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Dynamical phase transition for current statistics in a simple driven diffusive system
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We consider fluctuations of the time-averaged current in the one-dimensional weakly asymmetric exclusion
process on a ring. The optimal density profile which sustains a given fluctuation exhibits an instability for
low enough currents, where it becomes time dependent. This instability corresponds to a dynamical phase
transition in the system fluctuation behavior: while typical current fluctuations result from the sum of weakly
correlated local events and are still associated with the flat, steady-state density profile, for currents below a
critical threshold, the system self-organizes into a macroscopic jammed state in the form of a coherent traveling
wave, which hinders transport of particles and thus facilitates a time-averaged current fluctuation well below the
average current. We analyze in detail this phenomenon using advanced Monte Carlo simulations, and work out
macroscopic fluctuation theory predictions, finding very good agreement in all cases. In particular, we study not
only the current large-deviation function, but also the critical current threshold, the associated optimal density
profiles, and the traveling-wave velocity, analyzing in depth finite-size effects and hence providing a detailed
characterization of the dynamical transition.
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I. INTRODUCTION

Recent years are witnessing a quiet revolution in nonequi-
librium statistical physics. At the core of this revolution is
the realization of the essential role played by macroscopic
fluctuations to understand the nonequilibrium behavior of
a system of interest [1–10]. This activity has led to a
number of groundbreaking results valid arbitrarily far from
equilibrium (and therefore not restricted to the confining
world of linear response), which are offering a glimpse of
the long-sought general theory of nonequilibrium phenomena.
A main example is the Gallavotti-Cohen fluctuation theorem
[1–4], which expresses the subtle but enduring consequences
of microscopic time reversibility at the macroscopic level. The
list continues, however, with further breakthroughs ranging
from the Jarzynski equality [5] or the Crooks fluctuation
theorem [6] to the Hatano-Sasa relation [7] or the recent
extension of Clausius inequality to nonequilibrium steady
states [8], to mention just a few [9]. In addition, a general
theoretical framework, the macroscopic fluctuation theory of
Bertini and co-workers [10], has been developed to under-
stand the fluctuating behavior of diffusive systems far from
equilibrium (with recent generalizations to driven dissipative
media [11,12]).

A general observation underlying many of these results
is that macroscopic fluctuations are often associated with a
nontrivial and well-defined path in phase space, a path that
the system traverses in order to facilitate such fluctuation. The
properties of these optimal paths are revealing a whole new
phenomenology at the fluctuating level with important impli-
cations out of equilibrium [13–15]. For instance, the optimal
path leading to a macroscopic fluctuation in a nonequilibrium

*cpespigares@onsager.ugr.es
†garrido@onsager.ugr.es
‡phurtado@onsager.ugr.es

steady state has been recently shown to be the time reversal
of the relaxation path from this fluctuation according to some
adjoint hydrodynamic laws (which are not necessarily equal
to the forward-in-time hydrodynamics) [10]. This general
result valid arbitrarily far from equilibrium reduces to the
well-known Onsager’s regression hypothesis when small
deviations from equilibrium are considered. Moreover, the
study of the symmetry properties of the optimal paths for
current fluctuations has led to another remarkable insight, the
isometric fluctuation relation [14], which in turn implies a
set of hierarchies of equations for the current cumulants and
the nonlinear response coefficients, going far beyond Onsager
reciprocity relations and Green-Kubo formulas.

Another recent and striking discovery concerns the exis-
tence of coherent structures associated to large, rare fluctua-
tions [16,17], which in turn imply that these events are far more
probable than previously anticipated. Such coherent, self-
organized patterns emerge via a dynamical phase transition at
the fluctuating level, which is accompanied by spontaneous
symmetry breaking [16,17]. The aim of this paper is to
investigate in detail this phenomenon in a simple diffusive
system in one dimension, namely, the weakly asymmetric
simple exclusion process (WASEP) [18], where we study
fluctuations of the time-averaged current.

The model is defined on a one-dimensional (1D) lattice
of size N with periodic boundary conditions (PBC), where
M � N particles live [see Fig. 1(a)], so the total density
is ρ0 = M/N . Each lattice site i ∈ [1,N ] may contain at
most one particle, so the state of the system is defined
by a set of occupation numbers n ≡ {ni = 0,1, i ∈ [1,N ]}
and M = ∑N

i=1 ni . Dynamics is stochastics and proceeds via
sequential particle jumps to nearest-neighbor sites, provided
these are empty, at a rate r± ≡ 1

2 exp(±E/N) for jumps along
the ±x̂ direction [19]. Here, E plays the role of a weak external
field which drives the system to a nonequilibrium steady state
characterized by a homogeneous density profile 〈ρ(x)〉 = ρ0

and a nonzero net average current 〈q〉 = ρ0(1 − ρ0)E. We
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FIG. 1. (Color online) (a) Sketch of the WASEP. Particles in a
periodic 1D lattice jump stochastically to a right (left) empty nearest
neighbor at a rate r+ (r−), so particles feel an external driving
field E = N

2 ln( r+
r− ). (b) Convergence of the time-averaged current

to its ensemble value 〈q〉 for many different realizations (top line
cloud), and sketch of the probability concentration as time increases,
associated with the large-deviation principle [Eq. (1)].

employ continuous-time Markov dynamics, so the time to exit
a configuration n is a random variable drawn from a Poisson
distribution with exit rate R(n) = M+r+ + M−r−, where M±
is the number of particles with empty nearest neighbor in the
±x̂ direction.

We are interested in the statistics of the total particle current
q flowing through the system, averaged over a long diffusive
time τ and across space. In particular, we define the empirical
time-averaged current as q = t−1(Q+

t − Q−
t ), where Q±

t is the
total number of particle jumps in the ±x̂ direction in a given
microscopic time interval t = τN2. For τ → ∞, this time-
averaged estimate converges toward the ensemble average 〈q〉.
However, for long but finite times τ we observe fluctuations
q �= 〈q〉, and their probability Pτ (q) obeys a large-deviation
principle in this limit [20]

Pτ (q) ∼ e+τNG(q) , (1)

where G(q) � 0 is the current large-deviation function (LDF),
such that G(〈q〉) = 0. This means that the probability of
observing a fixed current fluctuation q �= 〈q〉 decays expo-
nentially as both τ and N increase, at a rate given by G(q) [see
Fig. 1(b)]. In other words, G(q) measures the rate at which
Pτ (q) concentrates around 〈q〉. The above large-deviation
principle describes the scaling of Pτ (q) for both typical and
rare current fluctuations. In particular, a suitable expansion of
G(q) for small fluctuations yields the usual Gaussian form for
Pτ (q) associated with the central limit theorem. The current

LDF plays an important role in nonequilibrium statistical
physics as it contains essential information on the transport
properties of the system at hand. Moreover, in general, LDFs
play in nonequilibrium physics a role akin to the free energy
of equilibrium systems. Therefore, even though we do not
know how to connect in general microscopic dynamics to
macroscopic properties in nonequilibrium systems (in a way
equivalent to the equilibrium ensemble formalism), we can still
measure LDFs of macroscopic observables out of equilibrium,
which provide an alternative path to a detailed macroscopic
description of nonequilibrium phenomena.

