Chapter 1

Escape from Metastable
States in a Nonequilibrium
Environment

P.I. Hurtado

Department of Physics, Boston University, Boston, MA 02215, USA
phurtado@buphy.bu.edu

J. Marro and P.L. Garrido

Departamento de Electromagnetismo y Fisica de la Materia, and

Instituto Carlos I de Fisica Tedrica y Computacional, Universidad
de Granada, Granada E-18071, Espana

We review in this paper some results on metastability in a two-dimensional Ising
ferromagnet relaxing toward a nonequilibrium steady state. Nucleation in this case
may be understood in terms of a nonequilibrium free energy, which predicts Noise
Enhanced Stability of the metastable state for low temperature in a nonequilibrium
environment. This is a consequence of the anomalous, non-monotonous temperature
dependence of the nonequilibrium surface tension. In addition, when subject to both
open boundaries and nonequilibrium fluctuations, the metastable system decays via
well-defined avalanches. These exhibit power-law size and lifetime distributions. We
expect some of these results to be verificable in actual (impure) specimens.

1.1 Introduction and Model Definition

Many natural phenomena are characterized by the presence of metastable states
slowing down the dynamics.[1, 2] Metastability is a dynamic phenomenon not
included in ensemble formalism,[1] and its microscopic understanding still raise
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many fundamental questions. Studying simple models is therefore most useful.
In particular, the two-dimensional Ising model has been subject to a number
of analytical and numerical studies regarding metastability.[1, 2, 3] All these
studies concern systems relaxing toward an equilibrium steady state. However,
most interesting is the case in which the system converges toward a nonequi-
librium stationary state.[4] Nonequilibrium conditions are more likely found in
nature, and they characterize the evolution of most real systems. In particu-
lar, metastability in a nonequilibrium environment is relevant to the behavior of
real magnetic particles, where impurities dominating the particle behavior cause
break-up of detailed balance.[5]

We study in this paper metastability in a nonequilibrium Ising model. Con-
sider a two-dimensional square lattice of side L with periodic boundary condi-
tions. We define on each of its nodes i € [1, N = L?] a spin variable s; = +1.
Spins interact among them and with an external magnetic field i via the Hamil-
tonian function # = — Y s;5; — Y\ s;, where the first sum runs over all
nearest-neighbors pairs. In addition, we endow this model with a stochastic
single spin-flip dynamics with transition rate,
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(1.1)
where s and s? stand for the system configuration before and after flipping the
spin at node i, respectively, AH; is the energy increment in such flip, and
B = 1/T. For any 0 < p < 1 two different heat baths compete in (1.1),
and a nonequilibrium steady state sets in asymptotically, characterized by a
non-Gibbsian measure.[4] This is the simplest way of inducing nonequilibrium
behavior in simple lattice systems,[4] and it is assumed that this kind of stochas-
tic, non—canonical perturbation for p > 0 may actually occur in Nature due to
microscopic disorder and/or impurities, etc.[5] The zero-field model exhibits a
second-order phase transition at a critical temperature T.(p) < T.(p = 0) =
Tons, where T,,s ~ 2.2691, between a low-temperature ordered phase and a
high-temperature disordered one. Order disappears for p > p. & 0.17 even for
T = 0. On the other hand, for p = 0 we recover the usual equilibrium Ising
model with Glauber dynamics.

1.2 Escape from Metastable States

For small h < 0 and T' < T.(p), an initial state with all spins up, s; = +1 for
i =1,...,N, is metastable. It eventually decays toward the stable state, which
corresponds now to a state with magnetization m = N—! Zfil $; < 0. In order
to characterize this metastable state, we measured its mean lifetime for values
of T and p such that T' < T.(p) and a magnetic field h = —0.1. We define the
mean lifetime of the metastable state, 7(T, p, h), as the mean first-passage time
(in Monte Carlo steps per spin, MCSS) to m = 0. The simulations reported here
required in practice using the s-1 Monte Carlo with absorbing Markov chains
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Figure 1.1: Metastable lifetime results as a function of 7" for L = 53, h = —0.1 and,
from top to bottom, p = 0, 0.001, 0.005 and 0.01. The nt" curve (from top to bottom) is
rescaled by a factor 1072(" =Y. Points are Monte Carlo results obtained after averaging
over Ngzp = 1000 experiments. Full lines are predictions based on necleation theory
(see main text). Dashed lines are predictions derived using the 1-parameter deformed
F'(R) = a(p)F(R), with a(p) = 1,0.85,0.77,0.65 from top to bottom.

