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Scaling laws and bulk-boundary decoupling in heat flow
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When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial,
inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys
strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium
and Fourier’s law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong
temperature gradients, implying that Fourier’s law remains valid in this highly nonlinear regime, with putative
corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws
are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism
which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal
anomaly of the heat conductivity predicted for hard disks.
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The understanding of nonequilibrium behavior remains as
one of the major challenges in theoretical physics, even in
the simplest situations posed by nonequilibrium steady states
(NESSs) [1–8]. The first thing one notices in typical NESSs
(as those obtained for fluids under a temperature gradient)
is the nontrivial, inhomogeneous structure that the system of
interest develops in response to the nonequilibrium driving.
This structure, readily measurable in experiments or simu-
lations, carries information on the governing nonequilibrium
macroscopic laws (e.g., Fourier’s law) which emerge from the
myriad of interacting microscopic constituents. It is therefore
of paramount importance to understand general properties of
these structures, consubstantial to nonequilibrium behavior.
With this idea in mind, we derive here a set of simple yet
general scaling laws for a broad class of d-dimensional fluids
driven far from equilibrium by a temperature gradient. In
particular, we show that the fluid’s density and temperature
profiles follow from two master curves, independent of the
driving force and the system parameters, after a simple
linear scaling of space. This strong result is based on two
mild hypotheses, namely macroscopic local equilibrium and
Fourier’s law, together with a rather general assumption on the
fluid’s equation of state.

We then proceed to test the emerging picture in a quintessen-
tial model, the hard disk fluid. Hard sphere (HS) models
and their relatives are among the most successful, inspiring,
and prolific models of physics, as they contain the essential
ingredients to understand a large class of complex phenomena,
from phase transitions or heat transport to glassy dynamics,
jamming, or the physics of liquid crystals and granular
materials, to mention just a few [6,9–22], turning general
results for these systems even more appealing. Extensive
computer simulations of hard disks under temperature gradi-
ents confirm the above scaling laws with surprising accuracy,
showing that Fourier’s law remains valid for each N even
under strong gradients and despite the marginally divergent
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heat conductivity of hard disks (which has, however, minor
numerical consequences [15,18]). This proves that, at least
for hard disks under quiescent heat transport, the putative
higher-order corrections to Fourier’s law can be accounted
for by a nonlinear conductivity functional; see below. Our
results also reveal a striking decoupling between the bulk
fluid, which behaves macroscopically, and two boundary
layers near the thermal walls, which sum up all sorts of
artificial finite-size and boundary corrections to renormalize
the effective boundary conditions on the remaining bulk.
This bulk-boundary decoupling phenomenon, which probably
characterizes the physics of a large class of fluids, allows one
to obtain reliable measurements of collective properties of
macroscopic systems using data from finite-size simulations.
We illustrate this idea by measuring the hard-disk heat
conductivity for a broad range of densities, confirming its
marginally anomalous

√
ln N behavior in the large-size limit as

a result of the long-time tails [15]. This shows that our scaling
method keeps physically relevant finite-size information while
getting rid of artificial finite-size and boundary corrections.

We hence consider a d-dimensional fluid in a box of linear
size L and global packing fraction η = Nv/Ld , with v the
volume of a fluid’s particle, driven out of equilibrium by two
boundary heat baths (say along the x direction) operating at
different temperatures, T0 > TL; see, e.g., Fig. 1. Our results
below are based on two simple hypotheses, namely (i) local
equilibrium (LE) and (ii) Fourier’s law. In particular, with
hypothesis (i) we assume that LE holds at the macroscopic
level, in the sense that the local density and temperature
are related by the equilibrium equation of state (EOS) Q =
q(ρ,T ), with Q = Pv and P the pressure. This hypothesis has
been recently shown to hold empirically for hard disks under a
broad range of temperature gradients [23]. On the other hand,
Fourier’s law states that, in the steady state, the heat current J

is proportional to the temperature gradient [18,19]; i.e.,

J = −κ(ρ,T )
dT (x)

dx
, x ∈ [0,L], (1)

where κ(ρ,T ) is the thermal conductivity, which may depend
in general on the local temperature T (r) and on the local
packing fraction ρ(r). Fourier’s law (1) formally applies in
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FIG. 1. (Color online) Snapshot of a typical configuration with
N = 7838 hard disks at η = 0.5, subject to a temperature gradient
(T0 = 10, TL = 1). Colors represent kinetic energy.