II. MACROSCOPIC FLUCTUATION THEORY AND
DYNAMICAL PHASE TRANSITION

Computing LDFs from scratch, starting from microscopic
dynamics, is a humongous task which has been achieved only
in a handful of oversimplified models (most of them stochastic
lattice gases and related models) [10,18]. However, in a recent
series of works, Bertini and collaborators [10] have developed
a phenomenological theory, the macroscopic fluctuation theory
(MFT), which describes in detail dynamic fluctuations in
driven diffusive systems starting from the hydrodynamic
evolution equation for the local density ρ(x,t) for the system of
interest and the sole knowledge of two transport coefficients,
the diffusivity D(ρ) and the mobility σ (ρ), which can be
measured experimentally. From this knowledge, MFT offers
explicit predictions for the current LDF (see the Appendix):

G(q) = − 1

τ
min
{ρ,j}τ0

∫ τ

0
dt

∫ 1

0
dx

[j + D(ρ)∂xρ − σ (ρ)E]2

2σ (ρ)
,

(2)

where a long-time limit is implicit and the minimum is taken
over all histories of the density and current fields ρ(x,t)
and j (x,t), respectively, coupled via the continuity equation
∂tρ + ∂xj = 0 at every point of space and time, and subject
to the constraint q = τ−1

∫ τ

0 dt
∫ 1

0 dxj (x,t) for the space- and
time-averaged current and the appropriate boundary conditions
(periodic in this case) (see Appendix for details). Note that,
for the WASEP, D(ρ) = 1

2 and σ (ρ) = ρ(1 − ρ) [18]. The
optimal density and current fields solution of the above
variational problem, denoted here as ρq(x,t) and jq(x,t), can
be interpreted as the path the system follows in mesoscopic
phase space in order to sustain a given current fluctuation q.
This path may be in general time dependent, and the resulting
general variational problem is remarkably hard. This problem
becomes simpler, however, in different limiting cases. For
instance, one expects that small current fluctuations around
the average q 
 〈q〉 result from the random superposition of
weakly correlated (if any) local fluctuations of the microscopic
jump process. In this case, one expects the optimal density
field to be just the flat, steady-state one, ρq(x,t) = ρ0, and
hence jq(x,t) = q, resulting in a simple quadratic form for the
current LDF

Gflat(q) = − [q − σ (ρ0)E]2

2σ (ρ0)
. (3)

Therefore, Gaussian statistics is obtained for small (i.e.,
typical) current fluctuations, in agreement with the central
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limit theorem. The argument above breaks down, however,
for moderate current fluctuations. In fact, Bodineau and
Derrida have shown recently [16] that the flat profile indeed
becomes unstable, in the sense that G(q) increases by adding
a small time-dependent periodic perturbation to the otherwise
constant profile, whenever 8π2D2(ρ0)σ (ρ0) + [E2σ 2(ρ0) −
q2]σ ′′(ρ0) < 0, where σ ′′ denotes the second derivative. This
condition yields a critical current

|qc| =
√

8π2D2(ρ0)σ (ρ0)

σ ′′(ρ0)
+ E2σ 2(ρ0) , (4)

which signals the onset of the instability. This instability
can be interpreted as a dynamical phase transition at the
fluctuating level, and involves the spontaneous breaking of
translation symmetry (see Fig. 2). In fact, for the WASEP,
the dynamic phase transition corresponds to the emergence
of a macroscopic jammed state which hinders transport of
particles to facilitate a current fluctuation well below the
average. When the instability kicks in, an analysis of the
resulting perturbation [16] suggests that the dominant form of
the optimal profile is a traveling wave ρq(x,t) = ωq(x − vt),
moving at constant velocity v across the system [16,17].
Provided that the traveling-wave form remains as the optimal
solution for currents well below the critical threshold, the
current LDF can now be written as

G(q) = − min
ωq (x),v

∫ 1

0

dx

2σ [ωq(x)]
(q − vρ0 + vωq(x)

+D[ωq(x)]ω′
q(x) − σ [ωq(x)]E)2 , (5)

|q|>|qc q|<|q|| c|
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FIG. 2. (Color online) Typical evolution of microscopic con-
figurations for current fluctuations above and below the critical
current for three different densities in the WASEP. Left panels
correspond to currents above the critical one where the system
remains homogeneous. Right panels correspond to subcritical current
fluctuations where a traveling wave emerges. The velocity of the
traveling wave of the top right panel (ρ0 = 0.3) is positive. The
traveling wave of the central right panel does not move on average,
corresponding to ρ0 = 1

2 , and the wave at the bottom left panel
(ρ0 = 0.7) moves with negative velocity.

where the minimum is now taken over the traveling-wave
profile ωq (x) and its velocity v. Notice that, for the instability to
exist, the strength of the driving field |E| must be large enough
to guarantee a positive discriminant in Eq. (4), namely,

|E| � |Ec| ≡ Re

[√
− 8π2D(ρ0)2

σ (ρ0)σ ′′(ρ0)

]
. (6)

Therefore, since the mobility σ (ρ) is positive definite, a
nonzero threshold field only exists for models such that
σ ′′(ρ) < 0, which is the case of the WASEP here studied,
where σ (ρ) = ρ(1 − ρ). Other transport models, as for in-
stance the Kipnis-Marchioro-Presutti (KMP) model of heat
conduction [17,21], have σ ′′(ρ) > 0 and hence |Ec| = 0, thus
exhibiting the aforementioned instability even in the absence
of external fields [17].

