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Abstract . At low 
temperatures it is no longer possible to consider the motion of individual atoms. and a wave 
mechanical treatment becomes necessary . Such a treatment. as developed by Landau and 
Feynman. characterizes the thermal motion of the liquid by ‘ elementary excitations .. the 
so-called phonons and rotons . A consideration of these excitations then leads to the ‘ two- 
fluid’ model . It is shown that the treatment is adequate to account for nearly all the 
properties of the liquid. which are briefly reviewed . The principal problem still out- 
standing concerns the behaviour of the liquid at high rates of flow or when carrying a large 
heat current. when it is clear that some form of turbulence is induced . 

An account is given of the present state of the theory of liquid 4He . 
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9 1, INTRODUCTION 
N this review we shall confine our attention principally to liquid helium 11, 
that is to liquid 4He at temperatures below the so-called lambda point at 2 .17"~,  I which is characterized by an anomaly in the specific heat (figure 1). Above 

this temperature the liquid is not vastly different from many others ; below this 
temperature it is unique and exhibits quantum effects on a macroscopic scale. 
Considerable contributions to the theory have been made by F. London, Tisza, 
Landau and Feynman ; in particular, Landau in his 1941 paper gave most of the 
picture as we see it to-day. However, some of his arguments were not presented 
in any great detail, and as one section of the paper dealing with quantum hydro- 
dynamics is now recognized to be incorrect, the unusual concepts which he intro- 
duced did not find immediate acceptance. However, an increasing number of 

I 

Figure 1. The specific heat of liquid helium (after Kramers, Wasscher and Gorter 1952, 
and Keesom and Clusius 1932). 

experimental results and theoretical speculations have justified his approach ; also 
the results he deduced by arguments involving quantum hydrodynamics have been 
more satisfactorily established by Feynman. This review attempts to set down 
the present position in a logical manner, both in order to give a general picture 
to the reader not intimately acquainted with this field, and also to delineate those 
points where the theory still appears inadequate or in need of modification. In  the 
first four sections we describe the quantum concepts necessary for the treatment 
of liquid helium, and then in the later sections apply these results to the experi- 
mental observations. In  order to present as clear a picture as possible, no attempt 
is made to refer to all the published material, but this is hardly necessary as several 
comprehensive reviews covering most aspects of the subject are already available 
(e.g. Dingle 1952a, Daunt 1952, Wilks 1953, Daunt and Smith 1954). However, 
in the appendix we give a list of the papers on liquid 4He which have appeared 
since these reviews were published, and which are not referred to in the present 
article. 

As may be seen from the melting curve shown in figure 2 (Simon and Swenson 
1950), the most important single aspect of liquid helium is that, under its own 
vapour pressure, it remains a liquid down to absolute zero, and will only solidify 
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under a pressure of at least 25 atmospheres. This behaviour is a consequence of 
the van der Waals forces being very small ; on considering the equilibrium spacing 
of the atoms in the condensed phase, it is found that the energy associated with 
the zero-point motion is comparable with the ordinary potential and kinetic- 
energy terms (Simon 1934). The  effect of this zero-point energy is to increase 

Figure 2. The melting curve of liquid helium. The line between helium I and helium I1 
gives the dependence of the lambda point on pressure (after Simon and Swenson 1950). 

q u i d  Structure 

0 IO 20 30 40 
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Figure 3. The internal energy of condensed helium at O'K. The lowest total energy, consisting 
of the sum of potential and zero-point energy, is obtained with the liquid phase at a molar 
volume of 27 cm3 (after F. London 1954). 

the net kinetic energy, and therefore to increase the atomic spacing to such an 
extent that the atomic volume is about three times as large (27 cm3) as would be 
expected in the absence of zero-point energy. Hence the atoms never come close 
enough for the van der Waals forces to overlap and form a solid phase. It is 
difficult to make an exact calculation of the equilibrium condition of a system in 
which zero-point energy plays a decisive role, but a full discussion of what is 
possible has been given by F. London (1954). The potential energy of both liquid 
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and solid helium may be calculated from the virial coefficients together with a 
knowledge of the form of the respective lattices obtained from x-ray analyses 
(Keesom and Taconis 1938 a, b) ; the results for temperature zero are shown in 
figure 3, together with an estimate of the zero-point energy. It can be seen that 
the total energy at absolute zero, which consists only of potential plus zero-point 
energy, is least for liquid with a molar volume of about 27 cm3 ; the liquid at this 
volume has less energy than the solid and is therefore the stable phase. 

$ 2 .  P H O N O N S  
Given that the condensed phase of helium at absolute zero is a liquid, we 

consider what thermal motions are introduced as the temperature is raised. I t  is 
an experimental fact that the liquid will transmit longitudinal sound waves (although 
not transverse ones on account of its very low viscosity), and one therefore con- 
cludes that part of the thermal motion is an assembly of longitudinal sound waves. 
Obviously, since the helium is a liquid and not a solid, other modes of motion are 
possible, and one of the great difficulties in the theory of liquid helium has been 
to know how to deal with these other motions. However, it now seems that 
Feynman has given a satisfactory treatment of the problem, and this will be dis- 
cussed in the next section. For the moment we need only quote the result that 
the other thermal motions are quantized and that a certain minimum energy is 
needed to excite them. Thus at the lowest temperatures the heat motion of the 
liquid is due only to longitudinal vibrations which may be expected to have a 
Debye-type spectrum. 

I I , .  

03 04 05 06 07 0 8  09 
'7' (OK) 

The thermal conductivity of liquid helium at low temperatures. Below 0 . 6 " ~  the heat 
flow is proportional to the temperature gradient, and the apparent thermal conductivity varies 
as the diameter of the specimen (after H. A. Fairbank and J.  Wilks 1955). 

Figure 4. 

The conclusion that no other modes of motion are permitted, although rather 
surprising, is well supported by the experimental evidence. Thus below about 
0 . 6 " ~  the specific heat (figure 1) may be written as 0.023ST3 joules g-l deg-l 
(Kramers, Wasscher and Gorter 19.52), and this is in quite good agreement with 
the value of 0.021T3 joules 8-l deg-l calculated from the Debye theory using a 
value of the velocity of sound obtained by extrapolating the results of Atkins and 
Chase (19.51). The  ten per cent discrepancy in the numerical factor is of no great 
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significance ; it may be due to some errors in the rather difficult experiments, or 
perhaps could be explained by a more refined treatment of the sound waves 
as has been attempted for instance by Lokken (1954). Figure 4 gives values of 
the thermal conductivity (Fairbank and Wilks 1955) which show that although the 
behaviour of the liquid is very complex above O . ~ " K ,  below that temperature the 
liquid behaves in a very similar way to a dielectric solid. The heat flow per unit 
area is accurately proportional to the temperature gradient, and is given quite 
closely by the formula of Casimir (1938) for the thermal conductivity of a dielectric 
solid in which the heat flow is limited only by scattering at the boundary of the 
specimen. Thus these measurements demonstrate both the presence of the thermal 
waves and also the absence of any other form of motion capable of scattering these 
waves in such a way as to produce thermal resistance. Finally the coefficient of 
thermal expansion, which becomes negative immediately below the lambda point, 
appears at low temperatures to take up positive values in good agreement with what 
would be expected if only sound waves were present (Atkins and Edwards 1955). 

There is one further point essential to the treatment of the heat motion associated 
with the longitudinal sound waves : as we are concerned with very low temperatures 
a quantum treatment is necessary and was first introduced by Landau (1941). He 
remarks that any weakly excited state can be considered as an aggregate of single 
elementary excitations which in this particular case are sound quanta, or phonons, 
with discrete values of energy E and of momentum p related by 

E = pc.? . . . . . .(1) 
The concept of phonons to describe a sound field seems to have been first mentioned 
by Frenkel (1936) and was justified by analogy with photons. Although it is by 
no means obvious that the motion of a fluid can be described in this way, Landau 
did not attempt any further justification of the concept. However, a full investiga- 
tion has since been made by Kronig and Thellung (1952) and also by F. London 
(1954), and their conclusions bear out Landau's approach. Kronig and Thellung 
consider a continuous non-viscous fluid and confine themselves to irrotational 
motion in the absence of external forces. They first re-state the classical equations 
of motion for such a liquid, using the velocity potential and the density as canonically 
conjugate variables, and then carry out a quantization in the normal manner. This 
leads immediately to the concept of discrete phonons with energy E and momentum p .  
The treatment also demonstrates the possibility of interactions between the phonons 
giving rise to scattering and to the creation and annihilation of phonons-processes 
which had already been postulated and discussed by Landau and Khalatnikov 
(1949). 

$ 3 .  ROTONS 
As is shown in figure 1, the specific heat above 0 . 6 " ~  becomes rapidly greater 

than the Debye value, and it is clear that some other forms of thermal motion are 
being excited. The  question, however, is just what form these excitations take. 
Landau believed that some form of vortex or rotational motion was involved, and 
to investigate this possibility set up a new formulation of quantum hydrodynamics. 
He  claimed to show that vortex motion is quantized, and that the energy and 

7 where c is the velocity of sound. 
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momentum of an elementary excitation or ' roton ' are related by the equation 

E = A+p2/2p . . . . . .(2) 

where A and p are constants. This relation shows that a minimum energy A is 
required to create a roton, and immediately leads to the conclusion that at suffi- 
ciently low temperature the rotons will not contribute to the thermal energy. At 
higher temperatures the total thermal energy of the liquid is the energy of an 
assembly of photons and rotons, and the thermodynamic functions may be calcu- 
lated by the usual statistical methods. By comparing the expressions for the 
specific heat obtained in this way with the experimental values, Landau obtained 
values for A/K of 8 - 9 " ~  (k  is Boltzmann's constant), and for ,U of 7-8 times the 
mass of the helium atom. This comparatively large value for A correlates with 
the absence of rotons below about 0 . 6 " ~  and the rapid rise in the specific heat 
above that temperature. 

Although the concept of a roton with an energy spectrum similar to that of 
equation (2) has turned out to be very fruitful, Landau's derivation of it is now 
regarded as unacceptable. It is far from clear that the operators in his quantum- 
mechanical treatment have the properties he somewhat intuitively claims for them 
(for detailed criticisms, see I?. London 1945 and Dingle 1952 a). Quite recently 
Ziman (1953 a) made a new attack on the problem rather in the way that Kronig 
and Thellung (1952) had treated the sound waves ; he was able to set up the classical 
equations of hydrodynamics in a form suitable for quantization and claimed to 
show that the Hamiltonian contained terms corresponding to the excitation of a 
roton state. However, this treatment also appears open to objection, because other 
terms in the Hamiltonian correspond to interactions which have to be taken into 
account if more than one roton is excited. It has yet to be shown that the same 
conclusions will be valid when these interactions are included ; other difficulties 
have also been pointed out by Allcock and Kuper (1955). 

After Peshkov's measurements on temperature waves (to which we refer later), 
Landau (1947) quite empirically modified the energy spectrum to the form : 

. . . . .  €=A+-- -  (P -Pd2 
P 

in order to obtain better agreement with the experimental results. This last 
equation has turned out to be so useful in interpreting the behaviour of liquid 
helium that the uncertain foundations on which it was based were rather glossed 
over until recently, when Feynman gave a derivation of the equation which is far 
more satisfactory. Feynman also shows, what Landau only tacitly assumed, that 
the phonon states are the only possible states at low temperatures. (As Landau's 
hydrodynamical approach used only coarse-grained variables, it did not rule out 
the possibility of other excitations associated with motion on an atomic scale.) 
Finally, before giving a summary of Feynman's treatment, it should be pointed 
out that although Landau's derivation of the roton spectrum is almost certainly 
incorrect, it was he who made the essential step of postulating that the whole motion 
of the liquid could be expressed in terms of quantized elementary states. These 
states are, it must be emphasized, wave-mechanical states of the whole liquid and 
are characterized by their energy and momentum. 
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We now give a brief summary of Feynman’s approach, referring the reader to 
the original papers for a full and lucid discussion of the ideas involved (Feynman 
1953 a, b, 1954, 1955 ; Feynman and Cohen 1956). He regards the liquid as an 
assembly of atoms, between pairs of which there are strong repulsive and weak 
attractive van der Waals forces, and which to a first approximation may be treated 
as hard spheres of diameter about 2.7A. As the mean volume per atom is about 
( 3 * 6 ~ l ) ~ ,  the structure is a very open one, and the atoms can move about freely 
either through holes in the lattice or by pushing other atoms aside. Feynman 
first discusses density fluctuations, and agrees with previous authors that there will 
be a continuous range of energy levels right down to the lowest values, corresponding 
to sound waves of different wavelengths. He next considers what other forms of 
excitation are possible, and remarks that any such excitations will correspond to 
various rearrangements of the atoms at constant density. Moreover, because of 
the very open structure of the liquid, such rearrangements may in principle be 
brought about by a simple stirring process, and Feynman proceeds to deduce 
appropriate wave functions to describe the liquid. The wave functions used in 
his first papers were recognized to be only approximate and led to difficulties con- 
cerning the conservation of mass (Feynman 1954), and better functions have been 
given recently by Feynman and Cohen (1956). However, as the earlier work 
forms a better introduction to the subject, and as no great difference of principle 
is involved, we now outline Feynman’s theory using his earlier wave functions. 

