
RN
Random Numbers

Copyright �C� June ����� Computational Science Education Project

Remarks

Keywords� Random� pseudorandom� linear congruential� lagged
Fibonacci

�� List of prerequisites�
some exposure to sequences and series� some ability to work in base 	 arithmetic
�helpful�� good background in FORTRAN or some other procedural language�

	� List of computational methods�
pseudorandom numbers
 random numbers
 linear� congruential generators �LCGs�

lagged Fibonacci generators �LFGs��

�� List of architectures�computers�
any computer with a FORTRAN compiler and bitwise logical functions�

�� List of codes supplied�
ranlc�f�or� 
 linear� congruential generator�
ranlf�f�or� 
 lagged Fibonacci generator�

random�f�or� 
 �portable� linear� congruential generator� after Park and Miller� �����
getseed�f�or� 
 to generate initial seeds from the time and date� implemented for
Unix and IBM PC�s�

�� Scope�
	
� lectures� depending upon depth of coverage�

Notation Key

a integer multiplier� � � a � m� �
c integer constant� � � c � m� �
D length of needle in Bu�on�s needle experiment



	

F fraction of trials needle falls within ruled grid in Bu�on�s needle experiment
k lag in lagged Fibonacci generator� k � �
� lag in lagged Fibonacci generator� � � k
M number of binary bits in m
m integer modulus m � �
N number of trials
Np number of parallel processors
P period of generator
p a prime integer
Rn random real number� � � Rn � �
S spacing between grid in Bu�on�s needle experiment
Xn nth random integer

Subscripts and Superscripts

� denotes initial value� or seed
j denotes jth value
� denotes �th value
k denotes kth value
n denotes nth value

� Monte Carlo Algorithms and �Random� Numbers

In this chapter� we discuss the application of Monte Carlo methods to scienti�c and engi

neering problems� There are problems which can be solved only by the Monte Carlo method�
and there also are problems which are best solved by the Monte Carlo method� However�
the method is often referred to as the �method of last resort�� as it is apt to consume large
computing resources� As such� it is a method ideally suitable for inclusion in a textbook
on computational science� as Monte Carlo programs� due to their nature of consuming vast
computing resources� have historically had to be executed upon the fastest computers avail

able at the time� and employ the most advanced algorithms� implemented with substantial
programming acumen�
Here� we provide a brief history of the Monte Carlo method� A good early work is that

of Bu�on�s needle problem �Ross� ������ where in ���� Bu�on� a French mathematician�
experimentally determined a value of � by casting a needle on a ruled grid� Many trials were
required to obtain good accuracy� The objective of the work was a validation of statistical
theory� as opposed to Monte Carlo simulations typically applied today� where answers to
new physical problems are sought� Lord Rayleigh �Rayleigh� ����� even delved into this �eld
near the turn of the century� Courant� Fredericks and Levy in ��	� showed how the method
could be used to solve boundary value problems� Ensuing work �Hurd� ����� illustrated that



Remarks �

Obtain π After “Many” Trials

S

S

Needle
Length, D

S > D

Figure �� Illustration of Bu�on�s Needle Problem

if the entire �eld were sought� Monte Carlo methods are far from competitive� However�
if the solution in a restricted region of space is sought �say at a point�� then Monte Carlo
methods may be used to great advantage� as they may be implemented in restricted regions
of space and�or time�

Exercise � � Bu�on�s Needle Problem� to illustrate geometrically
some of the properties of random numbers

�a� Write a program to determine the value of � by numerically casting a needle of length
D on a ruled grid with spacing S as shown in Figure �� You must �rst determine a
random position �relative ruled grid as shown in Figure �� You must �rst determine a
random position �relative to a ruled line�� then determine a random angle� and thirdly�
see whether the needle falls within the ruled lines� You may �nd it instructive to
compute approximations for � versus the number of trials� e�g� N � ��� ���� ����� and
������� For S � D� your answer for the fraction of time� F � the needle falls within the
grid should be �Kalos� ������

F � � �
	D

�S

�b� Verify the above equation� What is the corresponding formula for S � D� �Warning�
there is considerable e�ort involved in this derivation��

�c� Using a needle and a piece of paper upon which you have placed a ruled grid� perform
a physical experiment to determine � using the above equation� Perform �rst ��� then
���� and then ����� trials� Comment on the accuracy of these results relative to the



�

accuracy of the results from the numerical experiment� Discuss reasons for any bias
apparent in the results�

Enrico Fermi in the �����s used Monte Carlo in the calculation of neutron di�usion� and
later designed the Fermiac� a Monte Carlo mechanical device used in the calculation of crit

icality in nuclear reactors� In the �����s� a formal foundation for the Monte Carlo method
was developed by von Neumann� who established the mathematical basis for probability
density functions �PDFs�� inverse cumulative distribution functions �CDFs�� and pseudo

random number generators� The work was done in collaboration with Stanislaw Ulam� who
realized the importance of the digital computer in the implementation of the approach� The
collaboration resulted from work on the Manhattan project� where the ENIAC was employed
in the calculation of yield �Ulam et al�� ����
 Ulam and Metropolis� ����
 Eckhard� ����

Metropolis� ������
Individuals in the IBM corporation were pioneers in the �eld of random number gen


eration� perhaps because they were �rst engaged in it due to their participation in the
Manhattan project� where Richard Feynman then directed their computing operations �a
fascinating exposition of their approach to performing large
scale computing involving a
parallel approach exists in Richard Feynman�s Surely You�re Joking� Mr� Feynman�� It
is interesting to note the extremely primitive computing environments in existence at that
time� and the challenges this presented to researchers �see Hurd� ������
Uses of Monte Carlo methods have been many and varied since that time� However� due

to computer limitations� the method has not yet fully lived up to its potential as discussed
by Metropolis �Metropolis� ������ Indeed� this is re�ected in the stages the method has
undergone in the �elds of engineering� In the late �����s and �����s� the method was tested
in a variety of engineering �elds �Meuller� ����
 Ehrlich� ����
 Polgar and Howell� ����

Haji
Sheikh� ���� and Chandler et al�� ������ At that time� even simple problems were
compute
bound� The method has since been extended to more complex problems �Howell�
����
 Modest� ����
 Maltby� ����a and ����b� Maltby and Burns� ���� and ����
 Crockett
et al�� ������ Since then� attention was focused upon much
needed convergence enhancement
procedures �Kahn and Marshall� ����
 Emery and Carson� ����
 Burghart and Stevens� ����

Lanore� ����
 Shamsunder et al�� ����
 Zinsmeister and Sawyer� ����
 Larsen and Howell�
������ Many complex problems remained intractable through the seventies�
With the advent of high
speed supercomputers� the �eld has received increased attention�

particularly with parallel algorithms which have much higher execution rates� In his Ph�D�
dissertation� Brown introduced the concept of the �event step� �Brown� ������ enabling
e�cient vectorization of Monte Carlo algorithms where the particles do not interact� This
approach was later successfully exploited by several investigators� Martin et al� �Martin et
al�� ����� reported speedups of a factor of �ve on an IBM ���� with vector units� Nearly linear
speedup was reported �Sequent Computer Systems� ����� on a parallel architecture for photon
tracing� Bobrowicz et al� �Bobrowicz et al�� ����a and ����b� obtained speedup factors of
from �ve to eight in an algorithm where particles are accumulated in queues until e�cient
vector lengths are obtained� allowing physics algorithms such as the Los Alamos benchmark
GAMTEB to be e�ectively vectorized �Burns et al�� ������ Such advanced coding techniques



Remarks �

have enabled much bigger problems to be attacked� with improved accuracy� However� there
are still a host of problems which remain intractable� even with an e�ectively vectorized
algorithm�
Moreover� some impediments to e�ective vectorization have been identi�ed and analyzed�

Zhong and Kalos �Zhong and Kalos� ����� analyzed the �straggler� problem� where few
particles persist for many event steps� inhibiting performance due to the overhead incurred
where vectors are �short�� Pryor and Burns �Pryor and Burns� ����
 Burns and Pryor� �����
reported� for one Monte Carlo problem where particles interact� speedups on the order of
half of those observed where the particles do not interact� albeit with a vectorized algorithm
of greatly increased complexity� The same problem has been attacked with di�erent physics
�McDonald and Bagano�� ����
 Dagum� ����� in a more e�cient algorithm�
Good general references on Monte Carlo abound �Beckenback� ����
 Hammersly and

Handscomb� ����
 Schreider� ����
 Kleinjnen� ����
 Rubenstein� ����
 Binder� ����
 Haji

Sheikh� ����� in the literature� Most have a distinct bent 
 usually either statistics or physics�
Unfortunately� there is a dearth involving large
scale engineering applications�
No tutorial on large
scale Monte Carlo simulation can be complete without a discussion

of pseudo
random number generators� Where billions of random numbers are required� it
is essential that the generator be of long period� have good statistical properties and be
vectorizable� On ��
bit machines� these criteria are usually satis�ed with a multiplicative
generator if the constants are carefully chosen �Kalos and Whitlock� ������ Indeed� we have
come a long way from the early days of random number generators �Knuth� ������ For
example� Cray�s FORTRAN callable generator ranf has a cycle length of 	��� and is very
e�cient �vectorized with low overhead��
We summarize this introduction with our impression of the present status of Monte Carlo

surface to surface simulation� �All the pieces of the puzzle� have just come into con�uence
for large
scale Monte Carlo analysis� First� supercomputers are now su�ciently powerful
to enable the simulation of very large engineering and physics systems� involving thousands
of surfaces and billions of particle emissions� Secondly� a comprehensive formulation for
material properties exists in the aggregate of several models� Thirdly� an estimate of the
number of trials required to achieve a speci�ed level of accuracy is now obtainable prior
to execution� This makes possible a formulation which allows the number of emissions to
evolve dynamically as the simulation proceeds� Finally� a number of investigators have
e�ectively vectorized diverse Monte Carlo transport algorithms� with a su�cient base to
establish a synthesized approach� We now even have a quantitative model which allows the
assessment of the degree of parallelism and the amount of overhead required� Moreover� with
the emergence of lagged Fibonacci generators� parallelization at any granularity appears to
be easily implemented� and robust� With this as a point of departure� we now embark upon
a discussion of random number generators� upon which all Monte Carlo methods rely�

� Introduction to Pseudorandom Numbers

Anyone who considers arithmetical methods of producing random digits is� of



�

course� in a state of sin� � John von Neumann ������

Anyone who has not seen the above quotation in at least ��� places is probably
not very old� � D� V� Pryor ������

In this section� we shall explore possible reasons for von Neumann�s curious statement�
This statement is curious for two particular reasons� ��� arithmetic methods are widely used
on all computers to generate random numbers� and �	� John von Neumann himself devised
such methods for generating random numbers� Von Neumann probably made the above
statement in reference to the fact that there are many ways to go amiss when so doing� Our
goal in this section is� through a series of example problems� to illustrate various properties
of random number generators� With a visceral understanding of the generation process and
a solid foundation of cause and e�ect illustrated through examples� it is our hope that this
may help prevent �straying� into unacceptable techniques�
Indeed� all random number generators are based upon speci�c mathematical algorithms�

which are repeatable and sequential� As such� the numbers are just pseudorandom� Here� for
simplicity� we shall term them just �random� numbers� subject to this realization� Formally�

Truly random 
 is de�ned as exhibiting �true� randomness� such as the time between
�tics� from a Geiger counter exposed to a radioactive element�

Pseudorandom 
 is de�ned as having the appearance of randomness� but nevertheless
exhibiting a speci�c� repeatable pattern�

Quasi�random 
 is de�ned as �lling the solution space sequentially �in fact� these sequences
are not at all random 
 they are just comprehensive at a preset level of granularity��
For example� consider the integer space ��� ����� One quasi
random sequence which
�lls that space is �� �� 	�������� ���� Another is ���� ��� �������	� �� �� Yet a third is 	��
	�� 	������ ��� ���� �� ������ 	�� 		� Pseudorandom sequences which would �ll the space
are pseudorandom permutations of this set �they contain the same numbers� but in a
di�erent� �random� order��

As Monte Carlo simulations have been developed on computers since their inception�
methods of generating and dealing with random numbers are fairly well established� As
literally millions or even billions of random numbers are required in a large
scale simulation�
the process should ideally be very e�cient� Indeed� many random number generator routines
are written in assembly language for this reason� Sometimes� random number routines are
even put �in line� to avoid the overhead associated with subroutine calls� Often on vector
and�or parallel computers� blocks of random numbers are generated to amortize� over many
random numbers� the overhead associated with the generation of one random number� It
is noteworthy that the FORTRAN �� ANSI standard is the �rst one to identify a random
number generator in the ANSI speci�cation of the language� Hitherto� it has existed only as
an extension to the FORTRAN standard�



Remarks �

We shall not provide a comprehensive treatise on random numbers� There are many good
references which already do so� Knuth �Knuth� ����� is the de�nitive reference� although it
may be a bit too abstract for the typical computational scientist� Some implementations of
algorithms �of which� at large scale� some are good and some are not so good� can be found
in Numerical Recipes �Press et al�� ������ Perhaps the most accessible and lucid exposition
is that of Anderson �Anderson� ������ who presents some excellent illustrative graphics 
 an
approach which we emulate to illustrate the properties of some random number generators�
Also� our focus is upon e�ciency and e�ectiveness when using random number generators
in large
scale computations�

Random number generators should not be chosen at random� � Donald Knuth
������

Consistent with the previous citation� we advise a modicum of caution in the use of
pseudorandom numbers 
 especially in large
scale problems� There is an interesting anecdote
from Knuth� who went to great lengths to implement what he thought was to be a superior
random number generator� However� upon testing� it was found to produce very poor random
numbers� illustrating that it is easy for even the experts a priori to misinterpret quality� The
following comments derive from painful personal experiences of one of the authors�

� When problems arise with random number generators� they are exceedingly di�cult
to isolate� Often� the problem can be isolated only by replacing the existing random
number generator with one which is de�nitely superior �although perhaps much slower��
To make a selection of a superior generator requires both knowledge of the generator
currently in use and sometimes requires in
depth knowledge of the properties of general
random number generators�

� Problems rarely occur when solving small test problems �those for which analytical
or experimental answers are known�� Instead� problems arise in large scale� substan

tial examples involving perhaps millions or even billions of random numbers 
 where
debugging is di�cult due to the massive amount of data�

� Finally� in large
scale problems where one is porting a scalar to a vector or massively
parallel algorithm� the random numbers usually are accessed in a di�erent order� Thus
it is sometimes not possible to duplicate the run exactly� The results converge only
asymptotically� as the number of trials increases�

Thus� when problems occur� it is very di�cult to isolate the problem to the random
number generator because one tends to trace program execution an event step at a time�
and it is only in aggregate over many random numbers that the behavior of the random
number generator is �awed� In e�ect� one �loses sight of the forest for all of the trees��
Typically� in desperation and as a last resort after many days of debugging� one changes the
random number generator and voila 
 the problem disappears�



�

The truly cautious researcher assesses di�erent random number generators as the contin

uum analyst makes re�nements to a grid  better and better random number generators are
employed� until the answers are independent of the random number generator� This is rarely�
if ever� done in practice� Waxing philosophical� one wonders what number of Monte Carlo
simulations may have been performed where the answers may in fact be incorrect� but not
grossly incorrect� due to a �aw inherent in the random number generator used� Traditionally�
we cavalierly accept the random number generator on the architecture of interest� Fortu

nately� due to the early and well publicized mistakes made using random number generators�
their properties were thoroughly investigated by the mathematics community� primarily in
the �����s� Most of the random number generators in use today were designed with cog

nizance of past pitfalls and are adequate for almost all applications� However� we conclude
this section with a �rm caveat emptor�

��� Desirable Properties

When performing Monte Carlo simulation� we use random numbers to determine� ��� at

tributes �such as outgoing direction� energy� etc�� for launched particles� and �	� interactions
of particles with the medium� Viewing this process physically� the following properties are
desirable�

� The attributes of particles should not be correlated� That is� the attributes of each
particle should be independent of those attributes of any other particle�

� The attributes of particles should be able to �ll the entire attribute space in a manner
which is consistent with the physics� For example� if we are launching particles into a
hemispherical space above a surface� then we should be able to approach completely
�lling the hemisphere with outgoing directions� as we approach an in�nite number of
particles launched� At the very least� �holes� or sparseness in the outgoing directions
should not a�ect the answers signi�cantly� Also� if we are sampling from an energy
distribution� with an increasing number of particles� we should be able to duplicate
the energy distribution better and better� until our simulated distribution is �good
enough��

Mathematically speaking� the sequence of random numbers used to e�ect a Monte Carlo
model should possess the following properties�

Uncorrelated Sequences 
 The sequences of random numbers should be serially uncorre�
lated� This means that any subsequence of random numbers should not be correlated
with any other subsequence of random numbers� Most especially� n
tuples of random
numbers should be independent of one another� For example� if we are using the ran

dom number generator to generate outgoing directions so as to �ll the hemispherical
space above a point �or area�� we should generate no unacceptable geometrical patterns
in the distribution of outgoing directions�



Remarks �

Long Period 
 The generator should be of long period �ideally� the generator should not
repeat
 practically� the repetition should occur only after the generation of a very large
set of random numbers�� More explanation is provided below�

Uniformity 
 The sequence of random numbers should be uniform� and unbiased� That
is� equal fractions of random numbers should fall into equal �areas� in space� For
example� if random numbers on ����� are to be generated� it would be poor practice
were more than half to fall into ��� ����� presuming the sample size is su�ciently large�
Often� when there is a lack of uniformity� there are n
tuples of random numbers which
are correlated� In this case� the space might be �lled in a de�nite� easily observable
pattern� Thus� the properties of uniformity and uncorrelated sequences are loosely
related�

E�ciency 
 The generator should be e�cient� In particular� the generator used on vector
machines should be vectorizable� with low overhead� On massively parallel archi

tectures� the processors should not have to communicate among themselves� except
perhaps during initialization� This is not generally a signi�cant issue� With minimal
e�ort� random number generators can be implemented in a high level language such as
C or FORTRAN� and be observed to consume well less than �! of overall CPU time
over a large suite of applications�

Exercise � � To illustrate the mean and variance of uniformly
distributed random numbers

For uniformly distributed real random numbers� Rn� on ������ the average value should be
���� Note that� to compute the mean and variance� we can order the random numbers in
any fashion �as both of these computations are independent of order�� It is useful to choose
to order the real� random numbers in ascending order� and approximate the distribution in
the form of a continuous variable R� Verify by direct integration that the average� "R� and
the variance� ��� should be ��� and ��������� respectively� as follows�

"R �
Z �

�
RdR �

�

	

�� �
Z �

�
�R � �����dR �

�

�	

��� The Random Number Cycle

Pursuant to the above discussion� it is useful to present pseudorandom sequences in the
context of their cyclical structure� Almost all random number generators have as their basis
a sequence of pseudorandom integers �there are exceptions�� The integers or ��xed point�
numbers are manipulated arithmetically to yield �oating point or �real� numbers� The



��

●

●●

●

●●

●

●

●

●

●

●

Start
Finish

Clockwise
Traversal

Figure 	� Illustration of Random Number Cycle

random number cycle can be presented in terms of either integers or real numbers� Here� for
clarity� we con�ne ourselves to integers�
In Figure 	� we illustrate a random number cycle representing a sequence of �	 integers�

Each black dot represents a distinct integer� Our convention will be to start at the top of the
cycle �i�e� �	 o�clock�� traverse the cycle clockwise� and �nish at the integer just to the left
of the start� The nature of the cycle illustrates that� ��� the sequence has a �nite number of
integers� �	� the sequence gets traversed in a particular order� and ��� the sequence repeats
if the period of the generator is exceeded �i�e�� the cycle can be traversed more than once��
Furthermore� the integers need not be distinct
 that is� they may repeat� We shall address
this point subsequently� These all are properties of pseudorandom sequences of integers� In
subsequent sections� we shall illustrate these aspects with speci�c examples�

� Linear� Congruential Generators

	�� Approach

We begin by discussing the linear congruential generator 
 the one most commonly used for
generating random integers�

Xn�� � aXn # c �mod m�

Here� we generate the next random integer Xn�� using the previous random integer Xn�
the integer constants a and c� and the integer modulus m� After the integer aXn # c is
generated� modulo arithmetic using the modulus m is performed� to yield the new �random�
integer Xn���



