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Since the discovery of long-time tails, it has been clear that Fourier’s law in low dimensions is
typically anomalous, with a size-dependent heat conductivity, though the nature of the anomaly
remains puzzling. The conventional wisdom, supported by recent results from nonlinear fluctuating
hydrodynamics, is that the anomaly is universal in 1d momentum-conserving systems and belongs in
the Kardar-Parisi-Zhang universality class. Here we challenge this picture by using a novel scaling
method to show unambiguously that universality breaks down in the paradigmatic 1d diatomic
hard-point fluid. Hydrodynamic profiles for a broad set of gradients, densities and sizes all collapse
onto an universal master curve, showing that (anomalous) Fourier’s law holds even deep into the
nonlinear regime. This allows to solve the macroscopic transport problem for this model, a solution
which compares flawlessly with data and, interestingly, implies the existence of a bound on the heat
current in terms of pressure. These results question the use of standard fluctuating hydrodynamics to
understand anomalous Fourier’s law in 1d, offering a new perspective on transport and its anomalies
in low dimensions.

PACS numbers: 44.10.+i, 05.40.-a, 05.70.Ln, 65.20.-w

INTRODUCTION

It’s going to be 200 years since Fourier stated his sem-
inal law [1], but its microscopic understanding still poses
one of the most important and challenging open prob-
lems in nonequilibrium statistical physics, with no rigor-
ous mathematical derivation to date [2–6]. Fourier’s law
establishes the proportionality between the heat current
and the local temperature gradient in a material, with the
proportionality factor defining the heat conductivity κ, a
key material property. While for bulk, three-dimensional
materials κ is well characterized and measured, its sta-
tus in low-dimensional structures is far from clear. In
particular, for low-dimensional systems (d = 1, 2) with
momentum conservation, κ grows with the system size
L, diverging in the thermodynamic limit and thus lead-
ing to anomalous heat transport [3–6]. The understand-
ing of this anomaly has attracted a lot of attention in
recent years [3–39], not only because it is expected to
shed light on the key ingredients behind Fourier’s law
at a fundamental level, but also because of its tech-
nological relevance in low-dimensional real-world mate-
rials, the most noteworthy being graphene [7–10], but
with other important examples ranging from molecular
chains [11] and carbon nanotubes [12] to polymer fibers
[13, 14], nanowires [15, 16] and even spider silk [17], to
mention just a few; see [6] for a recent review. From a
theoretical perspective, the low-dimensional anomaly in
heat transport can be linked to the presence of strong
dynamic correlations (or long-time tails) in fluids and
lattices [18–20], though a detailed understanding has re-
mained elusive for decades. The prevailing picture, how-
ever, is that anomalous heat transport in 1d momentum-
conserving systems is universal and within the Kardar-
Parisi-Zhang (KPZ) universality class [3–6], an idea rein-

forced by recent breakthroughs from nonlinear fluctuat-
ing hydrodynamics (nFH) [21–27]. In particular, κ ∼ Lα
with α = 1/3 is expected in the general case, though
a second universality class with α = 1/2 appears under
special circumstances (as e.g. for zero-pressure systems
[22, 28–32]); see also [40].

Here we challenge this picture by using a novel scaling
method to offer a high-precision measurement of the con-
ductivity anomaly exponent in a paradigmatic 1d model
of transport. Compared to previous attempts at mea-
suring the anomaly exponent, most based on linear re-
sponse theory and hence critically-dependent on a large
system-size limit (which is in fact never attained) [37],
our method takes full advantage of the nonlinear charac-
ter of the heat conduction problem in a natural way, ac-
counting with striking simplicity for all finite-size effects.
Our model is the archetypical 1d diatomic hard-point gas
in a temperature gradient [44–53], which is characterized
by the mass ratio µ = M/m > 1 between neighboring
particles. We unambiguously show below that, contrary
to the standard lore, this model does obey (anomalous)
Fourier’s law for a broad range of temperature gradients,
even deep into the nonlinear regime, in the sense that the
heat current J is proportional to the local temperature
gradient,

J = −κL(ρ, T )
dT (x)

dx
, (1)

with a well-defined local conductivity functional
κL(ρ, T ) = Lα

√
T/mk(ρ). This is proven by collapsing

onto a striking universal master curve the density and
temperature profiles measured for a large set of system
sizes, number densities and temperature gradients. Such
compelling collapse offers a high-precision measurement
of the anomaly exponent α, which remarkably turns out
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to be non-universal, depending non-monotonously on the
mass ratio µ. This surprising but clear-cut result hence
signals the breakdown of the universality claimed for 1d
anomalous Fourier’s law on the basis of nFH. The ob-
served scaling allows to solve the macroscopic transport
problem for this model, and we obtain analytic expres-
sions for the universal master curve (and the hydrody-
namic profiles) which exhibit an excellent agreement with
measurements. Interestingly, this solution immediately
implies the existence of a nontrivial bound on the heat
current in terms of the pressure P . All together, these
results offer a completely new and surprising perspective
on transport and its anomalies in low dimensions, open-
ing new avenues of research.

