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Abstract

We present a neurobiologically–inspired stochastic cellular automaton whose state jumps with

time between the attractors corresponding to a series of stored patterns. The jumping varies from

regular to chaotic as the model parameters are modified. The resulting irregular behavior, which

mimics the state of attention in which a systems shows a great adaptability to changing stimulus,

is a consequence in the model of short–time presynaptic noise which induces synaptic depression.

We discuss results from both a mean–field analysis and Monte Carlo simulations.
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I. INTRODUCTION

Analysis of electroencephalogram time series, though perhaps not conclusive yet, suggest

chaotic neural activity in the brain [1–3]. This may reflect a state of collective synchro-

nization of the network during expectation and attention [4, 5], and a condition for efficient

search between many patterns, as in olfactory processes [6, 7], for instance. In fact, there is a

well–founded recent hypothesis that the human brain might exhibit chaotic itinerancy [8, 9].

Consequently, different types of constructive chaos have been incorporated in neural network

modeling [10–13]. Nevertheless, concluding on the significance of chaos in neurobiological

systems is still an open issue [14–16].

As a new effort towards better understanding this problem, in the present paper we

present, and study both analytically and numerically, a neural automaton with chaotic be-

havior. That is, the model is a neurobiologically inspired cellular automaton [17, 18], in

which dynamics concerns the whole, which is simultaneously updated —instead of sequen-

tially updating a small neighborhood at each time step. This automaton (or Little dynamics

[19]) strategy has already shown to be efficient in modeling several aspects of associative

memory [20, 21]. In fact, concerning this property, neural automata often exhibit more

interesting behavior than their Hopfield–like, sequentially–updated counterparts, in spite

of the fact that any two successive states are stronger correlated in the sequential case.

Therefore, we extend here to neural automata our recent study of the effects of synaptic

“noise” on the stability of attractors in Hopfield–like networks [22]. We demonstrate below

that synaptic fluctuations may determine retrieval in neural automata when coupled to the

presynaptic activity in such a way that synaptic depression occurs, a phenomenon which has

been observed in actual systems [23, 24]. We then find that the attractor may not only turn

unstable but even strange, so that a chaotic dynamics between the stored patterns sets in.

We also show that this kind of behavior implies a high adaptability of the system to a chang-

ing environment, which seems to be one of the nature strategies for efficient computation

[25–27].
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II. THE MODEL

Let a set of N binary neurons with configurations S ={si = ±1; i = 1, . . . , N} connected

by synapses of intensity [22]:

wij = wL
ijxj, ∀i, j. (1)

Here, xj stands for a random variable, and wL
ij is an average weight. The specific choice for

the latter is not essential here but, for simplicity and reference purposes, we shall consider

a Hebbian learning rule [28]. As an example, let us assume in the following that synapses

store a set of M binary patterns, ξµ = {ξµ
i = ±1; i = 1, . . . , N} , µ = 1, ..., M, according to

the prescription, wL
ij = M−1 ∑

µ ξµ
i ξµ

j . The set X ={xj} of random variables is intended to

model microscopic fluctuations that have been reported to constantly perturb the synaptic

weights [29]. The origin for such fluctuations is varied in practice, ranging from short–

length stochasticities, e.g., associated to the opening and closing of the vesicles and to the

local concentration of neurotransmitters, to differences between the incoming long–ranged

signals [30, 31]. These short–time fluctuations affect the local fields, namely, hi(S,X) ≡
∑

j 6=i wijxjsj which measure the total presynaptic current arriving to the postsynaptic neuron

si. In addition to, and competing with the synaptic noise in (1), there is stochasticity of the

neural activity. As it is customary in many fields, including physics and biology, we shall

assume this stochasticity is controlled by a “temperature” parameter, T, which characterizes

some underlying “thermal bath” [32–34].

The most relevant case is perhaps that of very fast fluctuations of the microscopic vari-

ables X. As a matter of fact, it seems that a system relaxation typically occurs in a time

which is much larger than that characterizing the synaptic variability [35]. Consequently, we

shall assume that the neurons evolve as in presence of a steady distribution for X, namely,

P st(X|S). The technicalities of this situation have been discussed with detail in Refs.[32, 33],

for instance. It then follows that the postsynaptic neuron, si, receives an effective presy-

naptic current given by

hi(S) ≡
∫

X
hi(S,X)P st(X|S)dX. (2)

That is, each neuron endures an effective field, one which, in fact, is the average contribution

of all possible different realizations of the actual field [34, 36].

