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Dynamical phase transitions (DPTs) in the space of trajectories are one of the most intriguing
phenomena of nonequilibrium physics, but their nature in realistic high-dimensional systems remains
puzzling. Here we observe for the first time a DPT in the current vector statistics of an archetypal two-
dimensional (2D) driven diffusive system and characterize its properties using the macroscopic fluctuation
theory. The complex interplay among the external field, anisotropy, and vector currents in 2D leads to a rich
phase diagram, with different symmetry-broken fluctuation phases separated by lines of first- and second-
order DPTs. Remarkably, different types of 1D order in the form of jammed density waves emerge to hinder
transport for low-current fluctuations, revealing a connection between rare events and self-organized
structures which enhance their probability.
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Introduction.—The theory of critical phenomena is a
cornerstone of modern theoretical physics [1,2]. Indeed,
phase transitions of all sorts appear ubiquitously in most
domains of physics, from cosmological scales to the
quantum world of elementary particles. In a typical
second-order phase transition, order emerges continuously
at some critical point, as captured by an order parameter,
signaling the spontaneous breaking of a symmetry and an
associated nonanalyticity of the relevant thermodynamic
potential. Conversely, first-order transitions are character-
ized by an abrupt jump in the order parameter and a
coexistence of different phases [1,2]. In recent years, these
ideas have been extended to the realm of fluctuations,
where dynamical phase transitions (DPTs) (i.e., in the
space of trajectories) have been identified in different
systems, both classical [3–17] and quantum [18–21].
Important examples include glass formers [22–29],
micromasers and superconducting transistors [30,31], or
applications such as DPT-based quantum thermal switches
[32–34].
DPTs appear when conditioning a system to have a fixed

value of some time-integrated observable, such as, e.g., the
current or the activity. The different dynamical phases
correspond to different types of trajectories adopted by the
system to sustain atypical values of this observable.
Interestingly, some dynamical phases may display emer-
gent order and collective rearrangements in their trajecto-
ries, including symmetry-breaking phenomena [5,9–11],
while the large deviation functions (LDFs) [35] controlling
the statistics of these fluctuations exhibit nonanalyticities
and Lee-Yang singularities [36–43] at the DPT reminiscent
of standard critical behavior. This is a finding of crucial
importance in nonequilibrium physics, as these LDFs play

a role akin to the equilibrium thermodynamic potentials for
nonequilibrium systems, where no bottom-up approach
exists yet connecting microscopic dynamics with macro-
scopic properties [3,4,44]. Moreover, the emergence of
coherent structures associated with rare fluctuations implies
in turn that these extreme events are far more probable than
previously anticipated [11,45].
Despite their conceptual importance, observing DPTs is

challenging, as the spontaneous emergence of large fluc-
tuations in macroscopic systems is unlikely [3], so one may
question their physical relevance. However, recent break-
throughs have shown that fluctuations admit a control-
theory (or active) interpretation [3,46,47] where rare
trajectories become typical under the action of an external
control field. Among the fields that drive the system to the
desired fluctuation, the one minimizing the dissipated
energy is univocally related to the typical trajectory for
the spontaneous emergence of such a fluctuation [3]. In this
way, a DPT at the trajectory level corresponds to a singular
change in the optimal control field, and this could be easily
observed in actual experiments. In this sense, DPTs are not
only of conceptual but also of practical importance,
especially for realistic d > 1 systems [28,29] amenable
to control for technological applications. However, up to
now most works on DPTs have focused on toy 1D models
[9–21] or fluctuations of scalar (1D) observables in d > 1
[22–32], and the challenge remains to understand DPTs in
the fluctuations of fully vectorial observables in d dimen-
sions and how they are affected by the (possible) system
anisotropy.
In this Letter, we address this challenge and report

