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Abstract Understanding the physics of nonequilibrium systems remains as one of the ma-
jor challenges of modern theoretical physics. We believe nowadays that this problem can be
cracked in part by investigating the macroscopic fluctuations of the currents characterizing
nonequilibrium behavior, their statistics, associated structures and microscopic origin. This
fundamental line of research has been severely hampered by the overwhelming complexity
of this problem. However, during the last years two new powerful and general methods have
appeared to investigate fluctuating behavior that are changing radically our understanding of
nonequilibrium physics: a powerful macroscopic fluctuation theory (MFT) and a set of ad-
vanced computational techniques to measure rare events. In this work we study the statistics
of current fluctuations in nonequilibrium diffusive systems, using macroscopic fluctuation
theory as theoretical framework, and advanced Monte Carlo simulations of several stochastic
lattice gases as a laboratory to test the emerging picture. Our quest will bring us from (1) the
confirmation of an additivity conjecture in one and two dimensions, which considerably sim-
plifies the MFT complex variational problem to compute the thermodynamics of currents, to
(2) the discovery of novel isometric fluctuation relations, which opens an unexplored route
toward a deeper understanding of nonequilibrium physics by bringing symmetry principles
to the realm of fluctuations, and to (3) the observation of coherent structures in fluctuations,
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which appear via dynamic phase transitions involving a spontaneous symmetry breaking
event at the fluctuating level. The clear-cut observation, measurement and characterization
of these unexpected phenomena, well described by MFT, strongly support this theoretical
scheme as the natural theory to understand the thermodynamics of currents in nonequilib-
rium diffusive media, opening new avenues of research in nonequilibrium physics.

Keywords Nonequilibrium statistical physics · Fluctuations · Large deviations

1 Introduction

Nonequilibrium phenomena characterize the physics of many natural systems. Despite their
ubiquity and importance, no general bottom-up approach exists yet capable of predicting
nonequilibrium macroscopic behavior in terms of microscopic physics, in a way similar
to equilibrium statistical physics. This is due to the difficulty in combining statistics and
dynamics, which always plays a key role out of equilibrium [1–6]. This lack of a general
framework is a major drawback in our ability to manipulate, control and engineer many
natural and artificial systems which typically function under nonequilibrium conditions.
Consequently, this challenging problem has been subject to a intense study during the last
30 years. However, it has not been until recently that nonequilibrium physics has undergone
a true revolution. At the core of this revolution is the realization of the essential role played
by macroscopic fluctuations, with their statistics and associated structures, to understand
nonequilibrium behavior [1–8]. The language of this revolution is the theory of large devi-
ations, with large-deviation functions (LDFs) measuring the probability of fluctuations and
optimal paths sustaining these rare events as central objects in the theory. In fact, LDFs play
in nonequilibrium systems a role akin to the equilibrium free energy [1–7]. In this way, the
long-sought general theory of nonequilibrium phenomena is currently envisaged as a theory
of macroscopic fluctuations, and the calculation, measurement and understanding of LDFs
and their associated optimal paths has become a fundamental issue in theoretical physics.
This paradigm has led to a number of groundbreaking results valid arbitrarily far from equi-
librium, many of them in the form of fluctuation theorems [1–8].

To better grasp the physics behind a large deviation function, consider the example of
density fluctuations in an equilibrium system [7]. In particular, let us consider an isolated
box of volume V with N particles, as in Fig. 1(a). The probability of finding n particles
in a subvolume v of our system scales asymptotically as Pv(n) ∼ exp[+vI(n/v)]. This
scaling defines a large-deviation principle [16, 17], and the function I(ρ) ≤ 0 is the density
large deviation function [1–7]. The previous scaling means that the probability of observing
a density fluctuation ρ = n/v appreciably different from the average density 〈ρ〉 = N/V

decays exponentially fast with the volume v of the subregion. In this way, the LDF I(ρ)

measures the rate1 at which the probability measure Pv(ρ) concentrates around the average
〈ρ〉 as v grows, see Fig. 1(b). In general, LDFs are negative in all their support except for the
average value of the observable of interest, where the LDF is zero, see Fig. 1(c). Moreover,
the typical LDF is quadratic around the average (where it is maximum), a reflection of the
central limit theorem for small fluctuations.

For equilibrium systems, it is easy to show [7, 16] that the density LDF I(ρ) described
above is univocally related with the free energy. Furthermore, the LDF of the density profile

1For this reason, LDFs are known as rate functions in the mathematical literature [16, 17].
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Fig. 1 (a) Density fluctuations in a subsystem with volume v for an equilibrium system. (b) Convergence of
the time-averaged current to its ensemble value 〈q〉 for many different realizations (top line cloud), and sketch
of the probability concentration as time increases, associated with the large deviation principle, Eq. (12).
(c) Typical shape of a large deviation function. (d) Current fluctuations out of equilibrium as a result of an
external temperature gradient

in equilibrium systems can be simply related with the free-energy functional, a central object
in the theory [7, 16, 17].

It is therefore natural to use LDFs in systems far from equilibrium to define the nonequi-
librium analog of the free-energy functional. Key for this emerging paradigm is the iden-
tification of the relevant macroscopic observables characterizing nonequilibrium behavior.
The system of interest often conserves locally some magnitude (a density of particles, en-
ergy, momentum, charge, etc.), and the essential nonequilibrium observable is hence the
current or flux the system sustains when subject to, e.g., boundary-induced gradients or ex-
ternal fields, see Fig. 1(d). In this way, the understanding of current statistics in terms of
microscopic dynamics has become one of the main objectives of nonequilibrium statistical
physics, triggering an enormous research effort which has led to some remarkable results
[1–7, 9–15, 29].

Computing LDFs from scratch, starting from microscopic dynamics, is a daunting task
which has been successfully accomplished only for a handful of oversimplified, low-
dimensional stochastic lattice gases [1–7]. This overwhelming complexity has severely ham-
pered progress along this fundamental research line. However, during the last few years, two
new powerful and general methods have appeared to investigate fluctuating behavior that are
changing radically our understanding of nonequilibrium physics. On one hand, advanced
computational methods have been recently developed to directly measure in simulations
LDFs and the associated optimal paths for complex many-particle systems [18–21]. On the
other hand, a powerful and general macroscopic fluctuation theory (MFT) has been devel-
oped during the last ten years to understand dynamic fluctuations and the associated LDFs
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in driven diffusive systems arbitrarily far from equilibrium [1–6], starting from their macro-
scopic evolution equation. The application of these new tools to oversimplified models has
just started to provide deep and striking results evidencing the existence of a rich and funda-
mental structure in the fluctuating behavior of nonequilibrium systems, crucial to crack this
long-unsolved problem.

With this paper we want to describe our recent work in this direction. In order to do so, we
first provide a brief description of macroscopic fluctuation theory in Sect. 2, together with
its application to understand the thermodynamics of currents out of equilibrium. Section 3
introduces some paradigmatic stochastic lattice gases to model transport out of equilibrium.
We will use these models along the paper as laboratories to test and validate the hypothe-
ses underlying the formulation of MFT, as well as its detailed predictions. The analysis of
these models will also provide deep insights into the fluctuating behavior of nonequilibrium
diffusive systems. In Sect. 4 we describe in detail the novel Monte Carlo techniques which
allow us to measure the statistics of rare event in many-body systems. These methods are
based on a modification of the underlying stochastic dynamics so that the rare events re-
sponsible of a given large deviation are no longer rare. Once the main tools for our work
have been introduced, we set out to describe some recent results. In Sect. 5 we introduce
the additivity conjecture, an hypothesis on the time-independence of the optimal path re-
sponsible for a given current fluctuation which greatly simplifies the complex, spatiotem-
poral variational problem posed by MFT. In this section we also provide strong numerical
evidence supporting the validity of this additivity conjecture in one- and two-dimensional
diffusive systems for a wide interval of current fluctuations. Moreover, we show that the
optimal path solution of the MFT problem is in fact a well-defined physical observable, and
can be interpreted as the path that the system follows in phase space in order to facilitate
a particular current fluctuation. In Sect. 6 we show that, by demanding invariance of these
optimal paths under symmetry transformations, new and general fluctuation relations valid
arbitrarily far from equilibrium are unveiled. In particular, we derive an isometric fluctuation
relation which links in a strikingly simple manner the probabilities of any pair of isometric
current fluctuations, confirming its validity in extensive simulations. We further show that
the new symmetry implies remarkable hierarchies of equations for the current cumulants
and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations
and Green-Kubo formulae. The additivity conjecture assumes that optimal paths are time-
independent for a broad range of current fluctuations. In Sect. 7 we show however that this
additivity scenario eventually breaks down in isolated periodic diffusive systems for large
fluctuations via a dynamic phase transition at the fluctuating level involving a symmetry-
breaking event. Moreover, we report compelling evidences of this phenomenon in two dif-
ferent one-dimensional stochastic lattice gases. Finally, Sect. 8 contains a discussion of the
results presented here and some outlook regarding the work that remains to be done in a
near future. We leave for the appendices some technical details that we prefer to omit from
the main text for the sake of clarity.

2 Macroscopic Fluctuation Theory and Thermodynamics of Currents

In a series of recent works [1–6], Bertini, De Sole, Gabrielli, Jona-Lasinio, and Landim have
introduced a macroscopic fluctuation theory (MFT) which describes dynamic fluctuations
in driven diffusive systems and the associated LDFs starting from a macroscopic rescaled
description of the system of interest (typically a hydrodynamic-like equation), where the
only inputs are the system transport coefficients. This is a very general approach which
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leads however to a hard variational problem whose solution remains challenging in most
cases. Therefore a main research path has been to explore different solution schemes and
simplifying hypotheses. This is the case for instance of the recently-introduced additivity
conjecture, which can be justified under certain conditions and used within MFT to obtain
explicit predictions, opening the door to a systematic way of computing LDFs in nonequi-
librium systems. As usual in physics, it is as important to formulate a sound hypothesis as
to know its range of validity. The additivity conjecture may be eventually violated for large
fluctuations, but quite remarkably this additivity breakdown, which is well characterized
within MFT, proceeds via a dynamic phase transition at the fluctuating level involving a
symmetry breaking. More on this below.

We now proceed to describe MFT in detail. Our starting point is a continuity equation that
describes the mesoscopic evolution of a broad class of systems characterized by a locally
conserved magnitude (e.g. energy, particles, momentum, charge, etc.) [1–7, 26]

∂tρ(r, t) = −∇ · (QE
[
ρ(r, t)

]+ ξ(r, t)
)
. (1)

This equation is obtained after an appropriate scaling limit in which the microscopic time
and space coordinates, t̃ and r̃, respectively, are rescaled diffusively: t = t̃/N2, r = r̃/N ,
where N is the linear size of the system [22]. The macroscopic coordinates are then
(r, t) ∈ Λ × [0, τ ], where Λ ∈ [0,1]d is the spatial domain and d the dimensionality of
the system. In Eq. (1), ρ(r, t) represents the density field, and j(r, t) ≡ QE[ρ(r, t)]+ ξ(r, t)
is the fluctuating current field, with a local average given by QE[ρ] which includes in general
the effect of a conservative external field E,

QE[ρ] = Q[ρ] + σ [ρ]E. (2)

The field ξ(r, t) is a Gaussian white noise characterized by a variance (or mobility)
σ [ρ(r, t)], i.e.,

〈ξ(r, t)〉 = 0; 〈ξi(r, t)ξj

(
r′, t ′

)〉 = N−dσ [ρ]δij δ
(
r − r′)δ

(
t − t ′

)
, (3)

being i, j ∈ [0, d] the components of the spatial coordinates and d the spatial dimension.
This (conserved) noise term accounts for microscopic random fluctuations at the macro-
scopic level. This noise source represents the many fast microscopic degrees of freedom
which are averaged out in the coarse-graining procedure resulting in Eq. (1), and whose net
effect on the macroscopic evolution amounts to a Gaussian random perturbation according
to the central limit theorem. Since ξ(r, t) scales as N−d/2, in the limit N → ∞ we recover
the deterministic hydrodynamic equation, but as we want to study the fluctuating behavior,
we consider large (but finite) system sizes, i.e., we are interested in the weak noise limit.

Examples of systems described by Eq. (1) range from diffusive systems [1–7, 9, 10, 24,
45, 46], where Q[ρ(r, t)] is given by Fourier’s (or equivalently Fick’s) law,

Q
[
ρ(r, t)

]= −D[ρ]∇ρ(r, t), (4)

with D[ρ] the diffusivity, to most interacting-particle fluids [22, 23], characterized by a
Ginzburg-Landau-type theory for the locally-conserved particle density. To completely de-
fine the problem, the above evolution equations (1)–(2) must be supplemented with appro-
priate boundary conditions, which can be for instance periodic, when Λ is the d-dimensional
torus, or non-homogeneous with

ϕ
(
ρ(r, t)

)= ϕ0(r), r ∈ ∂Λ (5)
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in the case of boundary-driven systems in which the driving is due to an external gradient.
Here ∂Λ is the boundary of Λ and ϕ0 is the chemical potential of the boundary reservoirs.
The few transport coefficients that enter into the hydrodynamic Eq. (1) can be readily mea-
sured in experiments or simulations, which thus offers a close description of the macroscopic
fluctuating behavior of the system of interest. For diffusive systems governed by Fourier’s
law (4), the diffusion coefficient D[ρ] and the mobility σ [ρ] satisfy a local Einstein relation

D[ρ] = σ [ρ]
κ[ρ] (6)

where κ[ρ] is the compressibility, κ[ρ]−1 = f ′′
0 [ρ], f0[ρ] being the equilibrium free energy

of the system. The above equations describe an equilibrium model when either (a) Λ is the
torus and there is no external field, or (b) in the case of boundary-driven diffusive systems
(i.e. Q[ρ] = −D[ρ]∇ρ) in which the external field in the bulk matches the driving from the
boundary [1–6]. We are also in equilibrium when the chemical potentials of the boundaries
are the same. In any other case the resulting stationary state sustains a non-vanishing current
and the system is out of equilibrium.

The probability of observing a history {ρ(r, t), j(r, t)}τ
0 of duration τ for the density

and current fields, which can be different from the average hydrodynamic trajectory, can
be written as a path integral over all possible noise realizations, {ξ(r, t)}τ

0 , weighted by
its Gaussian measure and restricted to those realizations compatible with Eq. (1) (and the
associated boundary conditions) at every point of space and time2

P
({ρ, j}τ

0

)=
∫

Dξ exp

[
−Nd

∫ τ

0
dt

∫

Λ

dr
ξ 2

2σ [ρ]
]∏

t

∏

r

δ
[
ξ − (

j − QE[ρ])], (7)

with ρ(r, t) and j(r, t) coupled via the continuity equation,

∂tρ + ∇ · j = 0. (8)

Notice that this coupling does not determine univocally the relation between ρ and j. For
instance, the fields ρ̃(r, t) = ρ(r, t) + χ(r) and j̃(r, t) = j(r, t) + g(r, t), with χ(r) arbi-
trary and g(r, t) divergence-free, satisfy the same continuity equation. In other words, this
means that from a density field we can determine the current field up to a divergence-free
vector field. This non-uniqueness in the macroscopic description is the price we pay for the
information lost when coarse-graining the deterministic microscopic degrees of freedom.
Equation (7) naturally leads to [26]

P
({ρ, j}τ

0

)∼ exp
(+NdIτ [ρ, j]), (9)

which has the form of a large deviation principle. The rate functional Iτ [ρ, j] is given by

Iτ [ρ, j] = −
∫ τ

0
dt

∫

Λ

dr
(j(r, t) − QE[ρ])2

2σ [ρ] . (10)

This functional plays a pivotal role in MFT and its extensions, as it contains all the in-
formation needed to compute LDFs of any relevant macroscopic observable via standard

2Note that the path integral formalism here described is based on a discretized Langevin equation of Ito-type
[25].
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contraction principles in large deviation theory [16, 17]. For instance, it has been used by
Bertini and collaborators to study fluctuations of the density field out of equilibrium. Us-
ing this approach, a Hamilton-Jacobi equation for the nonequilibrium density LDF has been
derived [1–6] showing that this LDF is usually non-local out of equilibrium, a reflection
of the long-range correlations typical of nonequilibrium situations. Moreover, MFT shows
that the optimal path leading to a macroscopic density fluctuation is the time-reversal of
the relaxation path from this fluctuation according to some adjoint hydrodynamic laws (not
necessarily equal to the original) [1–6]. This general result, valid arbitrarily far from equi-
librium, reduces to the well-known Onsager-Machlup theory when small deviations from
equilibrium are considered.

2.1 Thermodynamics of Currents

We now want to focus on the statistics of the current. Understanding how microscopic dy-
namics determine the long-time averages of the current and its fluctuations is one of the
main objectives of nonequilibrium statistical physics [11–27], as this is a central observable
characterizing macroscopic behavior out of equilibrium. Therefore we focus now on the
probability Pτ (J) of observing a space&time-averaged current

J = 1

τ

∫ τ

0
dt

∫

Λ

drj(r, t). (11)

This probability can be written as

Pτ (J) =
∫ ∗

DρDjP
({ρ, j}τ

0

)
δ

(
J − 1

τ

∫ τ

0
dt

∫

Λ

drj(r, t)
)

,

where the asterisk means that this path integral is restricted to histories {ρ, j}τ
0 coupled via

Eq. (8). As the exponent of P({ρ, j}τ
0) is extensive in both τ and Nd [26], see Eq. (9), for

long times and large system sizes the above path integral is dominated by the associated
saddle point, resulting in the following large deviation principle

Pτ (J) ∼ exp
[+τNdG(J)

]
, (12)

where the rate functional G(J) defines the current large deviation function (LDF)

G(J) = − lim
τ→∞

1

τ
min
{ρ,j}τ0

{∫ τ

0
dt

∫

Λ

dr
(j(r, t) − QE[ρ])2

2σ [ρ]
}

(13)

subject to the constraints (8) and (11). The LDF G(J) measures the (exponential) rate at
which J → Jst as τ increases (notice that G(J) ≤ 0, with G(Jst ) = 0). The optimal density
and current fields solution of the (complex) variational problem Eq. (13), denoted here as
ρJ(r, t) and jJ(r, t), can be interpreted as the optimal path the system follows in mesoscopic
phase space in order to sustain a long-time current fluctuation J. It is worth emphasizing here
that the existence of an optimal path rests on the presence of a selection principle at play,
namely a long time, large size limit which selects, among all possible paths compatible with
a given fluctuation, an optimal one via a saddle point mechanism. Despite its inherent com-
plexity, the current LDF G(J) obeys a symmetry property which stems from the reversibility
of microscopic dynamics. This is the Gallavotti-Cohen fluctuation theorem [11], which re-
lates the probability of observing a long-time current fluctuation J with the probability of
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the reverse event, −J,

lim
τ→∞

1

τNd
ln

[
Pτ (J)

Pτ (−J)

]
= 2ε · J, (14)

where ε = ε+E is the driving force, a constant vector which depends on the boundary baths
via ε (see below) and on the external field E, and is directly related to the rate of entropy
production in the nonequilibrium system of interest.