RESULTS

We hence consider a 1d Hamiltonian model fluid con-
sisting in N hard-point particles with alternating masses,
m = 1 and M = µm > 1, moving ballistically in a line
of length L in between elastic collisions with neighboring
particles. The fluid is coupled to two stochastic ther-
mal walls [3–5] at the boundaries, x = 0, L, operating
at different temperatures T0 > TL = 1 and thus driving
the system to an inhomogeneous nonequilibrium steady
state characterized by nonlinear density and temperature
profiles, ρ(x) and T (x) respectively [3–6]. Interestingly,
these profiles can be shown to follow from an universal
master curve [33], independent of the driving gradient
and the fluid’s density, provided that (i) Fourier’s law
(1) and (ii) macroscopic local equilibrium (MLE) hold
(see Appendix A), a general result valid for arbitrary d-
dimensional fluids and confirmed in simulations of hard
disks [33], which also holds in the reverse direction. MLE
implies that the stationary density and temperature fields
are locally coupled via the equilibrium equation of state
(EoS) [54], which for the 1d diatomic hard-point fluid
simply takes the form of the ideal gas EoS, P = ρT . In
this way, iff hypotheses (i)-(ii) hold, together with the
scaling ansatz (iii) κL(ρ, T ) = Lα

√
T/mk(ρ), we expect

all density and temperature profiles to scale as

ρ(x) = F

(
ψx

Lα
+ ζ

)
;

T (x)

P
= 1/F

(
ψx

Lα
+ ζ

)
(2)

with ψ = J
√
m/P 3/2 the reduced current and ζ a con-

stant, see Appendix A. This scaling defines an universal
master curve F (u) from which all profiles follow. Alter-
natively, Eq. (2) implies that all measured density and
temperature profiles can be collapsed onto an universal
master curve after appropriately scaling space by L−αψ,
with ψ measured in each case, and shifting the curve by a
constant ζ. The resulting collapse is expected to be very
sensitive to the anomaly exponent α, and this suggests
a simple scaling procedure to measure both α and the
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FIG. 1. (Color online) Temperature (left) and density (right)
profiles measured for (from top to bottom) T0 = 2, 5, 10, 20
and varying η and N , for a mass ratio µ = 3.

universal master curve in simulations, confirming at the
same time our starting hypotheses.

In order to do so, we performed a large num-
ber of event-driven simulations of the 1d diatomic
gas for a broad set of boundary temperatures T0 =
2, 5, 10, 20 (with fixed TL = 1), global number den-
sities η ≡ N/L = 0.5, 1, 2, 3, numbers of particles
N = 101, 317, 1001, 3163, 10001, and different mass ra-
tios µ = 1.3, 1.618, 2.2, 3, 5, 10, 30, 100. We measured lo-
cally a number of relevant observables including the local
kinetic energy, number density, virial pressure and en-
ergy current density, as well as the energy current flow-
ing through the thermal reservoirs at x = 0, L and the
pressure exerted on these walls. We stress that observ-
ables measured at the walls agree in all cases with their
bulk counterparts, which are constant along the system.
For local measurements, we divided the fluid in 30 vir-
tual cells, a constant number independent of other sys-
tem parameters. The simulation time unit was set to
t0 =

√
M/(2TLη2), the mean free time of a heavy par-

ticle in a cool environment, and time averages were per-
formed every 10t0 for a total time of (108 − 109)t0, after
a relaxation time of 103t0 which empirically guarantees
relaxation to the steady state. Statistical errors are com-
puted in all cases at 99.7% confidence level, and error
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FIG. 2. (Color online) Top: Density profiles for µ = 3
∀N,T0, η as a function of L−αψx with α = 0.297, before (light
gray) and after (dark red) the shifts ζ. Inset: Same as be-
fore, but for the reduced temperature profiles. Note that the
shifts are those obtained from density profiles. In both cases
the data collapse is remarkable. Bottom: Optimal collapse
of density and reduced temperature profiles for µ = 3 and
three different exponents α = 0, 0.297, and 1/3. The superior
collapse for α = 0.297 is apparent. The abscisa for α = 0 has
been divided by a factor 10 for the sake of clarity.

bars are shown if larger than the plotted symbols. Fig.
1 shows the temperature and density profiles measured
for µ = 3 and varying T0, η and N (similar data are ob-
tained for all other µ’s). These profiles are clearly non-
linear, and exhibit strong finite-size effects. However, the
measured local density and temperature in each case are
tightly coupled by the equilibrium EoS, P = ρ(x)T (x),
with P the finite-size pressure measured in each simu-
lation, see Appendix B, validating hypothesis (ii) above
and confirming the robustness of MLE far from equilib-
rium [54]. Note that the thermal walls act as defects
(akin to fixed, infinite-mass particles) which disrupt the
structure of the surrounding fluid, defining two bound-
ary layers where finite-size corrections mount up. To an-
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FIG. 3. (Color online) Mass ratio dependence of the anomaly
exponent measured from scaling (©). The non-monotonous
behavior of α vs µ clearly signals the breakdown of universal-
ity for anomalous Fourier’s law in 1d. The exponent measured
from the power-law fit for k(ρ) is also shown (2), see Fig. 5,
being fully compatible with the measured α in each case. The
line is a guide to the eye. Inset: The collapse metric D(α, µ)
as a function of α exhibits a deep and narrow minimum for
each µ (notice the logarithmic scale in z-axis), offering a pre-
cise measurement of the anomaly exponent and its error.

alyze below the fluid’s scaling behavior, we neglect data
from these boundary layers (up to 7 cells adjacent to
each wall), focusing the analysis on the remaining bulk
profiles ρ(x) and T (x). For a given exponent α, each
bulk density profile ρ(x) is then plotted as a function of
L−αψx (with ψ = J