Suppose the helium to be in the 7th stationary state with a given energy E, 
and let the position of the ith atom be defined by its coordinate Ri ; then the wave 
function for that state may be written t,hT(Rl, R,, ..., RLv), a definite though compli- 
cated function of the coordinates R. As the atoms have a tendency to keep apart, 
t,hT will have its greatest values for those configurations in which the atoms are 
widely separated ; and as the atoms are regarded as impenetrable spheres t,h, must 
fall to zero for configurations in which atoms overlap. As usual the ground state 
t,h = C$ is characterized by the absence of nodes, and C$ may be taken to be a positive 
number for all configurations of the R’s. 

Now consider a wave function #, which is to represent a stationary state of 
higher energy. t,h, must be orthogonal to the ground state +, which is everywhere 
positive ; that is, t,h, must be positive for some configurations (RI, R,, . . ., R,) and 
negative for the others. Thus if t,h, is plotted against the 3N coordinates of con- 
figuration space it will vary between certain maximum positive and negative values. 
We wish to find states of low energy, and the criterion for such states is that the 
gradient of I/, in configuration space should be small. (We recall that in the simple 
problem of a particle in a box, the wave function oscillates more frequently the 
higher the energy, as the kinetic energy is given by - ( t i~/2m)02#.)  Let us now 
refer to the configuration which gives t,hT its maximum positive value as an A con- 
figuration, and that which gives the maximum negative value as a B configuration. 
Then if t,hp is to represent a state of low energy, the points corresponding to con- 
figurations A and B should be widely separated in configuration space. If the 
atoms are distinguishable, this condition implies that to move the atoms from an 
A configuration to a B configuration involves a stirring process in which all the 
atoms are displaced a long way. However, as all the atoms are indistinguishable 
and obey Bose statistics, it must be possible to go from an A configuration to a B, 
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or indeed to any other one, by moving each atom by a distance of no more than 
about the atomic spacing. This means that configurations A and B can only be 
separated by a certain limited distance in configuration space, the energy cannot 
be made arbitrarily small and therefore will not fall below a certain minimum value. 
Thus at sufficiently low temperatures the probability of exciting such states is very 
low and the only excitations will be phonons. 

Feynman now deduces an explicit form for the wave function +? and hence 
determines the energy spectrum of the other excitations. As defined above, t,br 

has a maximum value for configuration A and a minimum value for configuration B, 
and for low energy states it must vary smoothly in going from A to B. T o  ensure 
this, the amplitude of #? is taken to be the number of atoms on sites of A-type 
configurations minus the number on B configuration sites. This number is Cf( R) 
wheref(R) is a function which is + 1 if R defines an A configuration site and - 1 
if R defines a B position, and which varies smoothly between these limits. Combin- 
ing this with the condition that atoms must not overlap, the wave function is 
written 

where 4, the wave function of the ground state, is introduced to ensure that the 
atoms do not overlap and to take account of correlations between the atoms. 
Although Feynman does not specify the motion of the atoms more precisely than 
by this last equation, he points out that his wave function is consistent with three 
quite probable modes of motion, viz. the rotation of a small ring of atoms, the 
excitation of single atoms in a cage, and single atoms vibrating with wave number 
about 2vla where a is the atomic spacing, the surrounding atoms moving about 
to get out of their path. Feynman then applies the variational principle to find 
the form of .f( R) which gives the lowest energy and thus obtains 

f( R) = exp ( i k .  R) 

and 

where S is the Fourier transform of the correlation function 

~ ( k )  = K2k2/2m S(k) . . . . . .(4) 

S( k) = fp( R) exp ( i k  . R) d3 R. 

The correlation function, or liquid structure factor, may be deduced either from 
x-ray data (Reekie and Hutchison 1953) or from neutron diffraction data (Henshaw 
and Hurst 1953)) and the form of the function is shown in figure 5 (a). Figure 5 (b)  
shows the resulting curve for the energy given by equation (4)) the upper part 
being similar to Landau's roton spectrum (equation (3) ). The height of the 
minimum of the curve is somewhat high, corresponding to too large a value of A ; 
however, the more exact wave functions of Feynman and Cohen (1956) lead to a 
value for A / k  of 11*5"K, in much better agreement with the value of about 9 . 6 " ~  
derived from experimental results. We may mention here that the values of A, 
p and p ,  are best determined from a consideration of the magnitude and tempera- 
ture dependence of the specific heat and of the ' normal density ), to which we 
refer later. Due to experimental uncertainties, plus of course the fact that the 
roton spectrum itself is almost certainly only an approximation, it is difficult to 
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obtain a quite definite answer ; however, reasonable agreement results if one takes 
A/k  = 9 - 6 " ~ ,  p0/E = 2.0 x 10-8 and p = 0.77m, where m is the mass of the helium 
atom (de Klerk, Hudson and Pellam 1954). 

The low energy part of the spectrum corresponds to the relation E = p c  and 
is just the phonon spectrum discussed previously. At first sight this is somewhat 
surprising as figure 5 ( b )  then suggests that the energy of an excitation can have 
any value between zero and A. This point is still not entirely clear, but Feynman 
(1955) remarks that the wave functions deduced by the variational method are in 
general only appropriate in the region of minimum energy. It happens that his 
wave function for the rotons also turns out to be an exact wave function for phonons 
of small wave number, and the method therefore gives the lower end of the spectrum 

1.0 pp 
B cy r, 

0.5 

0 I 2 3 0 I 2 3 
Wave Number k (A-') 

Figure 5. (a) The structure factor for liquid helium as determined by neutron diffraction (aft.. 
Henshaw and Hurst 1953) ; ( b )  The energy spectrum for excitations in liquid helium, as 
calculated by Feynman 1954. 

correctly. However, this does not imply that the wave function is good for 
intermediate values of the energy, and therefore phonons and rotons may be quite 
distinct modes of motion. Indeed, Feynman and Cohen claim that their latest 
wave function for rotons corresponds roughly to a vortex ring of such small radius 
that only one atom can pass through its centre, outside the ring there being a slow 
drift of atoms returning for another passage through the ring. 

I t  is to be noted that the above theory does not account, as it presumably should, 
for the fact that, between about ~ O K  and the lambda point, the liquid exhibits a 
negative expansion coefficient. It is possible to relate this coefficient to the three 
parameters A, p ,  and p, and their dependence on the density of the helium (see, 
for example, Atkins 1955), but Feynman has not as yet discussed what dependence 
on density is to be expected. On the other hand, Franchetti (1954) has given an 
explanation of the negative expansion coefficient in terms of exchange forces ; and 
Prigogine and his collaborators have given an explanation based on a cell model 
in which some cells may be doubly occupied and in which the part played by zero- 
point energy is predominant (Prigogine 1954). The  variation of the parameters 
A, p ,  and p with the density of the helium is also of interest in that it offers, at 
least in principle, a further test of the theory. Under a pressure of say 25 atmo- 
spheres the density is changed by about 10% and we have a liquid to which the 
theory should still apply but with appreciably different parameters ; thus the 
lambda point is depressed to about 1 * 8 " ~ ,  the specific heat is increased by about 
50% (Hercus and Wilks 1955), and the velocities of sound and temperature waves 
are changed considerably (Atkins and Stasior 1953, Maurer and Herlin 1951). 
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However, at present some of the data essential for a complete comparison is not 
available ; for example there are as yet no direct determinations under pressure 
of the ' normal ' density (see 9 4), nor of the correlation function. 

$4. THE TWO-FLUID M O D E L  
We now give the derivation of the remarkable two-fluid model ; this derivation 

was first given by Landau but with several of the intermediate steps omitted, and 
the position has since been clarified by Dingle, F. London, and particularly by 
Feynman. Before giving a summary of these arguments, we should perhaps 
mention that they apply equally well to any form of excitations with given energy 
and momenta, and do not depend on particular properties of phonons or rotons. 

We begin by calculating the total momentum of a mass of helium containing 
excitations and moving with a constant velocity. To carry out this calculation we 
need the result that if the energy of an excitation in the liquid at rest is E then the 
energy that an observer at rest must associate with the same excitation in liquid 
moving with velocity v is given by 

Eo = E+P.V. 

This important result was first deduced by Landau from a consideration of a 
Galilean transformation in classical mechanics ; we give here a rather similar but 
clearer derivation due to Dingle (1952 a). For an observer who is moving with the 
liquid and whose coordinate system is indicated by primes, the wave function of an 
excitation in the liquid may be written 

. . . . . . ( 5 )  

The appropriate wave function for an observer at rest (unprimed coordinates) is 
obtained by the usual transformation 

r = r '+vt .  ( t  = t ') 

Hence for the observer at rest 

[ (e+p.v) t -p . r ]  

Thus we have the required result that if the fluid is moving with velocity v relative 
to an observer, the energy of an excitation appropriate to his system of coordinates 
is E + P . V .  It is perhaps worth mentioning, in view of the arguments shortly to 
be used, that this result is based purely on mechanical considerations, as yet 
statistics have played no part in the discussions. 

We now consider moving liquid containing a large number of excitations, and 
apply statistics to determine the total momentum of the assembly. It is convenient 
to specify that the excitations have an arbitrary drift velocity v, with respect to 
the observer. To fix our ideas consider a cylinder of liquid moving with velocity 
v, and filling a tube moving with velocity v,, the excitations being in equilibrium 
with the walls of the tube. Statistical mechanics gives the equilibrium distribution 
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in a gas which has a uniform drift velocity v, relative to an observer as 

.(e) = [expP(q,-p.~,)-l]-~. 

Treating the excitations as gas-like particles and substituting for eo from equation ( 5 )  
we obtain 

.(e) = [exp,k?((E+p.v,)-p.v,)- 11-l. 

The  net momentum associated with the excitations is not zero, as it would be if 
the liquid were at rest, and is given by 

= J p (exp p[E(p) + p . v, - p . vnl - 11-1 ( 2 4 - 3  dp3. 

Making the valid assumption that v, and v, are small, and expanding to the first 
order in v, - v, we find 

where p,, an essentially positive quantity with the dimensions of density, is defined by 

- 
P = - Pn(Vs-vn) 

pI1 = - j,k?/p2[expfie(p) - 1]-2 expPE(p) ( 2 ~ % ) - ~  d3p. . . . . .  .(6) 

Note that in this linear approximation pn will be a function of temperature but 
not of v, or v,. The total momentum j associated with unit volume of moving 
liquid will be the ordinary mv term plus the momentum associated with the excita- 
tions. Thus 

j = PV, + ir = PV, - pdv, - Vn). 
Defining a new parameter ps by 

P s + P n  = P . . . . .  . ( 7 )  

we have i = pSvs + PnVn. . . . . .  .(8) 

The last equation implies that the total momentum of the moving fluid may be 
formally resolved into two components, one associated with the excitations and 
the other with the remainder of the fluid. Clearly from the statistical manner 
in which the quantity pn is derived it is not to be associated with the mass of 
particular atoms in the system. (This is underlined by the fact that below 0 . 6 " ~  
the values of the specific heat and its T3 dependence on the temperature indicate 
that all the atoms have vibrational energy-at least in the classical sense-whereas 
pn turns out to have a value which is only or less of the density of the liquid.) 
Nevertheless the terms psv, and pnvn are the momenta associated with the motion 
of the ' background ' and of the excitations respectively and thus ps and pn play a 
role analogous to that of ordinary inertial mass. This analogy finds further support 
when one calculates the internal energy of a fluid containing excitations ; it is 
found that the internal energy of fluid for which v, and v, have finite values is 
greater than that for fluid with zero values of v, and v,, by an amount &pS7i's2+ &p,un2. 
Thus ps and pn again behave as inertial masses and this behaviour is the basis of 
the so-called two-fluid model of helium, in which the motion of the liquid is 
formally divided into two parts : that of the ' normal fluid ', which has ' density ' 
pn and velocity v,, and that of the ' superfluid ', which has ' density ' p, and 
velocity v,. We again emphasize that the argument leading to equation (6) is a 
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purely statistical one which considers quantum excitations of the whole liquid, and 
that nowhere is there any division of the helium itself into two real parts. Thus 
the name ' two-fluid model ' is to some extent misleading, as the ' fluids ' are only 
mathematical abstractions, but it seems to be here to stay. (This model has also 
been discussed by Dingle 1952 a, H. A. Kramers 1952, and Kronig 1953.) 