the limit of small temperature gradients, with higher-order
(Burnett) corrections in the gradient conjectured for stronger
driving [9]. However, our results below suggest that, at least
for quiescent heat transfer, these corrections are absorbed into
a nonlinear conductivity functional, extending the validity of
Fourier’s law deep into the strongly nonlinear regime.

Interestingly, we may use now macroscopic LE to write
Fourier’s law in terms only of the density field. To do so, we
need the EOS to be invertible in the (ρ,T ) range of interest,
an assumption which holds valid for most fluids away from
a critical point. In this case, inverting the EOS Q = q(ρ,T )
yields T = fQ(ρ), with fQ(ρ) a uniparametric curve such that
q[ρ,fQ(ρ)] = Q. Similarly, the heat conductivity follows as
κ(ρ,T ) = κ[ρ,fQ(ρ)] ≡ kQ(ρ), defining another uniparamet-
ric function kQ(ρ). This allows us to rewrite Fourier’s law (1)
as

J = G′
Q(ρ)

dρ

dx
= dGQ(ρ)

dx
, (2)

where G′
Q(ρ) ≡ −kQ(ρ)f ′

Q(ρ) and ′ denotes derivative with
respect to the argument. This equation, together with the
boundary conditions for the density field [24], completely
defines the macroscopic problem in terms of ρ(r). A striking
consequence of hypotheses (i) and (ii) can be now directly in-
ferred from Eq. (2). In fact, as both J and Q are state-dependent
constants, this immediately implies that GQ[ρ(x)] = Jx + ζ ,
i.e., GQ[ρ(x)] is a linear function of position, with slope J and
ζ = GQ(ρ0) an arbitrary constant, or equivalently [25]

ρ(x) = G−1
Q (Jx + ζ ). (3)

Therefore, there exists a single master surface ρ̄Q(y) ≡
G−1

Q (y) in y−Q space from which any steady state density
profile follows after a linear spatial scaling x = (y − ζ )/J .
Furthermore, this scaling behavior is transferred to tempera-
ture profiles via the local EOS, which yields another master
surface T̄Q(y) = fQ[G−1

Q (y)]. These scaling laws, which
completely characterize heat flow in the system of interest, are
independent of the packing fraction η or the nonequilibrium
driving defined by the bath temperatures T0 and TL, depending
exclusively on the uniparametric functions fQ(ρ) and kQ(ρ)
controlling the system macroscopic behavior. Alternatively,
Eq. (3) implies that any measured steady density profile can
be collapsed onto the master surface ρ̄Q(y) by scaling space
by the associated current J and shifting the resulting profile

by an arbitrary constant ζ (similarly for temperature profiles).
This suggests a simple scaling method to obtain the master
curves in simulations and experiments that we exploit below.

For systems with homogeneous interparticle potentials,
V (r) ∝ r−n, both the EOS and the heat conductivity ex-
hibit a well-known density-temperature separability (see Ap-
pendix A) [26], which simplifies the form of the general scaling
laws derived above. In particular, for hard disks the EOS
takes the simpler form Q = T q(ρ), with q(ρ) an unknown
function for which many accurate approximations can be
found in the literature [9,23,27]. The conductivity also takes
the separable form κ(ρ,T ) = √

T k(ρ), where again k(ρ) is
still unknown. A reasonably good approximation is obtained,
however, from Enskog kinetic theory for hard disks [28–30]. It
is then easy to show that, in this case, the above master surfaces
collapse onto a pair of universal curves. In particular, for hard
disks GQ(ρ) = Q3/2G(ρ), with G′(ρ) ≡ k(ρ)q(ρ)−5/2q ′(ρ),
so all density profiles scale as ρ(x) = G−1(ψx + ζ ), with
ψ = J/Q3/2 the reduced current and ζ = G(ρ0). This defines
a master curve ρ̄(y) = G−1(y) from which all density profiles
follow after scaling space as x = (y − ζ )/ψ , irrespective
of the driving gradient or the average density. Moreover,
temperature profiles scale now as T (x)/Q = q[ρ(x)]−1,
defining another master curve T̄ (y) = q[ρ̄(y)]−1. Note that
similar scaling laws hold for any d-dimensional fluid with
homogeneous interactions (including hard hyperspheres); see
Appendix A.