√
m/P 3/2 measured in each case, see

Appendix B), and shifted by a constant ζ to achieve an
optimal collapse among all scaled profiles, see top panel
in Fig. 2. The vector of optimal shifts ζ0 for fixed α and
µ is obtained by minimizing a standard collapse metric
D(ζ;α, µ) for the density profiles, see Appendix C, which
roughly speaking measures the relative average distance
among all pairs of overlapping curves [55], and the same
shifts are used to collapse reduced temperature profiles,
T (x)/P . The resulting data collapses are very sensitive
to α, see bottom panel in Fig. 2, so the the true anomaly
exponent α can be measured with high precision for each
mass ratio µ by minimizing D(α, µ) ≡ D(ζ0;α, µ) as a
function of α. In fact, the distance function D(α, µ) has a
pronounced minimum in α for each µ, see inset in Fig. 3,
whose width and depth allow to estimate the exponent er-
ror, see Appendix C. Remarkably, the measured anomaly
exponent is non-universal, depending non-monotonously
on the mass ratio, α = α(µ), see main panel in Fig. 3
and Table I in Appendix B, growing first from small val-
ues at low µ to a maximum α ≈ 0.3 < 1/3 for µ = 2.2,
and decaying afterwards to an asymptotic value α ≈ 1/4
for large µ. Fig. 4 shows the master curves obtained
from density and reduced temperature bulk profiles for
different µ’s by using the measured exponent α in each
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FIG. 4. (Color online) Main: Collapse of density profiles for
each µ obtained by using the measured α in each case, see
Fig. 3. The master curves have been shifted vertically for
better comparison. In all cases, the data collapse is excellent.
The lines are theoretical predictions, see main text. Inset:
Collapse of reduced temperature profiles for the same condi-
tions, and theoretical curves. In all cases, each curve for fixed
µ contains 1280 points measured in 80 different simulations
for varying N , T0 and η. The abscisas for the µ = 1.3 data
have been divided by 4 to better visualize the results.

case, and in all cases the resulting collapses are impres-
sive, confirming that Fourier’s law (1) rules heat trans-
port in this 1d model. Moreover, this surprising but un-
ambiguous result also calls into question the prevailing
idea that the anomaly in 1d heat transport is universal,
a claim compatible with recent results from nFH [21–28].
We discuss below a plausible origin for such universality
breakdown [27, 34, 35].

We next focus on the density dependence of the heat
conductivity κL(ρ, T ) = Lα

√
T/mk(ρ). Interestingly,

the dynamics of 1d hard-point fluids remains invariant
under different scalings (of temperature, velocities, space,
mass, etc.) [5]. Using such invariance, it is easy to show
rigorously that κL(ρ, T ) =

√
T/mf(N,µ), with f some

adimensional function of N and µ. This in turn implies,
via dimensional analysis, that necessarily k(ρ) = aρα,
with a some constant. This is fully confirmed in local
measurements of the density dependence of the heat con-
ductivity, from which we determine a = a(µ), see Ap-
pendix B and Table I therein. This observation opens
the door to a full solution of the macroscopic heat trans-
port problem for this model, see Appendix A. In par-
ticular, the universal master curve F (u) of Eq. (2) is
F (u) = (1 − u/ν∗)2/(2α−3), with ν∗ ≡ a/( 3

2 − α). This
master curve depends on µ through the mass ratio depen-
dence of α and a. Fig. 4 displays the predicted master
curves, with the only input of the measured α(µ) and
a(µ), and the agreement with collapsed data is stunning.
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FIG. 5. (Color online) Test of the macroscopic theory predic-
tion for the heat current, see Eqs. (16)-(17) in Appendix A.

For each µ, JL1−α√m/(ηαT (ef) 3/2
L ) is plotted vs T

(ef)
0 /T

(ef)
L ,

with J the measured current, and T
(ef)
0,L the effective bound-

ary temperatures for bulk profiles measured in each case. The
agreement between data and theory is excellent in all cases.

Closed forms for temperature profiles follow as

T (x) =

[
T

3
2−α

0 − J
√
m

ν∗Pα
L−αx

] 2
3−2α

, x ∈ [0, L] , (3)

with density profiles given as ρ(x) = P/T (x), and P
and J simply written in terms of external parameters
T0, TL, η, and L, see Appendix A. Note that this novel
macroscopic solution is compatible with known scaling
symmetries of 1d hard-point fluids [5]. Interestingly,
the master curve F (u) exhibits a vertical asymptote at
u = ν∗, and this immediately implies the existence of
a bound on the scaled current in terms of pressure,

L1−αJ ≤ ν∗T
3/2−α
0 Pα/

√
m ∀ T0, TL, η, L, see also Eq.

(3).
Eq. (3) can be readily tested against data, see Ap-

pendix B, confirming that the bulk T (x)3/2−α is linear in
x with slope−JL−α

√
m/(ν∗Pα), with J and P measured

in each case, but with effective boundary temperatures
slightly different from the thermal wall temperatures in

each case, T
(ef)
0,L 6= T0,L. This shows that the measured

bulk temperature (and density) profiles for any finite N
are in fact those of a macroscopic diatomic hard-point gas
obeying (1) but subject to some effective, N -dependent
boundary conditions controlled by the boundary layers.
Indeed, the striking collapse of data and the agreement
with the macroscopic master curve in Fig. 4 strongly
support this conclusion. This is a manifestation of the
bulk-boundary decoupling phenomenon already reported
in hard disks out of equilibrium [33], which enforces the
macroscopic laws on the bulk of the finite-sized fluid.
Our macroscopic theory also offers a precise prediction
for the heat current in terms of the external param-
eters, see Appendix A. In particular, it predicts that
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JL1−α√m/(ηαT 3/2
L ) is a well-defined function of T0/TL.

Fig. 5 tests this prediction against data, using the effec-

tive boundary temperatures T
(ef)
0,L measured above, and

the agreement is excellent ∀N,T0, η for each µ.

