
Elements of Fortran

Lloyd D. Fosdick

18 January 1987

Revised

June 21, 1995

�

High Performance Scienti�c Computing

University of Colorado at Boulder

Copyright

c

1995 by the HPSC Group of the University of Colorado

The following are members of

the HPSC Group of the Department of Computer Science

at the University of Colorado at Boulder:

Lloyd D. Fosdick

Elizabeth R. Jessup

Carolyn J. C. Schauble

Gitta O. Domik

Elements of Fortran i

Contents

1 Introduction 1

2 Overview 2

2.1 Program structure : 2

2.2 Statements : 2

2.3 Control statements : 3

2.4 Expressions : 3

2.5 Types : 4

2.6 Compiling : 4

3 De�nitions and basic rules 5

3.1 Character set : 5

3.2 Names : 5

3.3 Types : 6

3.4 Labels : 6

3.5 Keywords : 6

3.6 Variables : 7

3.7 Arrays : 7

3.8 Constants : 9

3.9 Operators : 10

3.10 Evaluation of expressions : 10

3.11 Statements : 11

3.12 Statement order : 11

3.13 Comments : 12

3.14 Blanks : 12

3.15 Intrinsic functions : 13

4 Description of statements 13

4.1 Notation : 13

4.2 Assignment statement : 15

4.3 CALL statement : 16

4.4 COMMON statement : 17

4.5 CONTINUE statement : 18

4.6 DO statement : 19

4.7 END statement : 21

CUBoulder : HPSC Course Notes

ii Elements of Fortran

4.8 EXTERNAL statement : 21

4.9 FORMAT statement : 22

4.10 FUNCTION statement : 23

4.11 GOTO statement : 23

4.12 IF statement : 24

4.13 IMPLICIT statement : 26

4.14 OPEN statement : 27

4.15 PARAMETER statement : 29

4.16 PROGRAM statement : 30

4.17 READ statement : 30

4.18 RETURN statement : 32

4.19 STOP statement : 33

4.20 SUBROUTINE statement : 33

4.21 Type statements : 34

4.22 WRITE statement : 35

5 Reading and writing 36

5.1 Reading : 36

5.2 Writing : 38

6 Examples 39

References 42

CUBoulder : HPSC Course Notes

Elements of Fortran iii

Trademark Notice

� ANSI is a trademark of the American National Standards Institute, Inc.

CUBoulder : HPSC Course Notes

Elements of Fortran

�

Lloyd D. Fosdick

18 January 1987

Revised

June 21, 1995

1 Introduction

For many years Fortran has been the language of choice in scienti�c comput-

ing, and, even though C has become increasingly popular, Fortran remains

an important language in scienti�c computing. Indeed, there are Fortran

compilers for every supercomputer, and new versions of it exist for vector

computers and for parallel computers. For this reason, we use Fortran in

most of the laboratory exercises and examples. However, we have found that

many students enrolling in our course are unfamiliar with Fortran. For this

reason we have found a review of Fortran to be quite useful and therefore

have included it in this book.

The brief and elementary review in this tutorial describes enough of For-

tran to enable you to read and understand the programs used in our lab-

oratory exercises. Nevertheless, you will probably �nd a need for a more

thorough description of Fortran. Two texts that you may �nd useful are

Fortran 77 for Humans [Page 83] and E�ective Fortran 77 [Metcalf 85]. Be-

sides these texts, you may �nd it useful to refer to the book which de�nes

�

This work has been supported by the National Science Foundation under an Ed-

ucational Infrastructure grant, CDA-9017953. It has been produced by the HPSC

Group, Department of Computer Science, University of Colorado, Boulder, CO 80309.

Please direct comments or queries to Elizabeth Jessup at this address or e-mail

jessup@cs.colorado.edu.

Copyright
c
1995 by the HPSC Group of the University of Colorado

1

2 Elements of Fortran

standard Fortran 77: X3.9-1977 Programming Language Fortran which is

available from the American National Standards Institute, Inc., 1430 Broad-

way, New York, NY 10018.

Fortran 90 and HPF (High Performance Fortran) are more recent ver-

sions of Fortran that include vector operations and other features for high

performance computing. Descriptions of Fortran 90 can be found in Pro-

grammers Guide to Fortran 90 [Brainerd et al. 90] and in the more complete

Fortran 90 Handbook [Adams et al. 92]. A reference for HPF is The High

Performance Fortran Handbook [Koelbel et al. 94].

This tutorial consists of four parts. Section 2 is a brief overview of For-

tran. Section 3 contains basic de�nitions. Section 4 is a description of For-

tran statements, organized alphabetically. Section 5 is a short description of

the use of the READ and WRITE statements. Section 6 presents two sample

programs.

2 Overview

2.1 Program structure

AFortran program is composed of statements. Typically these statements are

grouped into subprograms, also called procedures. One of the subprograms is

the main program and its statements are executed �rst. Other subprograms

are executed by procedure calls, as will be explained later. Small programs

may consist of just one subprogram, the main program. An example follows.

PROGRAM HELLO

WRITE(*,*) 'HELLO WORLD'

END

2.2 Statements

There are two categories of statements: executable and non-executable. Ex-

ecutable statements specify operations that the computer must perform, or

execute. An example of an executable statement is:

WRITE(*,*) 'HELLO WORLD'

CUBoulder : HPSC Course Notes

Elements of Fortran 3

When this statement is executed, the computer writes HELLO WORLD on the

standard output device, normally your CRT display.

An example of a non-executable statement is:

PROGRAM HELLO

This statement declares the statements following it, up to and including the

END statement to be a main program having the name HELLO.

Usually a statement ends at the end of the line, but provision is made for

long statements to continue onto additional lines. There is no special mark,

such as a semicolon as in C, to denote the end of a statement.

2.3 Control statements

Control statements make it possible to have loops, sequences of statements

that are executed over and over again, and branches, alternate sequences of

statements to execute.

The control statements are the DO statement, the IF statement, and the

GOTO statement, all of which are described in section 4.

2.4 Expressions

A fundamental component of most executable statements is the expression,

for example

X + 1.0

The meaning of this expression is exactly what you expect: it means the value

of X plus 1.0. Here X denotes a variable that has some value determined else-

where, + denotes the arithmetic operator for addition, and 1.0 denotes itself,

the numerical value one. As this small example illustrates, an expression is

composed of operators and operands, the latter being either variables or

constants. Besides arithmetic expressions the language also permits logical

expressions and character expressions. Di�erent kinds of expressions have

di�erent kinds, or types, of values. Arithmetic expressions have values that

are numbers; logical expressions have only the values true or false; character

expressions have values that are characters (i.e., the characters that you type

on your keyboard as well as some you cannot) and sequences of characters,

or strings.

CUBoulder : HPSC Course Notes

4 Elements of Fortran

The most common use of an expression is in an assignment statement;

for example

Y = X + 1.0,

where the variable Y is given the value of the expression X + 1.0. Note that

in Fortran the assignment operator is =, as it is in C.