compelling evidence of a rich DPT and new physics in
the statistics of vectorial currents in an archetypal 2D driven
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diffusive system, the weakly asymmetric simple exclusion
process (WASEP) [48]. To crack this problem, we use
massive cloning Monte Carlo simulations for rare event
statistics [49–51], together with the macroscopic fluc-
tuation theory (MFT) to understand the fluctuation phase
diagram [3]. We find a second-order DPT between a
homogeneous fluctuation phase with structureless trajec-
tories and Gaussian current statistics, and a non-Gaussian
phase for small currents. This non-Gaussian phase is
characterized by the emergence of coherent jammed states
in the form of traveling-wave trajectories, thus breaking the
spatiotemporal translation symmetry. Such jammed states,
which are surprisingly extended and noncompact, hamper
particle flow enhancing the probability of low-current
fluctuations [10], and we introduce a novel order parameter
for their detection. Interestingly, for mild or no anisotropy,
different symmetry-broken phases appear (depending on
the current vector) separated by lines of first-order DPTs, a
degeneracy which disappears beyond a critical anisotropy.
Dynamical coexistence of the different traveling-wave
phases appears along these first-order lines.
Model.—The 2D WASEP belongs to a broad family of

driven diffusive systems of fundamental and technological
interest [3,4,11]. Microscopically, this model is defined on
a 2D square lattice of size N ¼ L × L with periodic
boundaries where M ≤ N particles evolve, so the global
density is ρ0 ¼ M=N. Each lattice site may contain at most
one particle, which performs stochastic jumps to neighbor-
ing empty sites along the �α direction (α ¼ x, y) at a rate
rα� ≡ exp½�Eα=L�=2, with E ¼ ðEx; EyÞ being an external
field. For large E and moderate system sizes, the field per
unit length E=L is strong enough to induce an effective
anisotropy in the medium [52], enhancing diffusivity
and mobility along the field direction, an effect that can
be accounted for in our theory below by an effective
anisotropy parameter ϵ.
Trajectory statistics.—We are interested in the statistical

physics of an ensemble of trajectories conditioned to a
given total vector currentQ integrated over a long time t. In
the spirit of equilibrium statistical mechanics, this trajec-
tory ensemble is fully characterized by a dynamical
partition function ZtðλÞ ¼

P
QPtðQÞeλ·Q, where PtðQÞ

is the probability of trajectories of duration t with total
current Q, or equivalently by the associated dynamical free
energy (DFE) μðλÞ ¼ limt→∞t−1 lnZtðλÞ. The intensive
vector λ is conjugated to the extensive current Q, in a
way similar to the relation between temperature and energy
in equilibrium systems. However, and unlike temperature,
the parameter λ is nonphysical and cannot be directly
manipulated, a main difficulty when studying DPTs which
can be, however, circumvented using the active interpre-
tation of fluctuation formulas [3]. In any case, fixing λ is
equivalent to conditioning the system to have an intensive
current qλ ≡Qλ=t ¼ ∇λμðλÞ, so by varying λ one can
move from one dynamical phase to another.

Macroscopic fluctuation theory.—At the mesoscopic
level, driven diffusive systems like WASEP are character-
ized by a density field ρðr; tÞ obeying a continuity equation
∂tρþ ∇ · j ¼ 0, with a current field jðr; tÞ≡ −D̂ðρÞ∇ρþ
σ̂ðρÞEþ ξ. The field ξðr; tÞ is a Gaussian white noise of
weak amplitude ∝ L−1 (the inverse system size) which
accounts for microscopic random fluctuations at the meso-
scopic level, and E is the external field driving the system
out of equilibrium. The deterministic part of jðr; tÞ is given
by Fick’s law, with D̂ðρÞ≡DðρÞÂ and σ̂ðρÞ ¼ σðρÞÂ the
diffusivity and mobility matrices, respectively. The con-
stant diagonal matrix Â measures the system underlying
anisotropy, i.e., the possible change of microscopic jump
rates from one spatial direction to another. We are interested
in the statistics of trajectories fρðr; tÞ; jðr; tÞgτ0 constrained
to a fixed current q ¼ τ−1