DISCUSSION

Some comments are now in order. The excellent col-
lapse of our data confirms that Fourier’s law (1) holds
in this model with a well-defined (albeit size-dependent)
local conductivity functional κL(ρ, T ) = a(ρL)α

√
T/m.

This is true even for finite N (as small as O(102)!) and
under large temperature gradients, extending the range
of validity of (anomalous) Fourier’s law deep into the non-
linear regime and evidencing the absence of higher-order
(Burnett-like) corrections in 1d [33]. Furthermore, we
provide strong evidence supporting the breakdown of uni-
versality in anomalous Fourier’s law for 1d momentum-
conserving systems. This shows that the universality ob-
served in the spatiotemporal propagation of equilibrium
fluctuations in 1d, predicted by nFH and tested in simu-
lations [22–27], does not carry over however to the heat
conductivity anomaly in 1d nonequilibrium steady states.
The universality breakdown reported in this work may
hint at a possible existence of hidden conservation laws
in the diatomic hard-point gas and hence further slow-
evolving fields beyond the standard hydrodynamic ones.
Such intriguing behavior has been already reported in the
nonequilibrium response of this model to a shock wave
excitation [34, 35]. Moreover, as recently suggested [27],
the existence of further conservation laws may give rise
to an infinite discrete (Fibonacci) family of anomaly ex-
ponents that can coexist in different regions of parameter
space for a given model [27], a behavior reminiscent of our
results. The question remains as to how to reconcile the
local nature of Fourier’s law with the non-local Lα-term
in κL(ρ, T ). Our data suggest that this could be achieved
in a nonlinear fluctuating hydrodynamics description of
the problem derived via an anomalous, non-diffusive hy-
drodynamic scaling of microscopic spatiotemporal vari-
ables, x → x/L1−α and t → t/L2−3α [56]. We also
mention that recent results suggest yet another meso-
scopic description of anomalous transport in 1d in terms
of fractional diffusion equations and/or heat carriers with
Lévy-walk statistics [57–60]. As far as we know, this de-
scription does not seem compatible with the scaling and
data collapses observed in this work.

The scaling method here used can be implemented to
study transport in any type of fluid or lattice system in
arbitrary dimension, offering a clean procedure to ob-
tain asymptotic transport coefficients and hence open-
ing the door to a deeper understanding of anomalous
transport in low dimensions. In particular, this scaling
method takes full advantage of the nonlinear character
of the transport problem, accounting for all finite-size ef-

fects and avoiding additional hypotheses underlying the
usual linear-response-based measurements, which lead to
strong finite-size corrections [37], running effective ex-
ponents [53], etc. In this sense it would be interesting
to apply a similar scaling analysis to other paradigmatic
models of heat transport in low dimensions, as e.g. the
Fermi-Pasta-Ulam model of anharmonic oscillators and
the hard-square or -shoulder potentials [3–5], where the
universality breakdown here reported can be further in-
vestigated. The role of conservative noise [59, 60] as a
smoothing mechanism to get rid of non-hydrodynamic,
hidden conservation laws should be also investigated.
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APPENDIX A
Scaling in Fourier’s law

In this Appendix we will show that the stationary den-
sity and temperature profiles of the 1d diatomic hard-
point fluid driven out of equilibrium by an arbitrary tem-
perature gradient follow from an universal master curve,
provided that three simple hypotheses hold (see below).
It will be then trivial to show that the reverse statement
also holds true, i.e. that a nonequilibrium 1d fluid whose
density and temperature profiles collapse onto an univer-
sal master curve is bounded to obey the three mentioned
properties. These hypotheses are:

(i) Fourier’s law: In the steady state, the nonequi-
librium fluid sustains a non-vanishing heat current
J proportional to the temperature gradient

J = −κL(ρ, T )
dT (x)

dx
, x ∈ [0, L] , (4)

with κL(ρ, T ) a well-defined local conductivity
functional which may depend on L.

(ii) Macroscopic local equilibrium (MLE): This
amounts to assume that local thermodynamic equi-
librium holds at the macroscopic level, in the sense
that the local density and temperature are related
by the equilibrium equation of state (EoS) [54]. For
the 1d diatomic hard-point gas studied in this pa-
per, it is simply the ideal gas EoS

P = ρT , (5)

with P the fluid’s pressure.

(iii) Heat conductivity scaling: Due to the homo-
geneity of the interaction potential, the heat con-
ductivity of the 1d diatomic hard-point gas ex-
hibits a well-known density temperature separa-
bility [33]. Moreover, standard dimensional anal-
ysis arguments show that κ ∝

√
T/m [33], and the

known dimensional anomaly for transport implies
in turn that κ ∝ Lα at leading order. We now raise
these arguments to a formal scaling ansatz

κL(ρ, T ) = Lα
√
T/mk(ρ) , (6)

with k(ρ) a function solely dependent on density.
Note that this ansatz discards possible subleading
corrections in L.

We may now use the MLE property (ii) and the con-
ductivity scaling ansatz (iii) to write Fourier’s law in
terms only of the density field. In particular, using the
EoS to write T (x) = P/ρ(x), we obtain

J
√
m

P 3/2
L−α = G′(ρ)

dρ

dx
=
dG(ρ)

dx
, (7)

whereG′(ρ) ≡ k(ρ)ρ−5/2 and ′ denotes derivative with re-
spect to the argument. This equation, together with the
boundary conditions for the density field, ρ(x = 0, L) =
ρ0,L, which can be inferred from the constraints

T0

TL
=
ρL
ρ0

, (8)

η =
1

L

∫ L

0

ρ(x)dx =

∫ ρL

ρ0

ρG′(ρ)dρ

G(ρL)−G(ρ0)
, (9)

completely define the macroscopic problem in terms of
ρ(x). Note that the externally controlled parameters
in the problem are the temperatures of the boundary
reservoirs, T0,L, and the global number density η. The
pressure and the heat current can be now obtained as
P = T0 ρ0 and J = P 3/2[G(ρL)−G(ρ0)]/(L1−α√m).