2.5 Types

The word type refers to the kind of value a variable, constant, or expression

has, or is allowed to have. Each variable used in a program has a �xed

type, normally de�ned in a non-executable statement at the beginning of the

program. For example, the statement

INTEGER A, B

declares the variables A and B to have the type INTEGER. This means that

the only values A and B are allowed to have are integer values. The rules for

evaluating expressions depend on the types of the operands and the kinds of

operators used.

2.6 Compiling

The UNIX command for compiling a Fortran 77 program is f77. Three

sample uses of this command follow:

(1) f77 hello.f

(2) f77 hello.f -o hello

(3) f77 -c hello.f

The �rst example merely compiles the program in the �le hello.f, gener-

ating the executable �le named a.out. The second command also compiles

hello.f but gives the executable �le the name hello. The third example

compiles the program, but produces only an object �le, hello.o; it does

not produce an executable �le. The standard UNIX f77 command does not

produce a program listing. However, many vendors' Fortran compilers do,

with a command option such as -l or -list.

CUBoulder : HPSC Course Notes

Elements of Fortran 5

3 De�nitions and basic rules

3.1 Character set

The character set consists of the letters of the alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

and the digits

0 1 2 3 4 5 6 7 8 9

and the following special characters

= + - * / () , . $ ' :

There are two important exceptions. CHARACTER constants are allowed to

contain any character representable on your computer system; the same is

true for comment lines.

The following type declarations are equivalent:

Integer a

and

INTEGER A

Note, in particular, that there is no distinction between the names A and

a { they stand for the same variable. Fortran is not case sensitive, but, in

tutorial, this we write Fortran statements using capital letters in order to

make them stand out. (In the past, Fortran allowed only upper case letters,

but few, if any, compilers have this restriction now.)

3.2 Names

Names are used to identify objects such as variables, subprograms, and con-

stants. A name consists of one to six characters, the �rst of which must be

a letter, the rest must be letters or digits. Examples are:

A A1 A123 AB4XYZ

This atavism on the length of a name harks back to the days when the word

length in most computers was 36 bits, and 6 bits represented a character.

(A character is now a one-byte construct.) It is fast disappearing, and most

Fortran compilers do not have this length restriction.

CUBoulder : HPSC Course Notes

6 Elements of Fortran

3.3 Types

The types in Fortran are:

INTEGER,

REAL,

DOUBLE PRECISION,

LOGICAL,

CHARACTER,

and CHARACTER*n

where n is an integer in the range (1, 2, ..., 127).

3.4 Labels

Labels are used to identify particular statements. They consist of one to �ve

digits, and they must be in columns

1

1-5 of the statement line. The leading

digit may begin in any of these columns, but the last digit must not extend

beyond column 5. An example of a labelled statement is:

99 RETURN

Many Fortran compilers do not have this restriction on label position.

3.5 Keywords

These are words that have a special meaning in a program. Examples are

DO

REAL

INTEGER

COMMON

FORMAT

SUBROUTINE

and so forth. Although Fortran does not prohibit it, you should not give

names to variables that are the same as keywords, otherwise you make the

program hard to read.

1

By Fortran tradition, the position of a character in a line of input or output is called

the column where that character is located; this terminology goes back to the time when

most input �les and programs were kept on punched cards.

CUBoulder : HPSC Course Notes

Elements of Fortran 7

3.6 Variables

A variable that has not been assigned a value is said to be unde�ned . While

most computing systems assign the value zero to all variables before execution

of a program begins, it is unwise to assume that this is done. Once a variable

is assigned a value it retains that value until a new value is assigned to it,

usually by execution of an assignment statement.

We distinguish three kinds of variables: simple variables, array elements,

and character strings. Simple variables are denoted with a name, for example

V1

SOLN

ROOT

Array elements are denoted with a name followed by subscripts, for example

A1(2,3)

MAP(J,K,L)

SCORE(100)

An array element denotes a value in an array of values, thus A1(2,3) denotes

the value in row 2 and column 3 of the array A1. Character strings are denoted

with a name, just like simple variables, or by a name followed by a pair of

values inside parentheses, and separated by a colon, denoting the location of

the �rst character and the location of the last character in a string. Thus

NAME(4:12) denotes the string of characters starting at character position

4 and extending to position 12 (including position 12) within the character

string NAME.

3.7 Arrays

An array is an n-dimensional object that in one-dimensional form is analogous

to a vector and in two-dimensional form is analogous to a matrix. Thus a

one-dimensional array is thought of as a sequence of values like:

3.45

1.0095

2.2299

CUBoulder : HPSC Course Notes

8 Elements of Fortran

and a two-dimensional array is thought of a set of values arranged in rows

and columns like:

3.45 1.004 0.998

-2.11 0.888 -0.333

The number of elements in each dimension is arbitrary, and up to seven

dimensions are allowed.

An array has a name and a type. An element in an array is identi�ed

with subscripts. Thus if ARR is the name of the two-dimensional array above,

the element ARR(2,1) has the value -2.11 and the element ARR(1,2) has

the value 1.004. All of the elements in an array must have the same type.

The subscripts are, in general, INTEGER expressions. Thus we can write

ARR(I, J), ARR(I-1, J+1) and so forth, assuming that the types of I and

J are INTEGER.

An array declarator is used to declare the name and size of an array. It

appears in type statements. Thus in the type statement

REAL A(10,20)

A(10,20) is an array declarator. It declares an array consisting of 10 rows

and 20 columns that has the name A. As illustrated here an array declarator

consists of a name (the name of the declared array) followed by a sequence

of values separated by commas, and enclosed in parentheses, that specify the

number of elements in each dimension. The numbering of elements in each

dimension begins at 1, unlike C where it begins at 0. However, Fortran also

allows arbitrary array bounds; for example

REAL A(-1:8,0:19)

declares a 10� 20 array with row subscripts running �1; 0; : : : 8 and column

subscripts running 0; 1; : : : 19.

An array declarator like A(N, M) is allowed only if N and M are symbolic

constants or if the declarator appears in a SUBROUTINE or FUNCTION and A,

N and M are formal parameters.

CUBoulder : HPSC Course Notes

Elements of Fortran 9

3.8 Constants

There are two forms of constants, symbolic and literal . Symbolic constants

have names and are de�ned with a PARAMETER statement. Literal constants

represent themselves; e.g., 1.2, -6.9856, 0.004, etc.

A constant has a type: INTEGER, REAL, DOUBLE PRECISION, CHARACTER,

or LOGICAL.

� A literal INTEGER constant is written without a decimal point, thus 35,

1999, and -456 are examples of literal INTEGER constants. A comma

is not allowed: thus 1999 not 1,999.

� A literal REAL constant may be expressed in ordinary decimal form,

or in oating-point form. Examples of the �rst form are 3.1415927,

-0.004475, and 136.0084. Examples of the second form (oating-

point) are 0.31415927e1, -4.475e-3, 0.1360084e3. In oating-point

form, the integer following the e denotes a power of 10 that is to mul-

tiply the number standing before the e. Thus 0.35e6 means 0.35

times 10 raised to the power 6, so 0.35e6 = 350000.0, and 0.35e-6

= 0.00000035.