R
τ
0 dt

R
drjðr; tÞ during a long

time τ in a closed system with periodic boundaries. The
associated nonequilibrium steady state is homogeneous,
with constant (and conserved) density ρ0 and average
current hqi ¼ σ0ÂE, with σ0 ≡ σðρ0Þ. The MFT offers
precise variational formulas for the DFE μðλÞ starting from
the above fluctuating hydrodynamics equations [3] and
with the only input of two transport coefficients, which for
2D WASEP are DðρÞ ¼ 1=2 and σðρÞ ¼ ρð1 − ρÞ, and an
anisotropy matrix that we parametrize here as Âxx ¼ 1þ ϵ

and Âyy ¼ 1 − ϵ. This MFT problem can be solved using
standard techniques (see Supplemental Material [53]), and
we now summarize its predictions.
Dynamical phase diagram.—Small current fluctuations

(jq − hqij ≪ 1 or jλj ≈ 0) typically result from the random
superposition of mostly independent local jumps which
sum incoherently to yield the desired current, so the typical
trajectories associated with these small fluctuations are still
homogeneous, as the stationary ones [5,9]. According to
the central limit theorem, this leads to Gaussian current
statistics corresponding to a quadratic dynamical free
energy μGðzÞ≡ ðz · σ̂0z − E · σ̂0EÞ=2, with z≡ λþE.
This homogeneous phase is depicted in light gray in
Fig. 1. A local stability analysis then shows that this
Gaussian, homogeneous regime eventually becomes unsta-
ble against small but otherwise arbitrary spatiotemporal
perturbations in trajectories. For WASEP, this happens for
large enough external fields and currents q · Â−1q ≤ σ20Ξc,
or equivalently z · Âz ≤ Ξc, where Ξc is a critical thresh-
old; see the black lines separating gray and colored regions
in Figs. 1(a)–1(c). This transition can be shown to be of
second-order type, as ∂2

jzjμðzÞ is discontinuous at the
critical line [53].
Interestingly, the dominant perturbation immediately

after the instability kicks in takes the form of a traveling
density wave with structure only along one-dimension
(1D), either x or y [see Figs. 1(e) and 1(f)]. This collective
rearrangement breaks the system spatiotemporal translation
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symmetry by localizing particles in a jammed region to
facilitate a low-current fluctuation. This solution can be
extended to all currents below the critical line, and we find
that different 1D density waves dominate different current
vector regimes, depending on the anisotropy parameter ϵ;
see Figs. 1(a)–1(c). Lines of first-order DPTs separate both
density-wave phases where the DFE μðλÞ exhibits a jump in
its first derivative [53], so the current qλ ¼ ∇λμðλÞ corre-
sponding to a given λ jumps discontinuously at these lines.
In this way, the first-order DPT lines in λ space correspond
to pockets in q space where dynamical coexistence emerges
between the two traveling-wave phases; see Figs. 1(g)–1(i).
This means that if we were to observe an atypical current
q sitting in one of these pockets, either by an unlikely
spontaneous fluctuation or by an active control of the
current with an optimal field, we would observe the
dynamical coexistence of the two different traveling density
waves.
Strikingly, particular 2D traveling-wave solutions (such

as, e.g., traveling compact packets) do not improve the
variational problem for μðλÞ when compared to their 1D
counterparts. This is surprising, as one would naively

expect the system to minimize the interface between the
high- and low-density regions while developing a macro-
scopic jam to sustain a low-current fluctuation. This
phenomenological picture does not emerge in our theory
and is not observed in the simulations below.
What are the key ingredients responsible of the new

physics here described and not observed in previous works
[9–32]? First, by considering vectorial currents, it becomes
apparent that current rotations can trigger first-order tran-
sitions between different symmetry-broken jammed
dynamical phases. This is certainly not present in simpler
1D models [9–21] and cannot show up when studying
fluctuations of scalar observables in d > 1 [22–32].
Second, by including anisotropy in our analysis (a main
feature of many realistic d > 1 systems not considered
before), it becomes clear its strong effect on the relative
shape and position of the different jammed phases; see
Figs. 1(a)–1(c). In this way, it is the interplay between
vectorial currents and anisotropy in d > 1 that gives rise to
the rich and complex dynamical phase diagram here
described. Mathematically, the novel competition between
different symmetry-broken dynamical phases is due to the
appearance of a structured vector field coupled to the
current [58–60].
Numerical results.—The previous results call for inde-