(MCAMC) algorithm, and the slow forcing approzimation.[6] Fig. 1.1 shows
7(T,p,h) as a function of T for L = 53 and p € [0,0.01]. Rather amazing, we
observe that the nonequilibrium metastable lifetime exhibits non-monotonous
temperature dependence: 7(T,p > 0,h) increases with temperature at low T'
for a fixed p > 0, showing a maximum at a non-trivial temperature T}, (p),
and then decreasing as temperature drops. That is, the local stability of the
metastable state at low T and p > 0 (nonequilibrium environment) is enhanced
by the addition of thermal noise. This behavior resembles the Noise-Enhanced
Stability (NES) phenomenon reported in experiments on unstable systems.|[7]
On the other hand, adding nonequilibrium noise (increasing p) for a fixed T
results always in a shorter 7, so only thermal NES is observed.

In order to understand this result, let us first point out that, in equilibrium
(p = 0), the escape from the metastable state is a highly inhomogeneous process
triggered by large, compact stable-phase fluctuations or droplets, which grow or
shrink into the metastable sea depending on the competition between their sur-
face, which hampers droplet growth, and their bulk, which favours it. For p = 0,
the evolution of a stable-phase droplet of radius R and volume V = Q(T)R? is
controled by its free energy, F(R) = 2Q(T)Roo(T) — QT)R*2ms(T)|h|,[2, 8]
where o¢(T") is the zero-field surface tension along a primitive lattice vector,
m4(T') is the zero-field spontaneous magnetization, and 2(7') is the droplet form
factor. In this way, there exists a critical droplet size R. such that small (sub-
critical) droplets (with large surface/volume ratio) tend to shrink, while large
(supercritical) droplets tend to grow.

In principle, under nonequilibrium conditions (p > 0), no free energy may
be defined. However, direct inspection of escape configurations confirms for
p > 0 that droplet picture (characterized by the surface-bulk competition) is still
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valid here. That is, the relevant excitations responsible of the metastable-stable
transition are the same is essence for both the nonequilibrium and equilibrium
cases. This allows us to assume that the nonequilibrium demagnetization process
is controled by a droplet nonequilibrium free energy,

F(R) = 2Q(T, p)Roo(T, p) — AT, p)R*2m,(T, p)|hl, (1.2)

where oo (T, p), ms(T, p) and Q(T, p) are the nonequilibrium counterparts of the
above-defined observables. This plausible, although unjustified, hypothesis al-
lows us to apply homogeneous nucleation theory[2] to this far-from-equilibrium
system, and projects the metastability problem into the more tractable exercise
of calculating how nonequilibrium conditions affect both the surface and the bulk
in this spin model. This has been addressed in a recent series of papers.[9] The
interfacial properties of our model, and in particular the nonequilibrium surface
tension, oo(7,p), have been studied using an extended Solid-On-Solid (SOS)
approximation. This approach shows that oo(T,p > 0) is a non-monotonous
function of temperature. Homogeneous nucleation theory[2, 8] then predicts
that most relevant observables associated to metastability, and in particular
the mean lifetime of metastable states, inherit the non-monotonous behavior of
oo(T,p > 0). Fig. 1.1 shows theoretical expectations based on droplet theory,
using the SOS estimation for oo(T,p > 0) and Q(7T,p), and a mean field ap-
proximation for mg(T,p).[9] As observed, agreement is very good. This good
agreement extends also to other observables, such as the droplet critical radius,
Re(T,p, h), etc. Hence, the observed Noise Enhanced Stability of nonequilib-
rium metastable states at low T is derived from the non-monotonous temper-
ature dependence of the nonequilibrium surface tension, and the hypothesis of
a nonequilibrium free energy controling the escape from the metastable region
turns out to be sensible to correctly describe the metastable-stable transition in
a nonequilibrium environment.