It is worth noting that MFT inherits the microscopic
symmetries of the system of interest. In our particular case,
the WASEP shows a clear particle-hole symmetry, and this is
reflected in the current LDF, above and below the instability.
In particular, the optimal wave profile ωq(x), associated
with a current fluctuation |q| < |qc| for a density ρ0, is
complementary to the optimal wave profile for the same value
of q and density 1 − ρ0, i.e.,

ωq(x; ρ0) = 1 − ωq(x; 1 − ρ0). (7)

In addition, the optimal wave for density 1 − ρ0 travels
with the same speed but opposite direction to that of the
corresponding wave for density ρ0, i.e., vq(ρ0) = −vq(1 − ρ0).
In the particular case of ρ0 = 1

2 , these relations imply that,
for any current fluctuation, the optimal density profile and
its complementary are equivalent, and the velocity of the
optimal traveling wave is zero for all fluctuations. Therefore,
for ρ0 = 1

2 , the typical macroscopic configurations in the time-
dependent regime have a well-defined wave structure which,
however, does not move on average. This can be observed
in Fig. 2, where typical system space-time trajectories for
current fluctuations above and below the critical current are
displayed for ρ0 = 0.3, 0.5, and 0.7. Notice that for |q| < |qc|
there is a nontrivial structure which travels with opposite
velocities for ρ0 = 0.3 and 0.7, and which does not move when
ρ0 = 0.5. Furthermore, using the above symmetry relations for
the WASEP current LDF we find that

G(q; ρ0) = G(q; 1 − ρ0) . (8)

Hence, given an external field, it is enough to compute the
current LDF for ρ0 ∈ [0, 1

2 ].
Another interesting symmetry, though far less obvious, is

related to the time reversibility of microscopic dynamics. This
relation, known as the Gallavotti-Cohen fluctuation theorem
[1–4], implies a remarkably simple connection between the
probability of a given current fluctuation q and the reverse
event −q, which can be stated for the current LDF in the
following way:

G(q) − G(−q) = 2Eq. (9)

This in turn implies that the odd part of the typically nontrivial
function G(q) is linear in the current, with a universal
coefficient 2E. This symmetry can be also stated for the
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Legendre transform of the current LDF [see Eq. (14)]

μ(λ) = μ(−λ − 2E). (10)

As we will see in the following, this fluctuation relation is
fully confirmed in our simulations, both below and above
the instability. Moreover, the Gallavotti-Cohen relation can
be used to bound the validity of the simulation method used to
explore large deviations [13,22] (see the following).

III. NUMERICAL RESULTS

Our aim in this paper is to characterize in detail the
dynamical phase transition in current statistics for the WASEP
using numerical simulations, and compare with the predictions
derived within MFT. These predictions are explicitly worked
out in the Appendix. The critical current and the threshold field
for the WASEP are

|qc| = ρ0(1 − ρ0)
√

E2 − E2
c , (11)

|Ec| = π√
ρ0(1 − ρ0)

. (12)

Equivalently, taking into account that 〈q〉 = ρ0(1 − ρ0)E, we
have that

|qc| = |〈q〉|
√

1 −
(

Ec

E

)2

, (13)

so |qc| < |〈q〉| in WASEP for field strengths above the
threshold, while no phase transition happens for |E| < |Ec|.

In order to investigate the instability described in Sec. II
using numerical simulations, we need to explore the statistics
of both typical and rare current fluctuations. While the former
pose no problem and can be studied in standard simulations,
to sample the atypical trajectories associated with rare current
fluctuations we must resort to advanced Monte Carlo methods
that allow us to measure directly LDFs in many particle
systems [23–25]. This technique implies a modification of the
stochastic microscopic dynamics, in such a way that the rare
events responsible for a large current fluctuation are no longer
rare with the modified dynamics. The numerical method also
requires the parallel simulation of multiple clones or copies
of the system [23–25], which may be replicated or pruned
depending on its importance for the particular fluctuation we
want to measure. In this work, we used in particular Nc =
2 × 104 clones for ρ0 = 0.3 and Nc = 5 × 104 for ρ0 = 1

2 ,
and we checked that results do not depend on the total number
of clones for large enough Nc [22]. The method yields a Monte
Carlo estimate of the Legendre transform of the current LDF

μ(λ) = max
q

[G(q) + λq], (14)

with λ a parameter conjugated to the current, such that
G′(q) + λ = 0. In this way, the function μ(λ) can be seen as
the conjugate potential to G(q), a relation equivalent to the free
energy being the Legendre transform of the internal energy in
thermodynamics, with the temperature as conjugate parameter
to the entropy. Legendre transforming the quadratic current
LDF in Eq. (3) once particularized for WASEP, obtained for the
time-independent (homogeneous) fluctuation regime, we have

μflat(λ) = ρ0

2
(1 − ρ0)λ(λ + 2E). (15)

However, for currents in a well-defined interval |q| < |qc|,
with |qc| defined in Eqs. (11) or (13), a time-dependent regime
with an optimal density profile in the form of a traveling
wave is expected. This corresponds to values of the conjugate
parameter λ such that |λ + E| < 	c, with

	c ≡ qc

ρ0(1 − ρ0)
=

√
E2 − π2

ρ0(1 − ρ0)
=

√
E2 − E2

c , (16)

and where we have used Eqs. (11)–(13). Therefore, we expect
traveling-wave solutions for λ−

c < λ < λ+
c , where

λ±
c ≡ ±	c − E . (17)

In this way, the time-dependent fluctuation regime kicks in
whenever μ(λ) < μ(λ±

c ) = −π2/2 [see Eq. (15)].
We performed simulations of the 1D periodic WASEP for

three different average densities ρ0 = 0.3, 0.5, and 0.7, for
increasing system sizes N ∈ [8,64] and a fixed external field
E = +10. This driving field is above the threshold Ec for all
three densities ρ0 [see Eq. (6)], so we expect the instability to
appear on the basis of the analysis of Sec. II. Figure 3 shows
simulation results for μ(λ) and increasing values of N for two
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FIG. 3. (Color online) Legendre transform of the current LDF
μ(λ). Top: Measured μ(λ) for ρ0 = 0.3 and increasing N , together
with the MFT result (solid red line) and the quadratic approximation
(dashed blue line). Bottom: Equivalent data for ρ0 = 1