A simple yet striking consequence of hypotheses (i)-
(iii) can be now directly inferred from Eq. (7). In
fact, as both J and P are state-dependent constants,
this immediately implies that G[ρ(x)] = ψL−αx+ ζ, i.e.
G[ρ(x)] is a linear function of position x ∈ [0, L], with
ψ = J

√
m/P 3/2 the reduced current and ζ = G(ρ0) a

constant. Equivalently,

ρ(x) = F

(
ψ

Lα
x+ ζ

)
, (10)

where we have assumed that the function G(ρ) has a
well-defined inverse F (u) ≡ G−1(u). This assumption
seems reasonable as steady density profiles are typically
well behaved and readily measurable in simulations and
experiments, see e.g. Fig. 1 in the main text. Therefore,
according to Eq. (10), there exists a single universal mas-
ter curve F (u) from which any steady state density pro-
file follows after a linear spatial scaling x = Lα(u− ζ)/ψ.
This scaling behavior is automatically transferred to tem-
perature profiles via the local EoS P = ρ(x)T (x), so

T (x)

P
=

1

F

(
ψ

Lα
x+ ζ

) . (11)
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(a) (b)

(c) (d)

FIG. 6. (Color online) Density (a) and temperature (b) profiles as a function of T0 for η = 1, obtained from the full solution of
the macroscopic heat transport problem for the 1d diatomic hard-point gas, see Eq. (13) and the associated discussion. Also
shown are the η- and T0-dependence of (c) the scaled reduced current, L1−αψ, and (d) the nonequilibrium fluid’s pressure P ,
see Eqs. (15)-(16). All these curves are for a mass ratio µ = 3, for which α = 0.297(6) and a = 1.1633(9), see Table I below.

These scaling laws are independent of the global density
η or the nonequilibrium driving defined by the baths tem-
peratures T0 and TL, depending exclusively on the func-
tion k(ρ) controlling the fluid’s heat conductivity. Al-
ternatively, Eq. (10) implies that any measured steady
density profile can be collapsed onto the universal mas-
ter curve F (u) by scaling space by the scaled reduced
current L−αJ

√
m/P 3/2 measured in each case and shift-

ing the resulting profile an arbitrary constant ζ (similarly
for temperature profiles). This suggests a simple scaling
method to obtain the universal master curves in simu-
lations or experiments, a procedure that we implement
in the main text. Note that these results are not lim-
ited to the 1d diatomic hard-point gas; equivalent results
hold for general d-dimensional (non-critical) fluids driven
arbitrarily far from equilibrium, see Ref. [33] for a proof.

Proving the reverse statement, i.e. that a 1d fluid
obeying Eqs. (10)-(11) does fulfill also properties (i)-(iii)
above, is now trivial. In particular, the MLE property
(ii) is automatically satisfied by construction. Moreover,
inverting the scaling in (10) to obtain G[ρ(x)] and dif-
ferentiating this functional with respect to x we arrive
at J = −Lα

√
T/mG′(ρ)ρ5/2T ′(x), where we used that

T (x) = P/ρ(x), see Eqs. (10)-(11). This hence proves
that properties (i) and (iii) also hold, with a heat con-
ductivity given by Eq. (6) with k(ρ) = G′(ρ)ρ5/2.

The combination of our scaling ansatz for the heat con-
ductivity and well-known dynamical invariances of 1d
hard point fluids under scaling of different magnitudes
(as e.g. temperature, velocities, mass, space, etc.) re-

sults in a well-defined density dependence for the heat
conductivity, see main text, namely k(ρ) = aρα, with a
a constant of O(1). Such power-law dependence, which
reflects the transport anomaly, is fully confirmed in local
measurements of the density dependence of κL, see Ap-
pendix B below, from which we obtain precise estimates
of the amplitude a(µ), see Table I. Such clear-cut ob-
servation, together with the scaling formalism described
above, allows now for a complete solution of the macro-
scopic transport problem for this model, written in terms
of the external control parameters, namely T0, TL, η and
L, together with α and a. In fact, recalling that G′(ρ) =
k(ρ)ρ−5/2 we obtain that G(ρ) = ν∗(1 − ρα−3/2), with
ν∗ ≡ a/( 3

2 − α) and where we have chosen an arbitrary
constant such that F (0) = 1 = G−1(0). The universal
master curve hence reads

F (u) = (1− u

ν∗
)

2
2α−3 . (12)

This prediction is compared with the measured master
curves in Fig. 4 of the main text, and the agreement is
excellent for all mass ratios µ. Eq. (12) implies in turn
that density profiles can be written as

ρ(x) =

[(
P

T0

)α− 3
2

− ψ

ν∗
L−αx

] 2
2α−3

, (13)

while temperature profiles simply follow from T (x) =
P/ρ(x), namely

T (x) =

[
T

3
2−α

0 − J
√
m

ν∗Pα
L−αx

] 2
3−2α

. (14)



9

1 10
ρ

0.999

1

1.001

1.002

ρT/P

0 5 10 15
ρ

0

1

2

3

4

5

T/P

1/ρ

FIG. 7. (Color online) Measured local reduced temperature,
T (x)/P , plotted as a function of the associated local density
ρ(x) for µ = 3 and ∀T0, η,N , corresponding to all profiles
displayed in Fig. 1 of the paper and summing up to 2400
data points from 80 different simulations. An excellent data
collapse is obtained which follows with high precision the ex-
pected ideal-gas behavior 1/ρ, plotted as a thin line. Inset:
Scaling plot of ρ(x)T (x)/P vs ρ(x) for the same conditions.
These data show that macroscopic local equilibrium is a very
robust property, even in the presence of strong finite-size cor-
rections on the hydrodynamic profiles.