We now proceed to derive two important equations which describe the motion 
of the two ' fluids '. The entropy of the helium arises solely from the thermal 
disorder and therefore will be associated only with the excitations. Transport of 
entropy will take place at the mean group velocity of the excitations and this may 
be shown to equal vn (Feynman 1954), that is the entropy may be considered as 
moving with the normal fluid. Thus we can write down the following equation 
for the conservation of entropy : 

(9) 

S being the entropy of one gramme of liquid helium. This equation also implies 
that the motion of the fluids is reversible ; this turns out to be a good approximation 
although irreversible effects have to be considered later. 

Finally we need an equation for the forces acting on the superfluid alone, and 
therefore write down the usual differential expression for the internal energy of a 
mass of liquid helium 

where G is the Gibbs energy of one gramme of liquid and dM is a change in the 
mass of the assembly. Let us now increase the mass of the assembly at constant 
volume by introducing particles which contribute only to the ground state, that 
is to the superfluid, so that dS = 0. As dV = 0,  we may write dU = G d M ;  the 
sole result of the operation has been to increase the mass of superfluid by dM, 
therefore the potential energy of unit mass of superfluid must be G. The equation 
of motion of the superfluid is thus 

dU = TdS-pdV+ GdM 

Collecting together equations (9) and (lo), and adding the usual hydrodynamical 
equations for j, the total momentum of the liquid, we obtain 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

Having derived these equations, first given by Landau, we are now in a position 
to discuss the applications of the two-fluid model. 

4 
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$ 5 .  APPLICATIONS O F  T H E  TWO-FLUID M O D E L  
5.1. Superjuidity 

Superfluidity was first observed in experiments in which the flow of liquid 
helium through fine slits and capillaries was seen to take place with virtually a 
complete absence of friction. Kapitza (1941 a) deduced that if the coefficient of 
viscosity had a finite value at all, it must be less than poise, while Allen and 
Misener (1939) showed that the flow did not obey the ordinary equations of fluid 
motion. (Actually Allen and Misener’s results for slits varying from to 

cm in width were rather complex, but in the narrowest slits the flow appeared 
independent of the pressure head.) This behaviour is referred to as superfluidity, 
and can in principle be understood from what has been said already, although 
some of the detail is still obscure. 

In  general it is necessary 
to apply a pressure to maintain the flow, and most of the work done by this pressure 
appears as heat in the liquid. Without going into any details of the viscous pro- 
cesses, we can say that the resistance to flow arises because of a conversion of some 
of the directed kinetic energy of the liquid into disordered thermal motion. Or 
again, the relative motion of liquid and capillary sets up additional thermal motion 
in the liquid, and this is the source of the viscous reaction. Thus to maintain a 
flow of liquid helium at absolute zero through a tube, work must be done to provide 
the energy for the creation of any thermal excitations (phonons or rotons) which 
are produced. However, by a simple argument based on the transformation of 
coordinates, Landau (1941) showed that excitations can only be formed in this 
way if the velocity of the fluid through the capillary exceeds a certain critical value 

Consider the flow of a liquid through a capillary. 

v, = c N 240 metres sec-l (phonons) 
vC2 ,/(2A/p) 1: 60 metres sec-I (rotons) . . . . . .(12) 

where A, p and c have the same meanings as in equations (1) and (3). Thus if 
the velocity of the liquid is less than 60metres sec-l no excitations should be 
formed, and we reach the surprising conclusion that there will be no viscosity. 
(Actually it turns out that the values for the ‘ critical velocities ’ given in equa- 
tions (12) are much too high, but we ignore this for a moment.) Hence the liquid 
at absolute zero should flow through a tube under the action of a vanishinglj small 
pressure gradient at a rate equal to the critical velocity; if it flows more slowly 
it will be accelerated by the pressure gradient, if more quickly it will be retarded 
by viscous forces. 

The  flow of helium at higher temperatures is more complicated. At absolute 
zero the helium contains no excitations and is entirely superfluid ; thus the dis- 
cussion of the last paragraph shows that the superfluid has no viscosity: hence 
its name. At higher temperatures, the total motion of the helium must be resolved 
into that of the two-component (mathematical) fluids. As before, the motion of 
the superfluid will be free of viscous forces because of the difficulty of producing 
excitations in it. However, excitations already exist in the normal fluid and these, 
by interactions with the walls of the tube, can take up energy without restriction. 
Thus viscous effects should be associated with the motion of the normal fluid, 
but will be difficult to observe in flow experiments because they will be masked 
by the great volume of superfluid flow. 
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There appears to be little doubt that it is the difficulty of creating thermal 
excitations in the liquid which is responsible for the appearance of superfluidity. 
However, the mechanism whereby they are excited is obviously not that discussed 
by Landau, because the value of the critical velocity is found to be not of the order 
of 60 m sec-l but only of the order of a few cm sec-l, and is also a complicated func- 
tion of temperature and slit width. This particular problem is one of the least 
understood aspects of liquid helium and is discussed later, in the section on turbu- 
lence. For the present we confine our attention to the region where there appears 
to be true superfluidity, that is where the velocities are sufficiently low not to 
produce excitations in the superfluid. 

5.2. The Normal Viscosity and Andronikashvili’s Experiment 
As we have just discussed, measurements of the rate of flow of helium through 

a capillary do not enable us to determine the viscosity associated with the normal 
fluid. This ‘ normal viscosity ’ rn is best found by measuring the viscous force 
on a body moving through the liquid ; in an experiment of this type the super- 
fluid exerts no force on the moving body and the total reaction is that due to the 
normal viscosity alone. The most straightforward method uses a rotation visco- 
meter and the results of detailed measurements by Heikkila and Hollis-Hallett 
(1955) are shown in figure 6. We defer a discussion of the form of these results 
to Q 6.1, only noticing here that the viscosity is of the same order as that of a gas. 

Figure 6 .  The ‘ normal ’ viscosity of liquid helium as determined (a)  directly with a rotation 
viscometer, and ( b )  with an oscillating-disc viscometer plus a determination of the normal 
density (after Heikkila and Hollis-Hallett 1955, and Hollis-Hallett 1952). 

One would suppose that the same value for the viscosity would be obtained 
by making measurements with an oscillating-disc viscometer, but the damping on 
such a disc is found to decrease steadily as the temperature falls, as is shown in 
figure 7 (Keesom and MacWood 1938). Before discussing this apparent dis- 
crepancy it is necessary to consider the important experiment of Andronikashvili 
(1948). This author mounted fifty thin metal discs very close together on a common 
axis, oscillated them about a vertical axis in a bath of liquid helium, and found 
that below the lambda point the period of the oscillating system decreased with 
falling temperature. This curious result is accounted for by the fact that while 
the superfluid is not affected by the motion of the discs, the normal viscosity is 
sufficient to drag round with the discs all the normal fluid in the narrow spaces 
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between them. Thus the rotating system consists of the pile of discs plus the 
normal fluid accompanying them ; as the density of the normal fluid varies with 
temperature, so will the moment of inertia and period of the system. Thus from 
the experimental observations one can associate a density with the normal fluid, and 
from what was said in $4 it would seem that the density so determined should be 
the density of the normal fluid ,on. In  fact the values of prl found in this way 
(figure 8) are in good agreement with those calculated from equation (6) and also 
with values derived from the velocity of temperature waves which are discussed 
in $5.4. 

I 

Figure 7 .  The damping on a disc oscillating in liquid helium, in arbitrary units as a function 
of temperature (after Keesom and MacWood 1938). 

Figure 8. The ' normal ' density of liquid helium pn (after Peshkov 1946). 

It can now be seen why the damping of an oscillating disc decreases steadily 
with falling temperature whereas the viscosity does not. The damping of the 
disc is essentially due to viscous waves which the disc propagates in the liquid, 
and this damping is proportional to the product of the density and viscosity of 
the liquid. While for all other liquids the density is constant and the damping 
of the disc proportional to the viscosity alone, this is not so for helium. Clearly 
the density in question is not the total density of the helium, as the superfluid is 
not affected by the motion of the disc, and the position has been analysed in detail 



The Theory of Liquid 4He 53 
by Landau (1944). He showed that the motion of the helium is separable into 
two independent parts, one part corresponding to a potential flow of superfluid, 
while the other concerns only the normal fluid and is similar to the solution of 
the Navier-Stokes equation for a liquid of density ,on and viscosity qn. Thus, in 
the absence of pressure and temperature gradients, the equation of motion of the 
normal fluid may be written : 

Hence one ultimately obtains values for the viscosity which are in tolerable agree- 
ment with those obtained from the rotation viscometer, although, as is seen in 
figure 6, there is some discrepancy at temperatures below 1 . 4 " ~  where the position 
is still somewhat obscure. I t  may be that the higher values for the normal viscosity 
given by the oscillation method are due to experimental errors which become more 
serious at low temperatures, and one possible source of error has recently been 
reported by Kolm and Herlin (1956). However, it has also been suggested by 
Ginsburg (1955) that the apparent viscosity is actually greater in the case of the 
oscillatory motion, because the non-equilibrium conditions are responsible for some 
form of turbulence in the liquid, as discussed in $7.  Further experiments seem 
to be required. 

5.3. The Fountain and Mechano-caloric EJjrects 
The fountain effect is observed when two helium baths at somewhat different 

temperatures T and T+AT are connected by a very fine capillary, as in figure 9. 
The capillary acts as a semi-permeable membrane, through which the superfluid 
may pass but not the normal component ; thus an osmotic pressure Ap is developed 

Figure 9. The fountain effect. The vessels P and Q are joined by a fine capillary ; if the 
liquid helium in Q is hotter than that in P an osmotic pressure Ap is developed between them. 

corresponding to the excess pressure of normal fluid in the hotter reservoir. This 
effect was first observed by Allen and Jones (1938), who used a slightly different 
experimental arrangement and produced such big temperature differences that the 
pressure flung the liquid up as a jet, hence the name fountain effect. The  magnitude 
of the effect may be derived most simply by noting that in equilibrium there will be 
no acceleration of the fluids and therefore, by equation (1 1.4), grad G = 0. Using the 
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general thermodynamic relation dG = Vdp - SdT, one thus obtains the relation 

_ -  AP 
A T -  ps 

. . . . . .(13) 

first given by H. London (1939) using a slightly different argument. Alternatively 
it is possible to calculate the pressure in terms of the constants of the excitations 
(see, for example, Ward and Wilks 1952). Measurements of the fountain effect 
are somewhat difficult to carry out, as large differences in the levels are produced 
by only very small temperature differences. There have been several sets of 
measurements between about 1 " ~  and the lambda point (for example, Kapitza 
1941 a, Meyer and Mellink 1947), and although there is considerable scatter on the 
results, it seems that H. London's relation is obeyed at least to within the accuracy 
of the measurements. 

We now describe the inverse or mechano-caloric effect (Daunt and Mendelssohn 
1939 a) by considering an isolated vessel with a very fine slit at the bottom. Super- 
fluid will flow out through the slit, and as it has no thermal energy it carries away 
no entropy ; thus the entropy per unit mass of liquid left in the vessel increases, 
and the liquid becomes warmer. Alternatively, if the vessel is held in an iso- 
thermal bath at temperature T, then a quantity of heat Q, the heat of transport, 
must be removed from the vessel as unit mass of superfluid flows out. If the 
process is reversible, as we assume, then Q is equal to TS ; this relation has been 
confirmed to at least a few per cent, any discrepancies being probably within the 
experimental error (Chandrasekhar and Mendelssohn 1955, Brewer, Edwards and 
Mendelssohn 1955). Finally we note that as the superfluid leaving the vessel has 
zero entropy, one might suppose that here is a method of reaching absolute zero 
and violating the Third Law of thermodynamics. However, even in the narrowest 
slits, the flow of superfluid will also be accompanied by a flow of the normal fluid, 
which will only completely vanish in the limiting case of an infinitely narrow slit ; 
thus helium leaving the vessel will never be at absolute zero. Nor is the process 
particularly useful for cooling other substances to very low temperatures because 
the helium has very little entropy at such temperatures (Simon 1950). 