2 . Insets: μ(λ) −
μflat(λ) for the same N and ρ0 = 0.3 (top) and 0.5 (bottom). In all
cases, data converge to the MFT prediction as N increases.
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different values of ρ0, together with the explicit MFT results
(see the Appendix). Gaussian current statistics corresponds to
a quadratic behavior in μ(λ) ≈ μflat(λ) [see Eq. (15)], which is
fully confirmed in Fig. 3 for |λ + E| > 	c and different values
of N . This means that small current fluctuations q 
 〈q〉 have
their origin in the superposition of uncorrelated (or at most
weakly correlated) local events of the stochastic jump process,
giving rise to Gaussian statistics as dictated by the central
limit theorem and thus confirming their incoherent origin.
Interestingly, this observation also applies to the time-reversal
partners of these small fluctuations −q, which are far from
typical. This is a direct consequence of the Gallavotti-Cohen
symmetry [1–4], which implies that the statistics associated
with a current fluctuation does not depend on the current
sign [22]. On the other hand, for fluctuations below a critical
threshold |q| < |qc| or equivalently λ−

c < λ < λ+
c , deviations

from this simple quadratic form are apparent, signaling the
onset of the dynamical phase transition anticipated in Sec. II
(see also Fig. 2). In fact, as N increases, a clear convergence
toward the MFT prediction (which is strongly nonquadratic in
the regime λ−

c < λ < λ+
c ) is observed, with very good results

already for N = 64. Strong finite-size effects associated with
the finite population of clones Nc prevent us from reaching
larger system sizes [13,17,22], but N = 64 is already close
enough to the asymptotic hydrodynamic behavior. Still, small
corrections to the MFT predictions are observed (see the insets
of Fig. 3), which quickly decrease with N . On the other hand,
the Gallavotti-Cohen fluctuation theorem for currents holds
in the whole current range [see Eq. (10) and Fig. 3] both
in the homogeneous and time-dependent current fluctuation
regimes. Furthermore, the Gallavotti-Cohen symmetry holds
irrespective of N , as a result of the microreversibility of
the model at hand: while we need a large size limit in
order to verify the predictions derived from MFT (which is
a macroscopic theory), no finite-size corrections affect the
fluctuation theorem, whose validity can be used to ascertain
the range of applicability of the cloning algorithm used to
sample large deviations [22].

We also measured the average current 〈qλ〉 associated with
a fixed value of the conjugate parameter λ. The insets of
Fig. 4 show our results and the predictions based on MFT.
Again, the agreement is excellent (improving as N increases),
both above and below the dynamical phase transition, even
though there is a clear change of behavior across the transition
points λ±

c . In particular, in the Gaussian fluctuation regime, the
current is linear in λ, namely 〈qλ〉 = ρ0(1 − ρ0)(λ + E), while
the relation becomes strongly nonlinear in the time-dependent
region |λ + E| < 	c. We may use the measured 〈qλ〉 to give a
direct Monte Carlo estimate of the current LDF G(q). In fact,
〈qλ〉 is the current conjugated to a given λ and hence we may
write G(q) = μ(λ) + λ〈qλ〉, where we combine the measured
μ(λ) in Fig. 3 and the measured 〈qλ〉 in the insets of Fig. 4. The
result for G(q) and different values of ρ0 is plotted in Fig. 4,
where we again find a good agreement between theory and
Monte Carlo simulation. Notice in particular the deviation
from quadratic behavior observed for currents |q| < |qc|
resulting from the formation of macroscopic jammed states
(see below).

The dynamical phase transition is most evident at the
configurational level, as observed in Fig. 2, so we measured

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

Theory

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

Theory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=1/2

Theory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=1/2

Theory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=1/2

Theory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=1/2

qc

-qc

qst=σETheory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=1/2

qc

-qc

qst=σETheory

N=64
Gflat(q)

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ)

λ

N=8

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ)

λ

N=8
N=16

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ)

λ

N=8
N=16
N=32

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ)

λ

N=8
N=16
N=32
N=64

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ)

λ

N=8
N=16
N=32
N=64

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ)

λ

Theory

-λc-2E λc-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ)

λ

Theory

-λc-2E λc

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

Theory

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

Theory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=0.3

Theory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=0.3

Theory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=0.3

Theory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=0.3

qc

-qc

qst=σETheory

N=64

-50

-40

-30

-20

-10

 0

-2 -1  0  1  2  3

G
(q

)

q

ρ0=0.3

qc

-qc

qst=σETheory

N=64
Gflat(q)

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ )

λ

N=8

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ )

λ

N=8
N=16

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ )

λ

N=8
N=16
N=32

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ )

λ

N=8
N=16
N=32
N=64

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ )

λ

N=8
N=16
N=32
N=64

-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ )

λ

Theory

-λc-2E λc-4

-2

 0

 2

 4

-20 -15 -10 -5  0

q(
λ )

λ

Theory

-λc-2E λc

FIG. 4. (Color online) Top: Large-deviation function for ρ0 = 0.3
Inset: Measured average current qλ as a function of λ and increasing
N , together with the analytical prediction base on the MFT. Bottom:
Same results for ρ0 = 1

2 . For both densities, the traveling-wave
solution enhances the probability for fluctuations |q| < |qc| (solid red
line) with respect to the flat profile associated to Gaussian statistics
(dashed black line).

the average density profile associated with a given current
fluctuation [13] for different values of the total density ρ0; see
Fig. 5. Because of the system periodicity, and in order not
to blur away the possible structure present in microscopic
configurations, we performed profile averages around the
instantaneous center of mass. For that, we consider the system
as a 1D ring embedded in two-dimensional space [see Fig. 1(a)]
and compute the angular position of the center of mass, shifting
it to the origin before averaging. In particular, we assign
an angular position θi = 2πi/N to each site i ∈ [1,N ] in
the lattice. The angular position of the center of mass for a
given microscopic configuration n = {ni,i = 1, . . . ,N}, with
ni = 0,1 the onsite occupation numbers, is thus defined as

θc.m. ≡ tan−1

(
Yc.m.

Xc.m.