As the density dependence of both the hard-disk EOS
and conductivity are currently unknown, so are the scaling
functions ρ̄(y) and T̄ (y). However, we can measure them
using the previous scaling scheme. To do so, we performed
a large set of event-driven simulations of N ∈ [1456,8838]
hard disks of radius � in a two-dimensional box of unit
size L = 1, with stochastic thermal walls [18] at x = 0,L

at temperatures T0 ∈ [2,20] and TL = 1, respectively, and
periodic boundary conditions along the y direction. The
disk radius is defined by N and the global packing fraction
η = π�2N/L2 ∈ [0.05,0.8] via � = √

η/Nπ , so that we can
approach the N → ∞, thermodynamic limit at constant,
nonzero temperature gradient 	T = |TL − T0|/L and fixed
packing fraction.

We measured locally a number of relevant observables,
including the local average kinetic energy, virial pressure,
and packing fraction, as well as the heat current flowing
through the thermal baths and the pressure exerted on the
walls. Our time unit was set to one collision per particle
on average, and time averages were performed with mea-
surements every 10 time units for a total time of 1 × 106 to
1 × 107, after a relaxation time of 1 × 103 time units, which
was empirically found sufficient to guarantee convergence
to the steady state. For local measurements we divided the
system into 15 virtual cells along the gradient direction, a
fixed number of cells independent of the system parameters.
Such discretization of the underlying continuous density
and temperature profiles introduces some small corrections
(∼0.1%) that we explicitly take into account and subtract (see
Appendix B). Statistical errors in data averages were computed
at a 99.7% confidence level, and in most figures data error
bars are smaller than the plotted symbols (if not, error bars are
shown).
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FIG. 2. (Color online) (a) Temperature profiles for N = 8838,
η = 0.5, and varying T0 ∈ [2,20]. Lines are nonlinear fits of the
form T (x)α = ax + b [31]. Shaded (light grey) areas correspond
to boundary layers. (b) Finite-size effects as captured by δTN (x) ≡
TNmax (x) − TNmin (x), with Nmax = 8838 and Nmin = 1456, for differ-
ent gradients. (c) Density profiles for the same conditions as in (a). (d)
Thermal boundary resistance as a function of N−1/2 for different T0,
and linear fits. (e) Finite-size effects in density profiles, as captured
by δρN (x), are localized near the thermal walls.

Figures 2(a) and 2(c) show the temperature and density pro-
files measured for N = 8838, η = 0.5, and different gradients
	T , which are in general nonlinear. In all cases, the thermal
walls disrupt the structure of the surrounding fluid and this
perturbation, most evident in density profiles, spreads toward
the bulk of the system for a finite penetration depth, defining
two boundary layers near the walls where finite-size effects
concentrate and become maximal; see Figs. 2(b) and 2(e).
The boundary disturbance also appears as a thermal resistance
or temperature gap between the extrapolated TN (x = 0,L) and
the bath temperature T0,L, which decays as N−1/2 for each 	T ;
see Fig. 2(d). In order to perform the scaling analysis, we hence
proceed to eliminate the boundary layers by removing from
the profiles the two cells immediately adjacent to each wall
(see shaded areas in Fig. 2). The bulk profiles ρ(x) so obtained
are then scaled using the reduced current ψ = J/Q3/2 in each
case (calculated by measuring the finite-size heat current J and
reduced pressure Q) and shifted by a constant ζ to achieve a
maximum overlap among all scaled profiles. Figure 3(a) shows
an example of this scaling procedure for density profiles.

Using this method, we were able to collapse onto a single
master curve ρ̄(y) a large amount of data for density profiles
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FIG. 3. (Color online) (a) Bulk density profiles for N = 2900,
T0 = 20, and varying η ∈ [0.15,0.65], as a function of ψx =
Jx/Q3/2. By shifting each curve an amount ζ , a perfect collapse
is obtained which reconstructs the master curve ρ̄(y). (b) Measured
reduced currents ψ and shifts ζ as a function of 	T for different N

and η = 0.5. Finite-size effects are apparent.

gathered for different N , 	T , and η; see Fig. 4(a). Using the
shifts ζ measured for density, all rescaled temperature profiles
also collapsed onto another master curve T̄ (y); see Fig. 4(c).
Strikingly, while the measured J , Q, ψ , and ζ depend on N in a
nontrivial way for each 	T and η [see Fig. 3(b)], the collapsed
data show no appreciable finite-size effects, defining two
master curves as predicted by the macroscopic theory. Such re-
markable collapse thus implies that the measured bulk profiles
are those of a macroscopic hard-disk fluid obeying Fourier’s
law and subject to some renormalized, effective boundary
conditions set by the boundary layers, which sum up all sorts
of finite-size effects and boundary corrections. This striking
bulk-boundary decoupling phenomenon, and the fine structural
self-tuning of the fluid it involves (which goes beyond the
mere presence of boundary layers), is even more surprising in
light of the long-range correlations present in nonequilibrium
fluids [32,33] and is likely to appear in most complex systems
driven out of equilibrium by different boundary reservoirs,
offering a tantalizing method to avoid unreliable finite-size
scaling extrapolations. In fact, a standard finite-size scaling
analysis of our data, aimed at obtaining first the asymptotic
(N → ∞) observables ρ∞(x), J∞, and Q∞ for each 	T and
η to perform then the scaling collapse, fails badly as none
of these observables follows a clear asymptotic behavior. In
addition, the excellent scaling behavior of our data strongly
suggests that, quite remarkably, Fourier’s law (1) remains
empirically valid even under strong temperature gradients,
extending its range of validity deep into the highly nonlinear
regime. This means in particular that the higher-order (Burnett)
corrections conjectured for strong driving are in fact absorbed
into the nonlinear conductivity κ(ρ,T ) in Eq. (1) [34]. The
combination of our scaling analysis and the bulk-boundary
decoupling phenomenon here described hence allows one to
obtain clean properties of macroscopic nonequilibrium fluids
from finite-size simulations or experiments. The two master
curves in Fig. 4 have full predictive power, as we can deduce
from them and the scaling formulas in Eqs. (2) and (3) the
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FIG. 4. (Color online) (a) Collapse of scaled bulk density profiles
measured for N ∈ [1456,8838] and different sets of conditions (see
legend) for a total of more than 4000 data points. (b) Widely different
bulk density profiles measured for different conditions collapse onto
different parts of the same master curve. (c, d) Collapse of bulk
temperature profiles for the same conditions as in (a). Note that the
shifts ζ obtained from the density scaling yield a perfect scaling for
temperature profiles.

density and temperature profiles of a macroscopic hard-disk
system for any set of parameters T0, TL, and η.

Our detailed data for the master curves in Fig. 4 allow also
for a precise measurement of the hard-disk heat conductivity
over a broad range of densities. In fact, by multiplying
Fourier’s law (1) by Q−3/2 and recalling the separable form of
the conductivity, κ(ρ,T ) = √

T k(ρ), it is easy to show that
k(ρ) = [

√
T̄ (y)|T̄ ′(y)|]−1 = J [

√
T (x)|T ′(x)|]−1, with ρ =

ρ̄(y). We hence performed discrete derivatives of the measured
master curve T̄ (y) for each of the different sets of parameters
	T , η, and N , identifying each value of [

√
T̄ (y)T̃ ′(y)]−1 with

the associated ρ = ρ̄(y). Figure 5(a) shows the resulting k(ρ),
which exhibits deviations from the Gass prediction based on
Enskog kinetic theory [28,29], as already reported [30,36].
Furthermore, a very weak but systematic

√
ln N dependence

of k(ρ) is observed [see Fig. 5(b)], confirming with high
accuracy the marginally ∼√

ln N anomalous heat conductivity
predicted for hard disks as a result of the long-time tails in two
dimensions [15]. This shows that our scaling method, together
with the bulk-boundary decoupling mechanism, allows one to
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FIG. 5. (Color online) (a) Density dependence of the heat con-
ductivity as obtained from the rescaled temperature profiles
T̄ (y) ≡ T (y)/Q for different η ∈ [0.05,0.8], T0 ∈ [2,20], and N ∈
[1456,8838]. A well-defined deviation from the Gass result kE(ρ)
based on Enskog kinetic theory (solid line) is found [28,29].
Moreover, a systematic dependence with system size is also observed;
see inset (b) for ρ̄ = 0.5, which scales as

√
ln(N ) for large enough

N [15].

get rid of artificial finite-size effects related to the presence
of boundaries, which result in systematic errors in heat
conductivity measurements, keeping physically relevant bulk
finite-size information.

In summary, we have shown that the nonequilibrium
structure of a broad class of d-dimensional fluids obeys
strikingly simple scaling laws when subject to a temperature
gradient. We expect similar, albeit more complex, scaling
laws to hold in sheared fluids [23]. We have measured the
associated master curves in extensive simulations of hard
disks, uncovering along the way a remarkable bulk-boundary
decoupling phenomenon by which all sorts of finite-size effects
and boundary corrections are renormalized into new boundary
conditions on the remaining bulk fluid, which obeys the
macroscopic laws. The chances are that this subtle structural
mechanism will also characterize the behavior of many real
fluids with finite boundary layers. Finally, our scaling results
remain valid under strong temperature gradients, extending the
range of validity of Fourier’s law deep into the highly nonlinear
regime.
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University of Granada, Junta de Andalucı́a Projects No.
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No. PYR-2012-1 and No. PYR-2014-13 is acknowledged.

APPENDIX A: SCALING FOR INVERSE POWER-LAW
POTENTIALS IN d DIMENSIONS

The density-temperature separability of both the EOS and
the heat conductivity is a main trait of hard disks which has
proved particularly useful to understand their nonequilibrium
scaling behavior starting from the local equilibrium and
Fourier’s law hypotheses. In particular, this property implies
that the general master surfaces ρ̄Q(y) and T̄Q(y), from which
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any density and temperature profile follow arbitrarily far
from equilibrium, in fact collapse onto a pair of universal
master curves, ρ̄(y) and T̄ (y). Here we show for completeness
that such density-temperature separability is generic for d-
dimensional fluids with pairwise inverse power-law (IPL)
interactions, or IPL fluids in short, a property well known in the
literature (see, e.g., Ref. [26]). Therefore, we expect simplified
scaling properties, similar to those of hard disks, to hold for this
broad class of systems of both technological and fundamental
importance. Such scaling laws may have direct applications for
the physics of model glasses and other amorphous materials.

Inverse power-law potentials in d dimensions take the
following form:

V (r) = ε

(
σ

r

)n

, (A1)

where r is the d-dimensional Euclidean distance between two
particles, while ε and σ set the energy and length scales,
respectively. Hard d-dimensional spheres are a particular case
of IPL fluids in the n → ∞ limit,

V (r) =
{

0 if r > σ

∞ if r < σ,

where now σ = 2� with � the radius of the hypersphere. We
show below that both the EOS and the heat conductivity of IPL
fluids exhibit density-temperature separability. In particular,
the IPL EOS can be written as

P = β̃−1q(ρ̃), (A2)

with P the pressure, while the IPL conductivity obeys

κ = σaεb

2m
β̃ck(ρ̃), (A3)

where we have defined the scaled inverse temperature β̃ and
the scaled packing fraction ρ̃ as

β̃ = β�d
eff ,

(A4)
ρ̃ = ρ�d

eff ,

with �eff = σ (βε)1/n an effective size for the soft particles.
The nontrivial exponents in Eq. (A3) are

a = n(2 − d)

2(n + d)
, b = 2 − d

2(n + d)
, c = 2 − 2d − n

2(n + d)
. (A5)

The functions q(ρ) and k(ρ) are dimensionless, and q(ρ) 
 ρ

in the ideal gas limit ρ 
 0. We now proceed to demonstrate the
scaled density-temperature separability of Eqs. (A2) and (A3)
for IPLs.