pendent numerical verification, as they derive from an
effective mesoscopic theory which relies on a few hypoth-
eses [3,53]. To search for this DPT, we explored the current
statistics of the 2D WASEP using massive cloning
Monte Carlo simulations [49–51]. In particular, we simu-
lated systems with density ρ0 ¼ 0.3, several system sizes up
to N ¼ 144, and a strong external field E ¼ ð10; 0Þ. The
cloning Monte Carlo method relies on a controlled modi-
fication of the system stochastic dynamics such that the rare
events responsible for a given fluctuation are no longer rare
and involves the parallel simulation of multiple copies of
the system [49–51]. The number of clones needed to
observe a given rare event grows exponentially with the
system size, all the more the rarer the event is [61,62].
In particular, to pick up and characterize reliably the
DPT in the 2D WASEP, we needed the extraordinary
number of Nc ¼ 5.12 × 105 clones evolving in parallel
for a long time.
According to the MFT, Gaussian current statistics

corresponding to a quadratic DFE μGðzÞ are expected
for z · Âz ≥ Ξc; see Fig. 1 and the discussion above.
This is fully confirmed in Fig. 2, which shows the measured
μðzÞ for N ¼ 144 as a function of z ¼ jzj for different
current orientations ϕ ¼ tan−1ðzy=zxÞ. This confirms that
mild current fluctuations stem from the random super-
position of weakly correlated, localized events which sum
up incoherently to yield Gaussian statistics. Interestingly,
we find a weak dependence of μðzÞ on ϕ in this Gaussian
regime, a clear hallmark of the effective anisotropy men-
tioned above. Indeed, this ϕ dependence can be used to

FIG. 1. Top row: μðλÞ for the 2D WASEP in an external field
E ¼ ð10; 0Þ, as derived from the MFT, in the case of (a) no
anisotropy, ϵ ¼ 0, (b) mild anisotropy, 0 < ϵ < ϵc, and (c) strong
anisotropy, ϵ > ϵc. The projections show the phase diagram in λ
space for each case, and letters indicate the typical spatiotemporal
trajectories in each phase, displayed in the middle row (d)–(f). A
DPT appears between a Gaussian phase (light gray) with
homogeneous trajectories (d) and two different non-Gaussian
symmetry-broken phases for low currents characterized by
jammed density waves (e),(f). The first DPT is second-order,
while the two symmetry-broken phases are separated by lines of
first-order DPTs. Bottom row: Phase diagram in current space for
anisotropy ϵ ¼ 0 (g),(h) and 0 < ϵ < ϵc (i). The coexistence
pockets (white) are apparent.
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estimate that ϵ ≈ 0.038 properly describes the observed
weak anisotropy; see the inset in Fig. 3. This effective
anisotropy is slightly larger than the critical anisotropy
ϵc ≈ 0.035, beyond which a single symmetry-broken phase
dominates the non-Gaussian regime [see Fig. 1(c)], an
observation consistent with additional results below. The
Gaussian, incoherent fluctuation regime ends up for
z · Âz < Ξc, where clear deviations from the quadratic
form μGðzÞ become apparent; see Fig. 2. This change of

behavior, in excellent agreement with MFT predictions,
signals the onset of the DPT to a symmetry-broken phase
characterized by non-Gaussian current fluctuations and
traveling density-wave trajectories. A clear convergence
to the MFT prediction is observed in the Gaussian and non-
Gaussian regimes as both N and the number of clones Nc
increase; see the inset in Fig. 2.
The smoking gun of any continuous phase transition,