)
, (18)
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FIG. 5. (Color online) Measured traveling-wave profiles for different values of λ ∈ (λ−
c ,λ+

c ), varying N ∈ [8,64] and two different average
densities ρ0 = 0.3, 0.5, together with theoretical predictions from MFT (see the Appendix). (a) ωλ(x) measured for ρ0 = 0.3, different λ and
increasing N , and MFT predictions. (b) Measured density profiles as a function of λ for N = 64. Optimal profiles are flat up to a critical current
(equivalently λ±

c ) where a traveling wave emerges. The inset shows the MFT prediction. (c) and (d) are equivalent to (a) and (b), respectively,
but for an average density ρ0 = 0.5. Notice the comparatively thicker wave for ρ0 = 0.5. (e) Collapse of measured profiles associated with
different current fluctuations ωλ(x) and their time-reversal partners ω−λ−2E(x) for N = 64 and ρ0 = 0.3, together with theoretical predictions.
Optimal profiles, both below and above the instability, remain invariant under change of sign of the current. (f) Same results for ρ0 = 0.5.

where

Xc.m. = 1

M

N∑
i=1

ni cos θi ; Yc.m. = 1

M

N∑
i=1

ni sin θi, (19)

and recall that M = ∑N
i=1 ni is the total number of particles.

Notice that this center-of-mass averaging procedure yields
a spurious weak structure in the Gaussian (homogeneous)
fluctuation region, equivalent to averaging random particle
profiles around their (random) center of mass. Such a spurious
profile is of course independent of the current q and can be
easily subtracted. On the other hand, once the instability is
triggered, average profiles exhibit a much more pronounced
structure resulting from the appearance of a traveling wave; see
right column in Fig. 2. Figures 5(a) and 5(c) show the measured
profiles ωλ(x) for different λ ∈ (λ−

c ,λ+
c ), varying N ∈ [8,64]

and two different average densities ρ0 = 0.3 [Fig. 5(a)] and 0.5
[Fig. 5(c)], together with theoretical predictions from MFT as
calculated in the Appendix. Again, fast convergence toward the
MFT result is observed, with excellent agreement for N = 64
in all cases. Moreover, Figs. 5(b) and 5(d) show a three-
dimensional plot of the measured profiles for N = 64 and
different λ, again for ρ0 = 0.3 [Fig. 5(b)] and 0.5 [Fig. 5(d)],
which closely resembles the MFT scenario plotted as insets

to these figures. In general, the traveling-wave profile grows
from the flat form as λ crosses the critical values λ±

c penetrating
into the critical region, thus favoring a macroscopic jammed
state that hinders transport of particles and thus facilitates
a time-averaged current fluctuation well below the average
current. This macroscopic jammed state reaches its maximum
expression for λ = −E, or equivalently q = 0 (see the insets
of Fig. 4), so the system is maximally jammed for zero current
irrespective of the driving field E.

An interesting corollary of the Gallavotti-Cohen fluctuation
symmetry [1–4] is that the optimal density profile associated
with a given current fluctuation remains invariant under
changes of the current sign, i.e., ωq(x) = ω−q(x), indepen-
dently of the driving external field [13,22]. We confirm this
property in Figs. 5(e) and 5(f), where we plot for N = 64 and
different ρ0 the optimal density profiles for different pairs of
fluctuations coupled by time reversal, i.e., for pairs of values
(λ,−λ − 2E), finding an excellent collapse as predicted by
theory. Moreover, the collapsing pairs of profiles agree to a
high degree of accuracy with the theoretical curves.

We also measured the average velocity associated with a
given current fluctuation by fitting the motion of the center
of mass during small time intervals �t to a ballistic law
rc.m.(t + �t) − rc.m.(t) = vt (see, e.g., right column in Fig. 2),
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FIG. 6. (Color online) Measured velocity as a function of λ for
ρ0 = 0.3, ρ0 = 1

2 , and increasing N , together with the MFT result.

and making statistics for the measured velocity. Figure 6
shows the mean velocity for �t = 200 Monte Carlo steps
as a function of λ for increasing values of N and different
values of ρ0, and the agreement with MFT is again very
good already for N = 64 (we checked that other values of
�t yield equally good results). As for the current (see the
insets of Fig. 4), there is a clear change of tendency across the
instability points λ±

c , with the velocity being a linear function
of λ in the Gaussian regime but turning strongly nonlinear
in the traveling-wave region. Interestingly, the measured wave
average velocity for ρ0 = 0.5 is compatible zero for all current
fluctuations, hence confirming the MFT prediction based on
the particle-hole symmetry of WASEP.

IV. CONCLUSIONS

In this paper, we have considered the statistics of the
time-averaged current in a simple driven diffusive system,
the 1D weakly asymmetric simple exclusion process on a
ring. This system exhibits a dynamical phase transition at
the fluctuation level for large enough driving external fields,
and we have characterized such instability in detail using
advanced numerical simulations. We show in particular that
typical (i.e., small) current fluctuations result from the sum
of weakly correlated local events which take place in an
otherwise homogeneous density background on average, and
thus give rise to Gaussian current statistics in agreement with
the central limit theorem. However, for large enough current
fluctuations well below the average current (namely, in a
well-defined range of current fluctuations around zero current),
the system breaks this homogeneity and self-organizes its
density profile into a macroscopic jammed state in the form
of a coherent traveling wave moving at constant velocity.
This wave structure hinders transport of particles and thus
facilitates a time-averaged current fluctuation well below the
average current. It is worth emphasizing that the emergence of
a traveling wave breaks spontaneously a symmetry (translation
invariance) at the fluctuating level. This phenomenon is fully
captured by macroscopic fluctuation theory, whose predictions
are explicitly worked out and confirmed to a high degree
of accuracy by simulation results. Our study offers insights
not only on the current large deviation function which
characterizes current statistics, but also on the optimal density

profiles associated with the different fluctuations and their
velocity, as well as the effect of finite-size corrections on the
observables of interest, providing a detailed characterization
of the dynamical transition not available before.

A similar dynamical phase transition has been recently
observed and characterized in another model of transport,
the Kipnis-Marchioro-Pressuti (KMP) model of heat con-
duction [17]. In that case, the phenomenon is even more
striking, as it happens in an isolated system in the absence
of any external field, spontaneously breaking a symmetry
in 1D and illustrating the idea that critical phenomena not
allowed in equilibrium steady states may, however, arise in
their fluctuating behavior or under nonequilibrium conditions.
Although both instabilities are described equally well by MFT,
the physical interpretation of the dynamical transition is quite
different. In particular, in the KMP model, the instability
happens because the system optimizes the transport of a
large current by gathering energy in a localized packet (the
wave) which then travels coherently, breaking spontaneously
translation symmetry in the process. On the other hand, the
WASEP instability happens in order to hinder the transport
of particles via the formation of a macroscopic jammed state
(the wave), thus facilitating a current fluctuation well below the
average. Interestingly, both phenomena are sides of essentially
the same instability. It is also worth noticing that similar
instabilities have been described in quantum systems [26].