Finally, it is remarkable that although the MFT here described is in general applied to
conservative systems, it can be generalized to dissipative systems characterized by a con-
tinuous loss of energy to the environment [30]. In these cases the macroscopic evolution
equation is given by

∂tρ = −∇ · (QE + ξ) − νA[ρ],
where the first term in the r.h.s describes the diffusive energy propagation, whereas the
second term defines the energy dissipation rate through the functional A[ρ] and the macro-
scopic dissipation coefficient ν. In this case, the essential macroscopic observables which
characterize the non-equilibrium behaviour are the current and the dissipated energy. Us-
ing the path integral formalism above described, it is possible to define the large deviation
function of these observables and the optimal fields associated with their fluctuations. The
extension of the MFT to dissipative systems has been recently developed and tested in Refs.
[30–32, 34, 35].

MFT hence provides in general clear-cut variational formulae to understand current
statistics in diffusive systems arbitrarily far from equilibrium, together with the optimal
paths that, in order to facilitate a given current fluctuation, the system of interest traverses
in phase space. The complexity of the problem is however humongous, and many difficult
questions arise: How are the solutions to this complex variational problem? Can we classify
them according to some hierarchical scheme? Are the optimal paths solution of this mathe-
matical problem physically observable? How is the statistics of rare current fluctuations as
compared to the Gaussian statistics naively expected from the central limit theorem? Is there
nontrivial structure at the fluctuating level? Can we confirm the Gallavotti-Cohen symmetry,
and even more, can we uncover hidden symmetries at the fluctuating level? Are there phase
transitions in the fluctuating behavior of complex diffusive systems? The solution to these
and many other fundamental and exciting questions calls for a detailed analysis of MFT and
its predictions, together with a deep investigation of sound hypotheses and conjectures that
may simplify the inherent complexities of the theory. Moreover, this work must be accompa-
nied at every step by in silico experiments, i.e. extensive numerical simulations of simplified
models of transport using the novel techniques to simulate rare events. This numerical work
will allow us to test and guide new theoretical ideas and to aid the formulation of bold con-
jectures, leading eventually to the discovery of entirely unexpected phenomena. We provide
below a review of our work in these directions.

3 Models of Transport out of Equilibrium

MFT and its generalizations offer an unique opportunity to obtain general results for a large
class of systems arbitrarily far from equilibrium, a possibility that we could only dream
of some years ago. Therefore it is essential to test and validate the hypotheses underlying
its formulation, as well as its detailed predictions. The investigation of rare event statistics
in realistic systems with many degrees of freedom poses still today formidable challenges.
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Fig. 2 (a) Kipnis-Marchioro-Presutti (KMP) model of transport in 1D lattices under different boundary
conditions. Top: System coupled to boundary heat baths at different temperatures, TL �= TR . Bottom: Periodic
boundary conditions. Each lattice site is characterized by an energy ρi ≥ 0, i ∈ [1,N ], and dynamics proceeds
via stochastic collisions between nearest neighbors and involves a random redistribution of energy among the
colliding pair. (b) Sketch of the weakly-asymmetric exclusion process (WASEP) defined on a 1D lattice
subject to periodic boundary conditions. Particles jump stochastically to a right (left) empty nearest neighbor
at a rate r+ (r−), which implies for r+ �= r− that particles feel an external driving field E = N

2 ln(
r+
r− )

It is therefore necessary to work with simplified models of reality which, while capturing
the essential ingredients characterizing more realistic systems, maximally simplify the mi-
croscopic details irrelevant for the phenomenon being studied. Universality arguments then
allow us to connect the results obtained for these simplified models with the physics of
more realistic, albeit more complex, natural systems. For the particular problem of nonequi-
librium fluctuations here studied, the ideal laboratory where to test these ideas is provided
by stochastic lattice gases [36], for which the local equilibrium hypothesis and the hydrody-
namic evolution equations which form the basis of MFT can be rigorously derived in some
cases [1–6, 22]. Although the microscopic random dynamics of these lattice models is dif-
ferent from the Hamiltonian evolution of more realistic systems, the relevant symmetries
and conservation laws are the same, and hence we expect that the resulting macroscopic
nonequilibrium behavior will be qualitatively independent of these details [36].

Many different stochastic lattice gases exist in the literature, but we will focus in this
paper in two paradigmatic diffusive models which have guided the advances in the field
during the last two decades: the Kipnis-Marchioro-Presutti model of energy transport and
the weakly-asymmetric simple exclusion process.

3.1 Kipnis-Marchioro-Presutti Model and Generalizations

In 1982, C. Kipnis, C. Marchioro and E. Presutti [37] proposed a simple lattice model in or-
der to understand in a mathematically rigorous way energy transport in systems with many
degrees of freedom. Since its original formulation, this model, dubbed KMP model in the
literature, has become a paradigm in nonequilibrium statistical physics, where new theoreti-
cal ideas have been tested and novel breakthroughs have been developed. In particular, KMP
were able to show rigorously from first principles (i.e. starting from its microscopic Marko-
vian dynamics) that this model obeys Fourier’s law in 1D, a relation formulated in 1822 by
Joseph Fourier which states that the heat current flowing through a material in contact with
two reservoirs at different temperatures is proportional to the temperature gradient. The spe-
cial features of this model turn it into the ideal ground where to test MFT and its extensions,
and this has triggered a surge of interest among specialists in nonequilibrium physics which
has resulted in a number of new and surprising results (see below).
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The KMP model is defined in a one-dimensional (1D) lattice with N sites, see Fig. 2(a),
although it can be easily generalized to any type of lattice in arbitrary dimension. Each
lattice site models a harmonic oscillator which is mechanically uncoupled from its near-
est neighbors but interacts with them through a random process which redistributes en-
ergy locally. The system microscopic configuration is thus defined at any time by a set
ρ ≡ {ρi, i = 1, . . . ,N}, where ρi ∈ R+ is the energy of the site i ∈ [1,N ]. Dynamics
is stochastics and proceeds through random energy exchanges between randomly chosen
nearest-neighbors according to a microcanonical procedure where the pair energy is kept
constant. Hence, (ρi, ρi+1) → (ρ ′

i , ρ
′
i+1) ∀i such that,

ρ ′
i = p(ρi + ρi+1)

ρ ′
i+1 = (1 − p)(ρi + ρi+1)

(15)

where p ∈ [0,1] is an uniform random number, and ρi + ρi+1 = ρ ′
i + ρ ′

i+1. To complete
the model definition, we must specify appropriate boundary conditions. In the original pa-
per [37], and in order to study energy transport, KMP considered open boundary conditions
with extremal (i = 1,N ) sites of the 1D chain connected to thermal baths at different tem-
peratures, see top panel in Fig. 2(a). In this case, extremal sites may interchange energy
with thermal baths at temperatures TL for i = 1 and TR for i = N , i.e., ρ1,N → ρ ′

1,N such
that

ρ ′
1,N = p(ρ̃L,R + ρ1,N ) (16)

where p ∈ [0,1] is again an uniform random number and ρ̃L,R is a random number
drawn at each interaction from a Gibbs distribution at the corresponding temperature,
P (ρk) = βk exp(−ρkβk), k = L,R, with βk = T −1

k so Boltzmann constant is set to one.
For TL �= TR KMP proved rigorously [37] that the system reaches a nonequilibrium steady
state in the hydrodynamic scaling limit N → ∞ described by Fourier’s law, with a nonzero
average energy current

Jst = −D[ρ]dρst (x)

dx
, x ∈ [0,1], (17)

where D[ρ] = 1
2 is the conductivity (or diffusivity) for the KMP model, and a linear steady

density profile

ρst (x) = TL + x(TR − TL). (18)

In addition, convergence to the local Gibbs measure was proven in this limit [37], meaning
that ρi , i ∈ [1,N ], has an exponential distribution with local temperature ρst (

i
N+1 ) in the

thermodynamic limit. However, corrections to Local Equilibrium (LE), though vanishing
in the N → ∞ limit, become apparent at the fluctuation level [38, 39]. The mesoscopic
evolution equation for this model is

∂tρ + ∂x

(
−1

2
∂xρ + ξ

)
= 0, (19)

which is the dynamical expression of the (fluctuating) Fourier’s law, compare with Eq. (1)
above. The amplitude of the conserved noise term is given by the mobility σ [ρ], see
Eq. (3), which is the second transport coefficient needed by MFT to complete the macro-
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scopic description of the system of interest. The mobility, which measures the vari-
ance of local energy current fluctuations in equilibrium (ρL = ρR), can be written for
the KMP model as σ [ρ] = ρ2. It is also worth noting that the microscopic dynam-
ics in the KMP model obeys the local detailed balance condition, thus being time-
reversible.

KMP model is an optimal candidate to test and study MFT and its detailed predictions
because: (a) MFT equations for this model are simple enough to admit full analytical so-
lutions, and (b) its simple dynamical rules allow for a detailed numerical study of current
fluctuations, both typical and rare, taking advantage of the novel computational methods to
study rare event statistics [18–21].

Another reason for the recent surge of interest in the KMP model is that it can be easily
generalized to describe at a coarse-grained level many different nonlinear diffusive micro-
scopic processes [30–33]. These type of processes abound in nature, with important exam-
ples in fields as diverse as fluid dynamics, heat transfer, mathematical biology, population
dynamics, etc. For the standard KMP model, the mesoscopic evolution equation (19) is lin-
ear in the density field, as results from a constant diffusivity, D[ρ] = 1

2 . However, it can be
shown [31, 33] that a more realistic generalization of the KMP model, with collision rates
between neighboring lattice sites depending explicitly on the energy of the colliding pair,
gives rise to a mesoscopic description based on nonlinear diffusion-type equations, a class
of equations that characterize the physics of many natural complex systems. In particular, if
the collision rate for pair (i, i +1) is proportional to a power of its total energy, (ρi +ρi+1)

a ,
it can be shown [31, 33] that the mesoscopic evolution equation is now

∂tρ + ∂x

(−ρa∂xρ + ξ
)= 0, (20)

so the diffusivity is now a function of the density field, D[ρ] = ρa . Moreover, the mobility
coefficient is also modified by the nonlinearity, σ [ρ] ∝ ρa+2. The simplicity of this general-
ization of the KMP model allows us to investigate the nonequilibrium fluctuating behavior
of strongly nonlinear systems and study in detail in this nonlinear regime the predictions of
macroscopic fluctuation theory.

The nonlinear KMP model can be further generalized to include dissipative processes in
competition with the main diffusive mechanism [30–32]. Microscopically this is achieved
by allowing the dissipation to the environment of a fraction of the pair energy in collisions,
before the random redistribution of the remaining energy between colliding neighbors. It is
easy to show that this apparently innocent modification of the KMP microscopic dynam-
ics dramatically affects the system macroscopic evolution, which now follows a reaction-
diffusion type of equation of the form

∂tρ + ∂x

(−ρa∂xρ + ξ
)+ νρa+1 = 0, (21)

where ν is a macroscopic dissipation coefficient. This generalization of KMP model con-
tains the essential ingredients characterizing most dissipative media, namely: (i) nonlinear
diffusive dynamics, (ii) bulk dissipation, and (iii) boundary injection. Moreover, it can be
regarded as a toy model for dense granular media: particles cannot freely move but may
collide with their nearest neighbors, losing a fraction of the pair energy and exchanging the
rest thereof randomly. The dissipation coefficient can be thus considered as the analogue to
the restitution coefficient in granular systems [40].
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3.2 Diffusive Simple Exclusion Processes

A second class of diffusive models widely studied in literature are simple exclusion pro-
cesses (SEP),3 in its symmetric (SSEP) and weakly-asymmetric (WASEP) versions [41–43].
As for the KMP model, these exclusion models can be defined on arbitrary lattices in any
dimension, and subject either to open or periodic boundary conditions. In what follows we
focus on 1D for simplicity, and start by considering the SSEP with open boundaries. This
model is defined on a 1D lattice of size N , where each site i ∈ [1,N ] may contain at most
one particle, so the state of the system is defined at any time by a set of occupation num-
bers, n ≡ {ni = 0,1, i ∈ [1,N ]}. The dynamics is stochastic and proceeds via sequential
particle jumps to nearest neighbor sites, provided these are empty, at unit rate. At the two
boundaries dynamics is modified to mimic the coupling with particle reservoirs, possibly at
different densities ρL �= ρR : at the left boundary (i = 1) particles are injected at rate α (if this
site is empty) and removed at rate γ (if this site is occupied). Similarly, on site N particles
are injected at rate δ and removed at rate β . These injection and removal rates fix the den-
sities of the left and right reservoirs to ρL = α/(α + γ ) and ρR = δ/(β + δ), respectively.
For ρL = ρR ≡ ρ the system is in equilibrium and the probability measure has a product
form: probeq(n) =∏N

i=1 ρni (1 − ρ)1−ni = e
∑N

i=1 ηni /(1 + eη)N , where η = log(ρ/(1 − ρ)) is
the chemical potential. As soon as ρL �= ρR , the system is out of equilibrium, a current is
established, and the problem becomes nontrivial, with long range correlations. In particular,
the SSEP reaches an steady state with an average density profile given, in the large N limit,
by [43]

〈ni〉 = ρst (x) = ρL + x(ρR − ρL), (22)

which is equivalent to the linear profile of the KMP model, see Eq. (18) above, and we have
introduced a macroscopic coordinate x = i/N . The average current in the steady state is
then proportional to the density gradient, obeying Fick’s law

Jst = −D[ρ]dρst (x)

dx
, x ∈ [0,1], (23)

with D[ρ] = 1/2. The SSEP thus obeys the following mesoscopic evolution equation [22]

∂tρ + ∂x(−∂xρ + ξ) = 0, (24)

which corresponds to the dynamical expression of Fick’s law. Moreover, the mobility coef-
ficient characterizing the equilibrium fluctuations of the current is σ [ρ] = ρ(1 − ρ) for the
SSEP [22]. Note that, as compared to the KMP mobility coefficient, σSSEP[ρ] is bounded
and shows a maximum, a property that will have implications for the current statistics of
this model (in particular for the existence of phase transitions at the fluctuating level [45,
46]).

To end this section, we now consider the weakly asymmetric exclusion process (WASEP)
on a 1D lattice with periodic boundary conditions. This model is analogous to SSEP except
for the presence of a weak external field, E, which bias particle jumps in a preferential direc-
tion, and the periodic boundary conditions used. Therefore we have a 1D lattice with N sites,
where a fixed number of Z =∑N

i=1 ni ≤ N particles live, see Fig. 2(b), so the total density,

3We explicitly exclude in this description the asymmetric and totally-asymmetric exclusion processes (ASEP
and TASEP, respectively), as these models are not diffusive. See [41, 42] for a review on these interesting
models of nonequilibrium behavior.
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ρ = Z/N , is fixed. As before, particles perform stochastic sequential jumps to neighboring
sites, provided these are empty, but now the jump rates are defined as r± ≡ 1

2 exp(±E/N)

for jumps along the ±x̂-direction.4 Here E plays the role of a weak external field which
drives the system to a nonequilibrium steady state characterized by a homogeneous average
density profile 〈ni〉 = ρst (x) = ρ and a nonzero net average current Jst = ρ(1 − ρ)E. The
mesoscopic evolution equation for WASEP now reads [22]

∂tρ + ∂x

(−D[ρ]∂xρ + σ [ρ]E + ξ
)= 0, (25)

where D[ρ] = 1/2 and σ [ρ] = ρ(1 − ρ) are the SSEP transport coefficients, as otherwise
expected.

4 Monte Carlo Evaluation of Current Large-Deviation Functions

As described above, these and other stochastic lattice gases provide the ideal ground where
to investigate the large deviation statistics of currents out of equilibrium. The main reason
is that their simple dynamical rules allow for an extensive analysis of fluctuations, both typ-
ical and rare, taking advantage of novel computational methods to study rare event statistics
[18–21]. It is important to notice that, in general, large deviation functions are very hard
to measure in experiments or simulations because they involve by definition exponentially-
unlikely events, see e.g. Eq. (12). Recently, Giardinà, Kurchan and Peliti [18], and Tailleur
and Lecomte [19], have introduced efficient algorithms to measure the probability of a large
deviation for time-extensive observables such as the current or the activity in discrete- and
continuous-time stochastic many-particle systems, see [20, 21] for a review. The main idea
consists in modifying in a mathematically controlled way the underlying stochastic dynam-
ics so that the rare events responsible of a given large deviation are no longer rare.