� A literal DOUBLE PRECISION constant is written like a REAL oating-

point constant except that d is used in place of e. Thus

0.3141592653589793d1

is a DOUBLE PRECISION constant representing the mathematical con-

stant �.

� A literal CHARACTER constant is written with apostrophes as delim-

iters. Thus 'C', 'CAT', 'Monkey', and 'pi equals 3.1415927' are

CHARACTER constants. A character constant has a length. The lengths

of the four constants just given are 1, 3, 6, and 19. Note that the

apostrophe is not part of the value of the constant but blanks appear-

ing inside the apostrophes are. If an apostrophe must appear in a

CHARACTER constant as in O'Malley it is expressed 'O''Malley'; i.e.,

the embedded ' is written twice.

� A literal LOGICAL constant is written .TRUE. (for the value true) or

.FALSE. (for the value false). Thus an assignment statement assigning

the LOGICAL variable L the value false would be written:

CUBoulder : HPSC Course Notes

10 Elements of Fortran

L = .FALSE.

3.9 Operators

The arithmetic operators are: + (addition); - (subtraction); * (multiplica-

tion); / (division); ** (exponentiation). The relational operators are: .LT.

(less than); .LE. (less than or equal); .EQ. (equal); .NE. (not equal); .GE.

(greater than or equal); .GT. (greater than). Relational operators are used

with operands of type INTEGER, REAL, DOUBLE PRECISION, CHARACTER, or

CHARACTER*n. The value of a relational expression has type LOGICAL. Thus

the expression

X .LT. Y

has the value true or false.

The logical operators are: .NOT. (negation); .AND. (logical and); .OR.

(logical or). Logical operators are used with operands of type LOGICAL; for

example,

(X .LT. Y) .OR. (X .LT. Z)

3.10 Evaluation of expressions

The evaluation of expressions is done in the way we normally expect in

mathematical work. Thus in the arithmetic expression

X + Y*Z

the multiplication is performed �rst then the addition. Parentheses are used

to group subexpressions; for example,

(X + Y)*Z

where now the addition is performed �rst, then the multiplication. The

arithmetic operators thus have an order of precedence. The operator with

the highest order of precedence is performed �rst within any parenthesis-free

subexpression; the operator with the lowest order of precedence is performed

last. The order of precedence from lowest to highest is (+ -) (* /) **. The

grouped operators have the same precedence level. In the expression

CUBoulder : HPSC Course Notes

Elements of Fortran 11

A + B*C**3

the evaluation proceeds as follows: raise C to the power 3, multiply the

result by B, and then add A. If two operations are at the same level, they

are performed in left-to-right order, excepting exponentiation that is done

right-to-left (C**2**3 is equivalent to C**(2**3) = C**8).

The order of precedence for logical operators from lowest to highest is:

.OR. .AND. .NOT. .

Relational operators all have the same level.

Across the various types of operators the order of precedence from lowest

to highest is: logical, relational, arithmetic. Thus

X + Y .LT. Z .OR. A .LT. B

is equivalent to

((X + Y) .LT. Z) .OR. (A .LT. B)

The latter form is preferable since it makes the order of evaluation explicit.

3.11 Statements

Each statement is usually written on a single line but if the statement is too

long to �t on a line it may be extended onto one or more (up to nineteen) lines.

The statement must begin in column 7 of the line or to the right of column

7 and cannot extend beyond column 72 (another atavism, frequently ignored

by compilers). Many Fortran systems accept a tab character at the front of

the line as equivalent to 7 or more spaces; otherwise you must explicitly type

at least 7 blanks at the front of the line. A long statement can extend to the

next line, with the continuation line beginning at column 7 or to the right

of column 7 and not extending beyond column 7. The continuation line has

a non-blank character, except 0, in column 6 to identify it as a continuation

line.

3.12 Statement order

The declarations, which are nonexecutable statements, precede the executable

statements within a subprogram. The PROGRAM, FUNCTION, or SUBROUTINE

statement must come �rst in the subprogram. The IMPLICIT statement, if

CUBoulder : HPSC Course Notes

12 Elements of Fortran

it is used, should come next. Then type statements, PARAMETER statements,

and EXTERNAL statements follow. It is important (See section 4 for more

information on the meanings of these statements.) to note that the type of a

symbolic constant must be declared in a type statement before it is given a

value in a PARAMETER statement. Also, a symbolic constant should be given

a value in a PARAMETER statement before it is used; for example,

INTEGER N

PARAMETER (N = 30)

REAL A(N)

is the correct order for these three statements. For the sake of clarity it is a

good idea to group declaration statements of the same kind together.

Executable statements (Assignment, CALL, CONTINUE, DO, GOTO, IF, OPEN,

READ, RETURN, STOP, WRITE) follow the declarations. FORMAT statements may

appear anywhere within the subprogram. For clarity, it is a good idea to

group them in a single place, say just before END.

Fortran has implicit typing: names beginining with the letters I, J, K, L,

M, and N are implicitly typed as INTEGER; names beginning with any other

letter are implicitly typed REAL. This atavism, which may once have had

some convenience, is a source of programming errors. Implicit typing can be

turned o� with the statement

IMPLICIT NONE

which must precede any type declarations. With this statement in place, the

type of every variable must be declared explicitly, as in C.

3.13 Comments

A comment line is identi�ed by the letter C or an asterisk * in column 1 of

the line.

3.14 Blanks

Strictly speaking blanks are ignored by the compiler, however it is unwise to

put meaningless blanks in a program or to not use them when they could

improve legibility. Thus

CUBoulder : HPSC Course Notes

Elements of Fortran 13

RE AL X, Y and REALX,Y

are allowed but

REAL X, Y

is clearer.

3.15 Intrinsic functions

Certain common functions like the square root are part of Fortran. They

are called intrinsic functions. A list of some of these functions appears in

table 1. The type DOUBLE PRECISION can replace REAL everywhere in this

table.

4 Description of statements

In this section we systematically describe the statement types, proceeding

in alphabetical order. First a few words about the notation we use in these

descriptions.

4.1 Notation

To describe the syntax, or form, of statements we use a certain notation and

conventions that are described below.

1. Special characters (except as noted below) and capitalized words ap-

pear in statements exactly as shown.

2. Lower case letters and words stand for objects de�ned elsewhere.

3. Square brackets are used to indicate optional items.

4. An ellipsis ... is used to denote one or more repetitions of an item.

5. Lower case words or phrases that appear in the syntax descriptions are

in bold letters (e.g., name) when they appear in the running text.

Thus the syntax of a CALL statement is described by the expression:

CUBoulder : HPSC Course Notes

14 Elements of Fortran

Name De�nition Type of Type of

parameter result

ICHAR(C) Convert to integer CHARACTER INTEGER

CHAR(K) Convert to character INTEGER CHARACTER

ABS(X) Absolute magnitude INTEGER INTEGER

or REAL or REAL

MOD(J,K) Remainder of J/K INTEGER INTEGER

SQRT(X) Square root REAL REAL

EXP(X) Exponential function REAL REAL

LOG(X) Natural logarithm REAL REAL

SIN(X) Trig. sine function REAL REAL

(X in radians)

COS(X) Trig. cosine function REAL REAL

(X in radians)

TAN(X) Trig. tangent function REAL REAL

(X in radians)

ASIN(X) Trig. arcsine REAL REAL

ACOS(X) Trig. arccosine REAL REAL

ATAN(X) Trig. arctangent REAL REAL

Table 1: A partial list of Fortran intrinsic functions.