Our results show unambiguously that the dynamical phase
transition observed in the WASEP is continuous as conjectured
in Ref. [16], excluding the possibility of a first-order scenario,
in concordance with previous observations for the KMP
model [17]. This suggests that a traveling wave is in fact
the most favorable time-dependent profile once the instability
is triggered. This observation may greatly simplify general
time-dependent calculations, but the question remains as to
whether this is the whole story or if other, more complex,
solutions may play a dominant role for even larger fluctuations.
An interesting, related question concerns the properties of
time-dependent solutions for systems with open boundaries,
where traveling-wave patterns are not appropriate. The time-
independent profiles in these cases, from which a suitable per-
turbation analysis would hint at the form of the time-dependent
solution, are far more complex than the trivial homogeneous
profiles that appear for periodic systems, making progress
difficult along this line. In fact, a recent study [27] has found
no evidence of dynamical phase transition in WASEP with
open boundaries. In any case, it seems clear that extremely
rare events call in general for coherent, self-organized patterns
in order to be sustained [28].

Another interesting direction to explore in a near future
is the appearance of this phenomenon in higher-dimensional
systems. In this case, the solution of the associated MFT is
far more complicated, with no guarantee of a unique solution
and several competing patterns already known [29]. The role
of numerical simulation will hence prove essential to explore
rare current fluctuations in high-dimensional systems and to
understand the appearance of dynamical phase transitions at
the fluctuation level [29]. Furthermore, the simplicity and
elegance of this phenomenon suggests that it might be a rather
general property of any fluctuating field theory, with possible
expressions in quantum field theory, hydrodynamics, etc.
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APPENDIX: MACROSCOPIC FLUCTUATION THEORY
FOR CURRENT STATISTICS AND DYNAMICAL PHASE

TRANSITION

Macroscopic fluctuation theory (MFT) [10] describes in
detail dynamic fluctuations in driven diffusive systems, starting
from the hydrodynamic evolution equation for the system of
interest and the sole knowledge of two transport coefficients,
which can be measured experimentally. From this knowledge,
MFT offers explicit predictions for the current LDF and the as-
sociated path in phase space responsible of a given fluctuation.
MFT applies to systems described at the mesoscopic level by
a (fluctuating) continuity equation of the form

∂tρ + ∂xj = 0, (A1)

where ρ(x,t) and j (x,t) are the density and current fields,
respectively, and t and x ∈ [0,1] are the macroscopic time and
space variables, obtained after a diffusive scaling limit such
that x = i/N and t = t̃/N2, with i and t̃ the microscopic space
and time variables. Periodic boundary conditions, the case of
interest here, thus imply ρ(0,t) = ρ(1,t) and j (0,t) = j (1,t).
Moreover, as the system is isolated, the total density remains
constant:

ρ0 =
∫ 1

0
ρ(x,t)dx. (A2)

The current field in Eq. (A1) is in general a fluctuating quantity,
and can be written as

j (x,t) = −D(ρ)∂xρ(x,t) + σ (ρ)E + ξ (x,t). (A3)

The first term is Fick’s (or equivalently Fourier’s) law, where
D(ρ) is the diffusivity (which might be a nonlinear function
of the local density). The second term is just the coupling to
the external field E, mediated by the so-called mobility σ (ρ),
and ξ (x,t) is the current noise that is Gaussian and white:

〈ξ (x,t)〉 = 0, 〈ξ (x,t)ξ (x ′,t ′)〉 = σ (ρ)

N
δ(x − x ′)δ(t − t ′).

(A4)

This Gaussian fluctuating field is expected to emerge for most
situations in the appropriate mesoscopic limit as a result of
a central limit theorem: Although microscopic interactions
for a given model can be highly complicated, the ensuing
fluctuations of the slow hydrodynamic fields result from the
sum of an enormous amount of random events at the microscale
which give rise to Gaussian statistics, with an amplitude of the
order of N−1/2, in the mesoscopic regime in which Eq. (A1)
emerges. For long times, a system described by the above set of
equations reaches a nonequilibrium steady state characterized
by a homogeneous density distribution ρ0 and a nonzero net
average current 〈q〉 = σ (ρ0)E. Note that, for the WASEP,
the two essential transport coefficients D(ρ) and σ (ρ), which
determine the complete macroscopic fluctuating behavior of

the system, are D(ρ) = 1
2 and σ (ρ) = ρ(1 − ρ) [18]. In what

follows, we describe the theory in general, only particularizing
for the WASEP case in the last stages of the calculation.

A simple path integral calculation starting from Eq. (A1)
then shows that the probability of a given history or path {ρ,j}τ0
in mesoscopic phase space (i.e., the space spanned by the
hydrodynamic fields) obeys a large-deviation principle of the
form P ({ρ,j}τ0) ∼ exp(−NIE

τ [ρ,j ]), where the rate function
is given by Refs. [10,13,14]

IE
τ [ρ,j ] =

∫ τ

0
dt

∫ 1

0
dx

[j + D(ρ)∂xρ − Eσ (ρ)]2

2σ (ρ)
. (A5)

We are interested here in the fluctuations of the space- and
time-integrated current

q = 1

τ

∫ τ

0
dt

∫ 1

0
dx j (x,t). (A6)

The probability of observing a given q can now be written
as a path integral over all possible histories {ρ,j}τ0, weighted
by its probability measure P ({j,ρ}τ0), and restricted to those
histories compatible with the value of q and ρ0 in Eqs. (A6)
and (A2), respectively, and the continuity equation (A1) at
every point of space and time. For long times and large system
sizes, this path integral is dominated by the associated saddle
point and scales as P (q) ∼ exp{+τNG(q)}, where G(q) is the
current large-deviation function (LDF) given by

G(q) = − lim
τ→∞

[
1

τ
min
{ρ,j}τ0

IE
τ (ρ,j )

]
. (A7)

The optimal density and current fields solution of this varia-
tional problem, ρq(x,t) and jq(x,t), can be interpreted as the
optimal path the system follows in order to sustain a long-time
current fluctuation. Finding the optimal fields is in general
a complex spatiotemporal problem whose solution remains
challenging in most cases. The problem becomes much
simpler, however, in different limiting cases. For instance,
one expects that small current fluctuations around the average
q 
 〈q〉 result from the random superposition of weakly
correlated local fluctuations of the microscopic jump process.
In this case, it is reasonable to assume the optimal density
field to be just the flat, steady-state one ρq(x,t) = ρ0, and
hence jq(x,t) = q, resulting in a simple quadratic form for the
current LDF