Let UC′C be the transition rate from configuration C to C ′ for the stochastic model of
interest, and define qC′C as the elementary current involved in this microscopic transition.
The probability of measuring a total time-integrated current Qt after a time t starting from
a configuration C0 can be thus written as

P(Qt , t;C0) =
∑

Ct ···C1

UCt Ct−1 · · ·UC1C0δ

(

Qt −
t−1∑

k=0

qCk+1Ck

)

, (26)

where UCt Ct−1 · · ·UC1C0 is nothing but the probability of a path C0 → C1 → ·· · → Ct in
phase space. For long times we expect the information on the initial state C0 to be lost,
so P(Qt , t;C0) → P(Qt , t). In this limit P(Qt , t) obeys the usual large deviation principle5

4Note that these rates converge for large N to the standard ones found in literature, namely 1
2 (1 ± E

N
), but

avoid problems with negative rates for small N . In any case, the hydrodynamic descriptions of both variants
of the model are identical.
5Note that the macroscopic current J is related to this microscopic current q through J = qN . Hence the mi-

croscopic large deviation function F(q) scales with the system size as F(q) = Nd−2G(J = qN), where G(J)

is now the current LDF appearing in the diffusively-scaled macroscopic fluctuation theory of Sect. 2, see Eq.
(12). This can be proved by noting that in the microscopic case we have P(q) = P(Qt , t) ∼ exp[+tF(q)]
while in macroscopic limit we have P(J) ∼ exp[+τNdG(J)]. Thus, by writing the latter probability in
terms of the diffusive-scaled time variable τ = t/N2, we get that P(J = qN) ∼ exp[+tNd−2G(J = qN)]
which compared to the microscopic probability gives us the scaling mentioned above. In a similar manner, if
θ(λ) = maxq[F(q) + λ · q] and μ(λ) = maxJ[G(J) + λ · J] are the Legendre transforms of F(q) and G(J),
respectively, they are related via the simple scaling relation μ(λ) = N2−dθ(λNd−1).
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P(Qt , t) ∼ exp[+tF(q = Qt /t)]. In most cases it is convenient to work with the moment-
generating function of the above distribution

Π(λ, t) ≡
∑

Qt

eλ·Qt P (Qt , t) =
∑

Ct ···C1

UCt Ct−1 · · ·UC1C0 eλ·∑t−1
k=0 qCk+1Ck . (27)

For long t , we have Π(λ, t) → exp[+tθ(λ)], where the new LDF θ(λ) is connected to the
current LDF via Legendre transform,

θ(λ) = max
q

[
F(q) + λ · q

]= F
[
q∗(λ)

]+ λ · q∗(λ), (28)

with q∗(λ) the current conjugated to parameter λ, which is solution of the equation F ′(q∗)+
λ = 0. We can now define a modified dynamics,

ŨC′C ≡ eλ·qC′C UC′C, (29)

and therefore

Π(λ, t) =
∑

Ct ···C1

ŨCt Ct−1 · · · ŨC1C0 . (30)

Note however that this dynamics is not normalized,
∑

C′ ŨC′C �= 1. We now introduce
Dirac’s bra and ket notation, useful in the context of the quantum Hamiltonian formalism for
the master equation [47, 48], see also [18, 44]. The idea is to assign to each system configu-
ration C a vector |C〉 in phase space, which together with its transposed vector 〈C|, form an
orthogonal basis of a complex space and its dual [47, 48]. For instance, for systems with a
finite number of available configurations, one could write |C〉T = 〈C| = (0 · · ·0,1,0 · · ·0),
i.e. all components equal to zero except for the component corresponding to configuration C,
which is 1. In this notation, ŨC′C = 〈C ′|Ũ |C〉, and a probability distribution can be written
as a probability vector

|P(t)〉 =
∑

C

P(C, t)|C〉,

where P(C, t) = 〈C|P(t)〉 with the scalar product 〈C ′|C〉 = δC′C . If 〈s| = (1 · · ·1), normal-
ization then implies 〈s|P(t)〉 = 1. With the previous notation, we can now write the spectral
decomposition of operator Ũ (λ) as

Ũ (λ) =
∑

j

eΛj (λ)|ΛR
j (λ)〉〈ΛL

j (λ)|, (31)

where we assume that a complete biorthogonal basis of right and left eigenvectors for matrix
Ũ exists,

Ũ |ΛR
j (λ)〉 = eΛj (λ)|ΛR

j (λ)〉 and 〈ΛL
j (λ)|Ũ = eΛj (λ)〈ΛL

j (λ)|. (32)

Denoting as eΛ(λ) the largest eigenvalue of Ũ (λ), with associated right and left eigenvectors
|ΛR(λ)〉 and 〈ΛL(λ)|, respectively, and writing Π(λ, t) =∑

Ct
〈Ct |Ũ t |C0〉, see Eq. (30), we

find for long times

Π(λ, t)
t�1−−→ e+tΛ(λ)〈ΛL(λ)|C0〉

(∑

Ct

〈Ct |ΛR(λ)〉
)

, (33)
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where we have used the spectral decomposition (31). In this way we have θ(λ) = Λ(λ), so
the Legendre transform of the current LDF is given by the natural logarithm of the largest
eigenvalue of Ũ (λ).

In order to measure this eigenvalue in Monte Carlo simulations, and given that dynamics
Ũ is not normalized, we introduce the exit rates YC =∑

C′ ŨC′C , and define the normalized
dynamics U ′

C′C ≡ Y −1
C ŨC′C . Now

Π(λ, t) =
∑

Ct ···C1

YCt−1U
′
Ct Ct−1

· · ·YC0U
′
C1C0

(34)

This sum over paths can be realized by considering an ensemble of M � 1 copies (or clones)
of the system, evolving sequentially according to the following Monte Carlo scheme6 [18]:

(I) Each copy evolves independently according to modified normalized dynamics U ′
C′C .

(II) Each copy m ∈ [1,M] (in configuration Ct [m] at time t ) is cloned with rate YCt [m]. This
means that, for each copy m ∈ [1,M], we generate a number KCt [m] = �YCt [m]� + 1 of
identical clones with probability YCt [m] −�YCt [m]�, or KCt [m] = �YCt [m]� otherwise (here
�x� represents the integer part of x). Note that if KCt [m] = 0 the copy may be killed
and leave no offspring. This procedure gives rise to a total of M ′

t =∑M

m=1 KCt [m] copies
after cloning all of the original M copies.

(III) Once all copies evolve and clone, the total number of copies M ′
t is sent back to M by

an uniform cloning probability Xt = M/M ′
t .

Figure 3 sketches this procedure. It then can be shown that, for long times, we recover θ(λ)

via

θ(λ) = −1

t
ln(Xt · · ·X0) for t � 1 (35)

In order to derive this expression, first consider the cloning dynamics above, but without
keeping the total number of clones constant, i.e. forgetting about step (III). In this case, for
a given history {Ct,Ct−1 · · ·C1,C0}, the number N (Ct · · ·C0, t) of copies in configuration
Ct at time t obeys N (Ct · · ·C0, t) = YCt−1U

′
Ct Ct−1

N (Ct−1 · · ·C0, t − 1), so that

N (Ct · · ·C0, t) = YCt−1U
′
Ct Ct−1

· · ·YC0U
′
C1C0

N (C0,0). (36)

Summing over all histories of duration t , see Eq. (34), we find that the average of the total
number of clones at long times shows exponential behavior, 〈N (t)〉 =∑

Ct ···C1
N (Ct · · ·C0,

t) ∼ N (C0,0) exp[+tθ(λ)]. Now, going back to step (III) above, when the fixed number of
copies M is large enough, we have Xt = 〈N (t − 1)〉/〈N (t)〉 for the global cloning factors,
so Xt · · ·X1 = N (C0,0)/〈N (t)〉 and we recover expression (35) for θ(λ).

In the following sections we apply this Monte Carlo method to measure in detail both the
statistics of current fluctuations in some of the stochastic lattice gases described in Sect. 3
as well as the optimal paths in phase space responsible of these rare events. These in silico
experiments are then confronted with the predictions derived within macroscopic fluctuation
theory.

6This simulation scheme is well-suited for discrete-time Markov chains. A slightly different though equiva-
lent version of the algorithm exists for continuous-time stochastic lattice gases [19].



P.I. Hurtado et al.

Fig. 3 Sketch of the evolution
and cloning of the copies during
the evaluation of the large
deviation function (Color figure
online)

5 Additivity of Current Fluctuations

We now go back to macroscopic fluctuation theory and its predictions for the statistics of
the space&time-averaged current J, see Sect. 2.1. Let us write again the current LDF as
obtained within MFT

G(J) = − lim
τ→∞

1

τ
min
{ρ,j}τ0

{∫ τ

0
dt

∫

Λ

dr
(j(r, t) − QE[ρ])2

2σ [ρ]
}
. (37)

This defines a highly complex variational problem in space and time for the optimal density
and current fields, whose solution remains challenging in most cases of interest [1–7]. How-
ever, the following hypothesis, well supported on physical grounds as we will see below,
greatly simplify the complexity of the associated problem:

(H1) The optimal density and current fields responsible of a given current fluctuation are
assumed to be time-independent, ρJ(r) and jJ(r). This, together with the continuity
equation (8) which couples both fields, implies that the optimal current vector field is
also divergence-free, ∇ · jJ(r) = 0.

(H2) A further simplification consists in assuming that this optimal current field has no
spatial structure, i.e. is constant across space, which implies together with constraint
(11) on the current that jJ(r) = J.

The physical picture behind these hypotheses corresponds to a system that, after a short
transient time at the beginning of the large deviation event (microscopic in the diffusive
timescale τ ), settles into a time independent state with an structured density field (which
can be different from the stationary one) and a spatially uniform current field equal to J.
This behavior is expected to minimize the cost of a fluctuation at least for small and mod-
erate deviations from the average behavior. Hypotheses (H1)–(H2) are the straightforward
generalization to high-dimensional systems (d ≥ 1) of the additivity principle introduced by
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Bodineau and Derrida for one-dimensional (1D) diffusive media [9]. As we shall see below,
the validity of this conjecture has been checked numerically to a high degree of accuracy
for some stochastic transport models in a wide interval of current fluctuations, though it is
known that additivity may be violated in some particular cases for large enough fluctua-
tions, where time-dependent optimal paths in the form of traveling waves emerge as dom-
inant solution to the variational problem (13). We will analyze this additivity breakdown
below. Provided that hypotheses (H1)–(H2) hold, the current LDF (37) can be written as
[7, 9, 26, 29]

G(J) = −min
ρ(r)

∫

Λ

(J − QE[ρ])2

2σ [ρ(r)] dr, (38)

In this way the probability Pτ (J) is simply the Gaussian weight associated with the optimal
density field responsible for such fluctuation. Note however that the minimization procedure
gives rise to a nonlinear problem which results in general in a current distribution with non-
Gaussian tails [1–7, 10, 24]. As opposed to the general problem in Eq. (37), its simplified
version, Eq. (38), can be readily used to obtain quantitative predictions for the current statis-
tics in a large variety of non-equilibrium systems. The optimal density profile ρJ(r) is now
solution of the following equation

δπ2[ρ(r)]
δρ(r′)

− 2J · δπ1[ρ(r)]
δρ(r′)

+ J2 δπ0[ρ(r)]
δρ(r′)

= 0, (39)

which must be supplemented with appropriate boundary conditions. In the above equation,
δ

δρ(r′) stands for functional derivative, and

πn

[
ρ(r)

]≡
∫

Λ

drWn

[
ρ(r)

]
with Wn

[
ρ(r)

]≡ Qn
E[ρ(r)]

σ [ρ(r)] . (40)

We will be interested below in diffusive systems without external field. In this case
QE=0[ρ] = −D[ρ]∇ρ, and the resulting differential equation (39) for the optimal profile
takes the form

J2a′[ρJ] − c′[ρJ](∇ρJ)
2 − 2c[ρJ]∇2ρJ = 0, (41)

where a[ρJ] = (2σ [ρJ])−1, c[ρJ] = D2[ρJ]a[ρJ], and ′ denotes the derivative with respect to
the argument. Multiplying the above equation by ∇ρJ, we obtain after one integration step

D[ρJ]2(∇ρJ)
2 = J2

(
1 + 2σ [ρJ]K

(
J2
))

(42)

where K(J2) is a constant of integration which guarantees the correct boundary conditions
for ρJ(r). Equations (38) and (42) then completely determine the current distribution Pτ (J)

in diffusive media, which is in general non-Gaussian (except for small current fluctuations).
Explicit solutions to these equations for particular models of diffusive transport in vary-
ing dimensions can be obtained [24, 26]. Appendix A summarizes the calculation for the
KMP model of energy transport, for which we explore below its current statistics using the
advanced Monte Carlo methods of Sect. 4.

Before turning to numerics notice that, as described above, hypotheses (H1)–(H2) have
been shown [1–6] to be equivalent to the additivity principle for 1D diffusive systems [9].
To understand its original formulation, let PN(J,ρL,ρR, τ ) be the probability of observing
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a time-averaged current J during a long time τ in a 1D system of size N in contact with
boundary reservoirs at densities ρL and ρR . The additivity principle relates this probability
with the probabilities of sustaining the same current in subsystems of lengths N − � and �,
i.e.,7

PN(J,ρL,ρR, τ ) = max
ρ

[
PN−�(J,ρL,ρ, τ ) × P�(J,ρ,ρR, τ )

]
. (43)

The maximization over the contact density ρ can be rationalized by writing this probability
as an integral over ρ of the product of probabilities for subsystems and noticing that these
should obey also a large deviation principle. Hence a saddle-point calculation in the long-τ
limit leads to the above expression. The additivity principle can be rewritten for the current
LDF as NG(J,ρL,ρR) = maxρ[(N −�)G(J,ρL,ρ)+�G(J,ρ,ρR)]. Slicing iteratively the
1D system of length N into smaller and smaller segments, and assuming locally-Gaussian
current fluctuations, it is easy to show that in the continuum limit a variational form for
G(J,ρL,ρR) is obtained which is just the 1D counterpart of Eq. (38). Interestingly, for 1D
systems the conjecture of time-independent optimal profiles implies that the optimal current
profile must be constant. This is no longer true in higher dimensions, as any divergence-free
current field with spatial integral equal to J is compatible with the equations. This gives rise
to a variational problem with respect to the (time-independent) density and current fields
which still poses many technical difficulties. Therefore an additional assumption is needed,
namely the constancy of the optimal current vector field across space. These two hypotheses
are equivalent to the iterative procedure of the additivity principle in higher dimensions.

5.1 Testing the Additivity Conjecture in One and Two Dimensions

The additivity principle previously described provides a relatively simple and straightfor-
ward recipe to compute the statistics of typical and rare current fluctuations, opening the
door to the systematic calculation of large deviation statistics in general nonequilibrium
systems. It is a very general conjecture of broad applicability, expected to hold for a large
family of systems of classical interacting particles, both deterministic or stochastic, in arbi-
trary dimension and independently of the details of the interactions between the particles or
the coupling to the thermal reservoirs or external fields. Furthermore, equivalent results to
those obtained with the additivity principle have been derived for interacting quantum sys-
tems [7]. The only requirement is that the system at hand must be diffusive, i.e. described by
a mesoscopic evolution equation of the form of Eq. (1),8 and that the prior hypotheses H1
and H2 hold. If this is the case, the additivity principle predicts the full current distribution
in terms of its first two cumulants. Moreover, the additivity conjecture can be applied to a
multitude of different situations once appropriately generalized [30, 32].

It is therefore essential to test the emerging picture in detailed numerical experiments
to confirm the validity of this hypothesis and asses its range of applicability. With this aim
in mind, we have recently performed extensive numerical simulations of the one- and two-
dimensional KMP models of energy transport in open lattices subject to a boundary-induced

7Note that this is the original formulation of the additivity principle for the integrated current stated by
Bodineau and Derrida in [9]. In [39], Bertini et al. state an additivity principle for the density field which
involves either a maximization or a minimization depending on the convexity of the rate functional for the
considered model.
8Note however that the additivity hypothesis has been recently confirmed in Hamiltonian models with anoma-
lous, non-diffusive transport properties [49]. These results considerably broaden the range of applicability of
the additivity conjecture.
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Fig. 4 (a) Legendre transform of the current LDF for the KMP model in one dimension with a temper-
ature gradient (ρL = 2, ρR = 1) and (b) in equilibrium (ρL = 1.5 = ρR ). Symbols correspond to numeri-
cal simulations, full lines to theoretical predictions based on the additivity conjecture, and dashed lines to
Gaussian approximations (see text). Errorbars (with 5 standard deviations) are always smaller than symbol
sizes. The vertical dotted lines in panel (a) signal the transition between monotone (inner region) or non–
monotone (outer region) optimal profiles. Note that in equilibrium profiles are non-monotone for all current
fluctuations. The inset in the panels (a) and (b) tests the Gallavotti-Cohen relation by plotting the difference
μ(λ) − μ(−λ − 2E) in case (a) and μ(λ) − μ(−λ) in (b). Right panels correspond to excess temperature
profiles for different current fluctuations, (c) for a system subject to a temperature gradient, (ρL = 2, ρR = 1)
and (d) in equilibrium (ρL = 1.5 = ρR ). In all cases, agreement with theoretical predictions based on the
additivity hypothesis (lines) is very good within the range of validity of the computational method (Color
figure online)

temperature gradient, TL �= TR [10, 24, 50]. In particular, we applied the cloning Monte
Carlo method of Sect. 4 [18–21] to measure the Legendre transform of the current LDF,
defined as

μ(λ) = max
J

[
G(J) + λ · J

]
. (44)

The method of Sect. 4 yields the macroscopic LDF μ(λ) in terms of the logarithm of the
largest eigenvalue of the modified dynamics Ũ (λ) via the simple scaling relation μ(λ) =
N2−dθ(λNd−1) (see footnote of page 11) for a system of linear size N in dimension d ,
where θ(λ) is the microscopic LDF, see Eq. (28) above.

We first measured μ(λ) for the 1D KMP model with N = 50, TL = 2 and TR = 1,
see Fig. 4(a), where we compare simulation data with predictions derived from macro-
scopic fluctuation theory once supplemented with the additivity conjecture (theory denoted
as MFTAd hereafter). Explicit details of the theory can be found in Appendix A, where
it is shown that, for the particular case of the KMP model, the optimal profiles solution of
Eq. (42) can be either monotone for small current fluctuations or non-monotone with a single
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maximum for larger fluctuations. The agreement between the measured μ(λ) and MFTAd,
see Fig. 4(a), is excellent for a wide λ-interval, say −0.8 < λ < 0.45, which corresponds
to a large range of current fluctuations, say −1.5 < J < 49 (note that λ-space is bounded,
λ ∈ [−T −1

R ,T −1
L ] while the current-space is not, see Appendix A). Moreover, the deviations

observed for extreme current fluctuations (i.e. large values of |λ|) are due to known limi-
tations of the algorithm [10, 18–21, 28], so no violations of additivity are observed in this
context. Notice that these spurious differences seem to occur earlier for currents against the
gradient, i.e. λ < 0. These deviations can be traced back to sampling biases introduced by
the cloning Monte Carlos scheme for finite number of clones, and extreme value statistics
can be used to derive bounds in λ-space as a function of the clone population for the applica-
bility of the cloning method [28]. Interestingly, we can use the Gallavotti-Cohen symmetry,
which in λ-space now reads μ(λ) = μ(−λ− 2ε) with the driving force ε = (T −1

R −T −1
L )/2,

to offer a blind bound for the range of validity of the algorithm: Violations of the fluctuation
relation signal the onset of the systematic bias in the estimations provided by the method of
Ref. [18]. Figure 4(a) and its inset show that the Gallavotti-Cohen symmetry holds in the
large current interval for which the additivity principle predictions agree with measurements,
thus confirming its validity in this range. However, we cannot discard the possibility of an
additivity breakdown for extreme current fluctuations due to the onset of time-dependent
optimal profiles expected in general in MFT [1–6, 45, 46, 51], although we stress that such
scenario is not observed here. We will explore this interesting possibility in Sect. 7 below
for the same model with periodic boundary conditions.

