for $\epsilon \leq 1$ taking into account that ψ is of order $\epsilon^{-1/2}$.

We can use the formula (193) with

$$a(n) = \phi(n) - \bar{\phi}(n)$$

$$b(n) = \frac{\epsilon^{1/2}}{2a} \sum_{\alpha = 1}^{d} \sum_{\beta = 1}^{d} [\sigma_{\alpha\beta}[\bar{\phi}; n + i_{\alpha}]\psi_{\beta}(n + i_{\alpha}, s) - \sigma_{\alpha\beta}[\bar{\phi}; n - i_{\alpha}]\psi_{\beta}(n - i_{\alpha}, s)]$$

$$c(n) = \frac{1}{2a} \sum_{\alpha = 1}^{d} [G_{\alpha}[\bar{\phi}; n + i_{\alpha}] - G_{\alpha}[\bar{\phi}; n - i_{\alpha}]]$$

(203)

After substituting this expansion into eq.(202) we can do explicitly the averages over ψ and after some algebra we get

$$P[\phi; s + 1] = P[\phi; s] + \epsilon \sum_{m \in \Lambda} \frac{\partial}{\partial \phi(m)} \left[P[\phi; s] \frac{1}{2a} \sum_{\alpha = 1}^{d} (G_{\alpha}[\phi; n + i_{\alpha}] - G_{\alpha}[\phi; n - i_{\alpha}]) \right]$$

$$+ \frac{1}{8\Omega a^{d+2}} \sum_{\alpha = 1}^{d} \sum_{\beta = 1}^{d} \left(\frac{\partial}{\partial \phi(m + i_{\alpha} - i_{\beta})} (P[\phi; s]\chi_{\alpha\beta}[\phi; m + i_{\alpha}]) \right)$$

$$- \frac{\partial}{\partial \phi(m + i_{\alpha} + i_{\beta})} (P[\phi; s]\chi_{\alpha\beta}[\phi; m + i_{\alpha}])$$

$$- \frac{\partial}{\partial \phi(m - i_{\alpha} + i_{\beta})} (P[\phi; s]\chi_{\alpha\beta}[\phi; m - i_{\alpha}])$$

$$+ \frac{\partial}{\partial \phi(m - i_{\alpha} - i_{\beta})} (P[\phi; s]\chi_{\alpha\beta}[\phi; m - i_{\alpha}]) \right] + O(\epsilon^2)$$

(204)

where

$$\chi_{\alpha\beta}[\phi; n] = \sum_{\gamma = 1}^{d} \sigma_{\alpha\gamma}[\phi; n] \sigma_{\beta\gamma}[\phi; n]$$

(205)
This expression can be written in a more compact form by using the definition:

\[
\left(\partial_\alpha \frac{\partial}{\partial \phi(n)} \right) \equiv \frac{1}{2a} \left(\frac{\partial}{\partial \phi(n + i_\alpha)} - \frac{\partial}{\partial \phi(n - i_\alpha)} \right) \tag{206}
\]

where implicitly it is shown the action of the discrete partial derivative operator.

\[
\frac{1}{\epsilon} \left[P[\phi; s + 1] - P[\phi; s] \right] = \sum_{\alpha=1}^{d} \sum_{m \in \Lambda} \left(\partial_\alpha \frac{\partial}{\partial \phi(m)} \right) \left[-G_\alpha[\phi; m]P[\phi; s] \right.
\]

\[
+ \frac{1}{2\Omega a^d} \sum_{\beta=1}^{d} \left(\partial_\beta \frac{\partial}{\partial \phi(m)} \right) \left(\chi_{\alpha\beta}[\phi; m]P[\phi; s] \right) \left] + O(\epsilon \right) \tag{207}
\]

where we have used the property:

\[
\sum_{m \in \Lambda} \frac{\partial}{\partial \phi(m)} (\partial_\alpha F[\phi; m]) = -\sum_{m \in \Lambda} \left(\partial_\alpha \frac{\partial}{\partial \phi(m)} \right) F[\phi; m] \tag{208}
\]

Also observe the useful relation:

\[
\left(\partial_\alpha \frac{\partial}{\partial \phi(m)} \right) (Q[\phi]F(\phi(m))) = F(\phi(m))\partial_\alpha \left(\frac{\partial Q[\phi]}{\partial \phi(m)} \right) \tag{209}
\]

with \(F(\lambda)\) being a function.