CUBoulder : HPSC Course Notes

Elements of Fortran 15

CALL name [(parameter [, parameter]...)]

The form of name is described elsewhere (a letter followed by letters or digits,

possibly with a maximum of six characters). The outermost pair of square

brackets implies that this statement is valid:

CALL MYSUB

The innermost pair of square brackets followed by the ellipsis imply that in-

side the parentheses there are one or more parameters separated by commas.

Thus the following are all valid:

CALL SUB2(X, Y)

CALL SUB3(X, 1.0)

CALL SUB4('MYNAME', W**2, A(J))

4.2 Assignment statement

Syntax:

variable = expression

Purpose: Assign the value of expression to variable.

Examples:

(1) X = Y + 3.2*Z

(2) C = 'A String'

(3) L = X .LT. Y

(4) U(K) = U(K)*EXP(SQRT(2.0/W))

Remarks:

1. The type of expression and the type of variable must be the same

excepting between numeric types, where REAL and INTEGER can be

paired, and between character types, where CHARACTER types of dif-

ferent length can be paired. Thus in example (1), X must be REAL or

INTEGER; in example (2), C must be CHARACTER (of any length); in ex-

ample (3), L must be LOGICAL; and in example (4), U must be REAL or

INTEGER.

CUBoulder : HPSC Course Notes

16 Elements of Fortran

2. In the case

integer_variable = real_expression

the integer part of real expression is assigned to integer variable.

Thus in the statement K = -3.95 the value assigned K is -3.

3. In the case

real_variable = integer_expression

the integer part of real variable is assigned the value of

integer expression and the fractional part of real variable is as-

signed the value zero.

4. In the case

character_variable = character_expression

we may have the length of character variable less than the length

of character expression. In this case, characters are chopped from

the right end of character expression. If the length of character

variable, is greater than the length of character expression, the

excess space on the right end of character variable is �lled with

blanks.

In the above, DOUBLE PRECISION may replace REAL.

4.3 CALL statement

Syntax:

CALL name [(parameter [, parameter]...)]

Purpose: Execute the subroutine name.

Examples:

CUBoulder : HPSC Course Notes

Elements of Fortran 17

(1) CALL SUB1

(2) CALL SUB2(X, Y)

(3) CALL SUB3(X, 1.0)

(4) CALL SUB4('MYNAME', W**2, A(J))

Remarks:

1. A parameter may be any of the following: variable, expression,

subroutine name, function name, array name.

2. If parameter is subroutine name or function name then an EXTERNAL

statement must declare the subroutine name or function name. The

EXTERNAL statement must be located in the same program unit as the

CALL statement.

3. The parameters must agree in number and type with the parameters

in the corresponding SUBROUTINE statement; i.e., the k-th parameter

in each list must have the same type and each list must have the same

number of parameters.

4. The parameters appearing here are called actual parameters to distin-

guish them from the formal parameters appearing in the corresponding

SUBROUTINE statement.

4.4 COMMON statement

Syntax:

COMMON [/name/] common_item [, common_item]...

Purpose: Share data between program units.

Examples:

(1) COMMON X, Y

(2) COMMON /PARAMS/ A, B, C

Remarks:

1. common item may be a simple variable or an array name.

CUBoulder : HPSC Course Notes

18 Elements of Fortran

2. If the name part is absent as in example (1), the statement is called a

blank COMMON statement, otherwise it is called a labelled COMMON state-

ment.

3. If two program units have labelled COMMON statements with the same

name then common items in corresponding positions refer to the same

data regardless of whether or not they have the same name. The two

COMMON statements should have the same number of common items and

corresponding common items should have the same type.

4. If two program units have blank common statements then common items

in corresponding positions refer to the same data regardless of whether

or not they have the same name. The two COMMON statements should

have the same number of common items and corresponding common items

should have the same type.

5. If one COMMON statement follows another in the same program unit and

both have the same name or both are blank COMMON statements then

the lists of common items are concatenated; e.g.,

COMMON /CPARMS/ X, Y

COMMON /CPARMS/ Z

is equivalent to

COMMON /PARMS/ X, Y, Z

The latter form is preferred because it is clearer.

4.5 CONTINUE statement

Syntax:

CONTINUE

Purpose: This is a null statement, it doesn't do any computation.

Examples:

(1) 10 CONTINUE

CUBoulder : HPSC Course Notes

Elements of Fortran 19

Remarks:

1. This statement is often used with a label as the last statement in a

DO loop or as the target of a GOTO statement. Example (1) shows a

CONTINUE statement with a label of 10.

4.6 DO statement

Syntax:

DO do_variable = expressn_1, expressn_2 [,expressn_3]

Purpose: Controls repeated execution of a sequence of statements.

Examples:

(1) DO J = 1, 20

X(J) = 0

END DO

(2) DO K = 0, N, 2

WRITE(*,*) K, K**2, K**3

END DO

(3) DO J = 1, 100

P(J) = 1

DO K = 1, N

P(J) = P(J) + SQRT(J*K)

END DO

END DO

Remarks:

1. The DO statement causes the sequence of statements following the DO

statement, up to the matching END DO, to be executed repetitively. This

sequence of statements is called the range of the DO. If expressn 3 is

absent it is assumed to have the value 1. Initially, do variable is

assigned the value of expressn 1; and the iteration count is given the

value

max(b(expressn 2 - expressn 1 + expressn 3)/ expressn 3c; 0)

CUBoulder : HPSC Course Notes

20 Elements of Fortran

If the iteration count is not zero the range is executed. After each

execution of the range the do variable is incremented by expressn 3,

and the iteration count is decremented by 1; then the range is executed

again and this continues until the iteration count reaches 0, at which

point the iteration is terminated.

2. do variable is a simple variable of type INTEGER, and the types of

expressn 1, 2, 3 are INTEGER.

3. The e�ect of example (1) is to set the values of X(1), X(2), : : :, X(20)

equal to zero.

4. The e�ect of example (2) is to write, on successive lines, the values: 0

0 0; 2 4 8; 4 16 64; : : :. The last line has the values N, N**2, and N**3 if

N is even; otherwise it has the values (N-1), (N-1)**2, and (N-1)**3.

5. The e�ect of example (3) is to evaluate expressions:

1 + SQRT(1) + SQRT(1*2) + ... + SQRT(1*N);

1 + SQRT(2*1) + SQRT(2*2) + ... + SQRT(2*N);

... ;

1 + SQRT(100*1) + SQRT(100*2) + ... + SQRT(100*N).

These values are assigned to P(1), P(2), : : :, P(100), respectively. Ex-

ample (3) illustrates that one DO can be contained in the range of

another DO. This so-called nesting of DO statements can be arbitrarily

deep.

6. No statement in the range is permitted to change the value of

do variable, expressn 1, expressn 2, expressn 3.