Measurements of the fountain pressure and mechano-caloric effect in the region 
of 1 " ~  and below are of particular interest in connection with an earlier two-fluid 
theory due to Tisza. Tisza (1938), following F. London (1938), suggested that 
liquid helium behaved in a manner characteristic of a degenerate Bose-Einstein 
gas;  using Landau's terminology he seems to have thought of the normal and 
superfluids as consisting not of excitations and background but of atoms or groups 
of atoms in the excited and ground states respectively. Using this picture he was 
able to account qualitatively for the effects already discussed and also to predict 
the existence of temperature waves (0 5.5). Following naturally from this view- 
point, he supposed that the atoms in the superfluid ground state took part in normal 
Debye type lattice vibrations ; in this case the term S in equation (13) does not 
refer to the whole entropy of the liquid but only to that part in excess of the entropy 
of the lattice vibrations (H. London 1939). In other words, on Tisza's model the 
phonons do not contribute to the fountain pressure. At 1 ' ~  the phonons are 
responsible for about 50% of the total entropy of the helium, at 0 . 8 " ~  for about 
SO%, and at 0 . 6 " ~  for almost 100% ; thus it is possible to differentiate sharply 
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between the theories of Landau and Tisza. Peshkov (1954) has made measure- 
ments down to 0 . 8 " ~  and Bots and Gorter (1956) down to 0 - 2 " ~ ,  and it appears 
that at these temperatures the fountain pressure is given fairly closely by equation 
(13) with S equal to the total entropy of the liquid. Thus these results, like those 
concerning temperature waves to be discussed later, confirm Landau's approach 
in which the normal fluid consists of excitations rather than excited atoms. 

5.4. Heat  Transport 
Transport of heat takes place so readily in liquid helium that impracticably 

large heat inputs would have to be used to maintain measurable temperature gradients 
in the bulk liquid, and therefore nearly all the work so far has been done on helium 
in narrow slits or capillaries. In  general the heat flow is not proportional to the 
cross-sectional area of the liquid ; in the narrower channels and for not too large 
temperature gradients it does vary as d T / d x ,  but in wider channels it is approxi- 
mately proportional to (dT/dx) l /s .  At present we consider the region where the 
flow depends linearly on the temperature gradient and where the magnitude of 
the flow may in fact be deduced from Landau's model ; we return to the question 
of the heat flow in wider channels in 5 7.1. 

Consider two reservoirs of helium at temperatures T and T+AT, connected 
by a very fine slit as in figure 9, so that virtually the whole fountain pressure 
Ap = pSAT is developed across it. As the slit is not infinitely narrow (as we 
assumed when considering the fountain effect) there will be some flow of normal 
fluid through it, under the action of the osmotic pressure difference Ap, together 
with a frictionless return flow of superfluid to conserve mass. The  magnitude of 
these two counter current flows will be limited only by the viscosity of the normal 
component, the velocity of the normal fluid being given by Poiseuille's formula 

where Ax is the length of the slit, and B is a constant depending on its geometry. 
Assuming as before that the relative motion of the two fluids takes place reversibly, 
the heat flow per unit area, U ,  due to the transport of entropy by the normal fluid, 
will be given by 

Substituting (14) in (15) together with London's expression for Ap, we get 

U = PSTV,. . . . . .  .(15) 

B ( P T S ) ~  AT 
U=--- . . . . . .  

% Ax' 
This result has been given both by Andronikashvili (1949) and by F. London and 
Zilsel (1948), who introduced the name ' internal convection ' to describe this 
mechanism of heat transfer. 

AS mentioned above, this linear relation between the heat flow and the tem- 
perature gradient is only true for not too great heat flows, and in narrow slits of 
width less than about 100p (see, for example, figure 10). As the constant B contains 
the width of the slit to the third power, the experimental verification of equation 
(16) is by no means easy. Hence it is not surprising that the agreement with some 
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of the earlier measurements is not too close ; however, recent work by Winkel, 
Broese van Groenou and Gorter (1955) seems to confirm that this relation is valid 
over quite a large region. They show that at spot temperatures the heat flow is 
proportional to the cube of the slit width as demanded by Poiseuille's equation 
(figure ll), and that values may be deduced for the viscosity of the normal fluid 
which are in reasonable agreement with more direct measurements, bearing in 
mind the accuracy of the experiments. 

, I 

0 IO 20 30 40 50 
A T  (milli deg) 

Figure 10. The  heat flow through liquid helium in a slit of width 2 . 4 ~  as a function of the tem- 
The  relation is linear only for small heat flows at not too perature difference across the slit. 

high temperatures (after Winkel, Groenou and Gorter 1955). 

I 1 I 
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h (p) 
Figure 11. The  heat flow through liquid helium as a function of slit width h. The  flow varies 

approximately as the cube of the width in agreement with equation (16) (after Winkel, 
Groenou and Gorter 1955). 

5.5. Temperature Waves 
Equations (11.1) and (11.2) readily lead to the relation 

a2p 1 a2p 

a t 2  c2 a x 2  
~ - -- - 

the usual equation for the propagation of density or pressure changes in a liquid. 
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However, there is the additional possibility, with the two-fluid model, of a fluctua- 
tion in the relative densities of the normal and superfluids while the total density 
remains constant (j = 0). As a change in the relative densities of normal and 
superfluids is equivalent to a change in temperature, an oscillation of the two fluids 
relative to each other corresponds to an entirely new phenomenon, a true oscillation 
of temperature. Remembering that the thermal expansion coefficient of helium is 
so small that the adiabatic and isothermal compressibilities are nearly equal, one 
can solve the four equations of the model (11.1 to 11.4) and obtain the ordinary 
sound equation as before plus a second relation (Landau 1941) 

C being the specific heat of unit mass of helium. This is a wave equation for the 
propagation of variations of entropy or, what amounts to the same thing, of tem- 
perature variations ; thus the model predicts the existence of harmonic temperature 
waves with velocity 

This expression for the velocity, first given by Landau, was confirmed by Peshkov 
(1946), who excited waves in the liquid by periodic heating ; he detected their 
presence with a thermometer and was able to tune them to resonance by setting 
up standing waves. Other measurements were subsequently performed (e.g. 
Pellam 1949) which showed that, in accordance with the wave equation, pulses of 

Figure 12. T h e  velocity of temperature waves in liquid helium as a function of temperature 
(after Maurer and Herlin 1951). 

heat propagate through the liquid as compact pulses. Both types of experiment 
give the same values for the wave velocity, and these (figure 12) together with the 
known values of T,  S and C lead to values of p J p ,  which are in good agreement 
with those determined by other methods. 

Historically, it should be mentioned that the existence of temperature waves 
was first predicted by Tisza (1938) on the basis of a somewhat different model. 
However, at the time of writing his first paper, Landau was apparently unaware of 
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this work, and seems to have thought that the velocity c2 would be associated with 
sound of the usual type but with another velocity-hence he gave it the name 
' second sound '. I t  was only after a failure (see Peshkov 1946) to excite such 
waves with a piezoelectric crystal that Lifshitz (1944) showed that a much more 
effective technique would be to generate a periodically varying temperature. 

At temperatures appreciably below 1 OK the position becomes more complex 
and, as is discussed in 5 6.3, it now appears that in general a wave-like propagation 
of temperature variation is not possible below about 0 .7"~.  However, it is 
important to note that resonance techniques (Peshkov 1952) as well as pulse 
measurements confirm the existence of temperature waves down to at least 0 * 8 5 " ~ ,  
and that the velocity rises rapidly as the temperature falls, in agreement with 
Landau's formula. In  contrast, Tisza's theory, which is based on fundamentally 
different concepts (3  5.3), predicts that the velocity should fall in this region. 

5.6. The Momentum of Heat Flow 
As discussed in the last sections, heat flow in liquid helium is accompanied by 

motion of the two fluids ; therefore as the fluids have momentum we arrive at the 
unusual result that a flow of heat has momentum associated with it. This momentum 
was first observed by Kapitza (1941 b), who showed that a flow of heat impinging 
on a vane mounted on a torsion wire gave rise to a pressure which deflected the 
vane. However, Kapitza's experiment did not show the dependence of the pressure 
on temperature which one would now calculate, probably because of the rather 
uncertain geometry of his apparatus. The momentum flux associated with each 
fluid is pv. v ; thus in a linear flow of heat there is a reaction pressure psv2 + p,vn2 
on the source, due to the inertia of the fluids. Both fluids give positive contribu- 
tions, as positive momentum is associated with positive velocity, and negative 
momentum is associated with negative velocity. Using the equations of the two- 
fluid theory one readily obtains the relation 

Hall (1954) has measured the reaction pressure on heating elements immersed in 
liquid helium and shown that it varies as the square of the heat flow, and as tem- 
perature in the rather complicated way predicted by the above expression. The  form 
of this temperature dependence is shown in figure 13, together with experimental 
points arbitrarily normalized to allow for edge effects associated with the finite size 
of the heaters. 

Another ingenious demonstration of the existence of the relative motion of the 
two fluids in a temperature wave has been given by Pellam and Morse (1950) and 
Pellam and Hanson (1952). As the experiment involves the use of a modified 
Rayleigh disc in liquid helium, we briefly recall that, in general, a disc in a moving 
fluid tends to align itself crosswise to the direction of the particle velocity. The 
torque acting on the disc is proportional to the kinetic energy of the motion, that 
is to pu2, where p is the density of the fluid and v the particle velocity. Because 
the magnitude of the torque is quadratic in the particle velocity, there will be a 
resultant mean torque on the disc even though the velocity varies harmonically 
and is directed in opposite directions for successive half-cycles. Now the motion 
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of the two fluids in a temperature wave in liquid helium has kinetic energy &p,vn2 
associated with the normal fluid and ipsvs2 associated with the superfluid. Both 
these terms give rise to torques which will be additive, even though it follows from 
equation (8) that the particle velocities in the two fluids must be in antiphase if 
we assume that there are no density fluctuations ( j  = 0). The total torque may be 

1.6 14 2.0 2.2 
T PK) 

Figure 13. The momentum of heat flow exemplified by the reaction pressure on a source of heat 
The full curve gives the theoretical expression of equation (17), and the in liquid helium. 

points the normalized experimental values (after Hall 1954). 
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Figure 14. The torque on a Rayleigh disc in liquid helium due to temperature waves, as a function 
of temperature. The upper curve shows the total torque ; the lower curves give the torques 
associated with the motion of the normal and superfluids respectively (after Pellam and 
Hanson 1952). 

readily related to the heat current in the temperature wave, and calculated values 
for a given disc are shown in figure 14 ; the experimental results of Pellam and 
Hanson (1952) are in satisfactory agreement. 

$ 6 .  THE EXCITATION G A S  
In  the preceding applications of the two-fluid model the normal fluid has been 

regarded as an abstract continuous medium, but many of the results could have 
been obtained by considering the fluid as a gas-like assembly of excitations. Thus 
the fountain pressure is the excess pressure of the excitation gas in the hotter vessel, 
and a flow of heat down a temnerature pradient corresnonds to a flow of excitations 
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maintained by the fountain pressure. In this section we consider more complex 
parameters of the liquid, such as the coefficients of viscosity and sound absorption, 
whose magnitudes can only be derived from a consideration of the excitations 
themselves. Both these coefficients characterize processes in which the distrihu- 
tion function of the excitations is disturbed from its equilibrium value, so that a 
flow of energy is set up tending to restore the equilibrium. Such behaviour has 
been examined in a very general way by Khalatnikov (1952 a), who considers the 
most general form of excitation defined solely by its energy E and momentum p .  
Khalatnikov takes the four linear equations of motion (1 1.1) to (1 1.4) together 
with the Landau expression for the Hamiltonian of an excitation ( H  = ~ ( p )  + p . v,) 
and then calculates the flow of energy due to a departure from equilibrium. In 
general this flow may result from any or all of three possible types of disturbance, 
and Khalatnikov associates with each type a characteristic ' kinetic coefficient ' 
01, /3 or y. 01 characterizes the energy t r a d e r  associated with the ' normal ' viscosity 
and /3 the transfer associated with the second viscosity. (This second viscosity is 
sometimes also described as the dynamic viscosity ; it is associated with density 
changes in a system, as is described, for example, by Karim and Rosenhead (1952).) 
The third coefficient y is the ' thermal coefficient ' and concerns the transfer of 
energy when there is a temperature gradient in the excitation gas, but although it 
is somewhat analogous to the thermal conductivity of an ordinary gas the analogy 
has to be used cautiously. Thus y has no immediate relation to the flow of heat 
in liquid helium itself, which as we have seeh is brought about by the relative and 
reaersible motion of the two fluids under the influence of the fountain pressure. 
The thermal coefficient concerns a second-order effect depending on the fact that 
if a temperature gradient is established in liquid helium there will also be a con- 
centration gradient in the normal fluid. T o  a first approximation this will not affect 
the value of the heat flow which is given by equation (16) ; however, it does give 
rise to a small flow of heat by an irreversible mechanism which is of consequence 
when one considers the attenuation of temperature waves. 