In the limit \(\epsilon \to 0\) and \(a \to 0\) and defining \(\tilde{\Omega} = a^d\Omega\) we recover the Fokker-Planck equation for diffusive systems.

APPENDIX II: THE METHOD OF CHARACTERISTICS TO SOLVE HAMILTON-JACOBI EQUATIONS

We just reproduce the page 233 in Gallavotti’s book *Elements of Mechanics* [5]. Let \(S(q, t)\) to be solution of the Hamilton-Jacobi equation

\[
H\left(\frac{\partial S(q, t)}{\partial q}, q, t \right) + \frac{\partial S(q, t)}{\partial t} = 0 \tag{210}
\]

where \(H = H(p, q, t)\) is a given function on its arguments. Let us assume the following differential equation:

\[
\frac{dq}{dt} = \frac{\partial H}{\partial p} \bigg|_{p = \frac{\partial S}{\partial q}} \tag{211}
\]

with the initial condition \(q(t_0) = q_0\). Then, we can show that if we take

\[
p(t) = \frac{\partial S}{\partial q} \bigg|_{q = q(t)} \tag{212}
\]
with $q(t)$ solution of eq.(211), then the functions $(q(t),p(t))$ are solutions of the Hamilton equations with Hamiltonian $H(p,q,t)$ and initial values: $q(t_0) = q_0$ and $p(t_0) = \partial S/\partial q|_{q=q_0}$. That is, each solution of the Hamilton-Jacobi equation (210) corresponds to a Hamiltonian dynamics.

In order to show this assertion we just check that $p(t)$ so defined is solution of the corresponding Hamilton equation: $dp/dt = -\partial H/\partial q$:

$$\frac{dp_i}{dt} = \frac{d}{dt} \left(\frac{\partial S}{\partial q_i} \right)_{q=q(t)} = \sum_j \frac{\partial^2 S}{\partial q_i \partial q_j} \frac{dq_j}{dt} + \frac{\partial^2 S}{\partial t \partial q_i}$$ \hspace{1cm} (213)

but deriving the Hamilton-Jacobi equation by $\partial/\partial q_i$ we find the relation:

$$\sum_j \frac{\partial^2 S}{\partial q_i \partial q_j} \frac{dq_j}{dt} + \frac{\partial H(p,q,t)}{\partial q_i} \bigg|_{p=\frac{\partial S}{\partial q}} + \frac{\partial^2 S}{\partial t \partial q_i} = 0$$ \hspace{1cm} (214)

that we can use in eq.(213) to get the desired result:

$$\frac{dp_i}{dt} = -\frac{\partial H(p,q,t)}{\partial q_i}, \quad \frac{dq_i}{dt} = \frac{\partial H(p,q,t)}{\partial p_i}$$ \hspace{1cm} (215)

with the above mentioned initial conditions. In the case of Hamiltonian time independent $S(q,t) = W(q) - \alpha t$, where α is a constant fixed at initial time.

We can find $S(q,t)$ just by studying the time behavior of $S(q(t),t)$ with $q(t)$ solution of the Hamilton equations:

$$\frac{dS(q(t),t)}{dt} = \sum_i \frac{\partial S(q,t)}{\partial q_i} \bigg|_{q=q(t)} \frac{dq_i}{dt} + \frac{\partial S(q,t)}{\partial t} \bigg|_{q=q(t)}$$ \hspace{1cm} (216)

We do a time integration to it and we get:

$$S(q(t),t) - S(q(t_0),t_0) = \int_{t_0}^{t} d\tau \sum_i p_i(\tau) \frac{dq_i(\tau)}{d\tau} + \int_{t_0}^{t} d\tau \frac{\partial S(q,\tau)}{\partial \tau} \bigg|_{q=q(\tau)}$$ \hspace{1cm} (217)

where $q((\tau),p(\tau))$ are the solutions of the Hamilton equations with initial conditions $q(t_0) = q_0$ and $p(t_0) = \partial S/\partial q|_{q=q_0}$. It is convenient to choose: $p(t_0) = 0$, that is, the value of $q_0 = q^*$ in which $S(q,t_0)$ has an extreme: $\partial S/\partial q|_{q=q^*} = 0$.