7. Execution of the range must begin with executing the DO; that is, ex-

ecution of a statement in the range by jumping to it from outside the

range, using a GOTO, is forbidden. On the other hand, it is permitted

to jump out of the range using a GOTO.

CUBoulder : HPSC Course Notes

Elements of Fortran 21

4.7 END statement

Syntax:

END

Purpose: Marks the end of a program unit.

Examples:

(1) END

Remarks:

1. Every program unit must have this statement as its last statement.

4.8 EXTERNAL statement

Syntax:

EXTERNAL name [, name]...

Purpose: Declares names of FUNCTION and SUBROUTINE subprograms

that are passed as parameters in calls to subprograms.

Examples:

(1) EXTERNAL MYFUNC, MYSUB

Remarks:

1. name is the name of a FUNCTION or SUBROUTINE appearing as an actual

argument in a call to a subprogram.

2. Every FUNCTION and SUBROUTINE name used as an actual parameter in

a call to a subprogram must appear in an EXTERNAL statement in the

program unit in which it is so used.

CUBoulder : HPSC Course Notes

22 Elements of Fortran

4.9 FORMAT statement

Syntax:

FORMAT (edit_descriptor [, edit_descriptor]...)

Purpose: De�nes the input or output format (number of columns used,

oating-point form, etc.) of values of iolist items. (cf., READ and WRITE

statements.)

Examples:

(1) 99 FORMAT(1X, I10)

(2) 98 FORMAT(I10, 5X, E15.8, 5X, F10.2)

(3) 97 FORMAT(A, 3(2X, I5))

(4) 96 FORMAT(A, 2X, I5, 2X, I5, 2X, I5)

Remarks:

1. A repeatable edit descriptor is one of: Iw, Fw.d, Ew.d, A. These

edit descriptors are associated with iolist items: I with items of type

INTEGER, F and E with items of type REAL, A with items of type charac-

ter. F is used to specify conventional decimal format (e.g., 0.003956), E

is used to specify oating-point format (e.g., 0.3956e-02). The lower-

case letters w and d denote unsigned integers: w speci�es the width,

number of columns, occupied by the item; d speci�es the number of

digits after the decimal point. The width of an item associated with A

is the length of the CHARACTER type. The value of d is ignored when

reading REAL values; it is only meaningful when writing.

2. A repeatable edit descriptormay be preceded by an unsigned integer

(viz. 3I10) denoting multiple descriptors. Thus 3I10 and I10, I10,

I10 are equivalent.

3. A nonrepeatable edit descriptor is one of: nX / nP. These descrip-

tors are not associated with iolist items. X denotes a blank, / denotes

end of line, P denotes a scale factor. The edit descriptor 3PE15.7 prints

a oating-point value with 3 places before the decimal point. For exam-

ple, writing the value -0.01255with the edit descriptor E15.7 produces

-0.1255000E-01

CUBoulder : HPSC Course Notes

Elements of Fortran 23

Using the edit descriptor 3PE15.7 results in

-125.5000000E-04

4. The FORMAT statements in examples (3) and (4) are equivalent, example

(3) being a more compact form of example (4).

4.10 FUNCTION statement

Syntax:

[type] FUNCTION name ([parameter [, parameter]...])

Purpose: Declares a subprogram to be a FUNCTION subprogram. It is

the �rst statement in the subprogram.

Examples:

(1) FUNCTION FUN1(X)

(2) REAL FUNCTION FUN2(X1, X2)

(3) CHARACTER*8 FUNCTION FUN3(CHR1, CHR2, XYZ)

4.11 GOTO statement

Syntax:

GOTO label

Purpose: Jump to the statement labelled label and resume executing

statements there.

Examples:

GOTO 50

Remarks:

1. GOTO statements should be used with care. Indiscriminate use of these

statements results in programs with tangled control paths that are hard

to understand.

CUBoulder : HPSC Course Notes

24 Elements of Fortran

4.12 IF statement

Syntax:

IF (logical_expression) THEN

[statement]...

ENDIF

or

IF (logical_expression) THEN

[statement]...

ELSE

[statement]...

ENDIF

or

IF (logical_expression) THEN

[statement]...

ELSEIF (logical_expression) THEN

[statement]...

[ELSEIF (logical_expression) THEN

[statement]...]

ELSE

[statement]...

ENDIF

Purpose: Allows conditional execution of a sequence of statements.

Examples:

(1) IF (X .LT. Y) THEN

WRITE(*,*) 'X IS LESS THAN Y'

ENDIF

(2) IF (A(J) .GT. A(J+1)) THEN

T = A(J)

A(J) = A(J+1)

A(J+1) = T

ENDIF

CUBoulder : HPSC Course Notes

Elements of Fortran 25

(3) IF (X .LT. Y) THEN

WRITE(*,*) 'X IS LESS THAN Y'

ELSE

WRITE(*,*) 'X IS GREATER THAN OR EQUAL TO Y'

ENDIF

(4) IF (ABS(X-Y) .LE. ABS(X)*EPS) THEN

GOTO 20

ELSE

Y = X

J = J + 1

ENDIF

(5) IF (C .EQ. 'A') THEN

CALL SUBA(X)

A(1) = A(1) + 1

ELSEIF (C .EQ. 'B') THEN

CALL SUBB(X)

A(2) = A(2) + 1

ELSEIF (C .EQ. 'C') THEN

CALL SUBC(X)

A(3) = A(3) + 1

ELSE

CALL ERROR(X)

A(4) = A(4) + 1

ENDIF

Remarks:

1. Execution of this statement proceeds as follows. If the value of

logical expression is true then the sequence of statements following

THEN and before ELSE, ELSEIF, or ENDIF (whichever appears �rst) is

executed. If the value of logical expression is false then the state-

ments following THEN and before ELSE, ELSEIF, or ENDIF (whichever

appears �rst) are skipped and:

CUBoulder : HPSC Course Notes

26 Elements of Fortran

� if ELSE comes �rst then the sequence of statements following ELSE

is executed;

� if ELSEIF comes �rst then, if the associated logical expression

is true, the statements following THEN are executed; otherwise they

are skipped.

� if ENDIF comes �rst then the statements immediately following

ENDIF are executed.

2. In example (1), the WRITE statement is executed if and only if the value

of X is less than the value of Y.

3. In example (2), the sequence of three statements in the body of the IF

is executed if and only if the value of A(J) is greater than the value of

A(J+1).

4. In example (3), the message X IS LESS THAN Y is written if and only

if the value of X is less than the value of Y; otherwise the message X IS

GREATER THAN OR EQUAL TO Y is written.

5. In example (4), the GOTO is executed if and only if the value of the

absolute magnitude of (X-Y) is less than or equal to the product of the

absolute magnitude of X and the value of EPS.

6. In example (5), the subroutine ERROR is called if and only if the value

of C is not equal to 'A', or to 'B', or to 'C'.

7. Every IF must be terminated with an ENDIF.

4.13 IMPLICIT statement

Syntax:

IMPLICIT type(range [, range]...) [, type(range [, range]...]

Purpose: To associate a type with all names starting with a particular

letter, or range of letters, excepting names of intrinsic functions.