6.1. The Viscosity of the Normal Fluid 
The viscosity of liquid helium is that of the normal fluid, that is of the excitation 

gas, and the coefficient of viscosity T~ has been calculated on this basis by Landau 
and Khalatnikov (1949) using standard kinetic theory methods. Below about 
~ .S"K,  where the excitation gas is not too dense and the interactions not too strong, 
the excitations are assigned scattering cross sections and mean free paths ; then 
by setting up the transport equation an expression is obtained for the momentum 
transfer and hence the viscosity. The  calculations are somewhat lengthy because 
collisions may occur between phonons and phonons, phonons and rotons, and 
rotons and rotons ; also the results for each type of collision must be averaged 
over the whole of momentum space. I t  is not possible here to go into any of the 
details and we merely indicate the outline of the treatment and the results obtained. 

As both the phonons and the rotons transport momentum, there is both a 
phonon and a roton contribution to the viscosity. For lack of more detailed 
information a roton is treated as a sort of particle ; interactions between rotons 
lead to a viscosity which is independent of temperature but of indeterminate magni- 
tude. (This independence of temperature is quite analogous to the fact that the 
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viscosity of a perfect gas is independent of its density.) In  the case of the phonons 
it is possible to obtain an exact expression for the viscosity, as their interaction 
energies are related to the curvature of the phonon part of the excitation spectrum. 
(As may be seen from figure 5 ( b ) ,  this spectrum is only given by the linear relation 
E = pc for values of p close to zero.) The  phonon viscosity is limited principally 
by the scattering of the phonons by the heavier rotons, and therefore increases with 
falling temperature because of the rapidly decreasing number of rotons. The  
calculated value is in quite good agreement with the observed rise in the normal 
viscosity at temperatures below 1 .4"~ .  However, the close numerical agreement 
which is obtained is probably somewhat fortuitous because many of the required 
data (e.g. aA/ ip ,  a2A/ap2) have to be deduced or estimated from other experiments 
rather indirectly, as for example is done by Atkins (1955) ; Landau and Khalatnikov 
themselves remark that no great accuracy can be expected. Also there is still some 
uncertainty over the experimental value of the viscosity at low temperatures as 
mentioned in 5 5.1. However, the theory gives a good semi-quantitative account 
of the behaviour of the viscosity. 

6.2. The Attenuation of Pressure and Temperature Waves 
The coefficient of the absorption of sound or pressure waves for a frequency 

of 14Mc/s  is shown in figure 15. Above about 3 " ~  the absorption is accounted 
for by the classical expression for the attenuation due to viscosity and thermal 
conduction; the high value between 2" and 3°K is associated with the lambda 
transition, and has been discussed, in detail, by Pippard (1951). For the present, 

T ?K) 

Figure 15. The  absorption of 14 Mcis sound waves in liquid helium as a function of temperature 
(after Pellam and Squire 1947, Chase 1953, Newel1 and Wilks 1956). 

however, we are concerned with the region below the lambda point where the 
behaviour is obviously quite different from that above, and where the absorption 
has been calculated by Khalatnikov (1950, 1952 b) on the basis of the excitation 
gas model. The  passage of a pressure wave disturbs the equilibrium of the helium, 
and therefore of the excitation gas ; then, as is well known, there are absorption 
effects except in the two limiting cases when equilibrium is restored either very 
quickly or very slowly with respect to the period of the sound waves. The  
absorption arises by virtue of the transfer of energy in non-equilibrium conditions 
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by the three mechanisms discussed in 4 6 ; by solving the appropriate equations 
for the wave motion Khalatnikov obtains expressions for the attenuation of sound 
waves in terms of the coefficients of first and second viscosity and of the thermal 
coefficient. 

In  his first paper Khalatnikov (1950) pointed out that the viscosity of the normal 
fluid can only account for about one-fifth of the attenuation observed by Pellam 
and Squire (1947). As the coefficient of expansion of helium is small, any tem- 
perature changes due to the passage of the sound wave will also be small and 
therefore Khalatnikov postulated that the excess absorption was due to second 
viscosity rather than to the thermal coefficient. The calculation of the magnitude 
of the second viscosity requires a knowledge of two relaxation times, characteristic 
of the approach to equilibrium of an excitation gas in which the number of phonons 
and the number of rotons have non-equilibrium values. In  principle the relaxation 
times can be calculated, but in practice this is very complicated ; therefore 
Khalatnikov deduced their temperature dependence and then obtained their 
absolute magnitudes by fitting his expression for the attenuation to the experimental 
values. Having obtained these two parameters, he was able to predict from Pellam 
and Squires' results, which only extended down to 1.6'~, that there should be a 
maximum in the absorption at about 0 . 9 ' ~  and that it should be accompanied by 
dispersion (Khalatnikov 1950). Quite some time afterwards, both the maximum 
and the dispersion were observed and found to be approximately of the predicted 
magnitude (Chase 1953, Chase and Herlin 1955, Newell and Wilks 1956) ; at the 
lowest temperatures, however, the absorption is much greater than was expected.? 
Finally, we should mention that the calculations are very involved and that, as in the 
calculation of the normal viscosity, some of the parameters are only known approxi- 
mately ; thus too much importance should not be laid on detailed numerical agree- 
ment. However, the agreement between the predictions and what was afterwards 
discovered is striking. 

Khalatnikov also considered the attenuation of temperature waves in the bulk 
liquid, In  his first paper (1950) he calculated the attenuation due to first and 
second viscosity, while in his second paper he took into account the process 
characterized by the thermal coefficient, the effect of which was to increase the 
attenuation by a factor of about three. Experimental values of the absorption 
down to l ' ~  have been given recently (Atkins and Hart 1954, Pellam and Hanson 
1954) and although there is some discrepancy between the two sets of results, it 
seems that the attenuation is substantially as was predicted, rising as the temperature 
falls. Here again theory anticipated experiment. 

6.3. Mean Free Path Effects 
Although the normal fluid is an assembly of discrete excitations, equations 

(1 1.1) to (1 1.4) implicitly assume that the two fluids are continuous (mathematical) 
media. We now consider what modifications to the results already obtained are 
involved when the structure of the normal fluid is taken into account, and it is 
useful to begin by considering the propagation of temperature waves, Suppose 

t It now seems likely that the excess absorption is associated with temperature differences set up 
by the wave, which may no longer be ignored at the lowest temperatures (Dransfeld, Newell and 
Wilks, to be published.) 
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we ignore the superfluid for the moment and consider only the excitation gas, which 
is the normal fluid. Then it may be shown (Ward and Wilks 1951, 1952, Dingle 
1952 b) that, provided the conservation laws of energy and momentum are valid for 
interactions between the excitations, a periodic disturbance of the distribution 
function will propagate itself as a wave motion. But temperature variations may be 
regarded as particular kinds of changes in the distribution function, and therefore 
the excitation gas will propagate temperature waves. Dingle also shows that the 
velocity of the waves so arrived at is given by cZ2 = (pip,,) TS2/C which approxi- 
mates to the Landau expression at low temperatures, when pn is small and p r ps.t 
At higher temperatures the deviations from the Landau formula are considerable 
because it is no longer permissible to ignore the motion of the superfluid. The  
point is that fluctuations in the gas of excitations correspond to changes in the 
normal density pn, and as the ordinary density of the helium is assumed to remain 
constant, the relation pn + p s  = p implies a drift of superfluid associated with the 
temperature fluctuations. At low temperatures where the density fluctuations are 
small this drift may be neglected, but at higher temperatures it is essential to take 
it into account as is done in the two-fluid model. 

From the above discussion it is clear that an essential criterion for the propa- 
gation of second sound is that the mean free path of excitations between inter- 
actions should be small compared with the wavelength of the second sound. Now 
the work of Landau and Khalatnikov, discussed above, shows that the collisions 

Figure 16. The  shape of a heat pulse transmitted through liquid helium and viewed on an oscillo- 
scope trace, as a function of temperature ; at 0 . 9 " ~  the pulse is quite compact and character - 
istic of a wave-like form of propagation (after Atkins and Osborne 1950). 

which propagate the second sound are those considered when calculating the 
viscosity. From their work on the viscosity it is known that the mean free paths 
between collisions increase very rapidly with falling temperature, so that by about 
0.6" they are of the order of 1 cm. This figure is considerably greater than the 
wavelength of the second sound in any experiments so far performed and one would 
therefore expect the propagation of temperature waves to break down by this 
temperature (Gorter 1952, Atkins 1953), as indeed is shown by several experiments 
(for example, those of Kramers, Peski-Tinbergen, Wiebes, van den Burg and Gorter 
1954). Figure 16 (U) shows the shape of a temperature pulse received at 0 . 9 " ~  
as viewed on an oscillograph trace triggered by the transmitted pulse ; the pulse 
is quite sharp and is of about the same width as the transmitted signal. Figure 16 (b )  
shows the corresponding received signal at about 0-2"K, viewed on the same time 
scale ; the pulse arrives much sooner, as would be expected from the calculated 
velocity of temperature waves at this temperature, but it has become so very broad 
that a wave equation of propagation is hardly applicable. As all these experiments 

t The  values of ps at 1.0 and 1.2"K are about 0.99 p and 0.97 p respectively, so that even at 1 . 2 " ~  
this formula gives the velocity correct to 14%. 
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have been conducted in comparatively narrow cylinders of helium, the mean free 
paths of the excitations have also been greater than the diameter of the container. 
Thus the flow of heat in the helium should be very similar to the flow in a dielectric 
medium whose thermal conductivity is limited only by boundary scattering. 
Ziman (1954) has worked out in detail the change of pulse shape which would be 
expected on such a model, and obtains results very similar to those observed by 
Atkins and Osborne (1950) (figure 16). 

Similar mean free path effects are to be expected in the behaviour of the viscosity ; 
thus yn should fall below the Landau and Khalatnikov value when the mean free 
paths characteristic of the viscous processes approach the dimensions of the experi- 
mental apparatus. This effect should be most marked in narrow slits at low 
temperatures but very few data are yet available. However, the results of Winkel, 
Broese van Groenou and Gorter (1955) give an anomalously high value of the heat 
flow in an 0 . 4 ~  slit at the lowest temperatures, and it may well be that such effects 
are limiting the viscosity, the mean free path calculated by Landau and Khalatnikov 
being of the order of the slit width at this temperature. 

5 7.  TURBELENCE 
As we mentioned when discussing the derivation of pn, the equations of motion 

for the liquid are valid only to the first order in vB-un, or what amounts to the 
same thing in v, or 29, ; thus we might expect them to be inadequate for experi- 
ments involving high velocities of the fluids. Several authors have discussed the 
form that the second-order terms should take, and there is very little agreement 
between them (see, for example, Daunt and Smith 1954). I-Iowever, the only 
experiment in which it appears necessary to consider quadratic terms is the pro- 
pagation of temperature waves of high amplitude, where shock effects are observed 
(Osborne 1951) ; either the back or front edge of a pulse becomes steeper according 
to the temperature (figure 17). Khalatnikov (1952 c) has shown that this behaviour 

Increasing Amplitude .--, 

Figure 17. The  shape of heat pulses transmitted through liquid helium and viewed on an oscillo- 
scope trace, as a function of pulse amplitude. Below 1 . 9 6 " ~  second-order effects, at high 
amplitudes, result in the front edge becoming steeper ; above 1 . 9 6 " ~  the back edge becomes 
steeper (after Osborne 1951). 

is consistent with equations of motion quadratic in uz given by Landau (1941), and 
there seems little need to investigate this particular question further. It is generally 
found that before the velocities of flow become sufficiently large to call for the use 
of these quadratic terms, other processes occur which drastically modify the behaviour 
of the helium. These processes, which we characterize quite loosely by the name 
turbulence, are by no means fully understood, so we first present the experimental 
facts and then go on to mention possible interpretations. 
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7.1. Viscosity and Heat Flow Experiments 
Kapitza (1941 b) observed that the heat flow through an annulus of helium 

between a thin tube and a narrow rod was greatly reduced if the rod was rotated 
at speed. This was the first observation of the now generally recognized behaviour 
of the liquid, that when the velocities of the constituent fluids exceed ' critical ' 
values of the order of a few cm sec-l, its properties differ considerably from those 
outlined above. The transition to the perturbed state is well marked, as is illustrated 
by measurements of the viscosity and heat flow. Hollis-Hallett (1950, 1955) has 
shown that the damping of an oscillating disc rises steeply at a certain amplitude of 
swing, in a manner which suggests the onset of new dissipative forces entirely absent 
at lower amplitudes (figure 18). Similarly, Hung, Hunt and Winkel (1952) showed 
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Figure 18. The damping on a disc oscillating in liquid helium as a function of amplitude 
(after Hollis-Hallett 1955). 

that if the temperature gradient in a fine slit exceeds a certain value, then the heat 
flow is no longer governed by equation (16), but assumes lower values and even be- 
comes proportional to the cube root of the temperature gradient. Lacking a better 
name, we will refer to this condition characterized by higher dissipative forces 
as one of turbulence, although without committing ourselves as to its precise nature. 