APPENDIX III: PATH INTEGRAL METHOD TO OBTAIN THE CORRELATIONS

Let us study the RD case as an example. In order to obtain $V_0[\phi]$ from the path integral formalism we have to solve the evolution equations for $(\phi(x,t),\pi(x,t))$ given by eqs. (39)
with boundary conditions \((\bar{\phi}(x, -\infty), \pi(x, -\infty)) = (\phi^*(x), 0)\) and \(\bar{\phi}(x, 0) = \phi(x)\). The quasi-potential is obtained by using eqs. (46) and (47). We know that the two body correlation \(C_2(x, y)\) is related with the second derivative of the quasi-potential at the deterministic stationary state (whenever \(V_0\) is differentiable at such point). Therefore we want to solve the dynamic equations when \(\bar{\phi}(x, 0) = \phi^*(x) + \Omega^{-1/2}\omega(x)\). Obviously we can linearize the evolution equations around \(\phi^*\) and we can study with detail the quasi-potential. However a priori we have no guarantee that the dynamic trajectories that connect the initial condition \(\phi^*\) at time \(-\infty\) to a small deviation from it do not have multiple solutions near \(\phi^*\) along the path. In fact, we expect that the strong non-analyticities on \(V_0[\phi]\) near \(\phi^*\) will imply that the path that minimizes the Lagrangian functional is the one whose trajectory makes tours far from the initial point. An analytic solution for such types of situations are far from our actual knowledge. Let us focus then on the assumption that the linearized dynamics that connect the initial state with the final perturbed one is the correct one. As we will see, this assumption is, in practice, equivalent to the local differentiability of the quasi-potential.

Let us linearize the evolution eqs. (39) assuming:

\[
\bar{\phi}(x, t) = \phi^*(x) + \frac{1}{\sqrt{\Omega}} h[\phi^*; x] \bar{\omega}(x, t) \quad , \quad \pi(x, t) = \frac{1}{\sqrt{\Omega} h[\phi^*; x]} \bar{\eta}(x, t)
\]

then

\[
\partial_t \bar{\omega}(x, t) = \int_{\Lambda} dy B(x, y) \bar{\omega}(y, t) + \bar{\eta}(x, t)
\]
\[
\partial_t \bar{\eta}(x, t) = -\int_{\Lambda} dy B(y, x) \bar{\eta}(y, t)
\]

where \(B(x, y)\) is defined in eq.(109). And the initial conditions are: \((\bar{\omega}(x, -\infty), \bar{\eta}(x, -\infty)) = (0, 0)\) and \(\bar{\omega}(x, 0) = \omega(x, 0)\). The quasi-potential is, in this approximation given by:

\[
V_0[\phi] = V_0[\phi^*] + \frac{1}{2\Omega} \int_{-\infty}^{0} dt \int_{\Lambda} dx \bar{\eta}(x, t)^2
\]

let us remark that the trajectory \(\bar{\eta}(x, t)\) contains the boundary conditions and therefore the \(\omega(x) = \sqrt{\Omega}(\phi(x) - \phi^*(x))\) field.