Examples:

(1) IMPLICIT CHARACTER*32 (C), REAL (I-L, N)

(2) IMPLICIT NONE

CUBoulder : HPSC Course Notes

Elements of Fortran 27

Remarks:

1. type is a Fortran type (REAL, LOGICAL, etc.).

2. range is a single letter or a pair of letters separated by a dash.

3. Example (1) declares all variables with names starting with the letter

C to have the type CHARACTER*32 and all variables with names starting

with the letters I, J, K, L, N to have the type REAL.

4. Example (2) declares no variables to have an implicit type; that is, all

variables must be explicitly typed.

5. If a name is explicitly typed as in

REAL CENTER

then this type declaration overides the e�ect of an implicit type decla-

ration. Thus in a program unit containing the declaration line shown

in example (1) and this REAL declaration, CENTER would have they type

REAL but COURSE would have the type CHARACTER*32.

6. The scope of this statement is the program unit in which it appears.

7. Programming errors associated with wrong types can be more easily

detected by using the IMPLICIT statement shown in example (2) in

each program unit and explicitly declaring the types of all variables.

4.14 OPEN statement

Syntax:

OPEN (unit_spec [, FILE = 'file_name'] [, STATUS = 'status'])

Purpose: Associates a �le with a unit number used in a READ or WRITE

statement.

Examples:

(1) OPEN (3, FILE = 'MYDATA', STATUS = 'OLD')

(2) OPEN (UNIT = 7, FILE = 'MYOUT', STATUS = 'NEW')

(3) OPEN (8)

CUBoulder : HPSC Course Notes

28 Elements of Fortran

Remarks:

1. unit spec is an integer, a unit number alone, or a unit number pre-

ceded by UNIT = (cf., example (2)).

2. file name is the name of the �le that is to be associated with the

unit number given in unit spec. Thus, referring to example (1), if a

subsequent READ statement had the form

READ(3, 99) X

then the value of X would be read from the �le named MYDATA. In

this situation, case is important; that is, the �le name is MYDATA, not

mydata.

3. status is NEW, OLD, SCRATCH, and UNKNOWN. NEW is used for �les that are

to be created, OLD is for �les that already exist. Thus, the statement

in example (2) might be used in conjunction with a WRITE statement

of the form

WRITE(7, 98) RESULT

to write the value of RESULT on the new �le MYOUT, but it could not

be used in conjunction with a READ statement of the form

READ(7, 98) VALUE

which presupposes the existence of the �le MYOUT. SCRATCH is used for

�les that are only temporary, for example to save some data during a

computation; they are removed when program execution is terminated,

or when the �le is closed. UNKNOWN is processor dependent; in some

systems (e.g., DEC Fortran) the system tries OLD and if it cannot �nd

the �le it creates a NEW �le. The default status is OLD.

4. The form used in example (3) is for creating a scratch �le to hold

intermediate results during a computation. It is destroyed when the

program stops.

CUBoulder : HPSC Course Notes

Elements of Fortran 29

4.15 PARAMETER statement

Syntax:

PARAMETER (name = expression [, name = expression]...)

Purpose: Gives a name to a constant. Thus it allows you to use PI

instead of 3.141592653 and to be protected against accidentally changing PI.

Examples:

(1) PARAMETER (PI = 3.141592653, ALPHA = 'ABC')

(2) PARAMETER (MAXVAL = 100, MINVAL = MAXVAL-50)

Remarks:

1. The type of name must agree with the type of expression.

2. A name used in a PARAMETER statement cannot have its value changed

during execution of the program. An attempt to change it normally

causes an error message.

3. expression is either a constant, or an expression containing constants.

In the latter case the expression must be of type INTEGER.

4. Previously named constants can be used in expression (cf., example

(2)).

5. It is recommended that named constants be used rather than literal

constants. Programming errors are likely to be reduced in cases where

the constant is used more than once (using a name assures that the

same value is used everywhere). Also, it is easy to modify the value of

the constant in editing the program because its value appears only in

the PARAMETER statement (cf., type statement, remark 9).

6. Any variable used in a PARAMETER statement must have had its type

previously declared.

CUBoulder : HPSC Course Notes

30 Elements of Fortran

4.16 PROGRAM statement

Syntax:

PROGRAM name

Purpose: Gives the name name to the main subprogram.

Examples:

(1) PROGRAM MYPROG

Remarks:

1. This statement is optional. If it is used then it must be the �rst state-

ment of the main subprogram, and in this case, name is the name of

the main subprogram. If it is not used, then the main subprogram has

the default name MAIN.

2. It is recommended that this statement be used to improve program

readability.

4.17 READ statement

Syntax:

READ (unit, format [, END = label]) iolist

Purpose: Reads data from a �le or the keyboard.

Examples:

(1) READ (5, 99) X

(2) READ (5, 99) X1, X2, C(I)

(3) READ (*, 99) X

(4) READ (*, *) X

(5) READ (7, *) W1, A(K)

(6) READ (7, *) K, (A(J), J = 1, 5), Y

(7) READ (7, '(A)') C

(8) READ (9, *, END = 100) K, A(I,J)

Remarks:

CUBoulder : HPSC Course Notes

Elements of Fortran 31

1. unit is an integer, greater than zero, that has been de�ned as the unit

number for a �le by an OPEN statement. Thus, given that the OPEN

statement

OPEN(5, FILE = 'MYDATA', STATUS = 'OLD')

has already been executed, the e�ect of the statement in example (1)

is to read one value from the �le MYDATA and assign it to X. Similarly,

the e�ect of the statement in example (2) is to read three values from

MYDATA and assign them to X1, X2, and C(I), respectively.

2. unit may also be *. In this case, the data is read from the keyboard.

Thus the e�ect of the statement in example (3) is to read one value

entered from the keyboard and assign it to X. When reading from the

keyboard, execution of the READ statement is not completed until the

return key has been depressed: depressing this key signals the end of

the line.

3. format is a label on a format statement or it is *. Examples (1){(3)

illustrate the �rst alternative; examples (4){(6) illustrate the second

alternative. In the second alternative, a default format speci�er is used

for each item in the iolist consistent with the type of the item; the

phrase list directed input is used to describe the style of input

determined by using this alternative.

4. format may also be a character constant as illustrated in example (7).

In this case, the string of characters is treated just as if it appeared in

a FORMAT statement. The e�ect of executing the statement in example

(7) is the same as the e�ect of executing

READ(7, 88) C

88 FORMAT (A)

5. label denotes a labelled statement in the same program unit as the

READ statement. If the READ statement is executed and there is no more

data on the �le, i.e., the end of the �le has been reached, then the e�ect

of END = label is to cause a GOTO label. Thus the e�ect of executing

the following when all data has been read from unit 9 is to GOTO the

statement X = 0.

CUBoulder : HPSC Course Notes

32 Elements of Fortran

READ (9, *, END = 100) K, A(I,J)

...

100 X = O

6. iolist is a list of one or more variables separated by commas; these

variables are to be assigned the values read. An iolist element can be

an implied DO, as illustrated in example (6). The e�ect of the statement

in this example is the same as the e�ect of

READ (7, *) K, A(1), A(2), A(3), A(4), A(5), Y

7. There are many other options for the READ statement. Consult your

computer manual for further information.