1.3 Avalanches during Relaxation

The previous observations concern the bulk metastability. However, in real mag-
nets, one needs in practice to create and to control fine grains, i.e., magnetic par-
ticles with borders whose size ranges from mesoscopic to atomic levels, namely,
clusters of 10* to 102 spins, and even smaller ones. Though experimental tech-
niques are already accurate for the purpose, the underlying physics is much less
understood than for bulk properties. In particular, one cannot assume that
such particles are neither infinite nor pure. That is, they have free borders,
which results in a large surface/volume ratio inducing strong border effects, and
impurities. Motivated by the experimental situation, we also studied a finite,
relatively small two—dimensional system subject to open circular boundary con-
ditions. The system is defined on a square lattice, where we inscribe a circle of
radius r; sites outside this circle do not belong to the system and are set s; = 0.
We mainly report in the following on a set of fixed values for the model param-
eters, namely, h = —0.1, T = 0.117,,,; and p = 1075. This choice is dictated
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Figure 1.2: (a) Time variation of the magnetization showing the decay from a
metastable state for a r = 30 particle; avalanches are seen here by direct inspec-
tion. Time is in Monte Carlo Steps per Spin (MCSS), and 7o ~ 10°° MCSS. The
inset shows a detail of the relaxation. (b) Large avalanche size distribution P(A,,) for
the circular magnetic nanoparticle and, from bottom to top, r = 30, 42, 60, 84 and
120. (For visual convenience, curves have been shifted vertically.) The inset shows the
avalanche duration distribution for the same system sizes.

by simplicity and also because (after exploring the behavior for other cases) we
came to the conclusion that this corresponds to an interesting region of the sys-
tem parameter space, where many metastable states emerge slowing down the
system relaxation, and where the effects of p and T' are comparable and clusters
are compact and hence easy to analize.

The effects of free borders on the metastable-stable transition have already
been studied for equilibrium systems.[10] In this case, the system evolves to
the stable state through the heterogeneous nucleation of one or several critical
droplets which always appear at the system’s border. That is, the free border
acts as a droplet condenser. This is so because it is energetically favorable for
the droplet to nucleate at the border. Apart from this, the properties of the
metastable-stable transition in equilibrium ferromagnetic nanoparticles do not
change qualitatively as compared to the periodic boundary conditions case.[10]
In our nonequilibrium system we observe a similar behavior. However, the fluc-
tuations or noise that the nonequilibrium metastable system shows as it evolves
towards the stable state subject to the combined action of free borders and the
nonequilibrium perturbation are quite unexpected.

As illustrated in Fig. 1.2.a, the relaxation of magnetization occurs via a se-
quence of well—defined abrupt jumps. That is, when the system relaxation is ob-
served after each MCSS, which corresponds to a 'macroscopic’ time scale, strick-
tly monotonic changes of m(t) can be identified that we shall call avalanches in
the following. To be precise, consider the avalanche beginning at time t,, when
the system magnetization is m(t,), and finishing at ¢,. We define its size and
duration, respectively, as A, = |m(tp) —m(ty)| and Ay = |ty —t,|. Our interest is
on the histograms P(A,,) and P(A;). Fig. 1.2.b shows the large avalanche size
distribution P(A,,) for particle sizes r = 30, 42, 60, 84 and 120, after an extrinsic
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noise[11] (i.e. some trivial, exponentially distributed small avalanches) has been
substracted. A power law behavior, followed by a cutoff is clearly observed. The
measured power law exponents, P(A,,) ~ AT show size-dependent correc-
tions to scaling of the form (7)) = 7 +a17~2, with 75, = 1.71(4). The duration

distribution also exhibits power law behavior, P(A;) ~ At_a(r), with a cutoff,
and again a(r) = oo +aar 2 with as = 2.25(3). Remarkably, size and duration
cutoffs also scale algebraically with system size.[9] Similar finite size corrections
have been also found in real experimental systems.[12, 13, 14] These power laws
imply that avalanches are scale-free (up to certain maximum size and duration)
in our nonequilibrium ferromagnet subjected to open boundary conditions. We
also measured avalanches for p = 0 in the circular magnetic particle, and for
p # 0 in the periodic boundary conditions system. In both cases only small
avalanches occur and the distributions are exponential-like, thus indicating the
absence of scale invariance. That is, the combined action of free boundaries and
impurities is behind the large, scale-free avalanches.