The calculation is completed by expressing the heat cur-
rent J and the pressure P in terms of the external pa-
rameters by using Eqs. (8)-(9) above. This yields

P = η

( 1
2 − α
3
2 − α

) (
T

3/2−α
0 − T 3/2−α

L

T
1/2−α
0 − T 1/2−α

L

)
, (15)

J =
aηα( 1

2 − α)α

L1−α√m( 3
2 − α)1+α

(T
3/2−α
0 − T 3/2−α

L )1+α

(T
1/2−α
0 − T 1/2−α

L )α
.(16)

The last equation for the current can be rewritten as

J = ηαLα−1m−1/2T
3/2
L hα(T0/TL), with

hα(z) ≡ a
( 1

2 − α)α

( 3
2 − α)1+α

(z3/2−α − 1)1+α

(z1/2−α − 1)α
. (17)

These predictions are fully confirmed by simulations
data, see main text. As a self-consistent check, note that
in the equilibrium limit T0 → TL both the pressure and
the heat current converge to their expected value, namely
P = ηTL and J = 0. Fig. 6 shows the density and tem-
perature profiles predicted for a macroscopic diatomic
hard-point fluid as a function of T0 for η = 1, as well
as the pressure and the scaled reduced current L−αψ as
a function of T0 and η. These plots are obtained for a
particular mass ratio µ = 3, for which α = 0.297(6) and
a = 1.1633(9), see Table I below, and yield an excellent
comparison with simulation data, see Fig. 1 in the main
text and Fig. 8 in Appendix B.

Interestingly, the master curve F (u) obtained above
exhibits a vertical asymptote at u = ν∗, see Eq. (12),

and this implies in turn the existence of a maximal scaled
reduced current ψ∗. Indeed, for the associated density
profile to exist in its whole domain x ∈ [0, L], see Eq.
(13), the following condition must hold

ψ ≤ ν∗

L1−α

(
T0

P

)3/2−α

≡ ψ∗

L1−α , (18)

with P expressed as in Eq. (15). This defines a max-
imal scaled reduced current ψ∗, such that the scaled

current L1−αJ ≤ ψ∗P 3/2/
√
m = ν∗T

3/2−α
0 Pα/

√
m

∀ T0, TL, η, L, defining an upper bound on the heat cur-
rent in terms of the nonequilibrium pressure. The maxi-
mal scaled reduced current increases monotonously with
T0, saturating to an asymptotic value in the T0 → ∞
limit, namely

ψ∗ −−−−→
T0→∞

a ( 3
2 − α)1/2−α

[η ( 1
2 − α)]3/2−α

. (19)

Note however that both L1−αJ and P diverge as T0 →
∞, though ψ∗ remains finite.

To end this section, we remark that Eqs. (12)-(16) con-
stitute the solution of the macroscopic transport problem
for this model. A comparison of the predicted density
and temperature profiles, see Eqs. (13)-(14), with the
finite-size data of Fig. 1 in the main text will allow us
below to investigate the bulk-boundary decoupling phe-
nomenon in detail by quantifying the jump between the
effective boundary conditions imposed by the boundary
layers on the bulk fluid and the empirical bath tempera-
tures.

APPENDIX B
Some additional results

In this Appendix we provide additional data, obtained
from our extensive simulations of the 1d diatomic hard-
point fluid model, which support our conclusions in the
main text.

Our first goal is to test the macroscopic local equilib-
rium (MLE) property directly from our data. As de-
scribed above, MLE conjectures that local thermody-
namic equilibrium holds at the macroscopic level, in the
sense that the stationary density and temperature fields
are locally related by the equilibrium equation of state
(EoS) [54], which for this model is simply the ideal gas
EoS,

P = ρ(x)T (x) . (20)

In order to test MLE, we hence take the density and tem-
perature profiles of Fig. 1 measured for µ = 3 and differ-
ent T0, N, η, and plot in Fig. 7 the local reduced temper-
ature, T (x)/P , with P the finite-size pressure measured
in each simulation, as a function of the associated local
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density ρ(x). All data, comprising 2400 points from 80
different simulations for widely different systems sizes,
temperature gradients and global densities, collapse onto
a single curve which follows with high precision the ex-
pected ideal-gas behavior 1/ρ, see line in Fig. 7 and inset
therein. Note that, interestingly, the excellent data col-
lapse is mantained also for points within the boundary
layers near the thermal walls. Moreover, similar results
hold for all mass ratios µ studied in this paper. In this
way, the observed high-precision data collapses confirm
the robustness of the MLE property far from equilibrium
[54], even in the presence of important finite size effects,
validating in an independent manner one of the hypothe-
ses underlying the scaling picture of Appendix A.

In addition to density and temperature profiles, see
Fig. 1 in the main text, we also measured in our sim-
ulations the nonequilibrium fluid’s pressure P and the
heat current J flowing through the system (both in the
bulk and at the thermal walls). These observables are
necesary in order to scale the spatial coordinate of the
hydrodynamic profiles using the measured reduced cur-
rent ψ = J

√
m/P 3/2 in each case. Fig. 8 shows the

measured P (a) and ψ (b) as a function of T0 and η for
µ = 3 and different system sizes N . These data refer
to wall observables, though the associated bulk observ-
ables yield completely equivalent results (as otherwise
expected). The comparison of these data with our pre-
dictions in Appendix A is excellent, see Fig. 6 above.