4.18 RETURN statement

Syntax:

RETURN

Purpose: Return control to the calling subprogram from a subpro-

gram.

Examples:

(1) RETURN

Remarks:

1. This statement is used only in SUBROUTINE or FUNCTION subprograms.

When it is executed, it causes execution of the subprogram to stop and

returns control to the program unit that called the subprogram.

2. If the control path in a subprogram reaches an END statement, the END

has the same e�ect as RETURN.

CUBoulder : HPSC Course Notes

Elements of Fortran 33

4.19 STOP statement

Syntax:

STOP

Purpose: Stops program execution and prints an optional message on

the screen.

Examples:

(1) STOP

Remarks:

1. When this statement is executed, the program stops.

4.20 SUBROUTINE statement

Syntax:

SUBROUTINE name [(parameter [, parameter]...)]

Purpose: Declares a subprogram to be a SUBROUTINE. This statement

must be the �rst statement in the subprogram.

Examples:

(1) SUBROUTINE MYSUB

(2) SUBROUTINE MYSUB1(X, Y)

Remarks:

1. parameter is a name and namemay identify a simple variable, an array,

a FUNCTION subprogram, or a SUBROUTINE subprogram.

2. When the subroutine is called, the actual parameters must match the

parameters in the SUBROUTINE statement (called the formal

parameters) in number and type (cf., CALL statement).

CUBoulder : HPSC Course Notes

34 Elements of Fortran

4.21 Type statements

Syntax:

type var [, var]...

Purpose: De�nes the type of a variable.

Examples:

(1) INTEGER X1, X2, K

(2) REAL ROOT, SOLN

(3) CHARACTER C1, C2, LET

(4) CHARACTER*20 MESSG1, MESSG2

(5) INTEGER X1, X2(50)

(6) REAL ROOTS(4), A(10, 20)

(7) CHARACTER C1(10)

(8) CHARACTER*80 LINES(50)

(9) LOGICAL TEST, BOOL(10)

(10) REAL A(N,*), Z

(11) DOUBLE PRECISION HPSOLN, Z

Remarks:

1. type may be REAL, DOUBLE PRECISION, INTEGER, LOGICAL, CHARACTER,

or CHARACTER*n where n is an integer in the range (1, 2, ..., 127).

2. var may be a name or an array declarator.

3. All items in the var list have the speci�ed type. Thus, in example (1),

X1, X2, and K are de�ned to have the type INTEGER.

4. In example (4), MESSG1 and MESSG2 are de�ned to be character strings

of length 20.

5. The type DOUBLE PRECISION is used to declare variables whose values

are about twice as accurate as those declared REAL. Eight bytes are

used to store a value of type DOUBLE PRECISION; four bytes are used

to store a value of type REAL.

CUBoulder : HPSC Course Notes

Elements of Fortran 35

6. In example (6), ROOTS is de�ned to be a one-dimensional array of 4

elements, each element being of type REAL; and A is de�ned to be a

two-dimensional array consisting of 10 rows and 20 columns having

elements of type REAL.

7. In example (8), LINES is de�ned to be a one-dimensional array of char-

acter strings each of length 80.

8. The declaration in example (10) would appear in a SUBROUTINE or

FUNCTION subprogram. It declares A to be an array of N rows and

an inde�nite number of columns; N would have to appear as a formal

parameter in the SUBROUTINE or FUNCTION statement.

9. The sequence

PARAMETER (N = 10, M = 20)

REAL A(N, M)

is equivalent to

REAL A(10, 20)

The former is longer but is preferred when the row and column dimen-

sions are frequently used in the program text because modi�cation of

N and M is simpler { they only have to be changed in the PARAMETER

statement, not every place 10 and 20 appear in the program text.

4.22 WRITE statement

Syntax:

WRITE (unit, format) iolist

Purpose: To write values on a �le or the screen.

Examples:

(1) WRITE (5, 99) X

(2) WRITE (5, 99) X1, X2, C(I)

(3) WRITE (*, 99) X

CUBoulder : HPSC Course Notes

36 Elements of Fortran

(4) WRITE (*, *) X

(5) WRITE (7, *) W1, A(K)

(6) WRITE (7, *) K, (A(J), J = 1, 5), Y

(7) WRITE (7, '(A)') C

(8) WRITE (9, *) K, A(I,J)

Remarks:

1. unit is as de�ned for the READ statement, except that * denotes the

screen. Thus in example (3), the value of X is written on the screen.

2. format is as de�ned for the READ statement.

3. iolist is as de�ned for the READ statement except the items listed

have their values written on the designated unit or screen.

5 Reading and writing

5.1 Reading

List directed input (cf., READ statement, Remark 3) should be used for reading

data. The other alternative, FORMAT directed input, is troublesome and likely

to result in errors. The remaining discussion in this section is concerned with

list directed input.

When the READ statement is executed, the data on one line of the input

�le is read. The correspondence between the data on the line and items in

the iolist is left-to-right. For example, assume that the next line to be read

from the input �le is

'My Data is' 3.96 5

and that the following READ statement is executed:

READ(5,*) MESSG, X1, K1

The e�ect is that the string constant 'My Data is' (without the quotes

of course) is assigned to MESSG (which must be of type CHARACTER); the value

3.96 is assigned to X1 (which must be of type REAL); the integer value 5 is

assigned to K1 (which must be of type INTEGER).

As the example above illustrates, a blank is used to separate the data on

the input line. One or more blanks may be used, thus

CUBoulder : HPSC Course Notes

Elements of Fortran 37

'My Data is' 3.96 5

would give the same result when read by the above READ statement.

The number of items read from the input line is just the number of items

in the iolist. Extra items are ignored. Thus if we read the two lines

12.1 -13.2E-5 44.0

-3.1 445.2 99.9

using the two statements

READ(5,*) X1, X2

READ(5,*) Y1, Y2, Y3

then the values assigned are as follows:

X1 = 12.1, X2 = -13.2E-5

Y1 = -3.1, Y2 = 445.2, Y3 = 99.9

Note that the value 44.0 on the �rst line is not read.

If there are more items in the iolist than on the line of data, the excess

items are not be assigned values. Thus if we read

12.1 -13.2E-5 44.0

with the statement

READ(5,*) X1, X2, X3, X4

then the values assigned are as follows:

X1 = 12.1, X2 = -13.2E-5, X3 = 44.0

and the value of X4 is unchanged.

When a character constant is read and the length of the constant di�ers

from the length of the CHARACTER type of the item in the iolist, the rules are

like those for the assignment statement (cf., Assignment statement, Remark

4); i.e., characters are chopped from the right end of the constant if it is too

long, and blanks are �lled in on the right if it is too short.

CUBoulder : HPSC Course Notes

38 Elements of Fortran

5.2 Writing

While list directed output can be used with the WRITE statement, FORMAT

directed output is the preferred mode since it allows more control over the

form of the output. With list directed output, the format is the default

format provided by the system. This is usually adequate for a quick look at

the results, but not adequate for nice presentations of results in tables. The

rest of the discussion is concerned with FORMAT directed output.