In order to solve the time evolution equations it is convenient to formally discretize them to simplify its handling:

\[
\partial_t \bar{\omega} = B\bar{\omega} + \bar{\eta}
\]
\[
\partial_t \bar{\eta} = -B^T \eta
\]
where $\bar{\epsilon}$ and $\bar{\eta}$ are vectors and B a matrix and B^T its transposed. The general solution is then

\[\bar{\eta}(t) = e^{-tB^T} \bar{\eta}_0 \]
\[\bar{\omega}(t) = e^{tB} a_0 + \int_0^t d\tau e^{(t-\tau)B} e^{-\tau B^T} \bar{\eta}_0 \]

(222)

where $\bar{\eta}_0$ and a_0 are constant vectors to be determined. First we assume that $\bar{\omega}(0) = \omega$, then

\[\omega = a_0 + C(0) \bar{\eta}_0 \]
\[C(t) = \int_0^t d\tau e^{-\tau B} e^{-\tau B^T} \]

(223)

where

\[\bar{\eta}_0 = C(0)^{-1}(\omega - a_0) \]

(224)

Now we assume that B can be diagonalized that is, there exists a Q matrix such that $B = QDQ^{-1}$ with $D_{ij} = \lambda_i \delta_{i,j}$, $Q_{ij} = v_i(\lambda_j)$ where $(\lambda, v(\lambda))$ are the right eigenvalues and eigenvectors of B: $Bv(\lambda) = \lambda v(\lambda)$, $Q^{-1}_{ij} = w_i^*(\lambda_j)$ where $(\lambda^*, w(\lambda))$ are the left eigenvalues and eigenvectors of B: $B^T w(\lambda) = \lambda^* w(\lambda)$ (a^* stands for the complex conjugate of a). Notice that the set of eigenvalues of B and B^T are the same. Two useful orthogonal properties can be derived from $QQ^{-1} = Q^{-1}Q = 1$:

\[w^*(\lambda_i) \cdot v(\lambda_j) = \delta_{i,j} \]
\[\sum_k w_k^*(\lambda_k) v_j(\lambda_k) = \delta_{i,j} \]

(225)

Observe that if B is non-symmetric the set of eigenvectors may not be an orthonormal vector base.

With all these information we may introduce the boundary conditions to our general solutions. First we see that

\[\bar{\eta}(t) = (Q^{-1})^T e^{-tD} Q^T \bar{\eta}_0 \]

(226)

we know that $\bar{\eta}(-\infty) = 0$ implying that the real part of all the eigenvalues of B should be negative:

\[Re(\lambda_i) < 0 \quad \forall i \]

(227)

this is a “stability condition” over the dynamics and it is equivalent to ask that arbitrary and small perturbation to the deterministic stationary state will relax to it. The second condition is $\bar{\omega}(-\infty) = 0$. Let us write $\bar{\omega}(t)$ solution in function of its eigenvalues:

\[\bar{\omega}(t) = Q e^{tD} Q^{-1} a_0 + \int_0^t d\tau Q e^{(t-\tau)D} Q^{-1}(Q^{-1})^T e^{-\tau D} Q^T \bar{\eta}_0 \]

(228)
First we can show that the integral term tends to zero when \(t \to -\infty \) because:

\[
(\int_{-\infty}^{t} d\tau e^{(t-\tau)D}Q^{-1}(Q^{-1})^{T}e^{-\tau D})_{ij} = -\frac{(Q^{-1}(Q^{-1})^{T})_{ij}}{\lambda_i + \lambda_j} e^{-t\lambda_j}
\] (229)

and we are assuming \(\text{Re}(\lambda_i) < 0 \ \forall i \). In the other hand the first term always diverge when applied to nonzero \(a_0 \) when \(t \to \infty \). Therefore \(a_0 = 0 \) and the solution compatible with the boundary conditions is:

\[
\tilde{\eta}(t) = (Q^{-1})^{T}e^{-tD}Q^{T}C(0)^{-1}\omega, \quad \tilde{\omega}(t) = Qe^{Dt}Q^{-1}C(t)C(0)^{-1}\omega
\] (230)

where

\[
C(t)_{ij} = -\sum_{ks}Q_{ik}(Q^{-1}(Q^{-1})^{T})_{ks}(Q^{T})_{sj} \frac{e^{-(\lambda_k + \lambda_s)t}}{\lambda_k + \lambda_s}
\] (231)

Finally, the quasi potential is:

\[
\Omega V_0[\phi] = \frac{1}{2} \omega^T(C(0)^{-1})^{T}\omega
\] (232)

and the two body correlation is

\[
\bar{C} = C(0)^{T}
\] (233)

that in the continuum limit is equation (114).