We also measured the current LDF in canonical equilibrium, i.e. for TL = TR = 1.5, see
Fig. 4(b). The agreement with MFTAd is again excellent within the range of validity of our
measurements, which expands a wide current interval, see inset to Fig. 4(b), where we show
that the fluctuation relation is verified except for extreme currents deviations, for which the
algorithm fails to provide reliable results. Notice that, both in the presence of a temperature
gradient and in canonical equilibrium, μ(λ) is parabolic around λ = 0 meaning that cur-
rent fluctuations are approximately Gaussian for J ≈ Jst , as demanded by the central limit
theorem, see Eqs. (122)–(123) in Appendix A. This observation is particularly interesting
in equilibrium, where large fluctuations in canonical and microcanonical ensembles behave
differently (see below).

The additivity principle leads to the minimization of a functional of the density field,
ρJ (x), see Eqs. (38) and (42). A relevant question is whether this optimal field is actually
observable. We naturally define ρJ (x) in simulations as the average energy profile adopted
by the system during a large deviation event of (long) duration t = τN2 and time-integrated
current J t , measured at an intermediate time 1 � t ′ � t [10, 24]. Figures 4(c)–(d) show the
measured ρλ(x) for both the nonequilibrium (c) and equilibrium (d) settings, and the agree-
ment with MFTAd predictions is again very good in all cases, with discrepancies appearing
only for extreme current fluctuations, as otherwise expected. Notice that Fig. 4(c) include
data both in the monotone and non-monotone profile regimes, see Appendix A. These ob-
servations confirm the idea that the system indeed modifies its density profile to facilitate
the deviation of the current, validating the additivity principle as a powerful conjecture to
compute both the current LDF and the associated optimal profiles.

Notice that in the canonical equilibrium case (TL = TR) optimal density profiles are al-
ways non-monotone, see Appendix A, with a single maximum for any current fluctuation
J �= Jst (the stationary profile is obviously flat). This is in stark contrast to the behavior

9See inset of Fig. 11 of Ref. [24] where J versus λ is displayed.
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predicted for current fluctuations in microcanonical equilibrium, i.e. for a one-dimensional
closed diffusive system on a ring [1–6, 45], see Sect. 7 below. In this case the optimal pro-
files remain flat and current fluctuations are Gaussian up to a critical current value, at which
profiles become time-dependent (traveling waves) [45]. Hence current statistics can differ
considerably depending on the particular equilibrium ensemble at hand, despite their equiv-
alence for average quantities in the thermodynamic limit.

Remarkably, our numerical results show that optimal density fields in equilibrium and
nonequilibrium are indeed independent of the sign of the current, ρλ(x) = ρ−λ−2ε(x) or
equivalently ρJ (x) = ρ−J (x), a counter-intuitive symmetry resulting (as the Gallavotti-
Cohen fluctuation theorem) from the reversibility of microscopic dynamics.10 We will show
in Sect. 5.2 below from a microscopic point of view that not only the optimal density field,
but the whole statistics during a current large deviation event, remain invariant under current
sign reversal [24, 28].

As a final note, we just mention that our numerical simulations can be used to explore
the physics beyond the additivity conjecture by studying the fluctuations of the total energy
in the system, which exhibit the trace left by corrections to local equilibrium resulting from
the presence of weak long-range correlations in the nonequilibrium steady state [10, 24]. In
addition, one can extend the additivity hypothesis to study the joint, coupled fluctuations of
the current and the density profile which appear for long but finite times, when the density
profile associated with a given current fluctuation is subject to fluctuations itself [10, 24].

One-dimensional systems are oversimplified models of reality. In order to establish the
generality and usefulness of the additivity conjecture to compute large deviation statistics in
general nonequilibrium systems, it is mandatory to test additivity in more complex, higher-
dimensional systems. In order to do so, we have measured the statistics of the space&time-
averaged current J for the 2D KMP model with linear size N = 20, TL = 2 and TR = 1
using both standard simulations and the advanced Monte Carlo technique of Sect. 4 [50]. In
particular, we measured the current statistics as a function of the magnitude of the current
vector for different current orientations, i.e. for different angles ϕ = tan−1(Jy/Jx), where Jα

is the α-component of the current vector J. Note that in the conjugated λ-space, this angle
can be written as ϕ = tan−1(λy/(λx + εx)) If εy = 0. MFTAd predicts that the Legendre
transform of the current LDF, μ(λ), depends exclusively on |λ + ε| but not on ϕ. As we
will see in Sect. 6, this is not a mathematical curiosity but a deep result related with hidden
symmetries of the current LDF. Figure 5(a) shows the measured μ(λ) as a function of |λ+ε|,
for different constant angles ϕ (see inset to Fig. 5(a)), together with the MFTAd prediction.
We observe that there is a good agreement for a broad interval of current fluctuations such
that |λ + ε| ≤ 0.35. From this value on clear deviations from the theoretical predictions are
observed which depend on ϕ. The origin of such disagreement is twofold: (i) standard finite
size effects, as MFT is a macroscopic theory but we could only simulate reliably systems of
small size (N ≤ 32), and (ii) a different class of finite size effects related to the finite number
of clones used to sample the large-deviation statistics [28]. As for the 1D case above, we can
use the Gallavotti-Cohen (GC) symmetry to detect the regime where the finite population
of clones introduces a bias in simulation results. Consequently, in Fig. 5(b) we compare the
LDF for current fluctuations coupled by time reversibility by plotting μ(λ) versus |λ + ε|,
for a fixed pairs of angles ϕ and ϕ − π (see the inset of Fig. 5(b)). This analysis shows that
GC holds to a good degree of accuracy for |λ+ε| � 0.42, a critical value above which Monte
Carlo results are biased due to the finite population of clones. In this way, the disagreement

10For equilibrium dynamics, TL = TR , this symmetry is obvious as the system has x ↔ 1 − x symmetry.
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Fig. 5 (a) Measured μ(λ) for the 2D KMP model with ρL = 2, ρR = 1 and N = 20 for different angles
versus |λ + ε|. The solid line corresponds to the theoretical prediction. Inset: Points in λ-space for different
angles where measurements are taken. The dashed circle is where the non-monotone regime starts. (b) Mea-
sured μ(λ) with ρL = 2, ρR = 1, N = 20 and 103 clones for different pairs of angles (ϕ,π −ϕ) correspond-
ing to opposite currents, which are coupled by time reversibility (see the inset of panel (a)). The red vertical
line indicates the threshold value of |λ + ε| up to which the GC symmetry holds (Color figure online)

with the theory for 0.35 ≤ |λ + ε| ≤ 0.42 can be then traced back to standard finite size
effects (small N ). This can be corroborated by studying the dependence of μ(λ) on the
system size (see Fig. 7(d)): a slow but clear convergence toward the theoretical prediction
is observed for all angles ϕ as N grows [50]. Therefore, as for the 1D case, and excluding
the different finite size effects discussed, no violations of additivity are observed in 2D,
confirming the validity of this hypothesis in higher dimensions.

5.2 Invariance of Rare Event Statistics Under Current Reversal

We have shown numerically in the previous section that the measured optimal density field
associated with a current fluctuation does not depend on the current sign, i.e. ρJ(r) = ρ−J(r),
in agreement with the MFTAd prediction. In fact, Eq. (42) for the optimal profile clearly
shows that this object is independent of the sign of the current, J → −J. Such counter-
intuitive symmetry results from the time reversibility of microscopic (stochastic) dynamics,
and goes hand by hand with the Gallavotti-Cohen fluctuation theorem [11], see Eq. (14). In
fact, it can be shown starting from the microscopic, Markov-chain description of the large
deviation problem [24, 28] that not only the optimal profile remains invariant under current
reversal, but also the whole statistics during the large deviation event.

To show this remarkable invariance of rare-event statistics under time reversal, we must
first define time-reversibility in stochastic dynamics. The condition that plays the role of the
time-reversal invariance of deterministic dynamics in stochastic systems is known as local
detailed balance [14], and reads

peff(C)UC′C = peff

(
C ′)UCC′e2ε·qC′C , (45)

where ε is the driving force, peff(C) is an effective statistical weight for configuration
C different from the steady-state measure which for the 1D KMP model takes the form
peff(C) = exp[−∑N

i=1 βiei] with ei being the energy of each site and βi = T −1
L + 2ε i−1

N−1
[24]. Recall that UC′C is the transition rate for the jump C → C ′, which involves an elemen-
tary current qC′C . We may now use the modified dynamics Ũ (λ) defined in Sect. 4 to write
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condition (45) as ŨCC′(λ) = p−1
eff (C

′)ŨC′C(−λ − 2ε)peff(C), or in matrix form

ŨT(λ) = P−1
eff Ũ (−λ − 2ε)Peff, (46)

where Peff is a diagonal matrix with entries 〈C|Peff|C ′〉 = peff(C)δC,C′ . Equation (46) im-
plies a symmetry between the modified dynamics for a current fluctuation and the modified
dynamics for the negative current fluctuation. In particular, the similarity relation (46) im-
plies that all eigenvalues of Ũ (λ) and Ũ (−λ − 2ε) are equal, and in particular the largest,
so

θ(λ) = θ(−λ − 2ε). (47)

This is just the Gallavotti-Cohen fluctuation theorem, F(q) −F(−q) = 2ε · q, see also Eq.
(14), written in terms of the Legendre transform of the current LDF. The similarity relation
(46) can be further exploited to show that the statistics during a current large deviation
event remains invariant under time reversal. Let P̄(Ct ′ ,Qt , t

′, t) be the probability that the
system was in configuration Ct ′ at time t ′ when at time t the total integrated current is Qt .
Timescales are such that 1 � t ′ � t , so all times involved are long enough for the memory
of the initial state C0 to be lost. We can write now

P̄
(
Ct ′ ,Qt , t

′, t
)

=
∑

Ct ···Ct ′+1Ct ′−1···C1

UCt Ct−1 · · ·UCt ′+1Ct ′ UCt ′ Ct ′−1
· · ·UC1C0δ

(

Qt −
t−1∑

k=0

qCk+1Ck

)

, (48)

where we do not sum over Ct ′ . Defining the moment-generating function of the above dis-
tribution,

Π̄
(
Ct ′ ,λ, t ′, t

) =
∑

Qt

eλ·Qt P̄
(
Ct ′ ,Qt , t

′, t
)

=
∑

Ct ···Ct ′+1Ct ′−1···C1

ŨCt Ct−1 · · · ŨCt ′+1Ct ′ ŨCt ′ Ct ′−1
· · · ŨC1C0

=
∑

Ct

〈Ct |Ũ t−t ′ |Ct ′ 〉〈Ct ′ |Ũ t ′ |C0〉, (49)

it is easy to show that for long times such that 1 � t ′ � t the probability weight of con-
figuration Ct ′ at intermediate time t ′ in a large deviation event of current q = Qt /t can be
written as

Pq(Ct ′) ≡ P̄(Ct ′ ,Qt , t
′, t)

P(Qt , t)
= Π̄(Ct ′ ,λ, t ′, t)

Π(λ, t)
≡ Pλ(Ct ′) (50)

where q and λ are conjugated parameters univocally related via Legendre transform, q =
q∗(λ), see Eq. (28) above. This relation is easily demonstrated by noting that

Pλ(Ct ′) = Π̄(Ct ′ ,λ, t ′, t)
Π(λ, t)

= 1

Π(λ, t)

∑

Qt

eλ·Qt P̄
(
Ct ′ ,Qt , t

′, t
)= Pq(Ct ′)

Π(λ, t)

∑

Qt

eλ·Qt P(Qt , t)

t�1−−→ Pq(Ct ′)
et maxq[F(q)+λ·q]

Π(λ, t)
= Pq(Ct ′),
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where we have used in the last step that in the long time limit P(Qt , t) ∼ etF (q) and Π(λ, t) ∼
etμ(λ) with μ(λ) = maxq[F(q) + λ · q]. Using the spectral decomposition of the operator
Ũ (λ), Eq. (31), one thus finds

Pλ(Ct ′) = 〈Ct ′ |Ũ t ′ |C0〉∑Ct
〈Ct |Ũ t−t ′ |Ct ′ 〉

∑
Ct

〈Ct |Ũ t |C0〉
,

so in the long time limit we arrive at

Pλ(Ct ′)
t�1−−→ 〈ΛL(λ)|Ct ′ 〉〈Ct ′ |ΛR(λ)〉. (51)

Here |ΛR(λ)〉 and 〈ΛL(λ)| are the right and left eigenvectors associated with the largest
eigenvalue eΛ(λ) of modified transition rate Ũ (λ), respectively. They are different because
Ũ is not symmetric. Therefore the probability of a configuration during a large fluctuation
of the current is proportional to the projection of this configuration on the left and right
eigenvectors associated with the largest eigenvalue of Ũ (λ).

Interestingly, |ΛL(λ)〉 is the right eigenvector of the transpose matrix ŨT(λ) with eigen-
value eΛ(λ). This right eigenvector of ŨT(λ) can be in turn related to the corresponding
right eigenvector |ΛR(−λ − 2ε)〉 of matrix Ũ (−λ − 2ε) using the similarity relation (46)
which stems from the local detailed balance condition (45). Using the basis expansion
|ΛR(−λ − 2ε)〉 =∑

C〈C|ΛR(−λ − 2ε)〉|C〉, it is easy to show that

|ΛL(λ)〉 =
∑

C

〈C|ΛR(−λ − 2ε)〉
peff(C)

|C〉, (52)

is the right eigenvector of ŨT(λ) with eigenvalue eΛ(λ). In fact,

ŨT(λ)|ΛL(λ)〉 = P−1
eff Ũ (−λ − 2ε)Peff

∑

C

〈C|ΛR(−λ − 2ε)〉
peff(C)

|C〉

= P−1
eff Ũ (−λ − 2ε)|ΛR(−λ − 2ε)〉

= eΛ(λ)
∑

C

〈C|ΛR(−λ − 2ε)〉
peff(C)

|C〉 = eΛ(λ)|ΛL(λ)〉 (53)

In this way, by using Eq. (52) into Eq. (51) we find

Pλ(C) ∝ 〈ΛR(−λ − 2ε)|C〉〈C|ΛR(λ)〉
peff(C)

,

where we assumed real components for the eigenvectors associated with the largest eigen-
value. Remarkably, this equation implies that Pλ(C) = P−λ−2ε(C) or equivalently Pq(C) =
P−q(C), so the statistics during an arbitrary current fluctuation does not depend on the cur-
rent sign, i.e. it remains invariant under time reversal. This implies in particular that the
average density profile during a current large deviation event is invariant under q → −q, but
also that all higher-order moments of the density field as well as all n-body spatial correla-
tions during a given current fluctuation exhibit this remarkable symmetry.

Starting from equations similar to Eqs. (48)–(51) above, it is easy to show that the prob-
ability of observing a given configuration C at the end of a current large deviation event
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parameterized by λ (i.e., for time t ′ = t ) is just Pend
λ (C) ∝ 〈C|ΛR(λ)〉 [24], allowing us to

relate midtime and endtime current large-deviation statistics in a simple manner,

Pλ(C) = A
Pend

λ (C)Pend
−λ−2ε(C)

peff(C)
, (54)

with A a normalization constant. This relation implies that configurations with a significant
contribution to the current large deviation statistics are those with an important probabilistic
weight at the end of both the large deviation event and its time-reversed process [24].