We next focus on the density dependence of the heat
conductivity as parametrized by k(ρ). One can easily
show that k(ρ) = J

√
m[Lα

√
T (x)|T ′(x)|]−1, so for each

set (N,T0, η) and fixed µ we performed discrete deriva-
tives of the measured bulk temperature profile to evaluate
T ′(x) and plotted the previous expression, with J mea-
sured in each case, as a function of the associated ρ(x).
Fig. 9 shows the curves k(ρ) so obtained for different µ,
which display the best collapse when the measured ex-
ponent α(µ) is used. Interestingly the resulting scaling
functions, though somewhat noisy due to discretization
effects, exhibit a clear power-law behavior, k(ρ) = aρβ ,
and the fitted exponent is fully compatible in all cases
with the measured anomaly exponent, β = α(µ), see Fig.
3 in main text and Table I below. These measurements
prove in an independent way that the heat conductivity
of the diatomic hard-point gas does depend indeed on
the local density (in addition to the expected

√
T/m-

dependence). The observed power-law behavior, which
reflects the transport anomaly, is then expected on the
basis of the scaling symmetries of the dynamics of 1d
hard-point fluids, see the main text and Appendix A.

As described previously, we can use that k(ρ) = aρα

to solve the macroscopic transport problem for the 1d
diatomic hard-point fluid. A main prediction of this so-
lution is the form of temperature (and density) profiles
for arbitrary external conditions, see Eqs. (13)-(14). To
test these predictions, we plot T (x)3/2−α vs x, with T (x)

(a)

(b)

N

N

FIG. 8. (Color online) Measured pressure P (a) and reduced

current ψ = J
√
m/P 3/2 (b) as a function of T0 and η for µ = 3

and different system sizes N . Data here refer to wall observ-
ables, though the associated bulk observables yield completely
equivalent results.

the measured temperature profiles for each µ, N , η and
T0. This is predicted to be a straight line with slope
−(3/2 − α)JL1−α√m/(aPα), with J and P the mea-
sured current and pressure, respectively. Such linear de-
pendence is confirmed for bulk temperature profiles in
all cases, with the correct slope, and with the y-intercept
of the line as only fitting parameter (similar results hold
also for density profiles). Fig. 10 shows an example of
this test for µ = 3, η = 1, varying T0 ∈ [2, 20] and two
different system sizes, N = 101 (small) and N = 10001
(large), with excellent agreement in all cases. The fitted

y-intercept yields the effective T
(ef)3/2−α
0 for each pro-

file, and this together with the predicted slope yields

the effective T
(ef)
L . These effective boundary tempera-

tures slightly differ from the thermal wall temperatures

in each case, T
(ef)
0,L 6= T0,L. In this way, the measured

bulk temperature (and density) profiles for any finite N
are in fact those of a macroscopic diatomic hard-point gas
obeying (1) but subject to some effective, N -dependent
boundary conditions controlled by the boundary layers.
This is a manifestation of the bulk-boundary decoupling
phenomenon already reported in hard disks out of equi-
librium [33], which enforces the macroscopic laws on the
bulk of the finite-sized fluid.

Using the previous approach, we measured the effective

T
(ef)
0,L ∀µ,N, η and T0. As shown in the main text, these
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FIG. 9. (Color online) Density dependence of heat conduc-
tivity as captured by k(ρ). Light gray points show the curves
obtained for µ = 3 before scaling data by L−α along the y-
axis, while dark color curves show the scaled curves for each
µ. A power-law behavior is apparent in all cases. Dashed
lines are power-law fits to the data, see main text.

µ α β a

1.3 0.108 (9) 0.109 (1) 11.105 (8)
1.618 0.242 (23) 0.2408 (18) 2.307 (3)
2.2 0.308 (5) 0.3068 (11) 1.1765 (9)
3 0.297 (6) 0.2964 (11) 1.1633 (9)
5 0.266 (11) 0.2641 (12) 1.2622 (12)
10 0.260 (14) 0.2632 (19) 0.9874 (14)
30 0.258 (18) 0.257 (1) 0.5942 (12)
100 0.265 (22) 0.2648 (23) 0.3095 (5)

TABLE I. Measured values of the anomaly exponent α and
its error for different mass ratios µ, see Fig. 3. Also shown
are the fitted exponent and amplitude of the power-law den-
sity dependence of the conductivity, k(ρ) = aρβ , see Fig. 5.
Notice that in all cases β = α within error bars.

effective boundary conditions can now be used in turn to
test the theoretical prediction for the current in terms of
the external parameters, see Eqs. (16)-(17), and we find
an excellent agreement in all cases, see Fig. 5 in the main
text.

Finally, Table I summarizes the values of the anomaly
exponent α as a function of the mass ratio µ measured
from the optimal collapse of scaled density profiles, see
Figs. 2-3. Table I also displays, for each µ, the exponent
β and amplitude a of the power-law fit to the density
dependence of the conductivity, k(ρ) = aρβ , see Fig. 5
in the paper. In all cases β ≈ α, and errors are included
in all measurements.