Remarks ��

To get started� the algorithm requires an initial �seed�� X�� which must be provided
by some means �we shall discuss this later�� The entire sequence is characterized by the
multiplier� a
 the additive constant� c
 the modulus� m
 and the initial seed X�� Following
Anderson �Anderson� ������ we therefore refer to the sequence generated as LCG�a� c�m�X���
which completely determines the sequence� Here� LCG denotes a Linear� Congruential Gen

erator�
The appearance of randomness is provided by performing modulo arithmetic or remain


dering� For example� the nonnegative integers �� �� 	� �� �� �� � � � modulo � are �� �� 	� �� �� 	� � � ��
Note that the next result� Xn��� depends upon only the previous integer� Xn� This is a char

acteristic of linear� congruential generators which minimizes storage requirements� but at the
same time� imposes restrictions on the period�
With Xn determined� we generate a corresponding real number as follows�

Rn �
Xn

�oat�m�
or Rn �

Xn

�oat�m� ��

When dividing by m� the Rn values are then distributed on ������ If we desire Rn to be
distributed on ��� ��� then we would divide by �m � ��� We desire uniformity� where any
particular Rn is just as likely to appear as any other Rn� and the average of the Rn is very
close to ����

Example � LCG 
�� �� ��� �


Let us consider a simple example with a � �� c � �� m � ��� and X� � �� The sequence of
pseudorandom integers generated by this algorithm is�

��������	����	��������������������������������	����	������������ � �

In Figure �� we illustrate the random number cycle for this generator� We immediately
observe four features�

� The period �the number of integers before the sequence repeats� P is �� 
 exactly equal
to the modulus� m� When the next result depends upon only the previous integer� the
longest period possible is P � m� In the current example with a modulus of ��� the
mod operation generates integer results from � to ��� inclusive� Thus� for m � ��� this
sequence is of long period �the longest possible�� and uniform �it completely �lls the
space of integers from �
���� Note that the period is exactly equal to 	�� i�e� 	M � where
M is the base 	 log of the modulus�

� This particular sequence exhibits throughout its period the pattern of alternating odd
and even integers� It is frequently instructive to view this sequence in binary and then
after performing a real division by m to result in random real numbers �see Table ���
It is readily apparent that the sequence is serially correlated� In fact� note that the
right
most binary digit exhibits the regular pattern �� �� �� �� � � �� Due to this lack of



�	

●

●●

●

●●

●

●

●

●

●

●

● ●

● ●

Clockwise
Traversal

Initial
Seed

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

0

Figure �� Random Number Cycle for Example �
 LC����������

randomness� the Xn values should not be used as random digits �especially the right

most digits of Xn�� In fact� this lack of randomness results from using a power of two
for m� Despite this� a modulus which is a power of two is often used� for this renders
the process of performing the modulus operation very e�cient� Moreover� the real
numbers generated from the integer sequence are generally su�ciently random in the
higher order �most signi�cant� bits to be used in many application codes�

� Next� we infer the following� Because each random integer results from the previous
integer alone� selecting any initial seed from � to �� would just cyclically shift the
above sequence� We could begin anywhere on the random number cycle� and we would
proceed clockwise around the random number cycle from that starting point� Thus� all
that a di�erent choice of the initial seed does is shift the starting point in the sequence
already determined by a� c and m�

� Finally� we note that the average of the real numbers is ������ and the variance is
������� The departure of these values from the ideal ones of ��	 and ���	 � ������� is
due to the short period of this sequence and the rather coarse resolution of the generated
real numbers� These conditions of average and variance approaching the theoretical
values are necessary but not su�cient conditions for a good random number generator�

Let us exercise the code ranlc�f for additional parameters� In so doing� we shall choose
parameters that illustrate speci�c aspects of linear� congruential generators� First� we take
the case of c � �� This is termed a multiplicative congruential random number generator�



Remarks ��

Table �� Random Sequence of Example � 
 LCG��� �� ��� ��

�Random� �Random� �Random�

n Integer 
 Xn Binary 
 Xn Real 
 Xn

� � ���� ����	�

� � ���� ������

	 �� ���� ������

� �	 ���� ������

� �� ���� ����	�

� 	 ���� ���	��

� �� ���� ������

� � ���� ������

� � ���� ����	�

� �� ���� ������

�� � ���� ������

�� � ���� ��	���

�	 � ���� ����	�

�� �� ���� ���	��

�� � ���� ������

�� � ���� ������

Average ������

Variance ������

Xn�� � aXn �mod m� ���

The case c �� � is termed a mixed congruential random number generator�

Example � LCG 
�� �� ��� �


As illustrated in Figure �� we obtain the sequence
������������������� � �

� Note that we now have a period� P � of only �  this is ��� the modulus� In fact� when
m is a power of 	 �here� 	M � 	�� and c � �� the maximum period is 	M��� Here again�
we note that the low order bits are not random� In fact� the two least signi�cant bits



��

●●

●

●

Clockwise
Traversal

Initial
Seed

1

5

9

13

Figure �� Random Number Cycle for Example 	� LCG����������

are constant� always ��
 and the most signi�cant bits are quasi
random� exhibiting the
pattern ��� ��� ��� and ��

� Also� the sequence is correlated� as all successive integers di�er by � from their prede

cessors�

� At coarse granularity� the sequence is uniform� For example� if we divide ����� equally
into quarter segments� then exactly one random number falls into each segment� ���
��	��� ���	�� ����� ����� ����� and ��������� However� at �ner granularity� this uniformity
breaks down 
 consider dividing up the domain into � equal segments� for example�
Here� we have a mismatch between the random number generator we are using� and the
�scale� or granularity of our problem  the RNG is incapable of producing random
numbers which �ll our attribute space �here� our � bins�� There are two separate
issues to consider here� The least troublesome is the �nite precision existing in all
computers� which results in a round
o� error to the precision with which integers can
be represented� or with which the �oating point divide is accomplished� More serious is
the second issue� the interaction of the sequence of random numbers produced by our
generator with our application� This interaction is particularly troublesome when our
application requires n
tuples of random numbers� instead of just one random number
at a time� Later� we shall illustrate this e�ect by displaying plots of individual points
generated using various RNGs� In some applications� several random numbers are
needed at a time� For example� when tracing particles among surfaces� three random
numbers are required to obtain outgoing direction �one for outgoing azimuthal angle�
and one for outgoing polar angle� and energy �usually� only one is required to obtain



Remarks ��

Table 	� Random Sequence of Example 	 
 LCG��� �� ��� ��

�Random� �Random� �Random�

n Integer 
 Xn Binary 
 Xn Real 
 Xn

� � ���� ����	�

� � ���� ����	�

	 � ���� ����	�

� �� ���� ����	�

Average ������

Variance ������

the energy��

Example 	 LCG 
�� �� 	�� �


We obtain the sequence
����	�������������������������	�������	��	�����		�
����	��	�	����	��	�����	����������	��	����������� � � �

Table � provides the sequence throughout the period� Here� because we use a prime number
as the divisor for the modulus operation and c � �� we obtain a period one less than modulus
�� �� is not possible� as it maps to itself� so we obtain a period of ���� Indeed� when m � p�
a prime� the maximum period� Pmax� is m � �� even if c �� �� Thus� for linear� congruential
generators with a prime modulus� using a non
zero c does not increase the period�
Here� the low order bits� while not exhibiting a discernible pattern� do not appear as

�random� as one might expect� Indeed� as is shown in Altman �Altman� ������ the bitwise
randomnes properties of LCGs should be considered on a case by case basis� He provides
examples of LCGs with prime moduli that fail bitwise testing� but points out� for example�
that LCG������� �� 	�� � ��X�� does pass the bitwise randomness test�

Exercise 	 � to illustrate the generation of random numbers using
LCG
�	���� �� ���	�� �����
 and to partition the random real
numbers into bins

Obtain and edit the linear congruential program ranlc�f� Supply the additional code to
compute the average and the variance� For sample sizes of ��� ���� ������ and ������� run
the code and plot the errors in the average and variance versus sample size� Discuss how
the error in these quantities varies with the sample size� Use the following parameters�
a � ������ c � �� and m � 	���� �������



��

	�� Initial Seed

Now� we address establishing the initial seed� When debugging� it is important to implement
the algorithm to reproduce the same stream of random numbers on successive runs� If the
run is a debug run �noted� perhaps� by a parameter in the input �le�� the seed should be set
to a constant initial value� such as a large prime number �it should be odd� as this will satisfy
period conditions for any modulus�� Otherwise� the initial seed should be set to a �random�
odd value� Anderson ������ recommends setting the initial seed X� to the following integer�

X� � iyr # ��� � �imonth� � # �	 � �iday � � # �� � �ihour # 	� � �imin# �� � isec����

where the variables on the right
hand side are the integer values of the date and time� Note
that the year is 	 digits long� i�e� the domain of iyr is ��� ���� However� we have found it
preferable to introduce the maximum variation in the seed into the least signi�cant bits by
using the second of this century� rather than the most signi�cant bits� Ergo� we prefer the
following�

X� � isec# �� � �imin# �� � �ihr # 	� � �iday � � # �� � �imon� � # �	 � iyr����

and� to ensure X� is odd �in FORTRAN��

x� � ior�x�� ��

Arithmetical Considerations

Over�ow and Negative Integers

Consider performing the operation aXn # c �mod m�� A large value of a is desirable to
provide su�cient randomness� A large value of m is also desired� so that the period is
kept long� For example� on �	 bit computers� a and m are often �� bits long� as the most
signi�cant bit �the �	nd bit� is generally used to indicate sign� When two �� bit integers
are multiplied together� a possibly �	 bit integer results� Thus� an over�ow almost always
occurs� Fortunately� �oating point multipliers �and software emulations thereof� are designed
to throw away the most signi�cant bits� and retain the least signi�cant �	 bits�
However� if the result of the multiplication is so as to have the most signi�cant bit �the

�	nd bit� set� then the computer may treat this as a negative integer� which is incompatible
with the algorithm above� If this happens �it occurs during one
half of the multiply oper

ations�� this negative bit must be handled� One strategy to overcome this is to use a bit
mask to mask o� the most signi�cant bit� In this case� a logical AND operation should be
performed on the random� negative integer and the bit mask� imask�z��fffffff�� which
is a leading � followed by �� ones �i�e� ����������������������������������� This has the
e�ect of the zeroing out the sign bit� forcing the number to be positive� Viz��



Remarks ��

Table �� Random Sequence of Example � 
 LCG��� �� ��� ��

�Random� �Random� �Random�

n Integer 
 Xn Binary 
 Xn Real 
 Xn

� � ������ ���	��

� � ������ ������

	 	� ������ ������

� �� ������ ������

� �� ������ ������

� �� ������ ������

� �� ������ ��	���

� �� ������ ������

� �� ������ ����	�

� � ������ ����		

�� �� ������ ������

�� 	 ������ ������

�	 �� ������ ��	���

�� �� ������ ������

�� 	� ������ ������

�� 	� ������ ������

�� �� ������ ������

�� 		 ������ ������

�� �� ������ ������

�� �	 ������ ������

	� �	 ������ ���	��

	� 	� ������ ���	��

		 � ������ ������

	� 	� ������ ������

	� 	� ������ ����	�

	� �� ������ ������

	� 	� ������ ������

	� �� ������ ������

	� � ������ �����	

	� �� ������ ������

�� 	� ������ ���	��

�� 	� ������ ������

�	 � ������ ��	��	



��

1 0 1 1 0 1 1 0 0 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 0 0 1

Xn = 730

MASK = 31

Xn = 25

modIAND

=

(31 = 25 - 1)

Figure �� Modulus Operation with m � 	� using IAND

xn � iand�xn	 imask�

However� masking works only when m is a power of two� Otherwise� it destroys the
sequence of numbers generated� and the theory no longer applies� In the general case� unless
the number resulting from the multiplication aXn �ts in the register� special coding must
be done� An approach to this is to perform remaindering� by decomposing the multiply
operation into steps in which intermediate results are contained in �	 bits� This is the
strategy used by Park and Miller �Park and Miller� ������ Note that� in the language C� one
can avoid the issue of the sign bit by using an unsigned integer�

	�	 Using Logical Masks to Perform Modulo �
M Operations

Generators where the modulus operation must be performed �requiring an integer division�
are more costly to implement than are those with moduli of 	M � where the integer division
and remaindering can be accomplished much more e�ciently� We illustrate this as follows�
With a divisor of 	M � after the multiplication of aXn� the next seed is obtained simply by
performing a logical AND of Xn with a mask of �M � �� ones� right
justi�ed �see Figure
��� This is an extremely e�cient operation on binary computers� Many computer languages
have a bitwise AND intrinsic function� Use of the AND operation also avoids the problem
with negative integers� discussed above� A FORTRAN implementation would look like�

xn � iand�xn	 mask�

	�� Summary of LCG Properties

Following Anderson �Anderson� ������ we summarize the salient features and the recommen

dations for three widely used types of linear� congruential random number generators�



Remarks ��

Multiplicative� congruential generators are adequate to good for many appli�
cations� They are not acceptable��� for high�dimensional work� They can be very
good if speed is a major consideration� Prime moduli are best� However� moduli
of the form 	N are faster on binary computers� � Anderson ������

m � 	M � c � � �

The full period of m � 	M is obtained if and only if a � � �mod ��� and c is odd
�often chosen as ��� Low
order bits are not random�

m � 	M � c � � �

The maximum period of this generator is 	M�� �one
quarter the modulus�� and is
obtained if and only if a � � �mod �� or a � � �mod �� �� is preferred� and the
initial seed is odd� Low
order bits are not random�

m � p �prime�� c � �� or c �� � �

The maximum period of this generator is p � � and is obtained if and only if a is a
primitive element modulo p� Note that there is always one integer which maps only
to itself� �In the case of c � �� X� � � maps to itself�� Low
order bits may or may
not be random� Park and Miller �Park and Miller� ����� recommend the following�
portable generator� m � p � 	�� � � �	� ���� ���� ����� a � ��� ���� and c � �� The
code random�f� based upon Park and Miller�s algorithm� is supplied with this package�
Note that� even when c is non
zero� the maximum period of this generator is still one
less than the modulus�

Exercise � � to establish all cycles in LCGs when m � p� a prime

Consider linear� congruential random number generators� If c � �� it is obvious that X� � �
is not a good candidate integer for the initial seed because it maps to itself� In fact� if m � p�
a prime� then there is always a number which maps to itself �a constant sequence�� even if
c �� �� Prove this by �nding the integer which maps to itself� and which does not appear in
the full period sequence of length m� � for the following linear� congruential generators�

�a� LCG��� �� ���X��
�b� LCG��� �� ���X��
�c� LCG��� �� ���X��

Exercise � � exploring all possible sequences in simple LCGs

For the linear� congruential generator LCG��� �� ���X��� generate all the possible sequences
by varying the initial seed from � and ��� How many independent �i�e� not cyclical shifts of
one another� sequences are there� Is there a pattern observable in even versus odd integers�
Discuss possible reasons for this behavior�



	�

Exercise � � Cray�s LCG ranf��

On a Cray supercomputer running UNICOS� obtain the manual page on its intrinsic random
number generator by typing at the UNICOS prompt �!� �man ranf 
 ranf�doc�� Read the
�le ranf�doc to see how to set and get the seed for ranf� Given that ranf is a multiplicative�
congruential generator �c � �� using �� bits 
 get the initial seed
 discuss it in terms of cycle
length� Set the seed to �� and call ranf to obtain a new seed� Get and print out the new
seed
 this new seed is the multiplier of the generator� Discuss the multiplier in the context of
the cycle length� Print out the �rst ten random integers in decimal and hexadecimal format�
and the corresponding random real numbers using an f	���� format�

� N�tuple Generation With LCGs

Suppose we wanted to choose random locations in the unit square for Monte Carlo trials in
an application program� A very easy way to choose these points is to select two random
values� R� and R�� in ����� and choosing the point �R�� R�� as the current point of interest
in the square� More generally� we would generate a point by plotting Rn�� vs� Rn� where Rn

and Rn�� are of course obtained by scaling successive outputs� Xn and Xn��� of the generator
LCG�a� c�m�X�� by ��m� If we repeat this procedure for a large number of trials� we would
like to expect that we will achieve a reasonably good �covering� of the unit square and in
a �randomly� ordered fashion� We would be suspicious of a generator that produced points
in the square that were� say� clustered in the bottom half� or perhaps covered the square in
some clear order from left to right� Many other forms of obvious nonrandom behavior would
be equally unacceptable for most Monte Carlo applications� A characteristic of LCGs is that
points selected in this way and plotted in the unit square begin to form regular
looking rows
or dotted lines that are easily discernible when enough points have been plotted and when
viewed at the proper scale� Over the entire period of an LCG� if all consecutive pairs are
plotted� then these rows �ll in to become evenly spaced between points�
This constitutes one of the well known tests of randomness applied to pseudo
random

number generators 
 the so
called spectral test� the object of which is to discover the behavior
of a generator when its ouputs are used to form n
tuples� The formal development of this
family of tests is di�cult and we will not cover it here �the interested reader is referred
to Knuth�� but we will attempt to illustrate through several examples the meaning of the
concept as it applies to a 	
dimensional setting and with linear congruential generators� The
concepts presented are valid in higher dimensions as well�

In Figure �a
f we present a few examples to illustrate this behavior� These examples
depict the result of generating all pairs of consecutive numbers in the period of full
period
LCGs� For each modulus� the plotted points show the e�ect of our choice of the multiplier�
a� In Figure �a we show the set of points produced by scaling by ����� the output of the
generator LCG���� �� ���� ��� Note that the points form more than one set of rows� That is�
there are several angles from which the points appear to line up� From some perspectives�
the rows are close together� while from at least one perspective� the rows are rather far apart�



Remarks 	�

0.0 0.5 1.0
R(n)

0.0

0.5

1.0

R(n+1)

Figure �� �a� Pair Plot of LCG������������

0.0 0.5 1.0
R(n)

0.0

0.5

1.0

R(n+1)

Figure �� �b� Pair Plot of LCG��	����������



		

0.0 0.5 1.0
R(n)

0.0

0.5

1.0

R(n+1)

Figure �� �c� Pair Plot of LCG�������������

0.0 0.5 1.0
R(n)

0.0

0.5

1.0

R(n+1)

Figure �� �d� Pair Plot of LCG�	�����	������



Remarks 	�

0.0 0.5 1.0
R(n)

0.0

0.5

1.0

R(n+1)

Figure �� �e� Pair Plot of LCG��	�����	������

0.00000 0.00025 0.00050
R(n)

0.00000

0.00025

0.00050

R(n+1)

Figure �� �f� Pair Plot of LCG���������	������������



	�

The best situation is to have the maximum spacing of the rows� when viewed over all angles�
as small as possible� When the maximum spacing is large� as it certainly is in Figure �b�
LCG��	�� �� ���� ��� then clearly the unit square is not well covered by this set of points� and
the results of our simulation may be adversely a�ected by this �striping�� Figure �c shows
the e�ect of a good choice of a� LCG����� �� ���� ��� for which the maximumspacing between
rows is clearly smaller than it is in the �rst two cases� and where the points cover the unit
square with nearly optimal uniformity� given that with this generator we can generate only
a small number of points�

Figures �a
c are examples that all use the prime modulus m � ���� When m is a power
of two� the other major case to consider� the situation is similar� as depicted in Figures �d
and e� Recall that when m is a power of two and c � �� the full period is m��� but only if
a � � mod � or a � � mod �� Thus we choose m � 	�� � 	� ��� so that with period ��	� we
plot almost the same number of points ����� as we see in Figures �a
c� Figure �d illustrates
the result of using a good choice of a �a � 	�� � � mod ��� As in the prime modulus case�
the plotted points form a uniform looking lattice� But when we plot the points in Figure
�e generated by taking a � �� 	�� � � mod �� we see that the pattern looks like two lattice
structures slightly o�set from one another� This double lattice distinguishes the a � � mod
� case from the a � � mod � case and is the reason that a � � mod � is preferred� even
though both sets of a values produce the same period� As an aside� the two lattice structures
in the a � � mod � case come about from plotting separately the pairs beginning with odd
indices and those beginning with even indices�

The cases looked at so far are for moduli chosen to be small enough that we can plot the
full
period results and still see a pattern with space between points� In practice� it would
be foolish to use a generator with such a short period� If we look at an LCG with much
longer period� one that we might use in a practical application� we still see the lattice
like
full
period behavior� Figure �f shows the full
period 	
D result for LCG������� �� 	����� ���
where we �zoom in� on only the portion of the unit square in the ���������� X ����������
corner� or ����������� of the total area� Although the row spacing for this generator is
obviously not optimal� this particular one is popular for its universal portability and its
satisfactory performance in many applications�

We have shown only examples in which c � �� Using a nonzero value for c when m
is prime has the e�ect of shifting the entire lattice structure to a new location� so that it
appears o�set from that of the c � � case� The orientation and spacing of the lattice remain
the same� except that one lattice point appears absent  this re�ects the fact that when m
is prime and c � �� some nonzero value of X will succeed itself in the recursion formula of
the generator� �Actually� there is a �hole� in the c � � lattice as well� but it lies on one of
the axes� and so doesn�t disrupt the apparent regularity�� When m is a power of two and c
is nonzero� recall that the period of the generator is four times the period of the c � � case�
Here again the resulting lattice appears to be aligned the same as the c � � lattice� with the
c � � lattice o�set from a subset of the c �� � lattice� A further complication arises in the
case where m is a power of two and a � � mod �� here a nonzero value for c will produce
di�erent o�sets for each of the two distinct lattice structures� relative to the c � � case� The



Remarks 	�

fact that the c �� � case is slightly more complicated than the c � � case should not obscure
the basic theme of this section� that the quality of an LGC used in generating n
tuples is a
function of the multiplier� a�
The remarks given here with respect to 	
D behavior of LCGs apply as well to higher

dimensions� For example� in three dimensions� the coordinate triples �R�� R�� R�� formed
as above will lie in distinct planes� For ease of illustration� we have considered only 	
D
examples and only in a qualitative sense� The lattice spacing in any number of dimensions
can be treated quantitatively using methods detailed in Knuth� Vol� 	� The interested reader
is encouraged to pursue the topic further in this source� Remember that the e�ects described
here are full
period properties of LCGs� If only a tiny fraction of the period is used� the most
desirable way to use any pseudo
random generator� then these e�ects may not be noticed�
If a user suspects that the lattice structure of n
tuple generation is a�ecting the outcome of
a Monte Carlo simulation� then the best policy is to try another generator of di�erent type
and compare the results�

Exercise � � visualization of some poor LCGs

Modify the ranlc�f code to output �x� y� pairs of numbers as �R�� R��� �R�� R��� �R�� R���
etc� Plot these discrete points for the following cases�

�a� a � ��� c � �� m � 	��� ����� points ������ random numbers�
�b� a � �� c � �� m � 	�� � �� ����� points ������ random numbers�

	 Vectorization and Access via Multiple Processors


LCGs

Many Monte Carlo applications have characteristics that make them easy to map onto com

puters having multiple processors� Some of these parallel implementations require little or no
interprocessor communication �such applications are called �embarrassingly parallel�� and
are typically easy to code on a parallel machine� Others require frequent communication
and synchronization among processors and in general are more di�cult to write and debug�
In developing any parallel Monte Carlo code� it is important to be able to reproduce runs
exactly in order to trace program execution� Processors in MIMD machines are subject
to asynchronous and unbalanced external e�ects and are thus� for all practical purposes�
impossible to keep aligned in time in a predictable way� If the assumption is made that
random number generation from a single generator will occur� across processors� in a certain
predictable order� then that assumption will quite likely be wrong� A number of techniques
have been developed that guarantee reproducibility in multiprocessor settings and with var

ious types of Monte Carlo problems� We will consider only simple extensions to our previous
discussion of LCGs� but acknowledge that there are many approaches to parallel random



	�

number generation in the literature� The �rst situation we address involves using LCGs in
a �xed number of MIMD processes� where that number is known at the beginning of a run�
Suppose we know in advance that we will have N independent processes and that we

will need N independent streams of random numbers� Then the best strategy for using an
LCG is to split its period into nonoverlapping segments� each of which will be accessed by
a di�erent process� This amounts to �nding N seeds which are known to be far apart on
the cycle produced by the LCG� To �nd such seeds� �rst consider �for c � ��� the LCG rule
successively applied�

Xn�� � aXn �mod m�


Xn�� � aXn�� � a�Xn �mod m�


Xn�� � aXn�� � a�Xn �mod m�


� � �

Xn�k � aXn�k � akXn �mod m�


Thus we can �leap ahead� k places of the period by multiplying the current seed value by
ak mod m� For our purposes� we would like N starting seeds� spaced at roughly k � P�N
steps apart� Since k is likely to be quite large� it is not practical to compute ak one step at
a time� Instead we compute an �L # ��
long array� "d� the power
of
two powers of a�

d� � a

d� � d�
�

d� � d�
�

� � �

dL � dL��
�

where dL is the largest power
of
two power of a that is still smaller than k� I�e� L is the
integer part of the log �base 	� of a� For example� assume that k � �� � �������� �very
small� but big enough to show how it works�� Then

"d � �a� a�� a�� a	� a��� a��� a���

and since �� � �� # �� # � # 	 # �� then

a
� � a�� � a�� � a	 � a� � a� � d� � d� � d� � d� � d�

Thus for any k� ak � $di for all i for which bit i in the base
two representation of k is a one�
Therefore we can leap ahead by k cycle steps with no more than log�k multiplies� Once ak

is computed� the N seeds can be determined by the procedure�

Choose seed�



Remarks 	�

seed� � akseed� �mod m�

seed� � akseed� �mod m�

� � �

seedN � akseedN�� �mod m�

With these seeds� each of the N processes will generate random numbers from nearly equally

spaced points on the cycle� As long as no process needs more than k random numbers� a
condition easily met for some applications� then no overlap will occur� Everything just said
for MIMD processes applies equally well to SIMD programs� where the number of random
number streams needed is �usually� known at run time�
The development of the leap ahead technique just described assumed that c � � in the

LCG rule� For c �� �� Leap ahead can still be accomplished in a similar way� if one constructs
the log�k
long array of partial sums of the form� sj �

Pj
i�� a

i where� as before� j is a power
of two� The details are left as an exercise for the reader�
The second and more di�cult case to consider is when we do not know at the beginning of

program execution how many processes �generators� we will need� The splitting of processes
in such programs are data driven and in most cases occur as the result of prior Monte Carlo
trials taken many steps earlier� The problem is to spawn new LCG seeds in a way that is
both reproducible and which yields independent new streams�
Here we only mention a generalized approach that works within limits� Further details

can be found in �Frederickson� et al�� ����� Consider an LGC with the property that each X
has two successors� a �left� successor� XL� and a �right� successor� XR� These are generated
as follows�

L�X� � XL � aLX # cL �mod m� and

R�X� � XR � aRX # cR �mod m�

Figure � shows the action of these operations with respect to a starting seed X�� Taken sep

arately� the XL and XR sequences are simple LCGs that traverse the set f�� �� 	� � � � �m� �g
in di�erent order� Alternatively �and the method in which these generators are typically
used�� the XL rule produces a pseudo
random leap
ahead for the XR sequence� thus deter

ministically producing a seed for a new� spawned� subsequence of the �right� cycle� With
such a mechanism that uses only local information from a process� reproducibility can be
established� Frederickson gives a formula for the selection of the constants in the succes

sion rules that satis�es a particular independence criterion� given some constraints� The
interested reader is referred to Frederickson� et al�� ���� for further enlightenment�

Exercise � � Vectorization of Cray�s LCG

Complete Exercise � above to determine the parameters a and m �probably m � 	�	� of
Cray�s ranf��� Develop a vectorized version of ranf�� by creating a vector of successive
multiples of the coe�cient a� For a vector length of ��� for example� you will need a vector
of �a� a�� a�� � � � � a���� Race your vectorized version of ranf�� vs� Cray�s ranf��� and see



	�

Initial Seed
Right SequencesLeft Sequence

XR,n+1 = aR XR,n+ cRXL,n+1 = aL XL,n+ cL

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●●●●● ●●●

●

●

x

L(x)

L2(x)

L3(x) LRL(x) R2L(x)

R(x)

LR(x) R2(x)

R3(x)LR2(x)RLR(x)RL2(x)

RL(x)

L2R(x)

Figure �� Tree Generated from %OLeft &O and %ORight &O Generator

how close you can come to their execution time� To do this� you will have to generate long
vectors of random numbers� and use them elsewhere in the code� Use second�� to obtain
elapsed CPU time�

Exercise �� Leap�ahead in an LCG

For the LCG� Xn�� � aXn# c� where c �� �� determine 'ak and 'ck so that Xn�k � 'akXn #'ck�
resulting in a leap
ahead of k places on the original LCG cycle�

� Lagged Fibonacci Generators

Lagged Fibonacci pseudo
random number generators have become increasingly popular in
recent years� These generators are so named because of their similarity to the familiar



Remarks 	�

Fibonacci sequence�

�� �� 	� �� �� �� ��� � � � de�ned by� Xn � Xn�� #Xn���

where the �rst two values� X� and X�� must be supplied� This formula is generalized to give
a family of pseudo
random number generators of the form�

Xn � Xn�� #Xn�k �mod m�
 where � � k � �

and where� instead of two initial values� � initial values� X�� ��� � X���� are needed in order
to compute the next sequence element� In this expression the �lags� are k and �� so that
the current value of X is determined by the value of X k places ago and � places ago� In
addition� for most applications of interest m is a power of two� That is� m � 	M � �This
type of pseudo
random number generator� along with several others� has been extensively
tested for randomness properties by Marsaglia �Marsaglia� ����� and has been given high
marks� The only de�ciency found was related to what he calls the Birthday Spacings test�
for low values of � and k� The interested reader is referred to Marsaglia� ������
With proper choice of k� �� and the �rst � values of X� the period� P � of this generator

is equal to �	� � �� � 	�M��
� Proper choice of � and k here means that the trinomial
x� # xk # � is primitive over the integers mod 	� The only condition on the �rst � values is
that at least one of them must be odd� Using the notation LFG��� k�M� to indicate the lags
and the power of two modulus� examples of two commonly used versions of these generators
are�

�� LFG���� �� ���� � � ��� k � �� M � �� 	 P � 	��

	� LFG���� 	�� ���� � � ��� k � 	�� M � �� 	 P � 		�

Obviously� the value of the modulus�m� does not by itself limit the period of the generator�
as it does in the case of an LCG� Note also that lagged Fibonacci pseudo
random number
generation is computationally simple� an integer add� a logical AND �to accomplish the mod
	M operation�� and the decrementing of two array pointers are the only operations required
to produce a new random number X� Furthermore� with a large enough value of k� limited
vectorization can be achieved� The major drawback in the case of this type of generator is
the fact that � words of memory must be kept current� An LCG requires only one� the last
value of X generated�
We now look at some of the theory of these generators� with a view toward ensuring their

proper use� Conceptually� a Fibonacci generator acts the same as a linear shift register� and
if we set M � � so that m � 	�� then we have a binary linear shift register� Figure � is
a diagram of a particular binary linear shift register� where � � ��� k � �� and every Xj is
either a � or a �� �We will use this choice of � and k in several examples in order to illustrate
in a non
trivial way some of the properties of this type of generator�� The arrows are there
to depict the motion of the shift register as it makes the transition from one state to the
next� This is called advancing the register� Two such advances are shown in Figure ��



��

X(n-10) X(n-7) X(n-6) X(n-5) X(n-4) X(n-3) X(n-2) X(n-1)X(n-9) X(n-8)

bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Addition mod 2

Figure �� State Transition Diagram for Binary Shift Register

If we set m equal to a higher power of two� say m � 	�� i�e��M � �� then the single
bit
values of the X�s in Figure � will instead be represented by M bits each� Figure �� is a
diagram of the mod
�� linear shift register associated with the equation

Xn � Xn��� #Xn�� �mod 	��

In looking at this more general Fibonacci generator� LFG���� �� ��� two things are worth
noting�

�� If we look for a moment at only the least signi�cant bits of the elements in this register�
that is� only those bits in the bottom row� then we see that the behavior of this row is
una�ected by bits in the higher rows� The contents of the bottom row will therefore
be indistinguishable from those of the binary shift register in Figure ��

This is no surprise  when we add two numbers� the answer in the one�s place does
not depend in any way on the digits in the ten�s place �here� the two�s place��

	� If the bottom row of bits is all zeros� then no amount of register motion can produce
any ones there� This is to say that if the �rst � values of X are all chosen to be even�
then there can be no subsequent X values that are odd when the register is advanced�
In such a case the pseudo
random number generator will not be of full period� The
period can be no larger  and may be smaller  than P�	� since all odd numbers will
be excluded�

Since the state transformation of the shift register contents is a linear operation� a matrix
equation describing it can be given� Continuing with the example of the ��
long generator�



Remarks ��

Addition mod 2

11

1

1

1 1 1

1111

1 10 0 0 0 0

000000

0 00 00 0

Figure �� XXX

if we de�ne x and A by�

x �

�
BBBBBBBBBBBBBBBBB�

Xn��

Xn��

Xn��

Xn��

Xn��

Xn��

Xn��

Xn�	

Xn�


Xn���

�
CCCCCCCCCCCCCCCCCA

and A �

�
BBBBBBBBBBBBBBBBB�

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

�
CCCCCCCCCCCCCCCCCA

�



�	

X(n-10) X(n-7) X(n-6) X(n-5) X(n-4) X(n-3) X(n-2) X(n-1)X(n-9) X(n-8)

Addition mod 16

m.s.b.

l.s.b.

w
or

d 
0

w
or

d 
1

w
or

d 
L

-1

Figure ��� Register Motion for LFG��������

then the action of the shift register can be readily described by the equation

x
n
� Ax

n��
�mod 	M ��

where x
n
is the entire vector after n time steps� If the vector x� has been given some initial

set of values� then we have�
x� � Ax� 


x� � Ax� � A�x� 


x� � Ax� � A�x� � A�x� 


etc�

and in general�
x
n
� Anx� �

As an aside� note that x
P
� APx� � x

P
� or AP � I� the identity matrix�

The above equation gives a way to leap the generator ahead� similar in fashion to the
leap ahead concept discussed for LCGs� But such an operation with a Fibonacci generator



Remarks ��

requires a matrix
vector multiply involving� at best� the precomputation of possibly many
multiples of A� This precomputation may be expensive� even for small values of � �recall
that A is �� ��� and may be prohibitive for large values of �� Leaping a Fibonacci generator
ahead is therefore not recommended� This does not mean that such a generator cannot be
�split�� however� We now look at an e�cient method for splitting a Fibonacci generator�

Before explaining the splitting technique� notice that the period� P � of a properly con

structed Fibonacci generator is �	� � ��	M��� Consider a given initial set of values of an
M 
bit� �
long Fibonacci register� This state is a particular �M � �� bit pattern in the rect

angular register� If the register is advanced P times� the initial pattern will be replaced by
P � � di�erent patterns before the initial one reappears� But the number of possible bit
patterns in the register is 	M��� a number far larger than P � This tells us that there are
many P 
long cycles that are independent of one other and can be generated from the same
LFG��� k�M� structure� The number of such full
period cycles is 	����
�M��
 �Mascagni� et
al�� ������ For example� with the LFG���� �� �� generator of our previous example� there
are 	�� separate full
period cycles and a much smaller number of less than full
period cycles
�	�	 # 	
 # �� to be precise��

The question now becomes� how do we initialize separate cycles� This problem is ad

dressed by Mascagni� et al� �Mascagni� et al�� ������ where they describe a canonical form
for initializing Fibonacci generators� This canonical form is determined by � and k� but is
independent of M � To understand the use of this canonical form� consider a second view of
the LFG���� �� �� register shown in Figure ��� The L
shaped region along the left column
and the bottom row is �xed with all zeros� except for a one in the least signi�cant bit of word
� �the word associated with Xn�	�� The remaining bits� those in the ��� ��
bit rectangular
region �lled with z�s� are free to be chosen in any combination� Each combination of bits in
the �� � �� area will generate a distinct cycle of pseudo
random numbers� In other words�
every possible bit pattern that can be put in the canonical form will occur in one and only
one full period cycle�

In general� the canonical form for initializing Fibonacci generators requires that word
��� �� be set to all zero bits and that the least signi�cant bits of all words in the register to
be set to zero� with the exception of one or two characteristic bits that depend on � and k�
As shown in Figure ��� the canonical form for the LFG���� �� �� generator requires the least
signi�cant bit of word � to be set to one� with all other least signi�cant bits in the register
set to zero� Table � lists� for several choices of LFG��� k�M�� the characteristic word �or
words� for which the least signi�cant bit should be set to one in order to be in canonical
form�

Two caveats with respect to the use of this canonical form should be mentioned at this
point� Suppose a user were to construct and initialize a number of generators using an initial

ization scheme that simply numbered the initial states as one would number the integers in a
normal binary representation� This method certainly would not violate the conditions under
which the canonical form produces distinct cycles� and indeed the cycles of random num

bers generated from each initial state would be di�erent� But the �rst few random numbers
from these cycles may be less than random
looking when compared both with corresponding



��

X(n-10) X(n-7) X(n-6) X(n-5) X(n-4) X(n-3) X(n-2) X(n-1)X(n-9) X(n-8)

Addition mod 16

m.s.b.

l.s.b.

z zz z z z z zz

z zz z z z z zz

z zz z z z z zz

0000 00 0000

0

0

0

Figure ��� Canonical Form for LFG��������

output from other generators and with successive values from the same generator� As an
example� consider the LFG���� �� �� generator� where we canonically initialize one register
with all zeros in the z
ed region of Figure �� �call this generator �A�� and a second generator
with a single one in the lower right corner of the z
ed region �call this generator �B��� Table
� lists the �rst ��� pseudo
random numbers produced by both of these generators� both as
integers in the range ������ and as �oating point numbers in the range ���������� Note that
the A sequence consists of low numbers �less than ���� for �� iterations and is actually either
zero or one for the �rst �� iterations� B is somewhat better� but still not very satisfying�
In addition� A and B appear� at least until about �� iterations� to be correlated� This ap

pearance of non
random behavior on the part of these two sample sequences does not mean
that Fibonacci sequences or this method of initializing them does not produce high quality
random numbers� �Flat spots� are to be expected in any good pseudo
random number se

quence of su�cient length� and indeed such a sequence without them would be suspect with
regard to its randomness� The problem with initializing A and B in the example is that the
�at spots were �lined up� with each other and were placed at the very beginning� Neither of
these results would be a problem if our application required the use of thousands of numbers



Remarks ��

Table �� Canonical Form Speci�cations for Selected Fibonacci Generators

word no��s�

� k for lsb � �

� 	 �

� � ��	

�� � �

�� � ��

�� 	 �

�� 	� ��

�� �� �

�� �� ��	

�	� �� 	�

��� �	� ��

from both the A and the B sequences and if the numbers generated at the beginning were
no more important than those generated later� After a short time� the two sequences would
look completely uncorrelated from each other and would appear internally random as well�
However� if the number of required pseudo
random numbers is small� the outcome of the
numerical experiment might be unexpectedly skewed due to the initial conditions�

The problem just demonstrated is not di�cult to �x� We simply need a di�erent way
of �numbering� the patterns in the area of the free bits in the canonical form� one that
randomizes these patterns to some extent� An LCG can be used to initialize the free bits�
if one is careful to use it in such a way that a unique bit pattern results for each distinct
cycle number number� Pryor et al� �Pryor et al�� ����� describe the use of the LCG of Park
and Miller �Park and Miller� ����� as a good method for initializing their family of Fibonacci
generators� In that family� M is equal to �	� so that the free bit rectangle is �� bits high

whereas the Park and Miller generator uses a modulus of the prime number 	�� � �� Thus

the successive values in the �� high bits of the nth initial state for word � through word
�� � 	� are simply the �� � �� LCG successors of n� This gives a simple way to initialize
	�� � � distinct cycles that start out with a satisfactory �look and feel�� As an aside� this
particular LCG passes the (bitwise� randomness tests described by Altman �Altman� ������
for use in initializing Fibonacci generators�

The second caveat related to the use of this canonical form is also highlighted by the
previous example� The astute reader may have noticed that with this method of initializing
the Fibonacci register� for every advance� the least signi�cant bit is the same for all gener

ators� Unfortunately� this is the tradeo� vs� e�ciency that was made in order to guarantee
uniqueness of the cycles� the least signi�cant bit is simply non
random relative to the other