A valuable step in analysing these experiments was taken by Gorter and Mellink 
(1949) who postulated that the equations of motion of the two-fluid model would 
still be valid in the turbulent region provided that additional frictional terms were 
included. Besides the viscous forces 7, acting on the normal fluid alone, they 
postulated a mutual friction force acting between the two fluids and of the form 
F,, = Apspn(vs- u , ) ~ ,  the cube relation being chosen to give the correct dependence 
of heat flow on temperature gradient, Hence they write 

. . . . . .  dvn p - = - fi gradp - p , S  grad T + Ap, pn(v, - v,)~ + 71,V2 v,, 
" d t  p 

these equations being equivalent to Landau's if A = 0 (Dingle 1949). 
5 
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These equations account moderately well for the heat flow experiments, although 
the values of the constant A deduced from measurements made with different 
sized slits at different temperatures vary by over a factor of two. However, they 
do not seem capable of accounting for the flow of the liquid through narrow channels 
such as described by Hung, Hunt and Winkel (1952) and more particularly by 
Atkins (1951). As these flow experiments are both difficult to carry out and to 
interpret, too much weight should not perhaps be attached to some quantitative 
discrepancy, but even so the equations appear to be inadequate. 

Equations (18) as they stand also fail to interpret the oscillating disc experiments 
of Hollis-Hallett (1952) ; for example, figure 19 shows the excess damping which 
would be expected using a value of mutual friction deduced from the heat flow 
measurements. Actually the excess damping observed varies with temperature in a 
rather similar manner to the density of the superfluid, suggesting the presence of a 
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Figure 19. The excess damping on a pile of discs oscillating in liquid helium which results when 
(Amplitude and period of oscillation : 0.215 radian 

The curves show the experimental values and the values pre- 
large amplitudes of oscillation are used. 
and 2.60 sec respectively.) 
dicted by the Gorter-Mellink theory (after Hollis-Hallett 1952). 

frictional force F ,  which acts in the superfluid alone. The  existence of such a super- 
fluid viscous term in addition to the mutual friction force is confirmed by measure- 
ments of the viscosity using a rotation viscometer (Heikkila and Hollis-Hallett 1955). 
In  the steady state the mutual friction term cannot give rise to any torque, but at 
the higher velocities a contribution to the torque is observed over and above that due 
to the viscosity of the normal fluid. Finally, to round off the argument, we mention 
that the flow experiments of Atkins (1952) would seem to indicate that if only a 
force F, were present (and no mutual friction), then the heat transport that would 
be deduced from measurements of fluid flow would be grossly too large. Thus to 
account for the above results it seems that both terms F, and F,, must be added to 
the equations of motion. Of course there is no need to postulate two different 
mechanisms ; if some form of viscosity is set up in the superfluid, one would 
expect it to be accompanied by some interaction with the normal component. 



The Theory of Liquid 4He 67 

7.2. The Critical Velocity 
An important feature of turbulence is shown in the results of Allen and Misener 

The  (1939) for the velocity of flow in slits to 10-5cm wide (figure 20). 
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Figure 20. The velocity of flow of liquid helium through fine channels at 1 . 2 " ~ .  Channel 
width as shown (after Allen and Misener 1939 and Atkins 1952). 

velocity has a value almost independent of pressure but depending on the particular 
conditions of the experiment ; this value is presumably the critical velocity, above 
which the viscous forces set in so suddenly that any further increase of velocity is 
energetically impossible. The  figure also shows that the rate of flow, and therefore 
the critical velocity, decreases by a factor of about 4 for an increase in slit width 
of about 30 times. A dependence of critical velocity on the smallest linear dimension 
of the liquid is observed in many different types of experiments and appears to 
be one of the most fundamental aspects of the onset of turbulence. Thus Atkins 
(1951) has observed the flow of helium through capillaries up to cm diameter 
and shown that the critical velocity continues to decrease with increasing diameter 
up to at least cm, although in this case the flow of the normal fluid becomes so 
considerable that it is difficult to obtain accurate values. The experiments with 
oscillating disc and rotation viscometers, referred to above, give a clear indication 
of the onset of turbulence ; and in the case of the rotation viscometer it seems 
reasonable to assume that the critical dimension is the gap between the two 
cylinders. 

Several recent experiments have helped to clarify the position by showing how 
the mutual friction depends on the velocities of the two fluids. Winkel, Delsing 
and Gorter (1955) have measured the fountain effect across slits of such width 
that the full fountain pressure is not developed because the slit is not completely 
impermeable to the normal fluid. From the equations of motion they show that 
the reduction in fountain pressure in their experiments is directly proportional to 
the constant of mutual friction, and are therefore able to obtain values for this 
constant. Winkel (1955) has shown that if helium is caused to flow from vessel P 
to Q through a narrow slit by the supply of heat to Q, then the motion does not 
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cease immediately on cutting off the supply of heat. Observations of this ' over- 
shoot' effect by Winkel, Delsing and Poll (1955) lead to further values for the 
mutual friction and also to accurate values of the critical velocity. Finally, Winkel, 
Broese van Groenou and Gorter (1955) have made and analysed new measure- 
ments of heat flows in narrow slits at sufficiently low heat current densities so as 
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Figure 21. The coefficient of mutual friction A as a function of the velocity of the superfluid ztg 
(in arbitrary units). 

WGG : Winkel, Groenou and Gorter (1955) ; 
WDG : Winkel, Delsing and Gorter (1955) ; 
WDP : Winkel, Delsing and Poll (1955). 

(After Winkel, Groenou and Gorter 1955.) 
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Figure 22. The critical velocity of the superfluid as a function of the smallest linear dimension 

of the helium d. 
JH : from film thickness (Jackson and Henshaw 1950) ; 
DM : from film thickness (Daunt and Mendelssohn 1939) ; 
AM : from flow (Allen and Misener 1939) ; 
A : from flow (Atkins 1951) ; 
H : from viscosity (Hollis-Hallett 1952) ; 
WDP : from ' overshoot effect ' (Winkel, Delsing and Poll 1955). 

(After Dash 1954 and Winkel, Delsing and Poll 1955.) 

to be able to observe the transition to turbulence. From all these data it is possible 
to decide which is the crucial velocity, that of the normal or of the superfluid or 
their relative velocity. Figure 21, taken from Winkel, Broese van Groenou and 
Gorter, shows values of the mutual friction constant A, obtained by the different 
Leyden methods, for a given temperature and slit width, plotted against the velocity 



The Theory of Liquid 4He 69 

of the superfluid. We see that in all the rather different experiments there seems 
to be a unique relation between the values of A and the superfluid velocity. More- 
over this would not be the case if the normal or relative velocities were taken as 
abscissae, for in flow type experiments KN<, but in heat transport experiments 
V , ~ < p , / p , .  Thus it appears that it is the velocity of the superfluid which gives 
the criterion for the onset of turbulence; similar conclusions have also been 
reached by Dash (1954) and Vinen (1955) using somewhat different arguments. 
Figure 22 summarizes how the critical velocity of the superfluid depends on the 
linear dimensions of the helium; it is seen that the results from many different 
experiments fall into a common pattern. 

7.3. Vortex Lines 
The experimental evidence summarized in the last section suggests that at a 

certain velocity, of the order of a few cm sec-l, and which depends on the dimen- 
sions of the apparatus, the superfluid becomes subject to frictional forces. This 
implies that some forms of excitation are being created in the superfluid, but, on 
Landau’s theory, excitations can only be formed if the velocity of flow is at least 
60 metres s e c 1  for rotons and 240 metres s e c 1  for phonons (5 5.1). Clearly some 
other mechanism has yet to be taken into account and we now consider what may 
have been omitted in Landau’s approach. 

The crux of the matter seems to be that the argument used by Landau to 
deduce values for the critical velocity implicitly assumes that the flow of the liquid 
is irrotational potential flow. (It assumes that when an excitation is created the 
velocity of the whole mass of moving liquid is reduced by the same small amount.) 
This point was well appreciated by Landau and he had already shown that the 
flow was potential (rot vB = 0) by arguments based on his quantum hydrodynamics. 
However, we have previously mentioned objections to the hydrodynamics, and 
these have recently been confirmed by an experiment which shows that on occasion 
the flow is definitely not potential. Hall (1955) has measured the torque needed 
to accelerate a cylindrical vessel containing liquid helium to a constant angular 
velocity, and has thus shown that when a steady state has been reached the whole 
mass of the helium is rotating. At first sight this result might seem to be at variance 
with Andronikashvili’s experiment (§ 5.2) in which velocities of the same order of 
magnitude were involved but only the normal fluid took part in the motion. How- 
ever, the two experiments are not inconsistent, for in Hall’s experiment it took 
about a minute for the superfluid to be accelerated to a steady velocity, and the 
acceleration was disproportionately small at the beginning of the motion. Thus 
one would hardly expect the superfluid to be set in motion at all in Andronikashvili’s 
experiment which concerned oscillatory motion of period about a second. It is 
this time effect which also accounts for the fact that temperature waves are not 
affected by turbulence, even though the velocities of the fluids may exceed the 
critical value for uni-directional flow. 

Given time it appears that the whole mass of liquid helium can be brought 
into rotation, and it now becomes necessary to consider what configuration the 
rotating helium is likely to adopt. It has been realized for some years (H. London 
1946, F. London 1954, Landau and Lifshitz 1955) that the most energetically 
favourable state would be one in which cylindrical annuli of the liquid performed 
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irrotational rotations about the axis, the annuli being separated by vortex sheets 
whose separation decreased with increasing angular velocity. Onsager (1949) has 
postulated that the vortex sheets consist of arrays of vortex lines and that these will 
be quantized. This concept has been discussed in detail by Feynman (1955) but 
as yet only in a rather qualitative way. However, although much is yet to be 
analysed, it seems clear that such vortices could be a source of mutual friction, 
and, being quantized, would presumably only be created under certain critical 
conditions. 

7.4. Rotating Helium 
The clearest evidence for the existence of the vortex lines discussed in the last 

section is an experiment on the propagation of temperature waves, by Hall and 
Vinen (1955). These authors mounted a temperature wave resonator, complete 
with heater and thermometer, in a vessel of liquid helium and rotated the whole 
assembly at constant velocity. When a steady state had been reached, it was found 
that there was an additional attenuation of the waves which was proportional to the 
angular velocity of the system. The  absorption increased if the cryostat was 
disturbed by shaking or if the rotating system was accelerated, but the most 
significant result was the presence of additional absorption just due to steady 
rotation. A rather similar experiment has also been performed by Wheeler, 
Blakewood and Lane (1955), who observed a greater attenuation probably because 
the geometry of their apparatus was such as to induce more turbulence in the liquid. 

Thus there is good ground for supposing that vortex lines are the key to the 
behaviour of liquid helium in the super-critical condition, but several problems 
have still to be elucidated. There is still no really satisfactory treatment relating 
the critical velocities discussed in $ 7.2 with the dimensions of the apparatus, 
although Feynman (1955) has made a start on this problem, and shown how the 
critical velocity could decrease with increasing slit width. There is also no explana- 
tion at all as to why the heat flow in the super-critical region varies approximately 
as the cube root of the temperature gradient. Again it is not entirely clear how 
the vortices are related to the two-fluid model, although they probably should be 
considered as another form of excitation with a very large scattering cross section. 
As the total energy per unit volume of the vortex lines is small compared with the 
heat energy (Feynman 1955), they will probably make little contribution to the 
density of the normal fluid. This view seems to be confirmed by two recent 
experiments on rotating helium which involve the density of the normal fluid: 
Hall and Vinen (1955) found that the velocity of temperature waves is unaffected 
by rotation, and Andronikashvili and Kaverkin (1955) have shown that the fountain 
pressure is also unaffected. 