6 The Isometric Fluctuation Relation

When discussing the additivity of current fluctuations for the 2D KMP model in Sect. 5.1,
we have noticed a remarkable invariance of the Legendre transform of the current LDF
with the angle of the current vector. As we discuss in this section, this observation is not
a quirk of the 2D KMP model but a deep result related with hidden symmetries of the
current LDF. To show this, notice that the optimal profile ρJ(r) solution of Eq. (39) depends
exclusively on J and J2. Such a simple quadratic dependence, inherited from the locally-
Gaussian nature of fluctuations, has important consequences at the level of symmetries of
the current distribution. In fact, it is clear from Eq. (39) that the condition

δπ1[ρ(r)]
δρ(r′)

= 0, (55)

implies that ρJ(r) will depend exclusively on the magnitude of the current vector, via J2, not
on its orientation. In this way, all isometric current fluctuations characterized by a constant
|J| will have the same associated optimal profile, ρJ(r) = ρ|J|(r), independently of whether
the current vector J points along the gradient direction, against it, or along any arbitrary
direction. In other words, the optimal profile is invariant under current rotations if condi-
tion (55) holds. It turns out that condition (55) follows from the time-reversibility of the
dynamics, in the sense that the evolution operator in the Fokker-Planck formulation of the
Langevin equation (1) obeys a local detailed balance condition [14, 15]. In this case, we can
write in general

W1
[
ρ(r)

]≡ QE[ρ(r)]
σ [ρ(r)] = −∇ δH[ρ]

δρ
, (56)

where H[ρ(r)] is the effective Hamiltonian for the system of interest. Now, if this condition
holds, it is easy to show by using vector integration by parts that

δ

δρ(r′)

∫

Λ

drW1
[
ρ(r)

] ·A(r) = − δ

δρ(r′)

∫

∂Λ

dΓ
δH[ρ]

δρ
A(r) · n̂ = 0, (57)

for any divergence-free vector field A(r). The second integral is taken over the boundary
∂Λ of the domain Λ where the system is defined, and n̂ is the unit vector normal to the
boundary at each point. In particular, by taking A(r) = J constant, Eq. (57) implies that
δπ1[ρ(r)]/δρ(r′) = 0. Hence for time-reversible systems—in the Fokker-Planck sense of
Eq. (56)—the optimal profile ρJ(r) remains invariant under rotations of the current J, see
Eq. (39). We can now use this invariance to relate in a simple way the probability of any pair
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Fig. 6 Left: The isometric fluctuation relation at a glance. Sketch of the current distribution in two dimen-
sions, peaked around its average 〈J〉ε , and isometric contour lines for different |J|’s. The isometric fluctuation
relation, Eq. (58), establishes a simple relation for the probability of current fluctuations along each of these
contour lines. Right: The IFR relates in a strikingly simple manner the probability of a given fluctuation J
with the likelihood of any other current fluctuation on the d-dimensional hypersphere of radius |J|. Moreover,
under the additional condition (78), the generalized IFR (79) relates any current fluctuation J in the presence
of an external field E with any other isometric current fluctuation J′ in the presence of an arbitrarily-rotated
external field E∗

of isometric current fluctuations J and J′, with |J| = |J′|, see Eqs. (12) and (38). This allows
us to write the following Isometric Fluctuation Relation (IFR) [29]

lim
τ→∞

1

τNd
ln

[
Pτ (J)

Pτ (J′)

]
= ε · (J − J′). (58)

where ε is the driving force. The previous statement, which includes as a particular case the
Gallavotti-Cohen (GC) result for J′ = −J, see Eq. (14), relates in a strikingly simple manner
the probability of a given fluctuation J with the likelihood of any other current fluctuation on
the d-dimensional hypersphere of radius |J|, see Fig. 6, projecting a complex d-dimensional
problem onto a much simpler one-dimensional theory.11 By recalling the definition of the
current LDF, see Eq. (13), we can write an alternative formulation of the IFR

G(J) − G
(
J′)= ε · (J − J′)= |ε||J|(cos θ − cos θ ′), (59)

where θ and θ ′ are the angles formed by vectors J and J′, respectively, with the constant
vector ε = ε + E. This last expression will be useful when checking in simulations the IFR,
see Sect. 6.1 below. By letting now J and J′ differ by an infinitesimal angle, the IFR can be
cast in a simple differential form

∂G(J)

∂θ
= |ε||J| sin θ, (60)

which reflects the high level of symmetry imposed by time-reversibility on the current distri-
bution. Unlike the GC relation which is a non-differentiable symmetry involving the inver-
sion of the current sign, J → −J, Eq. (58) is valid for arbitrary changes in orientation of the
current vector, as reflected by Eq. (60) above. This makes the experimental test of the above
relation a feasible problem, as data for current fluctuations involving different orientations

11In fact, it suffices to determine the current distribution along an arbitrary direction, say e.g. J = |J|x̂, to
reconstruct the whole distribution Pτ (J) using the IFR.
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around the average can be gathered with enough statistics to ensure experimental accuracy.
Finally, it is important to stress that the IFR is valid for arbitrarily large fluctuations, i.e.
even for the non-Gaussian far tails of current distribution.

The IFR and the GC theorem are deep statements on the subtle but enduring conse-
quences of microscopic time reversibility at the macroscopic level. Particularly important
here is the observation that microscopic symmetries are reflected at the fluctuating macro-
scopic level arbitrarily far from equilibrium. This crucial observation suggest to apply and
extend the ideas and tools associated with the concept of symmetry, so successful in other
areas of theoretical physics, to study the statistics of fluctuations out of equilibrium. In
physics, symmetry means invariance of an object under certain transformation rules. In this
context the physically relevant and natural object whose invariance we are interested in is the
optimal path that a system with many degrees of freedom transits in mesoscopic (or coarse-
grained) phase space to facilitate a given fluctuation. As we have seen above, the invariance
of this optimal path under rotations of the associated current vector has led to a new insight,
the Isometric Fluctuation Relation. We anticipate that invariance principles of this kind can
be applied with great generality in diverse fields where fluctuations play a fundamental role,
opening an unexplored route toward a deeper understanding of nonequilibrium physics by
bringing symmetry principles to the realm of fluctuations. Below we show that the IFR can
be extended to different situations by using this general idea.

Before developing these generalizations, it is important to notice that the condition
δπ1[ρ(r)]/δρ(r′) = 0 can be seen as a conservation law. It implies that the observable
π1[ρ(r)] is in fact a constant of motion, ε ≡ π1[ρ(r)], independent of the profile ρ(r),
which can be related with the rate of entropy production via the Gallavotti-Cohen theorem
[11–15]. In a way similar to Noether’s theorem, the conservation law for ε implies a symme-
try for the optimal profiles under rotations of the current and an isometric fluctuation relation
for the current LDF. This constant can be easily computed under very general assumptions,
see Appendix B.

6.1 Numerical Investigation of Isometric Current Fluctuations

We now set out to validate the IFR in extensive simulations of the 2D KMP model, using
both standard Monte Carlo simulations and the advanced cloning technique discussed in
Sect. 4. For the former case, we performed a large number of steady-state simulations of long
duration τ > N2 (the unit of time is the Monte Carlo step) for N = 20, TL = 2 and TR = 1,
accumulating statistics for the space & time-averaged current vector J. The measured current
distribution Pτ (J) is shown in Fig. 7(a), together with a fine polar binning which allows
us to compare the probabilities of isometric current fluctuations along each polar corona,
see Eq. (58). Taking G(J) = (τNd)−1 ln Pτ (J), Fig. 7(b) confirms the IFR prediction that
G(J) − G(J′), once scaled by |J|−1, collapses onto a linear function of cos θ − cos θ ′ for
all values of |J|, see Eq. (59). Here θ , θ ′ are the angles formed by the isometric current
vectors J, J′ with the x-axis (E = 0 in this case). We also measured in standard simulations
the average energy profile associated with each current fluctuation, ρJ(r), see Fig. 7(c). As
predicted above, profiles for different but isometric current fluctuations all collapse onto a
single curve well predicted by MFTAd, confirming the invariance of optimal profiles under
current rotations.

Standard simulations allow us to explore moderate fluctuations of the current around the
average. In order to test the IFR in the far tails of the current distribution, corresponding
to exponentially unlikely rare events, we measured the current statistics using the cloning
algorithm of Sect. 4. As discussed above, this method yields the Legendre transform of the
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Fig. 7 Confirmation of IFR in a diffusive system. (a) Current distribution as measured in standard simula-
tions of the 2D KMP model subject to a temperature gradient, together with the polar binning used to test
the IFR. (b) The IFR predicts that |J|−1[G(J) − G(J′)] collapses onto a linear function of cos θ − cos θ ′
for all values of |J|, see Eq. (59). This collapse is confirmed here in the KMP energy diffusion model for
a wide range of values for |J|. (c) Average profiles for different but isometric current fluctuations all col-
lapse onto single curves, confirming the invariance of optimal profiles under current rotations. Angle range
is |θ | ≤ 16.6◦ , see marked region in the histogram, and lines are MFTAd predictions. (d) Legendre transform
of the current LDF for the 2D KMP model, for different values of |λ + ε| corresponding to very large current
fluctuations, different rotation angles φ such that λ′ = Rφ(λ + ε) − ε, and increasing system sizes. Lines are
theoretical predictions. The IFR predicts that μ(λ) = μ[Rφ(λ + ε) − ε] ∀φ ∈ [0,2π ]. The isometric fluctu-
ation symmetry emerges in the macroscopic limit as the effects associated with the underlying lattice fade
away (Color figure online)

current LDF, μ(λ), so we must first write the IFR in terms of μ(λ). To do so, we now write
J′ = RJ, with R any d-dimensional rotation matrix, and use the IFR, see Eq. (59), in the
definition of μ(λ), Eq. (44), to obtain

μ(λ) = max
J

[
G(J) + λ · J

]= max
J′
[
G
(
J′)+ (

R(λ + ε) − ε
) · J′]= μ

[
R(λ + ε) − ε

]
,

where we have used that projections remain invariant under equal rotation of the vectors
involved, i.e. (λ + ε) ·R−1J′ = R(λ + ε) · J′. Hence, the IFR can be stated for μ(λ) as

μ(λ) = μ
[
R(λ + ε) − ε

] ∀R. (61)

Therefore, in order to test the IFR we measured μ(λ) in increasing manifolds of constant
|λ + ε|, see Fig. 7(d), as the IFR (61) implies that μ(λ) is constant along each of these
manifolds. Rφ a rotation in 2D of angle φ. Figure 7(d) shows the measured μ(λ) for different
values of |λ+ ε| corresponding to very large current fluctuations, different rotation angles φ

and increasing system sizes, together with the theoretical predictions (see Appendix A). As a
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result of the finite, discrete character of the lattice system studied here, we observe violations
of IFR in the far tails of the current distribution, specially for currents orthogonal to the
driving force ε. These violations, already encountered when investigating additivity, are
expected since a prerequisite for the IFR to hold is the existence of a macroscopic limit, i.e.
Eq. (1) should hold strictly, which is not the case for the relatively small values of N studied
here. However, as N increases, a slow but clear convergence toward the IFR prediction is
observed as the effects associated with the underlying lattice fade away, strongly supporting
the validity of IFR in the macroscopic limit.

In order to investigate the universality of the IFR, we also measured current fluctuations
in a Hamiltonian hard-disk fluid subject to a temperature gradient (not shown) [29]. This
model is a paradigm in liquid state theory, condensed matter and statistical physics, and has
been widely studied during last decades. Our results unambiguously confirm the IFR and
the associated invariance of optimal profiles under current rotations in this model for a wide
range of fluctuations. Interestingly, the hard-disk fluid is a fully hydrodynamic system, with
4 different locally-conserved coupled fields possibly subject to memory effects, defining a
far more complex situation than the one studied here within MFTAd, see Eq. (1). Therefore
the validity of IFR in this context suggests that this fluctuation relation, based on the invari-
ance of optimal profiles under symmetry transformations, is in fact a rather general result
valid for arbitrary fluctuating hydrodynamic systems. We also mention that recent work [53]
has shown that the IFR can be suitably generalized to anisotropic systems, and this idea has
been confirmed in great detail for the anisotropic zero-range process.

6.2 Hierarchies for the Cumulants and Nonlinear Response Coefficients

The isometric fluctuation relation, Eq. (58), has far-reaching and nontrivial consequences.
For instance, the IFR implies remarkable hierarchies of equations for the current cumulants
and the nonlinear response coefficients, which go far beyond Onsager’s reciprocity rela-
tions and Green-Kubo formulas. These hierarchies can be derived starting from the moment-
generating function associated with Pτ (J),

Π(λ, τ ) =
∫

Pτ (J)eτNdλ·JdJ, (62)

which scales for long times as Π(λ, τ ) ∼ exp[+τNdμ(λ)], where μ(λ) = maxJ[G(J) +
λ · J] works now as the cumulant generating function. The cumulants of the current distri-
bution can be obtained from the derivatives of μ(λ) evaluated at λ = 0, i.e.

μ
(n)

(n1···nd ) ≡
[

∂nμ(λ)

∂λ
n1
1 · · · ∂λ

nd

d

]

λ=0

, (63)

where λi is the i-th component of vector λ and
∑d

i=1 ni = n. Note that for n ≤ 3 we have that
μ

(n)

(n1···nd ) = (τLd)n−1〈�J
n1
1 · · ·�J

nd

d 〉 where �Jk ≡ Jk − (1 − δn,1)〈Jk〉ε , with 〈Jk〉ε being
the average current along the k-direction for external driving ε. We now may use the IFR as
expressed for μ(λ), see Eq. (61), in the definition of the n-th order cumulant. As we shall
show below, in the limit of infinitesimal rotations, R = I+ �φL, with I the identity matrix,
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the IFR implies that

nαLβαμ
(n)

(n1···nα−1···nβ+1···nd ) + ενLγ νμ
(n+1)

(n1···nγ +1···nd ) = 0, (64)

where L is any generator of d-dimensional rotations, and summation over repeated Greek
indices (∈ [1, d]) is assumed. The above hierarchy relates in a simple way current cumulants
of order n and n + 1 ∀n ≥ 1, and is valid arbitrarily far from equilibrium.

We now set out to derive Eq. (64). To do so, we start by slightly modifying our notation by
replacing in Eq. (63) the ni -th order derivative with respect to λi by ni first order derivatives
with respect to λi , i.e.,

μ
(n)

(n1···nd ) ≡
[

∂nμ(λ)

∂λ
n1
1 · · · ∂λ

nd

d

]

λ=0

=
[

∂nμ(λ)

∂λi1∂λi2 · · · ∂λin

]

λ=0

, (65)

with

ik =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 k ∈ [1, n1]
2 k ∈ [n1 + 1, n1 + n2]
...

d k ∈ [∑d−1
i=1 ni + 1,

∑d

i=1 ni]

(66)

We now may use the IFR as expressed for μ(λ), see Eq. (61), to write

μ
(n)

(n1···nd ) =
[

∂nμ(λ)

∂λi1∂λi2 · · · ∂λin

]

λ=0

=
[

∂nμ(R(λ + ε) − ε)

∂λi1∂λi2 · · · ∂λin

]

λ=0

(67)

Recall that all throughout this section summation over repeated Greek indices (∈ [1, d]) is
assumed. By using the chain rule Eq. (67) reads

[
∂nμ(R(λ + ε) − ε)

∂λi1 · · · ∂λin

]

λ=0

= Rω1i1 · · ·Rωnin

[
∂nμ(λ′)

∂λ′
ω1

· · · ∂λ′
ωn

]

λ′=Rε−ε

, (68)

where we have used that the k-th component of vector R(λ+ε)−ε is just Rkα(λα +εα)−εk .
In the limit of infinitesimal rotations, R = I+ �φL, with I the identity matrix, we have

that λ′ = Rε − ε � �φLε and we can write

[
∂nμ(λ′)

∂λ′
ω1

· · · ∂λ′
ωn

]

λ′=�φLε

�
[

∂nμ(λ′)
∂λ′

ω1
· · · ∂λ′

ωn

]

λ′=0

+ �φενLγ ν

[
∂n+1μ(λ′)

∂λ′
ω1

· · · ∂λ′
γ · · · ∂λ′

ωn

]

λ′=0

. (69)

As we are considering infinitesimal rotations, we can also expand the prefactors Rω1i1 · · ·
Rωnin to first order in �φ as

Rω1i1 · · ·Rωnin = δω1i1 · · · δωnin + �φ

n∑

k=1

δω1i1 · · · δωk−1ik−1Lωkik δωk+1ik+1 · · · δωnin . (70)
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Thus, by using Eqs. (69)–(70) in the r.h.s of Eq. (68) and retaining up to linear terms in �φ,
we can write Eq. (67) as

μ
(n)

(n1···nd ) = δω1i1 · · · δωnin

[
∂nμ(λ′)

∂λ′
ω1

· · · ∂λ′
ωn

]

λ′=0

+ �φ

[

δω1i1 · · · δωninενLγ ν

[
∂n+1μ(λ′)

∂λ′
ω1

· · · ∂λ′
γ · · · ∂λ′

ωn

]

λ′=0

+
n∑

k=1

δω1i1 · · · δωk−1ik−1Lωkik δωk+1ik+1 · · · δωnin

[
∂nμ(λ′)

∂λ′
ω1

· · · ∂λ′
ωn

]

λ′=0

]

It is easy to see that the first summand of the r.h.s of the above equation is just the original
μ

(n)

(n1···nd ), thus the sum in brackets must be zero, i.e.,

n∑

k=1

Lωkik

[
∂nμ(λ′)

∂λ′
i1

· · · ∂λ′
ωk

· · · ∂λ′
in

]

λ′=0

+ ενLγ ν

[
∂n+1μ(λ′)

∂λ′
i1

· · · ∂λ′
γ · · · ∂λ′

in

]

λ′=0

= 0.

To end the calculation and get Eq. (64) we now go back to the original notation used in
Eq. (66). We can thus immediately identify the second summand of the l.h.s of the above
equation with the second summand of Eq. (64). In order to derive the first summand of Eq.
(64), we take for instance k ∈ [1, n1] in the first summand of the above equation. In that case
we have ik = 1 meaning that there are n1 equal summands involving n1 − 1 derivatives with
respect to λ1 and an additional derivative with respect to λω1 , so the first n1 summands in
the first term of the l.h.s of the above equation are just n1Lω11μn1−1,n2···nω1 +1···nd

. In general,

we can write this summation as nαLβαμ
(n)

(n1···nα−1···nβ+1···nd ), recovering the hierarchy in Eq.
(64).

As an example, the first two sets of relations (n = 1,2) of the hierarchy given by Eq. (64)
in two dimensions are

〈Jx〉ε = τN2
[
εx〈�J 2

y 〉ε − εy〈�Jx�Jy〉ε
]

〈Jy〉ε = τN2
[
εy〈�J 2

x 〉ε − εx〈�Jx�Jy〉ε
] (71)

2〈�Jx�Jy〉ε = τN2
[
εy〈�J 3

x 〉ε − εx〈�J 2
x �Jy〉ε

]

= τN2
[
εx〈�J 3

y 〉ε − εy〈�Jx�J 2
y 〉ε
]

〈�J 2
x 〉ε − 〈�J 2

y 〉ε = τN2
[
εx〈�Jx�J 2

y 〉ε − εy〈�J 2
x �Jy〉ε

]
.