such as the DPT here reported, is a smooth but apparent
change in an order parameter [1]. To distinguish between
the different jammed density-wave phases which are
expected to appear for low current fluctuations [see
Figs. 1(e) and 1(f)], we introduce now a structural order
parameter capable of discerning the jam direction, if any
(see [53] for a detailed description). In particular, we take
1D slices of our 2D system along a given direction, α ¼ x
or y, and compute the center-of-mass position for each
slice. Clearly, a small average dispersion hσ2αiλ of the
centers of mass across the different slices signals the
formation of a jam along the α direction [Figs. 1(e) and
1(f)], while random homogeneous configurations typical of
the Gaussian phase [Fig. 1(d)] are characterized by a large
dispersion. We hence define the tomographic α coherence
(i.e., the center-of-mass coherence across the different
slices along the α axis) as ΔαðλÞ≡ 1 − hσ2αiλ, and Fig. 3
shows this order parameter measured in simulations across
the DPT for α ¼ x, y. Remarkably, ΔxðzÞ increases steeply
for z · Âz ≤ Ξc and all angles ϕ of the current vector, while
ΔyðzÞ remains small and does not change appreciably
across the DPT, clearly indicating that only one of the two
possible symmetry-broken phases appear in our simula-
tions, as expected from the MFT in the supercritical
anisotropy regime ϵ > ϵc and consistent with the measured
effective anisotropy ϵ ≈ 0.038 > ϵc; see the inset in Fig. 3.
Note also that the behavior of both ΔαðzÞ across the DPT is
consistent with the emergence of a traveling wave with
structure in 1D and not in 2D, as in the latter case both
ΔαðzÞ should increase upon crossing zcðϕÞ. Moreover, the
steep but continuous change of ΔxðzÞ across the DPT is
consistent with a second-order transition, in agreement with
the MFT.
Summary.—We have presented compelling evidence of a

complex dynamical phase transition in the current vector
statistics of a paradigmatic model of transport in 2D,
characterizing its properties with the tools of the macro-
scopic fluctuation theory. Our analysis of MFT equations
predicts a rich phase diagram, with nonanalyticities of first-
and second-order type in the current dynamical free energy,
accompanied by emergent order in different symmetry-
broken phases characterized by traveling density waves.
This richness is aided by the complex interplay among
anisotropy, external field, and vector currents in d > 1, key
features missing in the simpler models studied in the past.
Interestingly, our results show that order and coherence
may emerge out of an unlikely fluctuation, proving the

FIG. 2. Main: μðλÞ vs z ¼ jλþEj as obtained in simulations
for N ¼ 144, Nc ¼ 5.12 × 105, and different ϕ ¼ tan−1ðzy=zxÞ,
together with MFT predictions for anisotropy ϵ ¼ 0.038. A DPT
from a Gaussian regime (light-gray ribbon) to a symmetry-
broken, non-Gaussian phase (blue ribbon) is apparent upon
crossing zcðϕÞ, with zc · Âzc ¼ Ξc (green vertical stripe). Differ-
ent ϕ correspond to different MFT lines within the shaded
ribbons. Inset: Convergence to the ϕ ¼ 0 MFT prediction (blue
line) for N ¼ 144 as Nc increases (upward triangle) and for
optimal Nc as N increases (downward triangle).

FIG. 3. Tomographic α coherences, with α ¼ x, y, as a function
of z for different current angles ϕ measured for N ¼ 100 and
E ¼ ð10; 0Þ. Inset: DFE μðzÞ vs z in the Gaussian regime for
ϕ ¼ 0; π=4; see Fig. 2. Solid (dashed) lines are MFT predictions
with anisotropy ϵ ¼ 0.038 (ϵ ¼ 0).
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deep connection between rare events and self-organized
structures which enhance their probability. This is expected
to be a general feature of many complex dynamical systems
[45]. The mapping between exclusion processes and dual
quantum spin systems [63–66] suggests a connection
between the DPT here uncovered and a rich quantum
phase transition yet to be explored. It would be also
interesting to determine the universality class of this
DPT and the dynamical exponents of the different fluc-
tuation phases [7,17].
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