A WRITE statement normally writes one line of output. The connection

between the iolist and the list of format edit descriptors can be described as

follows. Assume we have a pair of statements of the form:

WRITE(5, 99) iolist

99 FORMAT(descriptors)

For each item in iolist there must be a corresponding edit descriptor in

descriptors. The correspondence is left-to-right. The beginning of exe-

cution of the WRITE statement initiates format control. Format control

proceeds from left to right through the descriptors. Each action of format

control depends on the next edit descriptor and the next item in the iolist.

If format control encounters a nonrepeatable edit descriptor it performs the

action speci�ed by that descriptor. If it encounters a repeatable edit de-

scriptor it writes, in the output �le, the value of the corresponding item in

iolist.

To illustrate this, consider the pair of statements

WRITE(6,99) X1, X2, C, K1, 'the end'

99 FORMAT(1X, E15.7, 2X, F15.7, 2X, A, 2X, I5, 2X, A)

The output line consists of a blank in column 1, the value of X1 (assumed

REAL) in columns 2-16, blanks in columns 17 and 18, the value of X2 (as-

sumed REAL) in columns 19-33, blanks in columns 34 and 35, the value of

C (assumed CHARACTER*10) in columns 35-45, blanks in columns 46 and 47,

the value of K1 in columns 48-52, blanks in columns 53 and 54, and the string

constant 'the end' (without the quotes) in columns 55-61. The value of X1 is

written in oating-point form with seven digits after the decimal point (e.g.,

{.1234567e+02), the value of X2 is written in ordinary decimal form, i.e., �xed

point form with seven digits after the decimal point (e.g., {12.3456789); the

value of K1 is written in integer form (e.g., 29). If the number of characters

CUBoulder : HPSC Course Notes

Elements of Fortran 39

required to express the value is less than the �eld width, as is the case for

X1, X2, and K1, the left end is padded with blanks to �ll out the �eld; thus

the value is always right-justi�ed (i.e., moved as far to the right as possible)

in the �eld.

WARNING: When writing numbers that are small or large compared

with 1 you should use the E format descriptor. Inexperienced programmers

often use F instead. If it is used to write small numbers, the number written

may be 0 even though the actual value is not zero but simply too small to

show up with this format descriptor. For example, if you try to write the

value 10

�12

with the format speci�cation F10.7 the number printed will be

zero. With E12.4 the correct value will be printed. If the number you try to

print is too large then the result is system dependent. Sometimes a block of

asterisks is printed.

6 Examples

We close this with two short example programs. The �rst of these, CIRCLE,

reads from a �le the radii of circles and computes their circumference and

area. This program is shown in �gure 1. It illustrates opening, reading and

writing �les, and symbolic constants. The second, SORT, illustrates the use

of control statements. It is shown in �gure 2. Note the backward counting

in the DO. It also illustrates the use of an array, and also how to declare an

array that starts with row index 0, rather than the default value 1. Finally, it

shows the value of a parameter statment: if you need to sort more numbers,

you need only reassign the value of the parameter NX. For more examples,

look in the textbooks already referenced.

CUBoulder : HPSC Course Notes

40 Elements of Fortran

PROGRAM CIRCLE

* This program reads a number, the radius of a circle,

* from the file 'circle.dat', computes the area and

* circumference of the circle, and writes the results on

* the file 'circle.out'. It repeats these steps until

* all of the numbers on the file 'circle.in' have been

* read.

IMPLICIT NONE

REAL RADIUS, CIRCUM, AREA, PI

PARAMETER(PI = 3.1415927)

* Open input file.

OPEN(UNIT=7, FILE='circle.in', STATUS='OLD')

* Open output file.

OPEN(UNIT=8, FILE='circle.out', STATUS='NEW')

* Write headers on output file.

WRITE(8,*) 'Program CIRCLE output'

WRITE(8,99)'RADIUS', 'CIRCUM', 'AREA'

* Begin main loop.

10 CONTINUE

READ(7,*,END=100) RADIUS

CIRCUM = 2*PI*RADIUS

AREA = PI*RADIUS*RADIUS

WRITE(8,98) RADIUS, CIRCUM, AREA

GOTO 10

* End main loop, write completion message to stdout and stop.

100 WRITE(*,*) 'Program CIRCLE done.'

STOP

98 FORMAT(3(1PE15.7,1X))

99 FORMAT(9X,A,10X,A,12X,A)

END

Figure 1: The CIRCLE program. A simple example showing the reading and

writing of �les.

CUBoulder : HPSC Course Notes

Elements of Fortran 41

PROGRAM SORT

* This program reads a list of integers and sorts them

* using a simple insertion sort algorithm. The maximum

* number of integers allowed is 20.

IMPLICIT NONE

INTEGER NX

PARAMETER(NX = 20)

INTEGER I, J, LAST, N(0:NX)

* Open input file.

OPEN(UNIT=7, FILE='sort.in', STATUS='OLD')

* Open output file.

OPEN(UNIT=8, FILE='sort.out', STATUS='NEW')

* Write header on output file.

WRITE(8,*) 'Program SORT output'

* Read the input file and sort on the fly.

READ(7,*) N(1)

DO I = 2,NX

READ(7,*,END=20) N(0)

LAST = I

DO J = I, 1, -1

IF(N(0) .LT. N(J-1)) THEN

N(J) = N(J-1)

ELSE

N(J) = N(0)

GOTO 10

ENDIF

ENDDO

10 CONTINUE

ENDDO

* End reading input file and sorting.

20 CONTINUE

WRITE(8,99) (N(I), I=1,LAST)

* End main loop, write completion message to stdout and stop.

WRITE(*,*) 'Program SORT done.'

STOP

99 FORMAT(I10)

END

Figure 2: The SORT program. An example of an insertion sort program

showing the use of control statements.

CUBoulder : HPSC Course Notes

42 Elements of Fortran

References

[Adams et al. 92] ADAMS, JEANNE C., WALTER S. BRAINERD, JEANNE T.

MARTIN, BRIAN T. SMITH, AND JERROLD L. WAGENER. [1992].

Fortran 90 Handbook. Intertext Publications. McGraw-Hill Book

Company, New York, NY.

[Brainerd et al. 90] BRAINERD, WALTER S., CHARLES

GOLDBERG, AND JEANNE C. ADAMS. [1990]. Programmers Guide

to Fortran 90. McGraw-Hill Book Company, New York, NY.

[Koelbel et al. 94] KOELBEL, CHARLES H., DAVID B. LOVEMAN, ROBERT S.

SCHREIBER, JR. GUY L. STEELE, AND MARY E. ZOSEL. [1994]. The

High Performance Fortran Handbook. Scienti�c and Engineering

Computation. MIT Press, Cambridge, MA.

[Metcalf 85] METCALF, MICHAEL, editor. [1985]. E�ective FORTRAN 77.

Oxford University Press, Oxford.

[Page 83] PAGE, REX L., editor. [1983]. FORTRAN 77 for Humans. West

Publishing Co., St. Paul, MN, 2nd edition.

CUBoulder : HPSC Course Notes