1. Scaling form for the equation of state

We first show that the canonical partition function of
a system of N particles in a volume V at temperature T

interacting pairwise via the IPL potential (A1) obeys the
following scaling relation:

Z(N,V,T ) =
[(

β

2m

)1/2

�eff

]Nd

Z̄

(
N,

V

�d
eff

)
. (A6)

To prove this scaling, note that the canonical partition function
Z(N,V,T ) is defined as

Z(N,V,T ) = 1

N !hdN

∫
V

dr(N)
∫
Rd

dp(N)e−βH (r(N),p(N)),

(A7)
where r(N) = (r1, . . . ,rN ) and p(N) = (p1, . . . ,pN ) are the
2dN coordinates and momenta, respectively; h stands for
Planck’s constant; and the Hamiltonian is given by

H (r(N),p(N)) =
N∑

i=1

p2
i

2m
+ εσn

∑
i<j

1

|ri − rj |n . (A8)

We now change variables in the integrals of Eq. (A7) to scale
the system parameters out of the exponential. In particular, by
defining

ui =
√

β

2m
pi , xi = ri

�eff
, (A9)

we recover Eq. (A6) with

Z̄
(
N,V̄

) = 1

N !hdN

∫
V̄

dx(N)
∫
Rd

du(N)e−H̄ (x(N),u(N)), (A10)

where the parameter-free, scaled Hamiltonian reads

H̄ (x(N),u(N)) =
N∑

i=1

u2
i +

∑
i<j

1

|xi − xj |n . (A11)

The equation of state can be now obtained from the
canonical partition function as

P = 1

β

∂

∂V
ln Z(N,V,T )|N,T . (A12)

Using here the scaling form (A6) for Z(N,V,T ) we get

P = β−1�−d
eff

∂

∂V̄
ln Z̄(N,V̄ )|N, (A13)

where V̄ = V/�d
eff . The partial derivative of the right-hand

side of the previous equation is necessarily a sole function of
the density ρ̃ = N/V̄ = ρ�d

eff , so ∂V̄ ln Z̄(N,V̄ ) ≡ q(ρ̃) and
we recover the scaled density-temperature separable EOS of
Eq. (A2) for IPL fluids.

2. Scaling form for the thermal conductivity

The thermal conductivity can be written via the Green-
Kubo formula as the time integral of the energy current time
correlation function measured in equilibrium, namely

κ = Vβ2
∫ ∞

0
dt〈J (0)J (t)〉eq, (A14)

where we recall that units are chosen such that the Boltzmann
constant is set to 1. The current is defined as

J = 1

mV

N∑
i=1

⎡
⎣εipx,i − 1

2

∑
j =i

(rij · pi)
rx,ij

rij

V ′(rij )

⎤
⎦ , (A15)

where rij = |ri − rj | and εi = p2
i /2m + 1/2

∑
j =i V (rij ) is

the total energy of particle i. Moreover, we may write the
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current at time t in terms of the current at time 0 as
J (t) = exp(+tL)J (0), where we have used the system time
evolution operator defined in terms of the system Liouvillian,

Lb = {b,H } =
∑
i,α

[
∂H

∂piα

∂b

∂riα

− ∂H

∂riα

∂b

∂piα

]
, (A16)

with b an arbitrary dynamical function defined in phase space
and {·,·} the Poisson brackets. We may write now both the
Liouvillian and the current in terms of the rescaled phase space
variables u and x defined in Eq. (A9). For the Liouvillian