Gflat(q) = − [q − σ (ρ0)E]2

2σ (ρ0)
. (A8)

Therefore, Gaussian statistics is obtained for small (i.e.,
typical) current fluctuations, in agreement with the central
limit theorem. The previous argument, revolving around
small fluctuations, breaks down however for moderate current
deviations where correlations may play a relevant role. In
fact, Bodineau and Derrida have shown recently [16] that
the flat profile indeed becomes unstable, in the sense that
G(q) increases by adding a small time-dependent periodic
perturbation to the otherwise constant profile, whenever

8π2D2(ρ0)σ (ρ0) + [E2σ 2(ρ0) − q2]σ ′′(ρ0) < 0, (A9)
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where σ ′′ denotes second derivative. This condition implies a
well-defined critical current

|qc| =
√

8π2D2(ρ0)σ (ρ0)

σ ′′(ρ0)
+ E2σ 2(ρ0). (A10)

In the WASEP case, this implies that for any |q| < |qc| the
instability emerges. This instability can be interpreted as a
dynamical phase transition at the fluctuation level, and involves
the spontaneous breaking of translation symmetry (see Fig. 2).
In fact, the formation of a traveling wave corresponds to
the emergence of a macroscopic jammed state which hinders
transport of particles to facilitate a current fluctuation well
below the average. Notice that, for the instability to exist,
the strength of the driving field |E| must be large enough to
guarantee a positive discriminant in Eq. (A10), namely,

|E| � |Ec| ≡ Re

[√
− 8π2D(ρ0)2

σ (ρ0)σ ′′(ρ0)

]
. (A11)

Therefore, since the mobility σ (ρ) is positive definite, a
nonzero threshold field only exists for models such that
σ ′′(ρ) < 0, which is the case of the WASEP here studied,
where σ (ρ) = ρ(1 − ρ). Other transport models, as for in-
stance the Kipnis-Marchioro-Presutti (KMP) model of heat
conduction [17,21], have σ ′′(ρ) > 0 and hence |Ec| = 0, thus
exhibiting the aforementioned instability even in the absence
of external fields [17].

When the instability kicks in, an analysis of the resulting
perturbation [16] suggests that the dominant form of the
optimal profile is a traveling wave moving at constant
velocity v,

ρq(x,t) = ωq(x − vt) , (A12)

which implies via the continuity equation (A1)

jq(x,t) = q − vρ0 + vωq(x − vt). (A13)

Provided that the traveling-wave form remains as the optimal
solution for currents well below the critical threshold, the
current LDF can now be written as

G(q) = − min
ωq (x),v

∫ 1

0

dx

2σ [ωq(x)]
[q − vρ0 + vωq(x)

+D[ωq(x)]ω′
q(x) − σ [ωq(x)]E]2, (A14)

where we have dropped the time dependence due to the
periodic boundary conditions, and the minimum is now taken
over the traveling-wave profile ωq(x) and its velocity v.
Expanding now the square in Eq. (A14), we notice that the
terms linear in ω′

q give a null contribution due again to the
system periodicity. Taking also into account the constraint∫ 1

0 ωq(x)dx = ρ0 [see Eq. (A2)], one gets

G(q) = − min
ωq (x),v

[ ∫ 1

0
dx[X(ωq) + ω′

q(x)2Y (ωq)]

]
+ qE,

(A15)

where, borrowing the notation of Ref. [16],

X(ωq) = [q − v(ρ0 − ωq)]2

2σ (ωq)
+ E2σ (ωq)

2
(A16)

and

Y (ωq) = D(ωq)2

2σ (ωq)
. (A17)

The differential equation for the optimal profile solution of the
variational problem (A15) can be written as

X(ωq) − ω′
q(x)2Y (ωq) = C1 + C2ωq. (A18)

This equation generically yields a symmetric optimal profile
with a ωq(x) with a single minimum ω1 = ωq(x1) and a
single maximum ω0 = ωq(x0) such that |x0 − x1| = 1

2 [30].
The constants C1 and C2 can be expressed in terms of the
extrema ω1 and ω0.

The optimal velocity also follows from the above variational
problem:

v = −q

∫ 1
0 dx

(ωq−ρ0)
σ (ωq )∫ 1

0 dx
(ωq−ρ0)2

σ (ωq )

. (A19)

It is worth emphasizing that the optimal velocity is propor-
tional to q. This implies that the optimal profile solution of
Eq. (A18) depends exclusively on q2 and not on the cur-
rent sign, reflecting the Gallavotti-Cohen (GC) time-reversal
symmetry. This invariance of the optimal profile under the
transformation q ↔ −q can now be used in Eq. (A15) to
show explicitly the GC symmetry G(q) − G(−q) = 2Eq.
This fluctuation relation is fully confirmed in the simulations
discussed in the main text.

The constants C1 and C2 appearing in Eq. (A18) can be
expressed in terms of the extrema ω1 and ω0 of the profile
via

X(ω1) = C1 + C2ω1, (A20)

X(ω0) = C1 + C2ω0. (A21)

Moreover, the extrema locations are fixed by the constraints
on the distance between them and the total density of the
system,

1

2
=

∫ x0

x1

dx =
∫ ω0

ω1

√
Y (ωq)

X(ωq) − C1 − C2ωq

dωq (A22)

and
ρ0

2
=

∫ x0

x1

ωq(x)dx =
∫ ω0

ω1

√
ω2

qY (ωq)

X(ωq) − C1 − C2ωq

dωq ,

(A23)

where we have used in the last equality of both expressions
the differential equation (A18). In this way, for fixed values
of the current q and the density ρ0 (provided externally), we
use Eqs. (A19)–(A23) in order to determine the five constants
ω1,ω0,C1,C2,v which can be used in turn to obtain the shape
of the optimal density profile ωq(x) from Eq. (A18).