(72)

In a similar way, we can explore the consequences of the IFR on the linear and nonlinear
response coefficients. For that, we now expand the cumulants of the current in powers of the
driving force ε

μ
(n)

(n1···nd )(ε) =
∞∑

k=0

1

k!
k∑

k1···kd=0∑
i ki=k

(k)

(n)χ
(k1···kd )

(n1···nd )ε
k1
1 · · · εkd

d , (73)
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where the nonlinear response coefficients are defined as

(k)

(n)χ
(k1···kd )

(n1···nd ) ≡
[

∂n+kμ(λ)

∂λ
n1
1 · · · ∂λ

nd

d ∂ε
k1
1 · · · ∂ε

kd

d

]

λ=0=ε

, (74)

and measure the k-th order response of the n-th order current cumulant to the external driv-
ing. Inserting expansion (73) into the cumulant hierarchy, Eq. (64), we have

nαLβα

∞∑

k=0

1

k!
k∑

k1···kd=0∑
i ki=k

(k)

(n)χ
(k1···kd )

(n1···nα−1···nβ+1···nd )ε
k1
1 · · · εkd

d

+Lγ ν

∞∑

k′=0

1

k′!
k′∑

k′
1···k′

d
=0

∑
i k′

i
=k′

(k′)
(n+1)χ

(k′
1···k′

d
)

(n1···nγ +1···nd )ε
k′

1
1 · · · εk′

ν+1
ν · · · εk′

d

d = 0,

To match order by order in k the two terms in the above expression we have that k′
1 =

k1, . . . , k
′
ν + 1 = kν, . . . , k

′
d = kd . Therefore k′ =∑

i k
′
i =∑

i ki − 1 = k − 1 and we get

∞∑

k=0

k∑

k1···kd=0∑
i ki=k

[
nαLβα

1

k

(k)

(n)χ
(k1···kd )

(n1···nα−1···nβ+1···nd ) +Lγ ν
(k−1)

(n+1)χ
(k1···kν−1···kd )

(n1···nγ +1···nd )

]
ε

k1
1 · · · εkd

d

(k − 1)! = 0

This relation must be valid for arbitrary ε, so the expansion coefficient for each k must
vanish exactly. This leads to another interesting hierarchy for the response coefficients of
the different cumulants. For k = 0 we get

nαLβα
(0)

(n)χ
(0···0)

(n1···nα−1···nβ+1···nd ) = 0, (75)

which is a symmetry relation for the equilibrium (ε = 0) current cumulants. For k ≥ 1 we
obtain

k∑

k1···kd=0∑
i ki=k≥1

[
nα

k
Lβα

(k)

(n)χ
(k1···kd )

(n1···nα−1···nβ+1···nd ) +Lγ ν
(k−1)

(n+1)χ
(k1···kν−1···kd )

(n1···nγ +1···nd )

]
= 0, (76)

which relates k-order response coefficients of n-order cumulants with (k − 1)-order coef-
ficients of (n + 1)-order cumulants. Relations (75)–(76) for the response coefficients result
from the IFR in the limit of infinitesimal rotations. For a finite rotation R = −I, which is
equivalent to a current inversion, we have μ(λ) = μ(−λ−2ε), an alternative formulation of
the GC fluctuation theorem expressed for the Legendre transform of the current LDF, and we
may use this in the definition of response coefficients, Eq. (74), to obtain a complementary
relation for the response coefficients

(k)

(n)χ
(k1···kd )

(n1···nd ) = k!
k1∑

p1=0

· · ·
kd∑

pd=0

(−1)n+p2p

p!(k − p)!
(k−p)

(n+p)χ
(k1−p1···kd−pd )

(n1+p1···nd+pd ), (77)

where p =∑
i pi . A similar equation was derived in [54] from the standard GC fluctuation

theorem, although the IFR (which includes the GC fluctuation theorem for currents as a
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particular case) adds a whole set of new relations, Eqs. (75)–(76). All together, Eqs. (75)–
(77) imply deep relations between the response coefficients at arbitrary orders which go far
beyond Onsager’s reciprocity relations and Green-Kubo formulae.

To better grasp the meaning of these hierarchies, we now go back to our two-dimensional
example, and let (k)

(n)χ
(kx ,ky )

(nx ,ny ) be the response coefficient of the cumulant μ
(n)

(nx ,ny )(ε) to order

εkx
x ε

ky
y , with n = nx + ny and k = kx + ky . To the lowest order these hierarchies imply On-

sager’s reciprocity symmetries and Green-Kubo relations for the linear response coefficients
of the current, with the additional prediction that the linear response matrix is in fact pro-
portional to the identity. In our notation, this translates to

(1)

(1)χ
(1,0)

(1,0) = (1)

(1)χ
(0,1)

(0,1) = (0)

(2)χ
(0,0)

(2,0) = (0)

(2)χ
(0,0)

(0,2) ,

while

(1)

(1)χ
(0,1)

(1,0) = 0 = (1)

(1)χ
(1,0)

(0,1) .

The first nonlinear coefficients of the current can be simply written in terms of the linear
coefficients of the second cumulants as

(2)

(1)χ
(2,0)

(1,0) = 2(1)

(2)χ
(1,0)

(2,0) and (2)

(1)χ
(0,2)

(1,0) = −2(1)

(2)χ
(1,0)

(1,1) ,

while the cross-coefficient reads

(2)

(1)χ
(1,1)

(1,0) = 2
[
(1)

(2)χ
(0,1)

(2,0) + (1)

(2)χ
(0,1)

(1,1)

]

(symmetric results hold for nx = 0, ny = 1). Linear response coefficients for the second-
order cumulants also obey simple relations, e.g.

(1)

(2)χ
(1,0)

(1,1) = −(1)

(2)χ
(0,1)

(1,1) and (1)

(2)χ
(1,0)

(2,0) + (1)

(2)χ
(0,1)

(2,0) = (1)

(2)χ
(1,0)

(0,2) + (1)

(2)χ
(0,1)

(0,2) ,

and the set of relations continues to arbitrary high orders. In this way hierarchies (75)–(77),
which derive from microreversibility as reflected in the IFR, provide new deep insights into
nonlinear response theory for nonequilibrium systems [54].

6.3 Generalizations of the IFR

The IFR and the above hierarchies all follow from the invariance of optimal profiles under
certain transformations. This idea can be further exploited in more general settings. In fact,
by writing explicitly the dependence on the external field E in Eq. (39) for the optimal
profile, one realizes that if the following condition holds,

δ

δρ(r′)

∫

Λ

Q
[
ρ(r)

]
dr = 0, (78)

together with the time-reversibility condition, Eq. (55), the resulting optimal profiles are
invariant under independent rotations of the current and the external field. It thus follows
that the current LDFs for pairs (J,E) and (J′ = RJ,E∗ = SE), with R, S independent
d-dimensional rotations, obey a generalized Isometric Fluctuation Relation

GE(J) − GE∗
(
J′)= ε · (J − J′)− ν · (E − E∗)+ J · E − J′ · E∗, (79)
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where we write explicitly the dependence of the current LDF on the external field. The vector
ν ≡ ∫

Λ
Q[ρ(r)]dr is now another constant of motion, independent of ρ(r), which can be

easily computed (see Appendix B). For a fixed boundary gradient, the above equation relates
any current fluctuation J in the presence of an external field E with any other isometric
current fluctuation J′ in the presence of an arbitrarily-rotated external field E∗, see right
panel in Fig. 6, and reduces to the standard IFR for E = E∗. Interestingly, condition (78)
is rather general, as most time-reversible systems with a local mobility σ [ρ] do fulfill this
condition (as, e.g., diffusive systems as those studied here).

The IFR can be further generalized to cases where the current profile is not constant,
relaxing hypothesis (H2) of the additivity conjecture, see Sect. 5 above. Let Pτ [J (r)] be the
probability of observing a time-averaged current field J (r) = τ−1

∫ τ

0 dtj(r, t). Notice that
this vector field must be divergence-free because it is coupled via the continuity equation (8)
to an optimal density profile which is assumed to be time-independent, see hypothesis (H1)
in Sect. 5. This probability also obeys a large deviation principle,

Pτ

[
J (r)

]∼ exp
(+τNdG

[
J (r)

])
, (80)

with a current LDF equivalent to that in Eq. (38) but with a space-dependent current field
J (r). The optimal density profile ρJ (r)[r] is now solution of

δ

δρ(r′)

∫

Λ

dr
(
W2
[
ρ(r)

]− 2J (r) · W1
[
ρ(r)

]+J 2(r)W0
[
ρ(r)

])= 0, (81)

which is the equivalent to Eq. (39) in this case. For time-reversible systems condition (57)
holds and ρJ (r)[r] remains invariant under (local or global) rotations of J (r). In this way
we can simply relate Pτ [J (r)] with the probability of any other divergence-free current
field J ′(r) locally-isometric to J (r), i.e. J ′(r)2 = J (r)2 ∀r, via a generalized Isometric
Fluctuation Relation,

lim
τ→∞

1

τ
ln

[
Pτ [J (r)]
Pτ [J ′(r)]

]
=
∫

∂Λ

dΓ
δH[ρ]

δρ
n̂ · [J ′(r) −J (r)

]
, (82)

where the integral (whose result is independent of ρ(r)) is taken over the boundary ∂Λ of
the domain Λ where the system is defined, and n̂ is the unit vector normal to the boundary
at each point. Notice that in general an arbitrary local or global rotation of a divergence-free
vector field does not conserve the zero-divergence property, so this constrains the current
fields and/or local rotations for which this generalized IFR applies. Note that the probability
of observing a time averaged integrated current, Pτ (J), is given by the following path integral

Pτ (J) =
∫

DJ Pτ

[
J (r)

]
δ

(
J −

∫

Λ
drJ (r)

)
. (83)

Hence, taking into account the above equation and that for long times Eq. (80) holds and
Pτ (J) ∼ exp(+τNdG(J)), we can relate the large deviation function for the space- and time-
averaged current, G(J), to G[J (r)] via a contraction principle [16, 17]

G(J) = max
J (r):∇·J (r)=0

J=∫Λ drJ (r)

G
[
J (r)

]
. (84)

The optimal, divergence-free current field J J(r) solution of this variational problem may
have spatial structure in general. Equation (82) generalizes the IFR to situations where hy-
pothesis (H2) of Sect. 5 is violated, opening the door to isometries based on local (in addition
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to global) rotations. However, numerical results and phenomenological arguments strongly
suggest that the constant solution, J J(r) = J, is the optimizer at least for a wide interval of
current fluctuations, showing that hypothesis (H2) above is not only plausible but also well
justified on physical grounds. In any case, the range of validity of this hypothesis can be
explored by studying the limit of local stability of the constant current solution using tools
similar to those in Ref. [46].

We could also try to generalize the IFR to the full space- and time-dependent variational
problem of Eq. (13), i.e. to situations where the additivity conjecture breaks down. In this
case, we would study the probability P({j(r, t)}τ

0) of observing a particular history for the
current field, which can be written as the path integral of the probability in Eq. (9) over
histories of the density field {ρ(r, t)}τ

0 coupled to the desired current field via the continuity
Eq. (8) at every point in space and time. This probability obeys another large deviation
principle, with an optimal history of the density field {ρJ(r, t)}τ

0 which is solution of an
equation similar to Eq. (81) but with time-dependent profiles. However, as opposed to the
cases above, the current field j(r, t) is not necessarily divergence-free because of the time-
dependence of the associated ρJ(r, t), resulting in a violation of condition (57). In this way
the optimal ρJ(r, t) depends on both j(r, t) and j(r, t)2 so it does not remain invariant under
(local or global) instantaneous rotations of the current field, and hence no generalization of
the IFR to the general time-dependent regime can be done. However, as we shall see below,
it is quite remarkable that additivity violations seem to happen in a controlled way: once
additivity breaks down, optimal paths depend on space and time via simple scaling laws (as
for instance in a travelling wave form, r − vt , see below), and this can be used in turn to
extend the validity of the IFR to time-dependent regimes [52].

7 Additivity Violation and Spontaneous Symmetry-Breaking at the Fluctuating Level

Macroscopic fluctuation theory allows us to study dynamic fluctuations in diffusive media
[1–6], offering predictions for both the LDFs of interest and the optimal path in mesoscopic
(or coarse-grained) phase space responsible for a given fluctuation. This optimal path is a
dynamical object, which can be in general time-dependent [1–6]. However, we have argued
above that, for a broad spectrum of fluctuations, we expect the optimal path that minimizes
the cost of a fluctuation to be time-independent, an idea captured by the additivity conjec-
ture of Sect. 5. The physical picture behind this hypothesis corresponds to a system that,
after a short transient of time at the beginning of the large deviation event (microscopic in
the diffusive timescale τ ), settles into a time independent state with an structured density
field (which can be different from the stationary one) and a spatially uniform current field
equal to J. As we show in this section, this additivity scenario eventually breaks down for
large current fluctuations via a dynamic phase transition at the fluctuating level involving
a symmetry breaking event [1–6, 46], where time-dependent optimal paths in the form of
traveling waves emerge as dominant solution to the variational problem (13).

We now study this phenomenon in detail. In order to simplify the discussion below, we
focus on a 1D diffusive system on the unit interval, Λ = [0,1], subject to periodic boundary
conditions and possibly to a conservative external field E. In this case, and according to
MFT, the LDF of the space&time-averaged current

J = 1

τ

∫ τ

0
dt

∫ 1

0
j (x, t)dx, (85)
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is given by Eq. (13), which once particularized for our 1D driven diffusive system reads

G(J ) = − lim
τ→∞

1

τ
min
{ρ,j }τ0

{∫ τ

0
dt

∫ 1

0
dx

(j + D[ρ]∂xρ − Eσ [ρ])2

2σ [ρ]
}
, (86)

subject to the constraints imposed by the continuity equation ∂tρ + ∂xj = 0 and Eq. (85).
Periodic boundary conditions then imply that ρ(0, t) = ρ(1, t) and j (0, t) = j (1, t), and the
total density is a conserved quantity

∫ 1

0
dxρ(x, t) = ρ0. (87)

The stationary profile is the flat one (uniformly equal to ρ0) and the average current is Jst =
σ [ρ0]E. Finding the optimal fields solution of (86) is in general a complex spatiotemporal
problem whose solution remains challenging in most cases. The problem becomes much
simpler however in different limiting cases. For instance, one expects that small current
fluctuations around the average, J � Jst , result from the random superposition of weakly-
correlated local fluctuations of the microscopic jump process. In this case it is reasonable
to assume the optimal density field to be just the flat, steady-state one, ρJ (x, t) = ρ0, and
hence jJ (x, t) = J , resulting in a simple quadratic form for the current LDF

Gflat(J ) = − (J − σ(ρ0)E)2

2σ(ρ0)
, (88)

or an equivalent quadratic form for its Legendre transform

μflat(λ) = λ(λ + 2E)σ(ρ0)

2
. (89)

Therefore Gaussian statistics is obtained for small (i.e. typical) current fluctuations, in agree-
ment with the central limit theorem. The previous argument, revolving around small fluctu-
ations, breaks down however for moderate current deviations where correlations may play
a relevant role. In fact, Bodineau and Derrida have shown recently [46] that the flat profile
indeed becomes unstable, in the sense that G(J ) increases (compared to the flat solution)
by adding a small time-dependent periodic perturbation to the otherwise constant profile,
whenever

8π2D2(ρ0)σ (ρ0) + (
E2σ 2(ρ0) − J 2

)
σ ′′(ρ0) < 0, (90)

where σ ′′ denotes second derivative. This condition implies a well-defined critical current

|Jc| =
√

8π2D2(ρ0)σ (ρ0)

σ ′′(ρ0)
+ E2σ 2(ρ0), (91)

where the instability emerges. Notice that, for the instability to exist, the strength of the
driving field, |E|, must be large enough to guarantee a positive discriminant in Eq. (91),
namely

|E| ≥ |Ec| ≡ Re

[√

− 8π2D(ρ0)2

σ(ρ0)σ ′′(ρ0)

]
. (92)

Therefore, since the mobility σ(ρ) is positive definite, a non-zero threshold field only exists
for models such that σ ′′(ρ) < 0, as for instance the WASEP, where σ(ρ) = ρ(1 − ρ) [51].
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For the other transport model of interest here, the KMP model [37, 45], we have σ(ρ) = ρ2

so σ ′′(ρ) > 0 and hence |Ec| = 0, thus exhibiting the aforementioned instability even in the
absence of external fields [45]. In fact, for σ ′′(ρ) > 0 the instability dominates whenever
|J | > |Jc|, while for σ ′′(ρ) < 0 the instability controls the |J | < |Jc| regime.

When the instability kicks in, an analysis of the resulting perturbation [46] suggests that
the dominant form of the optimal profile is a traveling wave moving at constant velocity v

ρJ (x, t) = ωJ (x − vt), (93)

which implies via the continuity equation ∂tρ + ∂xj = 0 that

jJ (x, t) = J − vρ0 + vωJ (x − vt). (94)

Provided that the traveling-wave form remains as the optimal solution for currents well-
beyond the critical threshold, the current LDF can now be written as

G(J ) = − min
ωJ (x),v

∫ 1

0

dx

2σ [ωJ ]
[
J − vρ0 + vωJ (x) + D[ωJ ]ω′

J (x) − σ [ωJ ]E]2
, (95)

where we have absorbed the time dependence after a change of variables due to the periodic
boundary conditions, and the minimum is now taken over the traveling wave profile ωJ (x)

and its velocity v. Expanding now the square in Eq. (95), we notice that the terms linear in
ω′

J give a null contribution due again to the system periodicity. Taking also into account the

constraint
∫ 1

0 ωJ (x)dx = ρ0, see Eq. (87), one gets

G(J ) = − min
ωJ (x),v

[∫ 1

0
dx(X[ωJ ] + ω′

J (x)2Y [ωJ ]
]

+ JE, (96)

where, borrowing the notation of Ref. [46],

X[ωJ ] = [J − v(ρ0 − ωJ )]2

2σ [ωJ )] + E2σ [ωJ )]
2

and Y [ωJ ] = D[ωJ )]2

2σ [ωJ ] . (97)

The differential equation for the optimal profile solution of the variational problem Eq. (96)
can be written as

X[ωJ ] − ω′
J (x)2Y [ωJ ] = C1 + C2ωJ , (98)

with C1 and C2 constants to be determined below. This equation generically yields a sym-
metric optimal profile with a ωJ (x) with a single minimum ω1 = ωJ (x1) and a single max-
imum ω0 = ωJ (x0) such that |x0 − x1| = 1/2.12 The optimal velocity also follows from the
above variational problem,

v = −J

∫ 1
0 dx

(ωJ (x)−ρ0)

σ [ωJ ]
∫ 1

0 dx
(ωJ (x)−ρ0)2

σ [ωJ ]
. (99)

12The optimal traveling wave profile solution of Eq. (98) must be symmetric because this differential equation
remains invariant under the transformation x → 1 − x. Periodicity implies that profile extrema, if any, come
in pairs (maximum and minimum). Moreover, the profile has at most a single pair of extrema because, when
we make w′

J
(x) = 0 in Eq. (98), the resulting equation is third order for the KMP model and WASEP. This,

together with the symmetry of the profile, implies in turn that the extrema ω1 = ωJ (x1) and ω0 = ωJ (x0)

are such that |x0 − x1| = 1/2.
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It is worth emphasizing that the optimal velocity is proportional to J . This implies that
the optimal profile solution of Eq. (98) depends exclusively on J 2 and not on the current
sign, reflecting the Gallavotti-Cohen time-reversal symmetry. This invariance of the optimal
profile under the transformation J ↔ −J can now be used in Eq. (96) to show explicitly the
GC symmetry in this case, G(J ) − G(−J ) = 2EJ , which as expected remains valid in this
time-dependent regime.