Next, we shall model the noise steady distribution in (2) according to some recent neuro-

biological findings. In particular, we would like it to mimic short–term synaptic depression
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[23, 24]. This refers to the observation that the synaptic intensity decreases under repeated

presynaptic activation. The question is how such mechanism may affect the neural automata

dynamics. For simplicity, we shall assume factorization of the noise distribution, so that the

resulting simplest hypothesis is that P st(X|S) =
∏

j P (xj|S) with

P (xj|S) = ζ (~m) δ(xj + Φ) + [1− ζ (~m)] δ(xj − 1). (3)

Here, ~m = ~m(S) stands for the overlap vector of components mµ(S) = N−1 ∑
i ξ

µ
i si, and

ζ (~m) is a probability to be determined. The choice (3) therefore implies a depression effect

which increases with ~m and, consequently, with the net current arriving to postsynaptic

neurons. Consequently, (3) introduces some non–trivial correlations between synaptic noise

and neural activity. Looking for an increasing function of the total presynaptic current with

proper normalization, a simple choice is ζ (~m) = (1 + α)−1 ∑
µ [mµ (S)]2 , where α = M/N is

the load parameter [37]. It then follows after some simple algebra that the effective field is

hi(S) =

{
1− γ

∑
µ

[mµ (S)]2
} ∑

ν

ξν
i mν (S) , (4)

where γ ≡ (1 + Φ) (1 + α)−1 . We remark that the resulting system lacks any synaptic noise

for Φ → −1. Therefore, the local field reduces in this limit to the one in the Hopfield model

[37–39].

We next determine the neuron dynamics under the action of these fields. This is governed

by the master equation Πt+1(S) =
∑

S′ Πt(S
′)Ω(S′ → S), where the probability per unit time

of a transition from configuration S′ to S is

Ω(S′ → S) =
N∏

i=1

ω(s′i → si). (5)

This corresponds to parallel updating or Little dynamics [19]. For simplicity and concrete-

ness, we shall assume here that ω(s′i → si) ∝ Ψ [βi (s
′
i − si)] , where βi ≡ T−1hi(S

′), and that

hi(S
′) is independent of s′i, which is a good approximation for a sufficiently large network

(technically, this is an exact property in the thermodynamic limit N → ∞). The func-

tion Ψ is arbitrary except that (in order that the model has well defined limits) we require

that Ψ(u) = Ψ(−u) exp(u), Ψ(0) = 1 and Ψ(∞) = 0,[33] as for a normalized exponential

function. Then, consistent with the condition
∑

S Ω(S′ → S) = 1, we take

ω(s′i → si) = Ψ[βi(s
′
i − si)] [1 + Ψ (2βis

′
i)]
−1

. (6)

We remark that the model may easily be extended to cover other interesting cases [40].
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III. SOME RESULTS

Monte Carlo simulations of the resulting system reveal a rich behavior, namely, a more

varied and interesting behavior that in the case of sequential updating [22]. Figure 1 il-

lustrates the occurrence of fixed points, cycles, regular and irregular hopping between the

attractors, namely, between the pattern m ≡ m1 = 1 and the anti–pattern m = −1, in the

case M = 1. On the other hand, assuming the mean–field approximation 〈si〉 = si, one may

obtain the discrete map [37] which describes the time evolution of the overlap. The result

for M = 1 is

mt+1 = tanh{T−1mt[1−m2
t (1 + Φ)]}. (7)

As one varies here the “temperature” T and the (fast) noise parameter Φ, one obtains a

varying situation which is in full agreement with Monte Carlo simulations, as one should

have expected for a fully connected network. In particular, figure 2 confirms the occurrence

of chaos in a case in which thermal fluctuations are small compared to the synaptic noise.

That is, the Lyapunov exponent, λ, corresponding to the dynamic mean–field map shows

different chaotic windows (λ > 0) as one varies Φ for a fixed T. As illustrated also by figure 2

(upper graph), dynamics is stable for Φ = −1, i.e., lacking any synaptic noise, and the only

solutions then correspond to the ones for the familiar Hopfield case with parallel updating

[19, 38]. As Φ is increased, the system tends to become unstable, and transitions between

m = 1 and m = −1 finally occur that can be fully chaotic.

This is not the first time in which chaos is reported to occur during the retrieval process

in an attractor neural network. In particular, Ref.[11] illustrates many different dynamic

behaviors ranging from point attractors to chaotic dynamics. In this case, the shape of the

gain functions, namely, mt+1 = G(mt), is used as a parameter. Our model, however, does

not involve any tuning of the gain function but just of the noise parameter Φ. For example,

our gain function for T = 0 is

G (mt, Φ) = sign
{
mt

[
1−m2

t (1 + Φ)
]}

, (8)

which may have a sigmoid shape or an oscillating one, as illustrated in figure 3. Only the

latter case allows for jumping between the attractors and, eventually, for chaotic behavior,

in accordance with the situation in figure 2.