Notice that the unknown variables ω0, ω1 appear as the
integration limits in Eqs. (A22) and (A23), making this
problem remarkably difficult to solve numerically. In what
follows, we show how, by performing a suitable change of
variables, the integrals involved in the calculation can be
transformed into known functions as, e.g., elliptic integrals of
the first kind, thus allowing us to derive an explicit analytical
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expression for ωq(x) as a function of the relevant constants. We
start by doing a change of variables to express all the relevant
magnitudes in dimensionless form

v ≡ q

ρ0
u ; ωq(x) ≡ ρ0h(x) ; E ≡ q

ρ2
0

ε . (A24)

Particularizing now our calculation for the WASEP, where the
transport coefficients are D(ρ) = 1

2 and σ (ρ) = ρ(1 − ρ), the
differential equation (A18) for the traveling wave reads as

h′(x) = 2q

ρ0

[
(1 − u + uh)2 − 2D2h

2(1 − ρ0h)

− 2D1h(1 − ρ0h) + ε2

ρ2
0

h2(1 − ρ0h)2

]1/2

, (A25)

where we have defined Di ≡ Ciρ
i
0

q2 , i = 1, 2. Moreover, Eqs.
(A20) and (A21) can now be written as

(1 − u + uhk)2 = 2D2h
2
k(1 − ρ0hk) + 2D1hk(1 − ρ0hk)

− ε2

ρ2
0

h2
k(1 − ρ0hk)2 , (A26)

where hk = ωk/ρ0, with k = 0, 1, are the extrema of the
dimensionless profile h(x). We can now use the above
equations to write the constants D1 and D2 as a function of the
dimensionless variables h1, h0, ε, and u:

D2 = 1 − u

2(1 − ρ0h0)(1 − ρ0h1)

[
(1 − u)

h1h0
[1 − ρ0(h0 + h1)]

+ u2

(1 − u)
+ 2uρ0

]
+ ε2

2ρ2
0

[1 − ρ0(h0 + h1)], (A27)

D1 = (1 − u + uh0)2

2h0(1 − ρ0h0)
− D2h0 + ε2

ρ2
0

h0(1 − ρ0h0)

2
. (A28)

The remaining task consists in obtaining the three unknown
variables h1, h0, and u from Eqs. (A19), (A22), and (A23). In
particular, Eq. (A22) boils down to∫ h0

h1

dh

[
(1 − u + uh)2 − 2D2h

2(1 − ρ0h)

− 2D1h(1 − ρ0h) + ε2

ρ2
0

h2(1 − ρ0h)2

]−1/2

= q

ρ0
. (A29)

The integrand of the above expression can be written in the
following product form:

(−ah + b)(h + c)(h − h1)(h0 − h), (A30)

where the coefficients a, b, and c (obtained by matching order
by order) are (simple) functions of the unknown h1, h0, u and
the known q, ρ0, and ε. In order to eliminate the unknown
extrema h1, h0 from the integration limits in Eq. (A29), we
perform the following change of variables:

h = h0 − α(h0 − h1), (A31)

which allows us to rewrite Eq. (A29) as

q

ρ0
=

∫ 1

0

dα

(h0 − h1)
√

a

[(
h0 + c

h0 − h1
− α

)

× (1 − α)α

(
α − ah0 − b

a(h0 − h1)

)]−1/2

. (A32)

Defining now

η2 ≡ (ac + b)(h0 − h1)

(−ah1 + b)(h0 + c)
and z ≡ h0 − h1

η2h1
, (A33)

we get that Eq. (A32) turns into

q

ρ0
= 2√

(ac + b)zh1

∫ 1

0

dα√
(1 − α2)(1 − η2α2)

= 2√
(ac + b)zh1

K(η2), (A34)

where K(η2) is the complete elliptic integral of the first kind. It
is worth emphasizing that a,b,c,z, and η2 depend on h1, h0, u

and on q, ρ0, and ε.
In a similar way, we can derive an expression for the

adimensional optimal profile h(x) by writing∫ x

0
dx̃ = x =

∫ h

h1

dh̃

h̃′ , (A35)

and proceeding in the same way as before. This yields

qx

ρ0
= 1√

(ac + b)zh1

∫ 1

γ

dα√
(1 − α2)(1 − η2α2)

, (A36)

which is equivalent to

qx

ρ0
= K(η2) − F [sin−1(γ ),η2]√

(ac + b)zh1
, (A37)

where

γ (x) ≡
√

(h0 + c)[h(x) − h1]

(h0 − h1)[h(x) + c]
(A38)

and

F [sin−1(γ ),η2] ≡
∫ γ

0

dα√
(1 − α2)(1 − η2α2)

(A39)

is the incomplete elliptic integral of the first kind. Now, by
using Eqs. (A34) and (A37) we deduce that

F [sin−1(γ ),η2] = K(η2)(1 − 2x). (A40)

Solving for γ we obtain

γ (x) = JacobiSN[K(η2)(1 − 2x)] , (A41)

where JacobiSN is the inverse of the incomplete elliptic
integral of the first kind. This yields finally the optimal density
profile ω(x) = ρ0h(x), with h(x) obtained from the above
equation after taking into account Eq. (A38):

h(x) = h1 + cϒ(x)

1 − ϒ(x)
, (A42)

with ϒ(x) ≡ (JacobiSN[K(η2)(1 − 2x)])2 h0−h1
h0+c

.
Equation (A42) for the optimal traveling wave reflects the

explicit dependence of the wave profile on the constants h1, h0,
and u. The remaining job consists in solving numerically for
these constants in a self-consistent manner, once the explicit
dependence of the extrema has been removed from integral
limits. These constants can be thus obtained from Eqs. (A19),
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(A22), and (A23), which can be written as

∫ 1
2

0
dx

[h(x) − 1]

h(x)2
[1 − u + uh(x)] = 0, (A43)

2√
(ac + b)h1z

K(η2) = q

ρ0
, (A44)

∫ 1
2

0
h(x)dx = 1

2
, (A45)

where a, b, c, η2, and z are known functions of h1, h0, u. In this
way, for given values of q, ρ0, and E, we get self-consistently
h1, h0, u using the form of the profile obtained in Eq. (A42),
which depends explicitly on these constants.

To obtain the current LDF G(q), we just integrate nu-
merically its expression (A15) once particularized for the
WASEP [σ (ω) = ω(1 − ω),D(ω) = 1

2 ], using the optimal
wave profile and velocity obtained from the previous cal-
culation. Finally, to compute the Legendre transform of the
current LDF, we just evaluate numerically μ(λ) = maxq[λq +
G(q)] = λq∗ + G(q∗) with q∗(λ) solution of the following
equation:

λ = − ∂G(q)

∂q

∣∣∣∣
q=q∗

=
∫ 1

0
dx

q∗(λ) − v[ρ0 − ω(x)]

ω(x)[1 − ω(x)]
− E.

(A46)
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