The constants C1 and C2 appearing in Eq. (98) can be expressed in terms of the extrema
ω1 and ω0 of the profile via

X(ω1) = C1 + C2ω1, (100)

X(ω0) = C1 + C2ω0. (101)

Moreover, the extrema locations are fixed by the constraints on the distance between them
and the total density of the system,

1

2
=
∫ x0

x1

dx =
∫ ω0

ω1

√
Y (ωJ )

X(ωJ ) − C1 − C2ωJ

dωJ (102)

and

ρ0

2
=
∫ x0

x1

ωJ (x)dx =
∫ ω0

ω1

√
ω2

J Y (ωJ )

X(ωJ ) − C1 − C2ωJ

dωJ , (103)

where we have used in the last equality of both expressions the differential equation (98).
In this way, for fixed values of the current J and the density ρ0 (provided externally), we
use Eqs. (99)–(103) in order to determine the five constants ω1,ω0,C1,C2, v which can be
used in turn to obtain the shape of the optimal density profile ωJ (x) from Eq. (98). Notice
that the unknown variables ω0, ω1 appear as the integration limits in Eqs. (102) and (103),
making this problem remarkably difficult to solve numerically. It can be shown that, by
performing a suitable change of variables [51], the integrals involved in the calculation can
be transformed into known functions, as e.g. elliptic integrals of the first kind, thus allowing
to derive an explicit analytical expression for ωJ (x) as a function of the relevant constants
for the particular model of interest.

7.1 Observation of Spontaneous Symmetry Breaking at the Fluctuating Level

Can we observe the dynamic phase transition described in the previous section, related to the
breakdown of additivity, in actual simulations of diffusive systems? To answer this question,
we study now the fluctuating behavior of the 1D KMP and WASEP models under periodic
boundary conditions. MFT predicts this dynamic phase transitions to happen for currents
away from the average current, so we will certainly need the advanced Monte Carlo method
of Sect. 4 to sample the tails of the current distribution where signs of this instability may
appear.

We first report compelling evidences of this phenomenon in the 1D KMP model of energy
transport [45], for which the relevant transport coefficients are D[ρ] = 1/2 and σ [ρ] = ρ2

(and hence σ ′′[ρ] > 0, see discussion below Eq. (92)). In particular, we performed extensive
simulations using the cloning algorithm with a large number M � 104 of clones and fixed
total density ρ0 = 1. We are interested in the statistics of the total current J flowing through
the system, averaged over a long diffusive time τ . For τ → ∞ this time average converges
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Fig. 8 (1) Main: Measured μ(λ) for the 1D KMP model on the ring and increasing values of N , together
with the MFT prediction and the Gaussian approximation. Inset: μ(λ) − μflat(λ) for the same N . Data con-
verge to the MFT prediction as N increases. (2) Typical evolution of the energy field for different current
fluctuations in the 1D KMP model on a ring. (2a) Small current fluctuations result from weakly-correlated
local events. (2b) However, for |J | > Jc the system facilitates this unlikely deviation by forming a traveling
wave. (3) Supercritical profiles for different λ and varying N , and MFT predictions. (4) Measured profiles as
a function of λ for N = 32. The inset shows the MFT prediction for the optimal profile ωJ (x). Profiles are
flat up to the critical current, beyond which a nonlinear wave pattern develops (Color figure online)

toward the ensemble average Jst , which is of course zero because the system is isolated and
in equilibrium. However, for long but finite τ we may still observe fluctuations J �= Jst , and
their probability Pτ (J ) is our primary object of interest.

To better grasp the physics behind this phenomenon, let us first examine the typical space-
time trajectories for small and large current fluctuations. As expected, see Fig. 8(2a), we
find that small current fluctuations result indeed from the sum of weakly-correlated local
random events in the density field, thus giving rise to a flat, structureless optimal density
field in average and, as we will show below, Gaussian statistics as dictated by the central
limit theorem. However, for large enough currents, the KMP system self-organizes into a
coherent traveling wave which facilitates this rare event by accumulating energy in a lo-
calized packet, see Fig. 8(2b), with a critical current Jc separating both regimes. For our
particular case, it is easy to show that Jc = π , see Eq. (91). This phenomenon, predicted by
MFT above [1–6, 46], is most striking for this model as it happens in an isolated equilibrium
system in the absence of any external field, breaking spontaneously a symmetry (translation
invariance) in 1D. This is an example of the general observation that symmetry-breaking in-
stabilities forbidden in equilibrium steady states can however happen at the fluctuating level
or in nonequilibrium settings [27]. Such instabilities may help explaining puzzling asym-
metries in nature [27], from the dominance of left-handed chiral molecules in biology to the
matter-antimatter asymmetry in cosmology.
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Figure 8(1) shows simulation results for the LDF μ(λ) and increasing values of N . The
MFT prediction of Gaussian current statistics for |J | < Jc = π corresponds to quadratic
behavior in μ(λ) = μflat(λ) = λ2/2 up to a critical |λc| = π . This is fully confirmed in
Fig. 8(1) as N increases, meaning that small and intermediate current fluctuations have
their origin in the superposition of weakly-correlated local events, giving rise to Gaussian
statistics. However, for fluctuations above the critical threshold, |λ| > λc , deviations from
this simple quadratic form are apparent, signaling the onset of a phase transition. In fact, as
N increases a clear convergence toward the MFT non-quadratic prediction is observed, with
very good results already for N = 32. Strong finite size effects associated with the finite
population of clones M prevent us from reaching larger system sizes [28], but N = 32 is
already close enough to the asymptotic hydrodynamic behavior. Still, small corrections to
the MFT predictions are observed which quickly decrease with N , see inset to Fig. 8(1).

The dynamical phase transition is most evident at the configurational level, as observed
in Fig. 8(2), so we measured the average density profile associated with a given current
fluctuation [10, 51], see Figs. 8(3)–(4). Because of the system periodicity, and in order not to
blur away the possible structure present in microscopic configurations, we performed profile
averages around the instantaneous center of mass. For that, we consider the system as a 1D
ring embedded in two-dimensional space, see Fig. 2, and compute the angular position of
the center of mass, shifting it to the origin before averaging. In particular, we assign an
angular position θi = 2πi/N to each site i ∈ [1,N ] in the lattice. The angular position of
the center of mass for a given microscopic configuration ρ = {ρi, i = 1, . . . ,N}, with ρi ≥ 0
the on-site energies, is thus defined as

θCM ≡ tan−1

(
YCM

XCM

)
with XCM = 1

Nρ0

N∑

i=1

ρi cos θi; YCM = 1

Nρ0

N∑

i=1

ρi sin θi,

(104)
and recall that ρ0 = N−1

∑N

i=1 ρi is the total energy per site. Notice that this center-of-mass
averaging procedure yields a spurious weak structure in the Gaussian (homogeneous) fluc-
tuation region, equivalent to averaging random density profiles around their (random) center
of mass. Such a spurious profile is of course independent of the current J and can be eas-
ily subtracted. On the other hand, once the instability is triggered average profiles exhibit
a much more pronounced structure resulting from the appearance of a traveling wave. Fig-
ure 8(3) shows the measured profile ωλ(x) for different λ > λc and varying N . Again, fast
convergence toward the MFT result is observed, with excellent agreement for N = 32 in all
cases. Figure 8(4) shows the measured profiles for N = 32 and different λ, which closely re-
sembles the MFT scenario, see inset. Finally, we mention that we also measured the average
velocity associated with a given current fluctuation (not shown), and the comparison with
theoretical predictions is again excellent, with a velocity linear in the current for subcritical
fluctuations but following a strongly nonlinear relation above the threshold Jc [45].

We also studied this phenomenon in the weakly-asymmetric simple exclusion process
(WASEP) described in Sect. 3, using the same tools as described above. Recall that in this
case D[ρ] = 1/2 and σ [ρ] = ρ(1 − ρ). In this way, the critical current and the threshold
field for the WASEP, see Eqs. (91) and (92), are

|Jc| = ρ0(1 − ρ0)

√
E2 − E2

c (105)

|Ec| = π√
ρ0(1 − ρ0)

. (106)
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Equivalently, taking into account that Jst = ρ0(1 − ρ0)E, we have that

|Jc| = |Jst |
√

1 −
(

Ec

E

)2

, (107)

so |Jc| < |Jst | in WASEP for field strengths above the threshold, while no phase transition
happens for |E| < |Ec|. This is in stark contrast with the phenomenology found for the
KMP model, and stems from the fact that σ ′′[ρ] < 0 for the WASEP. Therefore we expect
Gaussian current fluctuations and a flat optimal density profile for |J | > |Jc|. Legendre-
transforming the quadratic current LDF in Eq. (88) once particularized for WASEP, we have
in this regime

μflat(λ) = ρ0

2
(1 − ρ0)λ(λ + 2E). (108)

However, for currents |J | < |Jc|, a time-dependent regime with an optimal density profile
in the form of a traveling wave is expected. This corresponds to values of the conjugate
parameter λ such that |λ + E| < λ̃c , with

λ̃c ≡ qc

ρ0(1 − ρ0)
=
√

E2 − π2

ρ0(1 − ρ0)
=
√

E2 − E2
c , (109)

and where we have used Eqs. (105)–(107). Therefore we expect traveling wave solutions for
λ−

c < λ < λ+
c , where

λ±
c ≡ ±λ̃c − E. (110)

In this way the time-dependent fluctuation regime kicks in whenever μ(λ) < μ(λ±
c ) =

−π2/2, see Eq. (108).
We performed simulations of the 1D periodic WASEP for three different average den-

sities, ρ0 = 0.3,0.5 and 0.7, for increasing system sizes N ∈ [8,64] and a fixed external
field E = +10. This driving field is above the threshold Ec for all three densities ρ0, see
Eq. (106), so we expect the instability to appear on the basis of the previous analysis. Fig-
ure 9(a) shows the typical spacetime trajectories for these three densities and supercritical
as well as subcritical current fluctuations. As for the KMP model, we find a dynamic phase
transition in current fluctuations involving the spontaneous breaking of translation symme-
try. However, for the WASEP the dynamic phase transition corresponds to the emergence
of a macroscopic jammed state which hinders transport of particles to facilitate a current
fluctuation well below the average as |Jc| < |Jst |.

Figure 9(b) shows simulation results for μ(λ) and increasing values of N for a particular
value of ρ0 = 0.5 (similar results hold for other densities), together with the explicit MFT
results. Gaussian current statistics corresponds to the quadratic behavior of Eq. (108), which
is fully confirmed in the figure for |λ + E| > λ̃c and different values of N . This means
that small current fluctuations, J � Jst , originate from the superposition of uncorrelated (or
at most weakly-correlated) local events of the stochastic jump process. Interestingly, this
observation also applies to the time-reversal partners of these small fluctuations, −J , which
are far from typical. This is a direct consequence of the Gallavotti-Cohen symmetry [11–
15], which implies that the statistics associated with a current fluctuation does not depend
on the current sign [28], see Sect. 5.2. On the other hand, for fluctuations below a critical
threshold, |J | < |Jc| or equivalently λ−

c < λ < λ+
c , deviations from this simple quadratic

form announce the dynamical phase transition to a coherent traveling wave profile. As for
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Fig. 9 (a) Typical evolution of microscopic configurations for current fluctuations above and below the criti-
cal current for three different densities in the 1D WASEP (from top to bottom, ρ0 = 0.3,0.5,0.7). Left panels
correspond to currents above the critical one where the system remains homogeneous. Right panels corre-
spond to subcritical current fluctuations where a traveling wave emerges. (b) Measured μ(λ) for ρ0 = 0.5
and increasing N , together with the MFT result (solid red line) and the quadratic approximation (dashed
blue line). The inset shows the difference μ(λ) − μflat(λ). (c) Current LDF for ρ0 = 0.5 and N = 64. The
traveling wave solution enhances the probability for fluctuations |J | < |Jc| (solid red line) with respect to the
flat profile associated with Gaussian statistics (dashed black line). The inset shows the average current as a
function of λ as N increases. (d) Measured density profiles as a function of λ for ρ0 = 0.5 and N = 64, with
the MFT prediction as inset. Optimal profiles are flat up to a critical current (equivalently λ±

c ) where a trav-
eling wave emerges. (e) Collapse of measured profiles associated with different current fluctuations ωλ(x)

and their time-reversal partners ω−λ−2E(x) for N = 64 and ρ0 = 0.5, together with theoretical predictions.
Optimal profiles, both below and above the instability, remain invariant under change of sign of the current
(Color figure online)

the KMP model, finite size effects are strong but convergence toward the asymptotic MFT
result is clearly observed. On the other hand, the Gallavotti-Cohen fluctuation theorem for
currents holds in the whole current range and irrespective of N .13

We also measured the average current 〈Jλ〉 associated with a fixed value of the conjugate
parameter λ, see the inset of Fig. 9(c), and the agreement with MFT is again excellent
(improving as N increases). We may use the measured 〈Jλ〉 to give a direct Monte Carlo
estimate of the current LDF G(J ). In fact, 〈Jλ〉 is the current conjugated to a given λ and
hence we may write G(J ) = μ(λ) + λ〈Jλ〉, where we combine the measured μ(λ) and 〈Jλ〉
in Figs. 9(b)–(c), respectively. The result for G(J ) for ρ0 = 0.5 is plotted in Fig. 9(c), where
we again find a good agreement between theory and Monte Carlo simulation. Notice in

13This results from the microreversibility of the model at hand: while we need a large size limit in order to
verify the predictions derived from MFT (which is a macroscopic theory), no finite-size corrections affect the
fluctuation theorem, whose validity can be used to ascertain the range of applicability of the cloning algorithm
used to sample large deviations [28].
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particular the deviation from quadratic behavior observed for currents |J | < |Jc| resulting
from the formation of macroscopic jammed states.

A most interesting observable consists in the optimal density profiles associated with
different current fluctuations. Figure 9(d) shows a three-dimensional plot of the measured
profiles for N = 64 and different λ, again for ρ0 = 0.5, which closely resembles the MFT
scenario plotted as inset to this figure. In general, the traveling wave profile grows from the
flat form as λ crosses the critical values λ±

c penetrating into the critical region, thus favoring
a macroscopic jammed state that hinders transport of particles and thus facilitates a time-
averaged current fluctuation well below the average current. This macroscopic jammed state
reaches its maximum expression for λ = −E, or equivalently J = 0—see Fig. 9(c), so the
system is maximally jammed for zero current irrespective of the driving field E.

Although the instabilities observed for the KMP and WASEP models are described
equally well by MFT, the physical interpretation of the dynamic transition is quite differ-
ent. In particular, in the KMP model the instability happens because the system optimizes
the transport of a large current by gathering energy in a localized packet (the wave) which
then travels coherently, breaking spontaneously translation symmetry in the process. On the
other hand, the WASEP instability happens in order to hinder the transport of particles via
the formation of a macroscopic jammed states (again the wave), thus facilitating a current
fluctuation well below the average. Interestingly, both phenomena are sides of, essentially,
the same instability.

8 Discussion and Outlook

In this work we have studied the thermodynamics of currents in nonequilibrium diffusive
systems, using both macroscopic fluctuation theory as theoretical framework and advanced
Monte Carlo simulations of several stochastic lattice gases as a laboratory to test the emerg-
ing picture.

Our starting point was a mesoscopic fluctuating hydrodynamic theory for the density
field. The validity of this hydrodynamic description can be rigorously demonstrated for a
large family of stochastic microscopic models [22], but it is expected to describe the meso-
scopic, coarse-grained evolution of a broad class of real systems of theoretical and tech-
nological interest characterized by a locally conserved magnitude (e.g. energy, particles,
momentum, charge, etc.). From this fluctuating hydrodynamic description, and using a stan-
dard path integral formulation of the problem, we can write the probability of a path in
mesoscopic phase space, that is, the space spanned by the slow hydrodynamic fields. The
action associated with this path can be then used to derive the large-deviation functions of
the macroscopic observables of interest via contraction principles [16, 17], and in particular
the current LDF, which is expected to play in nonequilibrium physics a role equivalent to
the density LDF in equilibrium.

This calculation yields a complex spatiotemporal variational problem whose solution
remains challenging in most cases. However, a simple and powerful additivity conjecture
simplifies the variational problem, allowing us to obtain explicit predictions for the current
LDF and the optimal path that the system adopts to facilitate a given fluctuation. We have
confirmed the validity of this additivity conjecture for a wide interval of current fluctua-
tions in one and two dimensions for the KMP model of energy transport coupled to thermal
baths at different temperatures [10, 50]. In particular, we found that the current distribution
shows a Gaussian regime for small current fluctuations and non-Gaussian, exponential tails
for large deviations of the current, such that in all cases the Gallavotti-Cohen fluctuation
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relation holds. Our results thus strongly support the additivity hypothesis as an useful tool
to understand current statistics in diffusive systems, suggesting a general approach to attack
a large class of nonequilibrium phenomena based on few simple principles.