0 0.2 0.4 0.6 0.8 1
x/L

0

10

20

30

40

T(
x)

3/
2-

α

N=10001
N=101

FIG. 10. (Color online) Measured temperature profiles to
the power (3/2 − α) vs x, for µ = 3, η = 1, varying T0 ∈
[2, 20] and two different system sizes, N = 101 (2) and N =
10001 (©), small and large. Filled symbols correspond to the
bulk, while open symbols signal the boundary layers. Lines
have slope −(3/2 − α)JL1−α√m/(aPα), with J and P the
measured current and pressure in each case, and the only
fitting parameter corresponds to the y-intercept, which yields

T
(ef)3/2−α
0 in each case. Note that T

(ef)
L follows from T

(ef)
0

and the (fixed) slope. The agreement between lines and data
confirm that bulk temperature (and density) profiles for any
finite N are in fact those of a macroscopic diatomic hard-
point gas subject to some effective, N -dependent boundary
conditions controlled by the boundary layers. For µ = 3,
recall that α = 0.297(6) and a = 1.1633(9), see Table I below.

APPENDIX C
A metric to quantify data collapse

In this section we briefly explain the standard metric
used in this work to quantify data collapse. This metric
is based on the collapse distance first proposed in Ref.
[55] and widely used in physics literature, in particular
in order to obtain scaling exponents via a distance mini-
mization procedure.

We hence consider a set of K curves, each one contain-

ing M points, and we denote this set as {{(x(k)
i , y

(k)
i ), i ∈

[1,M ]}, k ∈ [1,K]}. The idea is now to choose an arbi-
trary curve k̄ ∈ [1,K] as reference curve, and proceed to
measure the distance of all other curves k 6= k̄ to this ref-
erence curve along the x-direction. For that we measure
the distance between each point in k and the interpo-
lated point in k̄ with the same y-coordinate. In order
to do so, we have to restrict to points in k overlapping
with the reference curve k̄. Note also that we choose to
measure distances only along the x-direction because the
scaling approach developed in this paper only affects the
x-coordinates of the measured curves, see Appendix A
and Figs. 2 and 4 in the main text. Moreover, since the
chosen reference curve k̄ is completely arbitrary, we re-
peat this procedure for all curves as reference curve, and
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average the resulting distances. In this way, our collapse
metric is defined as [55]

D ≡ 1

`maxNoverl

K∑
k̄=1

K∑
k=1
k 6=k̄

M∑
i=1

i overlap k̄

∣∣∣x(k)
i − x̄

(k,k̄)
i

∣∣∣ , (21)

where x̄
(k,k̄)
i is the (interpolated) x-coordinate of a point

in curve k̄ with y-coordinate equal to y
(k)
i , i.e. the projec-

tion of point (x
(k)
i , y

(k)
i ) of curve k on curve k̄ along the

x-axis. The innermost sum over i in Eq. (21) is restricted
to points in curve k which overlap with curve k̄ along the
y-direction, i.e. those points in k whose y-coordinate
is between the minimum and maximum y-coordinate of

curve k̄. In order to obtain now the projection x̄
(k,k̄)
i in

Eq. (21) any interpolation scheme can be used, though
for our purposes the simplest linear interpolation works
well. In particular, we choose

x̄
(k,k̄)
i =

y
(k)
i −B

(k,k̄)
i

A
(k,k̄)
i

, (22)

with A
(k,k̄)
i and B

(k,k̄)
i the slope and the y-intercept of

the interpolating function,

A
(k,k̄)
i =

y
(k̄)
i+ − y

(k̄)
i−

x
(k̄)
i+ − x

(k̄)
i−

,

B
(k,k̄)
i =

y
(k̄)
i+ x

(k̄)
i− − y

(k̄)
i− x

(k̄)
i+

x
(k̄)
i+ − x

(k̄)
i−

.

The points (x
(k̄)
i± , y

(k̄)
i± ) correspond to the points in the k̄-

curve bracketing point i of k-curve along the y-direction,
see sketch in Fig. 11. To normalize the distance met-
ric, we divide the resulting sums by the total number of
overlapping points, Noverl. Moreover, because the L−α

scaling in the x-coordinate of the measured density and
temperature profiles may affect strongly the total span of
the collapsed curves depending on the anomaly exponent
α used, the collapse metric is also normalized by the total

span in the x-direction of the curve cloud, `max ≡ (xmax−
xmin) with xmax = maxk,i[{x(k)

i }, i ∈ [1,M ], k ∈ [1,K]]

and xmin = mink,i[{x(k)
i }, i ∈ [1,M ], k ∈ [1,K]], i.e. our

distance is relative to the total span of the curve cloud
in the x-direction.

In order to obtain the exponent α characterizing
anomalous Fourier’s law in our 1d fluid, we minimize the
metric (21) for varying mass ratios µ. In fact, the collapse
metric D(α, µ) exhibits a deep and narrow minimum as
a function of α for each µ, see inset to Fig. 3 in the main
text, offering a precise measurement of the anomaly ex-
ponent. Moreover, an estimate of the exponent error can
be obtained from the width and depth of this minimum
[55]. By expanding lnD(α, µ) around the minimum at
α = α0, the width can be estimated as [55]

∆α =
εα0√

2 ln

[
D(α0 ± εα0, µ)

D(α0, µ)

] , (23)

for a given level ε. Here we choose ε = 0.01, so the
estimate for the anomaly exponent is α0 ± ∆α with an
errorbar reflecting the width of the minimum at the 1%
level [55].
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FIG. 11. (Color online) Sketch explaining the metric used to
quantify data collapse, see Eq. (21). This metric estimates
the distance between a curve k (2) and the reference curve k̄
(©) by measuring the average distance between each point in
k and the interpolated point in k̄ with the same y-coordinate
(gray, shaded squares). Note that we restrict to points in k
overlapping with the reference curve k̄, see filled squares. The
distance corresponds in this example to the average length of
the dashed segments.
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