$ 8 .  THE HELIUM FILM 
One of the most characteristic features of helium I1 is the phenomenon of film 

flow first described by Rollin (1936) and Rollin and Simon (1939), and investigated 
in an elegant series of experiments by Daunt and Mendelssohn (1939 b). The 
essence of the experimental arrangement is shown in figure 23 ; if the lower part 
of an empty beaker is lowered into a bath of helium, helium from the bath creeps 
up over the rim of the beaker until the liquid levels inside and outside are equal. 
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Similarly, if a beaker containing liquid is placed above the bath, the helium creeps 
over the rim and returns to the lower level in the bath. T o  account for this 
behaviour one recalls that if a solid surface is in contact with any liquid having a 
positive angle of contact, a thin film of liquid forms on it due to van der Waals 
forces. cm thick, and below 
the lambda point the superfluid component of the liquid in the film will be fully 
mobile, so that mass flow can take place under extremely small potential gradients. 
(In the beaker experiment this potential is provided by the variation of the free 
energy of the vapour with height above the lower liquid level.) Although this 
brief outline sums up the essential behaviour of the film, there is still much uncer- 
tainty over the details of the picture, principally because of the difficulties of 
establishing the experimental facts, and some of these points are now considered 
in more detail. 

I n  the case of helium this film will be of the order of 

Figure 23. ( U )  If an empty beaker is lowered into a bath of helium 11, film flow occurs over the 
surface of the beaker until the levels are equalized. (b)  If the beaker is now lifted above the 
bath, the helium flows out of the beaker via the film, drops off the bottom of the beaker and 
returns to the bath (&er Daunt and Mendelssohn 1939). 

8.1. The Thickness of the Film 
The thickness of the film below the lambda point was first measured by Daunt 

and Mendelssohn (1939 b) and Kikoin and Lazarew (1938), who determined the 
volume of liquid in the film covering a known large area. These authors obtained 
a value of about 3 x cm, essentially independent of temperature, and this 
result has since been confirmed several times. All the earlier experiments also 
led to the conclusion that above the lambda point the thickness of the film became 
quite small, about lo-' cm, a result apparently inconsistent with the suggestion of 
Frenkel (1940) and Schiff (1941) that the film owes its existence to van der Waals 
forces, which will presumably show little change in passing through the lambda 
point. However, both Frenkel and Schiff pointed out that although a film of 
helium I1 would be able to establish itself very quickly because of its high mobility, 
the same would not be true of helium I. In  fact, it seems that great precautions 
have to be observed in order to obtain the true equilibrium thickness of the film ; 
any extraneous influx of heat may evaporate the film at a rate greater than it can 
be replaced. Moreover, as Meyer (1954) pointed out, a very small reduction in 
pressure to just below the saturation value will lead to a very large reduction in 
the thickness of the film, and the excess helium will drop off very rapidly. How- 
ever, on restoring the pressure to its original value, the film above the lambda point 
is only able to build up to its original thickness very slowly ; it is not superfluid 
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and its low thermal conductivity will prevent it discharging the high heat of con- 
densation which must accompany the formation of liquid from the vapour phase. 
Thus it is not perhaps surprising that there are considerable discrepancies between 
different observations of the film. As mentioned above, nearly all the earlier work 
suggested that the film became quite thin above the lambda point ; but the recent 
work of Ham and Jackson (1954) has shown that, by taking sufficient precautions 
against heat influxes and temperature fluctuations, a thick film is also observed 
above the lambda point. Thus although the position is still confused, it seems 
likely that under carefully controlled equilibrium conditions the film is of at least 
comparable thickness above and below the lambda point, and this is confirmed by 
measurements of the absorption isotherms (see, for example, Long and Meyer 1953). 

Finally, according to Schiff and Frenkel, if the van der Waals forces obey the 
usual inverse sixth power law, then the thickness of the film should vary as h43, 
where h is the height above the surface of the liquid. Most workers have obtained 
results closer to an h-liz relationship but with considerable variations of the absolute 
magnitude, and it may well be that these variations are due to extraneous heat 
influxes and other miscellaneous causes. In  the former case the incoming heat 
would probably cause greater evaporation at the top of the film, and the thickness 
would fall off more quickly than according to the cube root relation (Meyer 1955). 
Schiff and Frenkel also pointed out that the film thickness should depend on the 
surface energy of the substrate, but in fact the expected difference even in favourable 
cases turns out to be within the variations in experimental observations (Smith and 
Boorse 1955). It must be added, however, that there is still no satisfactory explana- 
tion of the report by Ham and Jackson (1954) that if the substrate is contaminated 
with solid air the film may be considerably thicker, a result in accord with the earlier 
observations of Bowers and Mendelssohn (1950) that the flow rate in such cases 
is greatly augmented. 

8.2. Transport Properties 
Below the lambda point the film appears to be sufficiently thick for the properties 

of the helium in the film to be essentially those of the bulk liquid, and the film 
exhibits superfluidity and permits of a high heat transport. This superfluidity 
was studied in detail by Daunt and Mendelssohn (1939 b), who found that the 
rate of flow was proportional to the perimeter of the vessel ; their results are shown 
in figure 24. The rate of mass transport through the film will be proportional to 
the velocity of flow, to the thickness of the film and to the fraction of the helium 
free to move, that is to the superfluid density. As discussed in $ 7.2, one would 
expect the velocity of flow to be equal to the critical velocity which will in turn 
depend on the thickness of the film. Figure 24 shows that the rate of flow varies 
with temperature in much the same way as the density of the superfluid does ; 
this implies that the product of film thickness and critical velocity is independent 
of temperature. Therefore, as the film thickness is approximately independent of 
temperature at least below the lambda point, the critical velocity appears to be a 
function of film thickness which is at least approximately independent of temperature, 
a result which is not in disagreement with the conclusions of $7.3. (It should be 
mentioned that as the thickness of the film varies with height there is the very 
considerable difficulty that it is not really clear which value of the thickness is to 
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be taken as characteristic of the critical velocity.) We also note that both Ambler 
and Kurti (1952) and Waring (1955) have reported a considerable increase in the 
rate of film transport below about 0 .6"~ .  This result does not fit into the general 
picture, and it would be interesting to confirm it by experiments under rather more 
isothermal conditions than have hitherto been possible. 

T PK) 
Figure 24. The rate of transport of helium I1 through the film, as a function of temperature 

(uftw Daunt and Mendelssohn). 

Figure 25. The double-beaker experiment. The helium in the beakers flows through the film to the 
lowest gravitational level ; note that the flow takes place between the inner and outer beakers 
even though any difference in the levels is imperceptible (after Daunt and Mendelssohn 1946). 

One of the most significant of the film flow experiments is that of Daunt and 
Mendelssohn (1946) which is illustrated in figure 25 ; on lifting the double beaker 
assembly from the helium bath, the liquid from both inner and outer beakers ran 
out into the bath. In  particular flow took place from the inner to outer beaker, 
although no pressure or temperature gradient could be observed between them. 
Likewise, on lowering the beaker into the liquid, a flow occurred similarly but in 
the opposite direction. This behaviour implies that the kinetic energy of the 
moving liquid in the film is not dissipated on entering the bulk liquid but must 
be converted into free energy, that is to say the flow of the liquid must be purely 
potential flow. 

8.3. The Unsaturated Film 
A comparatively large number of experiments have been made on the unsaturated 

film, that is to say film in equilibrium with unsaturated helium vapour and therefore 
not so thick as the saturated film. The results of these experiments are not easy 
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to interpret, for apparently quite similar experiments do not always give the same 
results. At present it hardly seems possible to correlate all the observations into a 
coherent system, and it seems that some unaccounted factors may be influencing 
at least some of the experiments. The position has been reviewed by Long and 
Meyer (1953) ; here we only mention that the lambda anomaly in the specific heat 
is smeared out in thin films and occurs at a lower temperature (Frederikse 1949) ; 
the temperature at which superfluidity occurs is likewise depressed (Bowers, Brewer 
and Mendelssohn 1951, Long and Meyer 1955). This shift in the lambda tempera- 
ture as the thickness of the film approaches atomic dimensions has been briefly 
discussed by Ziman (1953 b), and is probably akin to the depression of the onset 
of superfluidity observed for the flow of helium through narrow channels of the 
order of 5 x lo-' cm diameter (Atkins, Seki and Condon 1956). 

3 9 .  THE PERMANENT LIQUIDS 
We have seen that an essential aspect of the behaviour of helium I1 is that it 

remains liquid down to very low temperatures where quantum effects are important. 
However, helium I (the modification of helium above the lambda point), the isotope 
3He, and mixtures of 3He and 4He also exist as liquids at these temperatures and 
have very different properties from helium 11. Thus any satisfactory theory of 
helium I1 must indicate whether or not these other ' permanent ' liquids behave 
like helium 11. Therefore we now give a short account of their properties, and 
then discuss whether their differences from helium I1 can be predicted from the 
present theory. 

9.1. Liquid Helium I 
Liquid 4He above 2 . 1 7 " ~  (helium I) does not exhibit superfluidity, a high 

transport of heat or any other of the phenomena associated with the two-fluid model, 
and is not very different from most other liquids. In contrast to helium 11 the 
specific heat has a value which only varies slightly with temperature (Keesom and 
Clusius 1932), and the expansion coefficient is positive. Viscous processes and 
heat flow may be described in the usual way by coefficients of viscosity (de Troyer, 
van Itterbeek and van den Berg 1951) and thermal conductivity (Bowers 1952), 
and the absorption of sound is entirely accounted for by the classical expression 
involving these two coefficients. As in the case of helium 11, the large influence 
of the zero-point energy results in the molar volume being very much greater than 
one would expect from classical theory. The atoms are comparatively free in this 
large volume and the behaviour of helium I is in some ways more like that of a 
gas than a liquid ; for instance, the coefficient of viscosity is small and decreases 
with falling temperature. However, the experiments of Tjerkstra (1952) show that 
if the helium is compressed to higher densities, thereby reducing the space available 
for each atom, the viscosity eventually rises with falling temperature as in other 
liquids (figure 26). The thermal conductivity also has a small value which decreases 
with falling temperature, and is related reasonably well to the coefficient of viscosity 
by the usual gas kinetic expression k = 2.57 (Grenier 1951). Virtually all the 
differences between helium I and helium I1 may be accounted for by the fact that 
helium I does not exhibit any of the phenomena characteristic of the two-fluid 
model, and it is satisfactory to see that this result is inherent in the theory of 
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helium 11. It is an essential feature of the two-fluid model that the normal density 
pn is less than the total density p, and also that pn increases steadily with temperature, 
thus at some temperature pn must become equal to p ; there is then no superfluid 
component and the whole concept of the two-fluid model becomes invalid. Indeed, 
the lambda point may be characterized by (P,)~ = p .  

h 
Q 

U * 

50 i 
e=- 

p - 0461 
T-- 

Figure 26. T h e  coefficient of viscosity of liquid helium I as a function of density. At low densities 
the viscosity decreases with falling temperature as in a gas, but at higher densities a more 
liquid-like behaviour is observed (qfter Tjerksta 1953). 

9.2. Liquid 3He 
Liquid 3He was first observed by Sydoriak, Grilly and Hammel (1949), and 

found to have a critical point at 3 . 3 4 " ~  in agreement with the value previously 
predicted by de Boer and Lunbeck (1948) using a reduced quantum-mechanical 
equation of state. The density of the liquid is very low (about 0.08 g ~ m - ~  at 
1 ' ~  compared with 0-14 g cm-3 for 4He), indicating the large role played by the 
zero-point energy. As in the case of 4He, the liquid does not solidify under its 
vapour pressure, at least down to 0 . 5 " ~  (Osborne, Abraham and Weinstock 1952), 
and a pressure of at least 30 atmospheres must be applied to obtain the solid phase. 
The adsorption isotherms (Hoffman, Edeskuty and Hammel 1956) are very like 
those for 4He. Thus it appears that the interatomic forces in liquid 3He and 4He 
are quite similar and give rise in both cases to liquids with a very open structure 
which remain fluid down to the lowest temperatures. 

At present the number of experiments reported on 3He is small compared with 
the very large number on 4He, but it is already clear that the lighter isotope has 
quite different properties. Measurements of the specific heat and entropy give 
no indication of any lambda or other type of transition down to 0 . 3 " ~  (Osborne, 
Abraham and Weinstock 1954, Roberts and Sydoriak 1954, de Vries and Daunt 
1954). Weinstock, Osborne and Abraham (1949) using a flow-type experiment 
have shown that the viscosity has a quite normal value of about 25 pp and that 
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there is no evidence of superfluidity down to 1.05"~.  Daunt and Heer (1950) 
showed that the addition of 3He to 4He depresses the lambda point as defined by 
the onset of superfluid flow in the film ; a solution containing 89% of 3He has a 
lambda temperature of 0.38" and it appears likely that pure 3He will not give rise 
to a superfluid film at all. Thus it seems well established that liquid 3He does 
not exhibit the phenomena characteristic of the two-fluid model. 

For lack of a better model the properties of 3He have been discussed on the 
assumption that it behaves rather as an ideal Fermi-Dirac gas, even though the 
limitations on regarding 4He as an ideal Bose gas are known to be considerable 
( 5  9.4). The vapour pressure and the specific heat measurements are in quite fair 
agreement with such a model and one would thus predict a degeneracy temperature 
of about 5 ' ~ .  However, this result is at variance with measurements of the magnetic 
susceptibility arising from the nuclear spin of the 3He atoms ; this susceptibility obeys 
Curie's law down to about 0.5" K (W. M. Fairbank, Ard and Walters 1954) indicating 
that it is only at about this temperature that degeneracy sets in. The present 
position, which has been reviewed by Hammel (1955), is obscure and will not be 
considered further, it being sufficient here to note that the properties of 3He are 
substantially different from those of 4He. 

9.3. Liquid 3He-4He Mixtures 
At first sight it might appear superfluous to treat 3He-4He mixtures as distinct 

forms of permanent liquids, but in fact some of their properties differ markedly 
from those of either pure isotope. Owing to the relative scarcity of 3He most 
experiments have been made with solutions containing only a small percentage 
of this isotope, but as we are concerned principally with the properties of 4He this 
is of no great consequence. At low concentrations, the 3He atoms will be virtually 
independent of each other and will not exhibit any of the bulk properties of 3He, 
they rather act as a solute or impurity (Landau and Pomeranchuk 1948). Thus 
they give rise to an osmotic pressure whose magnitude is determined by the law 
of van? Hoff, and which may be developed between two vessels joined by a very 
fine slit which is permeable only to superfluid 4He (Taconis, Beenakker and 
Dokoupil 1950). According to the nature of the two-fluid components of helium 11, 
it is to be expected that solute atoms will interact only with the excitations, and 
will therefore be carried along with the normal fluid (Landau and Pomeranchuk 
1948, Khalatnikov 1952 d). Thus in the presence of a temperature gradient all 
the 3He is carried to the cold part of the apparatus by the flow of normal fluid, 
and this is the basis of the heat flush method of concentrating 3He from 3He-4He 
mixtures (Lane, H. A. Fairbank, Aldrich and Nier 1948). The association of the 3He 
with the normal fluid is confirmed by Andronikashvili disc measurements in 3He-4He 
mixtures (Pellam 1955) ; the density of the normal fluid does not tend towards 
zero at low temperatures but appears to take up a constant value equal to about 
twice the mass of the 3He atoms present in unit volume (figure 27). This increase 
in pn indicates that the 3He atoms are dragged round with the discs ; that the 
magnitude of the increase is about twice the mass density of the 3He atom may be 
accounted for by the fact that the moving atoms have to push aside 4He atoms and 
hence have a greater inertial resistance than their own mass (Feynman 1954). Pellam 
also obtained semi-qualitative values for the viscosity of the normal component, 
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and found that the value of rln no longer increased below 1 . 4 " ~  as in pure 4He. 
The  viscosity of the pure liquid rises because the decreasing number of rotons results 
in a longer mean free path for the phonons and a correspondingly greater transport 
of momentum. The additional 3He atoms act as a comparatively large number of 
scattering centres, the mean free path remains constant, and the viscosity decreases 
steadily with falling temperature as the number of phonons decreases. 

t I 
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Figure 27. The  normal density pn of a 3.3% *He4He solution, as measured by Andronikashvili's 
At low temperatures the density does not tend towards zero but takes up a value method. 

of the order of the effective density of the SHe (after Pellam 1955). 

At first sight it might appear that a small percentage of 3He atoms in liquid 
4He would form scattering centres which would considerably reduce the transport 
of heat in the liquid. However, these impurity atoms are not fixed in space as 
they would be in a solid, but are free to move with the normal fluid. Thus as the 
high heat transport in liquid 4He is due to the relative motion of the two fluids, 
it will not be much affected if some 3He atoms are carried along with the normal 
fluid. This is well shown by the experiments of Lynton and H. A. Fairbank 
(1950), who observed that a pulse of heat is not appreciably attenuated by the 
addition of small amounts of 3He. I t  is to be noted that the above discussion 
assumes that the 3He atoms are distributed uniformly through the liquid, but in 
fact they will tend to diffuse to the colder parts of the apparatus and form a con- 
centration gradient there. In  the experiments of Lynton and Fairbank, a uniform 
concentration of 3He was ensured by the use of single pulses in order to keep the 
total heat flow very low, but if an attempt is made to measure heat flows under 
steady uni-directional conditions, then a concentration gradient of 3He will be set up. 
In  measurements of this type, the concentration gradient near the colder surface 
will prevent the free movement of 3He atoms, and forces will be set up tending to 
restrain the motion of the normal fluid. Thus the measured heat flow is reduced 
from the very high value typical of 4He to a quite moderate value (Beenakker, Taconis, 
Lynton, Dokoupil and van Soest 1952). Finally, as shown in figure 28, the addition 
of a small amount of 3He (say lye) to liquid 4He will permit the liquid to transmit 
sharp pulses of temperature waves down to at least 0.2"K (King and H.  A. Fairbank 
1954). As discussed in $ 6 . 3 ,  temperature waves are not observed in pure 4He 
below about 0 . 7 " ~  because there are so few interactions between the excitations 
that equilibrium in the normal fluid cannot be established in distances of the order 
of a wavelength. However, even for a 1% concentration, the 3He atoms are quite 
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close together and, as is shown by the heat flush experiments, they interact with 
the excitations ; thus equilibrium may be established in the normal fluid and tem- 
perature waves observed. King and Fairbank also showed that the presence of 
3He atoms has a large effect on the velocity of the waves (figure 29), because the 
3He changes the values of both pn and the specific heat and entropy of the liquid 
(Pomeranchuk 1949). At very low temperatures the normal fluid consists almost 
entirely of 3He atoms and a temperature wave is essentially a variation in the density 
of these atoms which drag the phonons along with them. In this region the velocity 
of the waves should approximate to that of a sound wave in a gas of 3He atoms, 

Figure 28. The shape of heat pulses through liquid helium and viewed on an oscilloscope trace : 
(a) pure 4He at 0.45"~, (b )  4He containing 0.32% SHe at 0 . 4 5 " ~  (after King and H. A. Fairbank 
1954). 

Figure 29. The velocity of temperature waves in SHe-4He solutions as a function of temperature 
(after King and H. A. Fairbank 1954). 

and therefore be of the order of the velocity of the 3He atoms, that is (3kT/p)l12 
where p is the effective mass (Feynman 1954). A more exact expression has been 
given by Pomeranchuk, namely (5kT/3p)''z, and although this does not appear to be 
in quantitative agreement with the measured values it is at least qualitatively correct. 

As mentioned previously, the lambda point is depressed by the addition of 3He ; 
this may be accounted for by the fact that the 3He atoms increase the effective 
density of normal fluid, and therefore the criterion for the lambda point [(pJn = p] 
is attained at lower temperatures. Measurements have also been made on the 
specific heat of mixtures, on the heat of mixing, and on the relative concentration 
of the two isotopes in the gaseous and liquid phases. These last experiments 
have been reviewed in detail (Daunt 1952, Beenakker and Taconis 1955), but do 
not at present seem to throw much light on the properties of pure *He. 
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9.4. Statistics and the Lambda Point 

We have seen that dilute solutions of 3He in helium I1 behave in a manner 
which may be predicted by an extension of the theory of helium I1 ; however, 
the same is not true of 3He itself, and it seems that this is due to the influence of 
statistics. Thus 3He presumably obeys Fermi statistics, whereas the theory of 
4He assumes that the particles obey Bose statistics, and that permutations of the 
atoms leave the wave function quite unchanged. I t  is significant that if one calcu- 
lates the quantity pn of equation (6) (the normal density of the two-fluid model) 
for Bose-Einstein and Fermi-Dirac ideal gases, one finds that pn is equal to the 
total density except for a Bose-Einstein gas below the ' condensation ' temperature. 
Thus the essential feature of the two-fluid model appears to be a characteristic 
of an assembly obeying Bose statistics. We may also mention here that de Boer 
and Cohen (1955) have discussed a cell model in which each cell contains more 
than one atom, and in which exchange effects are therefore important, It is by 
no means clear how this model is to be associated with the present theory ; but 
for a cell model with four atoms in each cell the statistics are responsible for a very 
large difference in the entropy of the two isotopes, such as is observed (figure 30). 

observed 
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0 0.5 1.0 1.5 

T (OK) 
Figure 30. The entropy of 3He and 4He as calculated using a cell model with four atoms in each cell 

(after de Boer and Cohen 1955). 

The importance of statistics was first stressed by F. London (1938), who pointed 
out that an ideal gas of the same density as liquid helium, and obeying Bose statistics, 
should exhibit an unusual type of phase transition at 3 .14"~,  with a specific heat 
anomaly somewhat similar to that observed in the liquid. He therefore suggested 
that the lambda transition was the analogy in the liquid of the ' condensation ' 
in the perfect gas, and on this basis Tisza was able to predict the existence of tem- 
perature waves. However, any such analogy cannot be a very close one, for liquid 
helium is not an ideal gas but an assembly of real atoms packed together as closely 
as they can get. From the specific heat and thermal conductivity measurements 
below 0 . 6 " ~ ,  it is clear that there is a contribution to the thermal energy akin to 
that in a Debye type solid, and this certainly cannot arise in an ideal gas. The  
temperature of the lambda point decreases with increasing density of the liquid, 
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in contrast to what would be expected for an ideal gas. The  observed scattering 
cross section of helium I1 for neutrons (Sommers, Dash and Goldstein 1955) is 
quite different from that calculated using the gas model (Goldstein, Sweeney and 
Goldstein 1950), and the scattering of light is much less (Jakovlev 1943) than is 
predicted (Galanin 1940, Schiff 1941). Finally, as discussed in $5 5.3 and 5.5, 
Tisza’s theory leads to quite incorrect values for the fountain pressure and the velocity 
of temperature waves at low temperatures. 

Although the ideal gas treatment is plainly inadequate, Feynman (1953 a) has 
shown that a form of Bose condensation is to be expected even in an assembly of 
strongly interacting particles. Feynman proceeds by writing down the complete 
partition function for the liquid, which he then simplifies and evaluates by approxi- 
mate methods. Even the simplified function is difficult to evaluate, and Feynman 
concluded that the predicted transition was third order rather than second ; how- 
ever, Chester (1955) claims that a more accurate evaluation of the partition function 
leads to a second-order transition as is observed. It is typical of the difficulties 
in carrying out this evaluation that it is not entirely clear whether Feynman’s 
partition function also leads to a liquid-gas transition of the normal type ; see, for 
example, ter Haar (1954) and Chester (1955), who advance opposing views. We 
note also that Feynman predicts that the specific heat begins to rise in the helium I 
region as the lambda point is approached, as is observed. 

$ 10. C O N C L U S I O N  
To sum up the present position we can hardly do better than quote Landau 

(1949) : “ I t  follows unambiguously from quantum mechanics that for every slightly 
excited macroscopic system a conception can be introduced of ‘ elementary excita- 
tions ’, which describe the ‘ collective ’ motion of the particles and which have 
certain energies E and momenta p (leaving aside the question as to the actual 
dependence ~ ( p ) ,  i.e. the actual form of the energy spectrum). It is this assumption, 
indisputable in my opinion, which is the basis of the microscopical part of my 
theory. On the contrary, every consideration of the motion of individual atoms 
in the system of strongly interacting particles is in contradiction with the first 
principles of quantum mechanics.’’ The consideration of the role of the excitations 
rather than of the atoms is the distinctive contribution made by Landau to the 
theory of helium I1 ; the ‘ normal fluid ’ is an aggregate of excitations rather than 
of excited atoms, as postulated by Tisza. It is for this reason that the phonons 
which are responsible for the behaviour of second sound and the fountain effect at 
low temperatures enter naturally into Landau’s theory but not into Tisza’s. 
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