Another main result is that the reported power laws are in fact a finite sum
of exponential contributions. This fact, together with the lack of any divergent
correlation length in the system, rules out the presence of any underlying critical
point, neither plain nor self-organized.[9] To prove the latter result, we followed
the demagnetization process in a large circular particle. The main interest was
in the interface between the rich and poor spin—up regions at low temperature.
One observes curved interfaces due to the faster growth of the domain near
the concave open borders. In fact, the critical droplet always sprouts at the
free border.[10] Then, given that curvature costs energy, the large avalanches
tend to occur at the curved domain walls which, consequently, transform into
rather flat interfaces. We confirmed this by measuring P(A,, | C), the condi-
tional probability that an avalanche of size A,, develops at an interface region
of curvature C.[9] This distribution exhibits (stretched) exponential behavior,
P(A,, | C) ~ exp[— (A /A)7" with n ~ 0.89. That is, a wall of curvature
C induces avalanches of typical size A,,(C). This fact turns out most relevant
because, due to the free borders and impurities, the interface tends to exhibit a
broad range of curvatures with time. Therefore, what one really observes when
averaging over time is a combination of many different avalanches, each with
its typical well-defined (gap—separated) size and duration, which results in an
effective distribution. The fact that this combination depicts several decades
(more the larger the system is) of power—law behavior can be mathematically
understood on simple grounds, studying finite superpositions of many exponen-
tial distributions.[9]

Scale-invariant (or 1/f) noise has been found in many complex systems,
ranging from electronic devices to superconducting vortices, human cognition,
earthquakes and radiation from white dwarfs, to mention some. The hypothesis
that some underlying mechanism is common to many situations is therefore
appealing. Many possible generic mechanisms have been proposed in literature,
most of them based on possible underlying critical phenomena. After much
effort, there is no full agreement on a globally coherent explanation, however. We
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have seen here that a non-critical superposition of many different scales can give
rise to 1/ f noise. In addition, the properties of fluctuations in our oversimplified
model are indistinguishable in practice from what one measures in many natural
phenomena showing 1/ f noise. For instance, size corrections similar to the ones
observed here for n(r) and a(r) have been reported in avalanche experiments on
rice piles,[12] and our values for 7, and a«, are amazingly close to those reported
in some magnetic experiments for quasi-two dimensional systems.[11] Moreover,
our cutoff values follow the precise trend observed, for instance, in magnetic
materials. All these facts (and other, not mentioned results[9]) indicate that
the mechanism here proposed, namely the non-critical superposition of many
different scales, is a good candidate to explain the origin and ubiquity of 1/f
noise in many natural systems in which a series of transitions between many
different, short-lived metastable states characterize the dynamics.

1.4 Conclusion

We have reviewed in this paper some results on the escape from metastable
states in a two-dimensional Ising ferromagnet evolving toward a nonequilibrium
steady state. Relaxation in this case is considerably enriched as compared to
equilibrium. In particular, using periodic boundary conditions, we have shown
that the stability of the metastable state at low T is enhanced by the addition
of thermal noise. This Noise Enhanced Stability (NES) of the metastable state
can be understood in terms of a nonequilibrium droplet free energy which con-
trols the escape from the metastable region. Using this hypothesis, it can be
shown that the observed NES is inherited from the non-monotonous temperature
dependence of the nonequilibrium surface tension.[9]

We also observe that, under the action of both the nonequilibrium impurity
and free borders, the metastable-stable transition proceeds by avalanches. These
are power-law distributed, thus showing scale invariance (up to certain cutoffs).
The origin of the observed scale invariance can be traced back to a non-critical
superposition of many different scales, ruling out the presence of any underly-
ing critical point. The striking similarities between the statistical properties of
fluctuations in this model and those of avalanches observed in many real com-
plex systems lead us to propose this mechanism as a generic explanation of 1/ f
noise in systems characterized by a rich, varied set of transitions between many
short-lived metastable states.
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