There is also chaotic hopping between the attractors when the system stores several
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patterns, M > 1. As an order parameter to detect chaos, it turns out convenient to define

ζ =
1

1 + α

∑
µ

(mµ)2 . (9)

This is shown in figure 4 as a function of Φ. The graph clearly illustrates a region of irregular

behavior which has a width ∆Φc defined as the distance, in terms of Φ, from the first to

the last bifurcation. Interesting enough, we find that the width of this region is practically

independent of the number of patterns, namely, ∆Φc = 0.575± 0.005 for M ∈ [1, 50] .

IV. DISCUSSION

Motivated by the fact that analysis of brain waves suggest that the chaos–theory concept

of strange attractor may be relevant to describe some of the neural activity, we presented here

a neurobiologically–inspired model which exhibits chaotic behavior. The model is a cellular

automaton with only two parameters, T and Φ, which control the thermal stochasticity of the

neural activity and the depressing effect of the (coupled) synaptic fluctuations, respectively.

This system reduces to the Hopfield case with Little dynamics (parallel updating) only for

Φ = −1 and, otherwise, it exhibits efficient retrieval. In particular, even though mixture

(spin–glass) steady states may occur at low temperature T, the system may escape from them

under a very small stimulus. This is illustrated in figure 5 which shows a vivid response of the

system to a weak external stimuli when the system is in the chaotic regime as a consequence

of synaptic depression, which does not occur for fixed point or regular behavior. It is likely

that such a mechanism plays a functional role in attention and in sequential processing of

parallel sensory information.

The complex phenomenology of our neural automaton, which is rather robust and in-

dependent of the number of stored patterns (within the conditions here investigated), may

allow for encoding of large amounts of information in terms of spatiotemporal patterns. In

fact, experiments reveal that strange attractors are more efficient for the purpose [9, 41].

This is a consequence in our model of the inherent instability of chaotic motion, which

enhances the system ability to adapt to a changing environment by irregular transitions be-

tween attractors. That is, chaos allows for an efficient exploration of different opportunities,

which might account for the adaptive, reliable, and robust behavior of natural systems. This

is consistent with the hypothesis of chaotic itinerancy [8, 9].
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FIG. 1: Monte Carlo time–evolution of the overlap between the current state and the (single)

stored pattern for M = 1, N = 104 neurons, T = 0.1, and different values of Φ, as indicated. This

illustrates, from top to bottom, the fixed point solution in the absence of any synaptic noise, i.e.,

Φ = −1, a cyclic behavior, the onset of irregular periodic behavior, and fully irregular and regular

jumping between the stored pattern and its anti–pattern, respectively.
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FIG. 2: Bifurcation diagram demonstrating chaotic activity. The upper graph shows the steady

overlap between the current state and the stored pattern (for M = 1 ) as a function of the fast

noise parameter Φ. This is for Monte Carlo simulations of a network with N = 104 neurons. The

bottom graph depicts the corresponding Lyapunov exponent, λ, as obtained from the mean–field

description (7). In particular, this shows some chaotic windows, in which λ > 0. The temperature

parameter is set T = 0.1 here; this is low enough so that the effect of thermal fluctuations is

negligible compared to that of presynaptic noise.
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FIG. 3: The gain function (8) versus mt for different values of Φ, as indicated. Notice that the gain

function becomes non-sigmoidal (i.e., oscillatory, which allows for jumping between the attractors)

for Φ > 0, while it is monotonic in the Hopfield case Φ = −1.
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FIG. 4: The function ζ (Φ) ,as defined in the main text, from Monte Carlo simulations at T = 0.15

for N = 104 neurons and M = 20 stored random patterns. A region of irregular behavior which

extends for ∆Φc, as indicated, is depicted. The insets show the time evolution of four out of the

20 overlaps within the irregular region, namely, for Φ = 0.11.
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FIG. 5: (Color on-line) Time evolution of the overlap mµ in a Monte Carlo simulation with N =104

neurons, M = 4 stored random patterns, T = 0.05, and, from top to botom, Φ = −0.2, −0.1, 0.12,

and 0.2. This illustrates that, under regular behavior (as for the first two cases and the last one),

the system is unable to respond to a weak external stimulus, namely, an extra current hext
i = δξµ

i ,

where δ = 0.05 and µ changes (µ = 1, 2, 3, 4, 1) every 40 MCS as indicated in the upper row. The

situation is qualitatively different when the regime is chaotic, as for Φ = 0.12 in this figure. After

some wandering in the evolution showed here, the system activity is trapped in a mixture state

around t = 80 MCS. However, the external stimulus induces a continuous jumping to the more

correlated attractor. This illustrates how chaos may enhance the system sensitivty.
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