L = 1

�eff
√

2mβ
L̄, (A17)

with the definition

L̄ =
∑
i,α

⎡
⎣2uiα

∂

∂xiα

+ n
∑
j =i

xiα − xjα

|xi − xj |n+2

∂

∂uiα

⎤
⎦ . (A18)

On the other hand, the current scales as

J = 1

Vβ
√

2mβ
J̄ , (A19)

where we have defined

J̄ =
N∑

i=1

⎡
⎣2ε̄iui,x + n

∑
j =i

(xij · uij )
xij,x

xn+2
ij

⎤
⎦ , (A20)

with εi = β−1ε̄i and

ε̄i = u2
i + 1

2

∑
j =i

1

|xi − xj |n . (A21)

Substituting all these expressions in the Green-Kubo for-
mula (A14) for κ , we recover after some simple algebra the
density-temperature separable scaling form of Eq. (A3) above
for the thermal conductivity.

3. Scaling for IPL systems

The scaled density-temperature separability just demon-
strated for IPL systems can be now used to write Fourier’s
law (1) just in terms of the scaled density field in this more
general case, similarly to what we did for hard disks:

√
2m

(
1 + d

n

)
σ āεb̄ JP c̄ = Ḡ′(ρ̃)

dρ̃

dx
= dḠ′(ρ̃)

dx
, (A22)

where Ḡ′(ρ̃) = k(ρ̃)q(ρ̃)c̄−1q ′(ρ̃), and

ā = −n(d + 2)

2(n + d)
, b̄ = − d + 2

2(n + d)
, c̄ = 2 − 2d − 3n

2(n + d)
.

This immediately implies the existence of a pair of master
curves for IPL systems from which any steady state density
and scaled temperature profiles follow, in the spirit of the
hard-disk result. Moreover, note that the hard-disk results, or

more generally the results for d-dimensional hard spheres, are
recovered in the n → ∞ limit.

APPENDIX B: DISCRETIZATION EFFECTS IN DENSITY
AND TEMPERATURE PROFILES

Once the hard-disk system is driven to the stationary state,
we measure the local temperature (i.e., local average kinetic
energy) and local packing fraction at each of the 15 cells
in which we divide the simulation box along the gradient
(i.e., x) direction. When a disk overlaps with any of the
imaginary lines separating two neighboring cells, it contributes
to the density and kinetic energy of each cell proportionally
to its overlapping area. The number of cells is fixed in all
simulations to 15, independently of N , η, T0, or TL, so each
cell becomes macroscopic in the asymptotic thermodynamic
limit. The local average of density and temperature around a
finite neighborhood of a given point in space must be related
to the underlying continuous profiles in order to subtract any
possible bias or systematic correction from the data.

Let TC and ρC be the temperature and packing fraction in a
cell centered at xc ∈ [0,L] of size 	. Assuming that there exist
continuous (hydrodynamic) temperature and density profiles
T (x) and ρ(x), we can relate the cell averages to the continuous
profiles by noting that

TC = 1

	ρC

∫ xc+	/2

xc−	/2
dx ρ(x)T (x),

ρC = 1

	

∫ xc+	/2

xc−	/2
dx ρ(x).

We may expand now the continuous profiles around xc inside
the cell of interest and solve the above integrals. Keeping
results up to 	2 order,

TC = 1

ρC

[
ρ(xc)T (xc) + 	2

24

d2

dx2
[ρ(x)T (x)]x=xc

+ O(	3)

]
,

ρC = ρ(xc) + 	2

24

d2ρ(x)

dx2
|x=xc

+ O(	3).

By inverting the above expressions, we arrive at the desired
result, namely

T (xc) = TC − 1

24

[
2

ρC

(ρC+1 − ρC)(TC+1 − TC)

+ TC+1 − 2TC + TC−1

]
, (B1)

ρ(xc) = ρC − 1

24
[ρC+1 − 2ρC + ρC−1] . (B2)

Typically these corrections to the cell density and temperature
are small (∼0.1%), but they turn out to be important for
disentangling the different finite-size effects in order to
obtain the striking collapse of measured density and temper-
ature profiles onto the master curves described in the main
text.
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