As an important by-product of our numerical work, we have measured the precise optimal
path that the system follows in phase space in order to sustain a given fluctuation, showing
that this path coincides with the solution to the variational problem posed by MFT. Interest-
ingly, we have also shown that by demanding invariance of optimal paths under symmetry
transformations, new and general fluctuation relations valid arbitrarily far from equilibrium
are unveiled. This opens an unexplored route toward a deeper understanding of nonequilib-
rium physics by bringing symmetry principles to the realm of fluctuations. This general idea
can be exploited to study hidden symmetries of the current distribution out of equilibrium.
In particular we have derived an isometric fluctuation relation (FR) [29] which links in a
strikingly simple manner the probabilities of any pair of isometric current fluctuations. This
relation, which results from the time-reversibility of the dynamics, includes as a particular
instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new
perspective on the high level of symmetry imposed by time-reversibility on the statistics
of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equa-
tions for the current cumulants and the nonlinear response coefficients, going far beyond
Onsager’s reciprocity relations and Green-Kubo formulae. We have confirmed the validity
of the new symmetry relation in extensive numerical simulations of the 2D KMP model,
and our results suggest that the idea of symmetry in fluctuations as invariance of optimal
paths has far-reaching consequences in diverse fields. In particular, generalizations of MFT
to systems with several conserved, coupled fields (e.g. fully hydrodynamic models) would
allow to formulate an extended IFR for the joint distributions of the different hydrodynamic
currents. We expect that this extended IFR would strongly constrain the shape of these joint
current distributions, linking in a hierarchical manner the mixed nonlinear response coeffi-
cients and giving rise to unexpected cross-relations among the different coefficients. These
relations may have direct application in complex nonequilibrium situations, e.g. from fluids
and turbulence to thermo- and piezo-electricity, electrolytes, and chemical kinetics.

The IFR and its generalizations are fluctuation theorems which emerge from MFT. A fun-
damental issue consists in the demonstration of IFR starting from microscopic dynamics
rather than MFT. Techniques similar to those used in Sect. 5.2, based on the spectral proper-
ties of the microscopic evolution operator, may prove useful but they must be supplemented
with additional insights on its scaling properties as the macroscopic limit is approached.
Also interesting is the possibility of an IFR for discrete isometries related with the underly-
ing lattice in stochastic models. These open questions call for further study.

The optimal path solution of the MFT variational problem can be in general time depen-
dent. The additivity of current fluctuations shows that this path is in fact time-independent
for a broad range of fluctuations. We have shown however that this scenario eventually
breaks down in isolated systems for large fluctuations via a dynamic phase transition at the
fluctuating level involving a symmetry-breaking event: while small current fluctuations re-
sult from the superposition of weakly-correlated local events and thus obey Gaussian statis-
tics, for large enough currents the system self-organizes in a coherent traveling wave which
facilitates the rare event by forming a localized density packet which breaks translation in-
variance. Moreover, the presence of these coherent structures associated with large, rare
fluctuations [45, 46] imply in turn that these events are far more probable than previously
anticipated. We have observed this phenomenon, predicted by MFT [45, 46, 51], in two
different 1D diffusive models: the KMP model of energy transport and the WASEP. Our
results show unambiguously that the dynamical phase transitions observed in the KMP and
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WASEP models are continuous as conjectured in [46], excluding the possibility of a first-
order scenario [45, 51]. This suggests that a traveling wave is in fact the most favorable
time-dependent profile once the instability is triggered. This observation may greatly sim-
plify general time-dependent calculations, but the question remains of whether this is the
whole story or if other, more complex solutions may play a dominant role for even larger
fluctuations. An interesting, related question concerns the properties of time-dependent solu-
tions for systems with open boundaries, where traveling-wave patterns are not appropriate.
The time-independent profiles in these cases, from which a suitable perturbative analysis
would hint at the form of the time-dependent solution, are far more complex than the trivial
homogeneous profiles that appear for periodic systems, difficulting progress along this line.
In fact, a recent study [55] has found no evidence of dynamical phase transition in WASEP
with open boundaries. In any case, it seems clear that extremely rare events call in general
for coherent, self-organized patterns in order to be sustained [56, 57].

Another interesting direction to explore in a near future is the appearance of this phe-
nomenon in higher-dimensional systems. In this case the solution of the associated MFT is
far more complicated, with no guarantee of an unique solution and several patterns may ap-
pear [52]. The role of numerical simulation will hence prove essential to explore rare current
fluctuations in high-dimensional systems and to understand the appearance of dynamical
phase transitions at the fluctuation level [50]. Furthermore, the simplicity and elegance of
this phenomenon suggests that it might be a rather general property of any fluctuating field
theory, with possible expressions in quantum field theory, hydrodynamics, etc.

Finally, although we have not focused here on this issue, let us mention that while the
MFT is usually applied to conservative systems, it has been recently generalized to dissi-
pative systems characterized by a continuous loss of energy to the environment [30–32, 34,
35]. In this case, the essential macroscopic observables which characterize the nonequilib-
rium behavior are the current and the dissipated energy. Using the path integral formalism
described in Sect. 2, it is possible to define the large deviation function of these observ-
ables and the optimal fields associated with their fluctuations. This extension of MFT to
dissipative media has been recently tested in detail in Refs. [30–32, 34, 35].

All these results are exciting and suggest that MFT and its generalizations provide a pow-
erful theoretical framework to understand in detail the physics of many different nonequi-
librium systems. The proposed scheme is very general, as MFT is based solely on (a) the
knowledge of the conservation laws and symmetries governing a system, which allow to
write down the balance equations for the fluctuating fields, and (b) a few characteristic
transport coefficients appearing in the fluctuating balance equations. This opens the door
to further general results in nonequilibrium physics that we plan to explore in a near future.

Acknowledgements We thank T. Bodineau, B. Derrida, A. Lasanta, J.L. Lebowitz, V. Lecomte, A. Prados
and J. Tailleur for illuminating discussions.

Appendix A: Additivity Predictions for Current Fluctuations in the 2D KMP Model

In this appendix we solve the simplified variational problem posed by MFT after the
additivity conjecture of Sect. 5 for the particular case of the two-dimensional Kipnis-
Marchioro-Presutti model defined in Sect. 3, when subject to a temperature gradient along
the x-direction (i.e. in contact with thermal baths at the left and right boundaries at tempera-
tures TL and TR , respectively) and with periodic boundary conditions along the y-direction.
Due to the symmetry of the problem, the calculations here described are also useful for the
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1D KMP model subject to the same temperature gradient, for which predictions follow by
simply making zero all y-components.

The equation for the optimal density field under the additivity conjecture reads

D[ρJ]2(∇ρJ)
2 = J2

(
1 + 2σ [ρJ]K

(
J2
))

(111)

where K(J2) is a constant of integration which guarantees the correct boundary conditions
for ρJ(r), which in this particular case are

ρJ(x = 0, y) = TL; ρJ(x = 1, y) = TR; ρJ(x, y = 0) = ρJ(x, y = 1). (112)

Moreover, for the KMP model recall that the diffusivity and mobility transport coefficients
entering MFT are D[ρ] = 1/2 and σ [ρ] = ρ2, respectively. Interestingly, the optimal field
solution of Eq. (111) depends exclusively on the modulus of the current vector J = |J|,
that is ρJ(r) = ρJ (r). In addition, the symmetry of the problem suggests that ρJ (r) depends
exclusively on x, with no structure in the y-direction, compatible with the presence of an
external gradient along the x-direction, i.e. ρJ (r) ≡ ρJ (x). In the last expression we have
simplified our notation in order not to clutter formulas below. Under these considerations,
the differential equation (111) for the optimal profile in the 2D KMP model becomes

(
dρJ (x)

dx

)2

= 4J 2
(
1 + 2K(J )ρ2

J (x)
)

(113)

Here two different scenarios appear. On one hand, for large enough K(J ) the r.h.s. of Eq.
(113) does not vanish ∀x ∈ [0,1] and the resulting profile is monotone. In this case, and
assuming TL > TR henceforth without loss of generality,

dρJ (x)

dx
= −2J

√
1 + 2ρ2

J (x)K(J ). (114)

On the other hand, for K(J ) < 0 the r.h.s. of Eq. (113) may vanish at some points, resulting
in a ρJ (x) that is non-monotone and takes an unique value ρ∗

J ≡ √−1/2K(J ) in the ex-
trema. Notice that the r.h.s. of Eq. (113) may be written in this case as 4J 2[1−(ρJ (x)/ρ∗

J )2].
It is then clear that, if non-monotone, the profile ρJ (x) can only have a single maximum be-
cause: (i) ρJ (x) ≤ ρ∗

J ∀x ∈ [0,1] for the profile to be a real function, and (ii) several maxima
are not possible because they should be separated by a minimum, which is not allowed be-
cause of (i). Hence for the non-monotone case (recall TL > TR)

dρJ (x)

dx
=

⎧
⎪⎨

⎪⎩

+2J
√

1 − (
ρJ (x)

ρ∗
J

)2, x < x∗

−2J
√

1 − (
ρJ (x)

ρ∗
J

)2, x > x∗
(115)

where x∗ locates the profile maximum. This leaves us with two separated regimes for cur-
rent fluctuations, with the crossover happening for J0 ≡ TL

2 [ π
2 − sin−1(

TR

TL
)]. This crossover

current can be obtained from Eq. (121) below by letting ρ∗
J → TL

A.1 Region I: Monotonous Regime (J < J0)

In this case, using Eq. (114) to change variables in Eq. (38) we have

G(J) =
∫ TR

TL

dρJ

1

4Jρ2
J

√
1 + 2K(J )ρ2

J

[(
Jx − J

√
1 + 2K(J )ρ2

J

)2 + J 2
y

]
, (116)
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with Jα the α component of vector J. This results in

G(J) = Jx

2

(
1

TR

− 1

TL

)
− J 2K(J ) + J

2

[
√

1 + 2K(J )T 2
L

TL

−
√

1 + 2K(J )T 2
R

TR

]
(117)

Notice that, for ρJ (x) to be monotone, 1 + 2K(J )ρ2
J > 0. Thus, K(J ) > −(2T 2

L)−1. Inte-
grating now Eq. (114) we obtain the following implicit equation for ρJ (x) in this regime

2xJ =

⎧
⎪⎪⎨

⎪⎪⎩

1√
2K(J)

ln[ TL+
√

T 2
L

+ 1
2K(J )

ρJ (x)+
√

ρJ (x)2+ 1
2K(J )

], K(J ) > 0

sin−1[TL

√−2K(J)]−sin−1[ρJ (x)
√−2K(J)]√−2K(J)

, − 1
2T 2

L

< K(J ) < 0

(118)

Making x = 1 and ρJ (x = 1) = TR in the previous equation, we obtain the implicit ex-
pression for the constant K(J ). To get a feeling on how it depends on J , note that in the
limit K(J ) → (−1/2T 2

L), the current J → J0, while for K(J ) → ∞ one gets J → 0. In
addition, from Eq. (118) we see that for K(J ) → 0 we find J = (TL − TR)/2 = 〈J〉.

Sometimes it is interesting to work with the Legendre transform of the current LDF [1–
7, 10, 24, 26], μ(λ) = maxJ[G(J) + λ · J], where λ is a vector parameter conjugate to the
current. Using the previous results for G(J) is easy to show [26] that μ(λ) = −K(λ)J∗(λ)2,
where J∗(λ) is the current associated with a given λ, and the constant K(λ) = K(|J∗(λ)|).
The expression for J∗(λ) can be obtained from Eq. (118) above in the limit x → 1. Finally,
the optimal profile for a given λ is just ρλ(x) = ρ|J∗(λ)|(x).

A.2 Region II: Non-monotonous Regime (J > J0)

In this case the optimal profile has a single maximum ρ∗
J ≡ ρJ (x = x∗) with ρ∗

J =
1/

√−2K(J ) and −1/2T 2
L < K(J ) < 0. Splitting the integral in Eq. (38) at x∗, and using

now Eq. (115) to change variables, we arrive at

G(J) = Jx

2

(
1

TR

− 1

TL

)
− J

2

[
1

TL

√

1 −
(

TL

ρ∗
J

)2

+ 1

TR

√

1 −
(

TR

ρ∗
J

)2

− 1

2ρ∗
J

(
π − sin−1

(
TL

ρ∗
J

)
− sin−1

(
TR

ρ∗
J

))]
. (119)

Integrating Eq. (115) one gets an implicit equation for the non-monotone optimal profile

2xJ =
{

ρ∗
J [sin−1(

ρJ (x)

ρ∗
J

) − sin−1(
TL

ρ∗
J
)] for 0 ≤ x < x∗

2J + ρ∗
J [sin−1(

TR

ρ∗
J
) − sin−1(

ρJ (x)

ρ∗
J

)] for x∗ < x ≤ 1
(120)

At x = x∗ both branches of the above equation must coincide, and this condition provides
simple equations for both x∗ and ρ∗

J

J = ρ∗
J

2

[
π − sin−1

(
TL

ρ∗
J

)
− sin−1

(
TR

ρ∗
J

)]
; x∗ =

π
2 − sin−1(

TL

ρ∗
J
)

π − sin−1(
TL

ρ∗
J
) − sin−1(

TR

ρ∗
J
)
. (121)

Finally, as in the monotone regime, we can compute the Legendre transform of the cur-
rent LDF, obtaining as before μ(λ) = −K(λ)J∗(λ)2, where J∗(λ) and the constant K(λ) =
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Fig. 10 Left panel: G(J) for the 2D-KMP model for TL = 2 and TR = 1. The blue circle signals the crossover
from monotone (J < J0 ≡ π/3) to non-monotone (J > π/3) optimal profiles. The green surface corre-
sponds to the Gaussian approximation for small current fluctuations. Right panel: Legendre transform of
both G(J) (brown) and G(J → 〈J〉) (green), together with the projection in λ-space of the crossover between
monotonous and non-monotonous regime (Color figure online)

K(|J∗(λ)|) can be easily computed from the previous expressions [24]. Note that, in λ-space,

monotone profiles are expected for |λ+ ε| ≤ 1
2TR

√
1 − (

TR

TL
)2, where ε = ( 1

2 (T −1
L −T −1

R ),0)

is the driving force in this case, while non-monotone profiles appear for 1
2TR

√
1 − (

TR

TL
)2 ≤

|λ + ε| ≤ 1
2 ( 1

TL
+ 1

TR
).

Figure 10 shows the predicted G(J) (left panel) and its Legendre transform (right panel)
for the 2D-KMP model. Notice that the LDF is zero for J = 〈J〉 = ((TL −TR)/2,0) and neg-
ative elsewhere. For small current fluctuations, J ≈ 〈J〉, G(J) obeys the following quadratic
form

G(J) ≈ −1

2

(
(Jx − (TL − TR)/2)2

σ 2
x

+ J 2
y

σ 2
y

)
, (122)

with σ 2
x = (T 2

L + TLTR + T 2
R)/3 and σ 2

y = TLTR , resulting in Gaussian statistics for currents
near the average as expected from the central limit theorem. A similar expansion for the
Legendre transform yields

μ(λ) ≈ λx

2

[
(TL − TR) + σ 2

x λx

]+ σ 2
y

2
λ2

y . (123)

Notice that beyond this restricted Gaussian regime, current statistics is in general non-
Gaussian. In particular, for large enough current deviations, G(J) decays linearly, meaning
that the probability of such fluctuations is exponentially small in J (rather than J 2).

Despite the complex structure of G(J) in both regime I and II above, it can be easily
checked that for any pair of isometric current vectors J and J′, such that |J| = |J′|, the
current LDF obeys

G(J) − G
(
J′)= ε · (J − J′). (124)

This relation, known as Isometric Fluctuation Relation, is not particular for the 2D KMP
model but a general results for time-reversible diffusive systems, see Sect. 6.
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Appendix B: Constants of Motion

A sufficient condition for the Isometric Fluctuation Relation (IFR), Eqs. (58) or (124), to
hold is that

δπ1[ρ(r)]
δρ(r′)

= 0, (125)

with the functional π1[ρ(r)] defined in Eq. (40) above. We have shown that condition (125)
follows from the time-reversibility of the dynamics, in the sense that the evolution operator
in the Fokker-Planck formulation of Eq. (1) obeys a local detailed balance condition, see
Eq. (55). Condition (125) implies that π1[ρ(r)] is in fact a constant of motion, ε, indepen-
dent of the profile ρ(r). Therefore we can use an arbitrary profile ρ(r), compatible with
boundary conditions, to compute ε. We now choose boundary conditions to be gradient-like
in the x̂-direction, with densities ρL and ρR at the left and right reservoirs, respectively, and
periodic boundary conditions in all other directions. Given these boundaries, we now select
a linear profile

ρ(r) = ρL + (ρR − ρL)x, (126)

to compute ε, with x ∈ [0,1], and assume very general forms for the current and mobility
functionals

Q
[
ρ(r)

] ≡ D0,0[ρ]∇ρ +
∑

n,m>0

Dnm[ρ](∇mρ
)2n∇ρ,

σ
[
ρ(r)

] ≡ σ0,0[ρ] +
∑

n,m>0

σnm[ρ](∇mρ
)2n

,

where as a convention we denote as F [ρ] a generic functional of the profile but not of its
derivatives. It is now easy to show that ε = εx̂ + E, with

ε =
∫ ρR

ρL

dρ
D0,0(ρ) +∑

n>0 Dn1(ρ)(ρR − ρL)2n

σ0,0(ρ) +∑
m>0 σm1(ρ)(ρR − ρL)2m

, (127)

and x̂ the unit vector along the gradient direction. In a similar way, if the following condition
holds

δ

δρ(r′)

∫
Q
[
ρ(r)

]
dr = 0, (128)

together with time-reversibility, Eq. (125), the system can be shown to obey an extended
Isometric Fluctuation Relation which links any current fluctuation J in the presence of
an external field E with any other isometric current fluctuation J′ in the presence of an
arbitrarily-rotated external field E∗, and reduces to the standard IFR for E = E∗, see Eq.
(79) in the main text. Condition (128) implies that ν ≡ ∫

Q[ρ(r)]dr is another constant of
motion, which can be now written as ν = νx̂, with

ν =
∫ ρR

ρL

dρ

[
D0,0(ρ) +

∑

n>0

Dn1(ρ)(ρR − ρL)2n

]
, (129)

As an example, for a diffusive system Q[ρ(r)] = −D[ρ]∇ρ(r), with D[ρ] the diffusivity
functional, and the above equations yield the familiar results

ε =
∫ ρL

ρR

D(ρ)

σ (ρ)
dρ,
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ν =
∫ ρL

ρR

D(ρ)dρ,

for a standard local mobility σ [ρ].
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