��

Table �� The First ��� Random Numbers from LFGs �A� and �B�

Xn Rn Xn Rn

n Seq� �A� Seq� �B� Seq� �A� Seq� �B� n Seq� �A� Seq� �B� Seq� �A� Seq� �B�

� � � ����� ����� �� �� � ���	
 ���	


� � � ����� ����� �� � �� ���
� ���	


	 � � ���
� ���
� �	 � � ���
� ���
�

� � � ����� ����� �� � � ����� �����

� � � ����� ����� �� � � ���	
 ���
�


 � � ����� ����� �
 � � ����� �����

� � � ����� ����� �� �� �� ���	
 ��





 � � ����� ����� �
 � �� ��	�� ��




� � � ����� ����� �� � � ���
� ���
�

�� � 	 ���
� ���

 
� 
 
 ��	�� �����

�� � � ����� ����� 
� 	 � ���

 ���
�

�� � � ����� ����� 
� 
 � ����� �����

�	 � � ���
� ���
� 
	 � 	 ���
� ���



�� � � ����� ����� 
� 	 �	 ���

 ��
��

�� � � ����� ����� 
� �� �� ����� �����

�
 � � ����� ����� 

 � 	 ���
� ���



�� � � ���
� ��	�� 
� � 	 ��	�� ���



�
 � � ����� ����� 

 
 � ����� �����

�� � � ����� ����� 
� � � ���
� ���
�

�� � � ����� ����� �� � �� ���	
 ��




�� � � ����� ����� �� 
 
 ��	�� ��	��

�� � � ����� ����� �� � �� ����� �����

�	 � � ���
� ���
� �	 � 
 ����� ��	��

�� � � ���
� ���	
 �� 
 � ����� �����

�� � � ����� ����� �� � � ����� �����

�
 � � ����� ����� �
 �� � ��
�� �����

�� 	 � ���

 ���
� �� �� �� ����� ��
��

�
 � � ����� ����� �
 �� �� ��
�� ��
��

�� � � ����� ����� �� �	 �	 ��
�� ��
��

	� 	 � ���

 ��	�� 
� � � ���
� ���
�

	� � � ���
� ���
� 
� �� 
 ��
�� ��	��

	� � � ����� ����� 
� 
 �� ����� �����

		 � � ���
� ���
� 
	 �� �� ����� ��
��

	� � � ����� ����� 
� � �� ����� ��
��

	� � � ����� ����� 
� � �� ����� ��
��

	
 � � � ��� � ��� 

 � � � �	
 � �
�



Remarks ��

X(0)

X(3)

X(4)

X(5)

X(6)

X(7)

X(8)

X(9)

X(1)

X(2)

X(6)

X(9)

X(10)

X(11)

X(12)

X(13)

X(14)

X(15)

X(7)

X(8)

vector
length
(k-1)

Figure �	� Vectorized Stepping of LFG������M�

cycles� For all other bit �elds� including the next
to
least signi�cant� there is no such defect�
Several possibilities arise for remedying this situation� including the use of a separate� in

dependent generator for only the least signi�cant bit� However� in the interest of simplicity
and speed� Pryor et al� have chosen to shift o� the least signi�cant bit of the generated
random number� so that the numbers returned by the generator are in the range ��� 	�� � ��
rather than ��� 	�� � ��� The register is initialized and maintained as a �	
bit generator� so
that no loss of period length or uniqueness of cycle is incurred� And for �	
bit machines� the
returned results still include all positive integers�



��

As mentioned in the beginning of this section� there is at least limited potential for vec

torization of a single lagged Fibonacci generator� Figure �	 is an illustration of vectorization
applied to our LFG���� ��M� generator� As the �gure shows� the vector algorithm advances
the register ahead by �k � �� steps� so that the vector length of most of the operations is
�k � ��� Note that there is a vector copy operation of length �� � �k � ���� Care should
be taken that no item of data is destroyed before it is needed� The easiest way to prevent
unintentionally writing over needed data is to keep two copies of the Fibonacci register and�
for each �vector� advance� use the old copy to construct the new one� None of the data
in the old copy will be destroyed until the next vector advance� when it becomes the new
copy� If vectorization of the Fibonacci generator is important  and it could be� if random
number generation consumes a large fraction of the execution time  then clearly a long
vector length is better than a short one� Processing with a vector length of �� as our ex

ample has� would not yield much improvement over the scalar method� For vectorization
to provide meaningful improvement over scalar processing� the vector operations should be
long enough to make good use of the machine hardware� For example� on Cray machines
where the vector registers are �� words long ��	� on the new models�� this usually means
vector lengths of tens of elements� For these machines� the generators LFG���� ���M� and
LFG����� �	��M� would be good choices� with respective vector lengths of �� and �	��

In Figure �� we list a sample Fortran code for initializing and generating random numbers
from the generator LFG���� �� �	�� Note that the register is maintained as a set of �	
bit
numbers� but that the number returned to the user has only �� bits� The initialization of the
register is accomplished using the Park and Miller LGC described in �Park and Miller� ������
The seed� �iseed��� supplied by the user may be any integer greater than or equal to zero
and less than or equal to 	���	 � 	������������� The register is initialized in canonical form�
so each value of iseed� results in a distinct cycle of random numbers� Since the function
irnd����� was written to work on ��
bit machines� as well as �	
bit machines� the mask
operations were included to add clarity to the code� In many situations� the �	
bit mask
operation could be eliminated� since the hardware would simply ignore any over�ow� The
��
bit mask could also be eliminated on any systems that zero
�ll on right shift operations� If
the system performs a �sign extension� type of �ll� then the ��
bit mask would be required�

Exercise �� � to explore LFGs visually

Use the code ranlf�f to generate random numbers� Modify the code to print out pairs of
random numbers on ����� and display them as points as Rn�� vs� Rn for ����� points ������
random numbers��

�a� Using � � �� �n varies from � to ���� and k � �	� select a subtractive generator� Use
an initial seed of �� to generate the initial state� Compare the display to those of Figures
�a
f in Section � which were generated using LCG generators�

�b� Select di�erent values for k� but keep � �xed at ��� Use the parameters as in �a�
above� Generate plots as above in �a�� What do you observe about the uniformity of the
random numbers and their correlation�



Remarks ��

call init����iseed��

� � �

krand � irnd��

krand � irnd��

krand � irnd��

� � �

c

c

subroutine init����iseed�

implicit integer �a�z�

parameter�a � �
���	 r � ���
	 q � ������	 m � z��fffffff��

common�c���� ifibreg����	lptr	kptr

c

do i��	�


hi � iseed�q

lo � mod�iseed	q�

iseed � a�lo � r�hi

if�iseed�lt��� iseed � iseed � m

ifibreg�i� � ishft�iseed	��

enddo

ifibreg���� � ifibreg���� � �

lptr � ��

kptr � �

return

end

c

c

integer function irnd�����

parameter�mask�� � z�ffffffff�	 mask�� � z��fffffff��

common�c���� ifibreg����	lptr	kptr

c

itemp � ifibreg�lptr� � ifibreg�kptr�

ifibreg�lptr� � iand�itemp	mask���

lptr � lptr � �

kptr � kptr � �

if�lptr�le��� lptr � ��

if�kptr�le��� kptr � ��

irnd��� � iand�ishft�itemp	���	mask���

return

end

Figure �� FORTRAN implementation of LFG���� �� �	�



��

Exercise �� � the fundamental concepts of LFGs

Consider the Fibonacci generator LFG��� 	� 	��
�a� Draw a shift register diagram� similar to Figure ��� to represent � the action of this

generator�
�b� How long is the period� P � of this generator�
�c� How many distinct cycles does this generator have�
�d� Using the information for this generator in Table �� initialize� in canonical form� every

cycle for this generator� and generate each full cycle�
�e� Suppose the generator LFG��� 	� 	� were initialized with the values� X� � �� X� � ��

and X� � �� If the generator were advanced for a full cycle� which of the �canonical� cycles
generated in part �d� would be the same as this new one� How many advances of the
generator did you need to determine this�
�f� Would parts �a� through �e� be fun to do if the generator changed only slightly� from

LFG��� 	� 	� to LFG��� 	� �� � What is the value of P for LFG��� 	� ��� How many distinct
cycles does it have�

Exercise �� � various LFGs as they in�uence the number and
length of cycles

Using a computer and your favorite programming language� go through steps �a� through �e�
as in Exercise ��� above� for the generator LFG��� �� 	�� What about part �f�� i�e�� changing
LFG��� �� 	� to LFG��� �� ��� What would that change do to the number of cycles and to
P �

� Summary and Recommendations

We have illustrated through example applications the implementation of various random
number generators� We have concerned ourselves much more with issues of portability and
quality than with e�ciency� as our observations have been that generating random numbers
is not very consumptive of CPU resources� except in a narrow range of circumstances� Our
observations have led us to conclude that� now� due to more powerful computers� more
sophisticated physical models are employed� This results in codes which do more work per
random trial than in the past�
Although this is not a formal treatment� we have been able to infer that there exist good

random number generators for �	 bit machines� The portable generator recommended by
Park and Miller �Park and Miller� ����� appears to be particularly suitable for �ordinary�
problems� At very large scale� this random number generator�s period of 	�� � 	 �over 	
billion� may be too short�
Using lagged Fibonacci generators shows great promise� and is now undergoing thorough

testing  particularly in terms of correlations of sequences� It appears particularly suitable
for generating many streams of independent random numbers in parallel� The interested



Remarks ��

reader should �stay tuned� for further developments� Moreover� we believe these generators
are now su�ciently mature that we recommend them for inclusion in existing applications�
The quality of the random sequences are at least as good as those generated using LCGs�
with the only drawback being the requirement for greater storage� In cases requiring many
parallel generators� this can be a factor�
Finally� we wax philosophical� We urge the supercomputist to approach the generation of

random numbers with circumspection� particularly when solving very large
scale problems�
All random number generators should be tested thoroughly for their quality before being
used upon other than academic problems� Further� at least two levels of quality in random
number generators should be implemented to assess whether the answers are independent of
the random numbers� This is a matter requiring judgment and is aided by experience�
However� the situation is not as bleak as it may seem from the above discussion� For very

large scale problems lacking a regular structure �e�g�� complex geometries and�or material
properties�� it is very unlikely that correlations between random numbers generated on sep

arate processors will be signi�cant due to the fact that the physical problem exhibits a great
many possibilities for random events� Further� if the parameters of the generator are chosen
correctly� there are a great many possibilities for random events when using random real
numbers� However� the truly cautious researcher should not rely on the con�uence of these
factors to discourage assessing the results in the context of quality of the random events
derived from the random number generator�
Further� it is wise to mention that the above observations are speci�c to using random real

numbers� and not random integers� In particular� there may exist a resonance between the
physical problem and random integers such as the successive odd�even pairs obtained when
using a modulus of a power of two in a linear� congruential generator� As the complexity
of the problem decreases� the potential for problems with the random number generator
increases�
We note that FORTRAN �� will obviate many of the impediments to a portable imple


mentation of random number generators� as� ��� it allows arbitrary precision in numbers�
which can be made large enough to eliminate over�ow and problems with a sign bit� and �	�
it has embedded in the language functions to return the date and time� which now are sys

tem calls and vary from system to system� Moreover� a random number generator intrinsic
function exists as part of the language� and it may be quite good �although it will have to
be tested thoroughly by the Monte Carlo community before gaining universal acceptance��


 References

N� S� Altman� �Bitwise Behavior of Random Number Generators�� SIAM J� Sci� Stat�
Comput�� �	
�� September� pps� ���
���� ����� G� M� Amdahl� �Validity of the single pro


cessor approach to achieving large
scale computing capabilities�� Proceedings of the American
Federation of Information Processing Societies� ��� Washington� DC� pps� ���
���� �����

S� L� Anderson� �Random Number Generators on Vector Supercomputers and Other



�	

Advanced Architectures�� SIAM Review� �
 	
�� pps� 		�
	��� �����

E� F� Beckenback �ed�� Modern Mathematics for the Engineer� McGraw Hill� New York�
NY� �����

K� Binder� Applications of the Monte Carlo Method in Statistical Physics� Springer

Verlag� Berlin� �����

J� Briesmeister� ed� �MCNP� a general Monte Carlo code for neutron and photon trans

port�� LA
����
M� Rev 	� Los Alamos National Laboratory report� �����

T� B� Brown� Vectorized Monte Carlo� Ph�D� Dissertation� Department of Nuclear Engi

neering� University of Michigan� �����

C� E� Burghart and P� N� Stevens� �A general method of importance sampling the angle
of scattering in Monte Carlo calculations�� Nuclear Science and Engineering ��	��� �	
 	��
�����

P� Burns� M� Christon� R� Schweitzer� H� Wasserman� M� Simmons� O� Lubeck and D�
Pryor� �Vectorization of Monte Carlo particle transport 
 an architectural study using the
LANL benchmark GAMTEB�� Proceedings� Supercomputing ���� Reno� NV� �� 
 	�� Nov�
��� �����

P� J� Burns and D� V� Pryor� �Vector and parallel considerations for the Rayleigh problem
in molecular gas dynamics�� Proceedings� �th International Conference on Finite Element
Methods in Flow Problems� Huntsville� AL� April �
�� �����

P� J� Burns and D� V� Pryor� �Vector and parallel Monte Carlo radiative heat transfer��
Numerical Heat Transfer� Part B� Fundamentals ��	����� �����

R� D� Chandler� J� N� Panaia� R� B� Stevens and G� E� Zinmeister� �The solution of
steady
state convection problems by the �xed random walk method�� Journal of Heat Trans�
fer ��	��� ���
���� �����

Cray Research� Inc� UNICOS Libraries� Macros and Opdefs Reference Manual� Publica

tion SR
	���� Cray Research� Inc�� Mendota Heights� MN� �����

D� Crockett� J� D� Maltby and P� J� Burns� �MONT�V user�s manual�� Internal Publi

cation� Department of Mechanical Engineering� Colorado State University� �����

J� H� Curtis� �Sampling Methods Applied to Di�erential and Di�erence Equations��
Proceedings IBM Seminar on Scienti�c Computation� Nov� ����� IBM Corp�� New York�
��
���� �����

L� Dagum� �Implementation of a hypersonic rare�ed �ow particle simulation on the
connection machine�� Proceedings� Supercomputing ���� ACM Press� Baltimore� MD� �	
���
Nov� ��
��� �����

R� Eckhard� �Stan Ulam� John von Neumann and the Monte Carlo method�� Los Alamos
Science� �
� �����



Remarks ��

L� W� Ehrlich� �Monte Carlo Solutions of Boundary Value problems Involving the Dif

ference Analogue of ��u

�x�
# ��v

�y�
# ��w

�z�
�� Journal of the Association of Computing Machinery�

��	��
	��� �����

A� F� Emery and W� W� Carson� �A modi�cation to the Monte Carlo method 
 the
exodus method�� Journal of Heat Transfer ��	��� �	�
��	� �����

P� Frederickson� R� Hiromoto� T� L� Jordan� B� Smith� T� Warnock� �Pseudo
random
trees in Monte Carlo�� Parallel Computing� �	��� December� ���
���� �����

S� W� Golomb� Shift Register Sequences� �Revised Ed��� Aegean Park Press� ���	�

A� Haji
Sheikh� �Monte Carlo Methods�� Ch� �� in Handbook of Numerical Heat Transfer�
���
�		� �����

A� Haji
Sheikh and E� M� Sparrow� �The Floating Random Walk and its Application to
Monte Carlo Solutions of Heat Equations�� Journal of Heat Transfer ��	
�� �	�
���� �����

J� M� Hammersly and D� C� Handscomb� Monte Carlo Methods� Methuen� London� �����

D� B� Heifetz� �Vectorizing and macrotasking Monte Carlo neutral particle algorithms��
Princeton Plasma Physics Laboratory Report PPPL
	�	�� April �����

J� R� Howell� Application of Monte Carlo to Heat Transfer Problems� Advances in Heat
Transfer� 
� �
��� �����

C� C� Hurd� ed�� Proceedings of the Seminar on Scienti�c Computation� International
Business Machines Corporation� New York� NY� Nov� �����

H� Kahn and A� W� Marshall� �Methods of reducing sample size in Monte Carlo compu

tations�� Journal of Operations Research Society of America� �� 	��
	��� �����

M� H� Kalos� �Monte Carlo methods and the computers of the future�� Ultracomputer
Note )��� April �����

M� A� Kalos and P� A� Whitlock� Monte Carlo Methods� Volume I� Basics� Wiley Inter

science� New York� �����

J� P� C� Kleinjnen� Statistical Techniques in Simulation� Part �� Marcel Dekker� New
York� NY� �����

D� E� Knuth� Seminumerical Algorithms� 	nd Ed�� Vol� 	 of The Art of Computer
Programming� Addison
Wesley� Reading PA� �����

J� M� Lanore� �Weighting and biasing of a Monte Carlo calculation for very deep pene

tration of radiation�� Nuclear Science Engineering �
	��� ��
�	� �����

M� E� Larsen and J� R� Howell� �Least
squares smoothing of direct
exchange areas in
zonal analysis�� Journal of Heat Transfer� ���� 	��
	�	� �����



��

J� D� Maltby� Three�dimensional Simulation of Radiative Heat Transfer by the Monte
Carlo Method� Master�s Thesis� Department of Mechanical Engineering� Colorado State Uni

versity� �����

J� D� Maltby� Analysis of Electron Heat Transfer via Monte Carlo Simulation� Ph�D�
Dissertation� Department of Mechanical Engineering� Colorado State University� �����

J� D� Maltby and P� J� Burns� �MONT	D and MONT�D user�s manual�� Internal Pub

lication� Department of Mechanical Engineering� Colorado State University� �����

J� D� Maltby and P� J� Burns� �MONT�E user�s manual�� Internal Publication� Depart

ment of Mechanical Engineering� Colorado State University� �����

G� Marsaglia� A Current View of Random Number Generators� Computer Science and
Statistics� The Interface� Elsevier Science Publishers B� V� �North Holland� L� Billard �ed���
�����

W� R� Martin� P� F� Nowak and J� A� Rathkopf� �Monte Carlo photon tracing on a vector
supercomputer�� IBM Journal of Research and Development ��	
�� �����

M� Mascagni� S� Cuccaro� D� Pryor� and M� Robinson� �A fast� high quality� reproducible�
parallel� lagged
Fibonacci pseudorandom number generator�� SRC
TR
��
���� Supercom

puting Research Center� ����� Science Drive� Bowie� MD 	����� �����

J� D� McDonald and D� Bagano�� �Vectorization of a particle simulation method for
hypersonic rare�ed �ow�� AIAA
��
	���� AIAAThermophysics� Plasmadynamics and Lasers
Conference� San Antonio� June 	�
	�� �����

N� Metropolis� �The beginning of the Monte Carlo method�� Los Alamos Science� �
�
�����

N� Metropolis� �Monte Carlo 
 in the beginning and some great expectations�� Monte
Carlo Methods and Applications in Neutronics� Photonics and Statistical Physics� Cadarache
Castle� France� �����

M� F� Modest� �Monte Carlo method in analysis of three
dimensional radiative exchange
factors for non
gray non
di�use surfaces�� Numerical Heat Transfer� �� ���� �����

M� E� Mueller� �Some continuous Monte Carlo methods for the Dirichlet problem��
Annals of Mathematical Statistics� 
�� ���
���� �����

S� K� Park and K� W� Miller� �Random Number Generators� Good Ones are Hard to
Find�� Transactions of the ACM� Nov� �����

L� C� Polgar and J� R� Howell� �Directional thermal
radiative properties of conical cavi

ties�� NASA TN D
	���� ����

W� H� Press et al� Numerical Recipes 	FORTRAN�� pps� ���
		�� �����

D� V� Pryor and P� J� Burns� �A parallel Monte Carlo model for radiative heat transfer��
Presented at the ���� SIAM Meeting� Boston� MA� July 	�
	�������



Remarks ��

D� V� Pryor and P� J� Burns� �Vectorized molecular aerodynamics simulation of the
Rayleigh problem�� Proceedings� Supercomputing ���� Orlando� FL� Nov� ��� �����

D� Pryor� S� Cuccaro� M� Mascagni� and M� Robinson� �Implementation and usage of
a portable and reproducible parallel pseudorandom number generator�� SRC
TR
��
����
Supercomputing Research Center� ����� Science Drive� Bowie� MD 	����� �����

Lord Rayleigh� �On James Bernoulli�s Theorem in Probabilities�� Philosophical Maga�
zine� ��� ����� pp� 	��
	���

S� M� Ross� A First Course in Probability� 	nd Ed�� Macmillan� New York� NY �������

R� Y� Rubenstein� Simulation and the Monte Carlo Method� Wiley� New York� NY� �����

Y� A� Schreider� Methods of Statistical Testing� Elsevier� New York� NY� �����

Sequent Computer Systems� �Parallel ray tracing study�� TN
��
���rvp�� Rev� ���� �����

N� Shamsunder� E� M� Sparrow and R� P� Heinisch� �Monte Carlo radiative solutions 

e�ect of energy partitioning and number of rays�� International Journal of Heat and Mass
Transfer ��	��� ���
���� �����

S� Ulam and N� Metropolis� �The Monte Carlo method�� Journal of American Statistical
Association� ��� ���� �����

S� Ulam� R� D� Richtmeyer and J� von Neumann� �Statistical methods in neutron di�u

sion�� LAMS
���� Los Alamos National Laboratory� �����

Y� Q� Zhong and M� H� Kalos� �Monte Carlo transport calculations on an Ultracom

puter�� Ultracomputer Note )��� March �����

G� E� Zinsmeister and J� A� Sawyer� �A method for improving the e�ciency of Monte
Carlo calculation for Dirichlet problems�� Journal of Heat Transfer ��	
�� ����
����� �����


