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Abstract

A series of neural network systems have recently been proposed that
computationally perform most efficiently, e.g., in relation with the task of
associative memory. Their deÞnition and most relevant features, as ob-
tained from several theoretical and numerical studies, are reviewed here.
The emphasis is on showing that complex functions of the brain are inti-
mately related to the occurrence of (nonequilibrium) phase transitions.

1 Nonequilibrium Phase Transitions
Complex systems, both living and inert, are generally out of thermodynamic
equilibrium. The simplest nonequilibrium condition involves a constant ßux of
matter, energy, or some other quantity. Such nonequilibrium steady states ex-
hibit instabilities known as nonequilibrium phase transitions, a concept closely
related with that of bifurcations, synergetics, pattern formation, morphogen-
esis, and self-organization. As part of a constant interest on nonequilibrium
phenomena, detailed investigation of nonequilibrium phase transitions in lattice
models has blossomed over the last years. A main reason is that one can deal
with many interacting units in a lattice system, and this is most amenable to
precise analysis in the computer.[1] Qualitatively new and complex kinds of or-
ganization thus emerge that promise to illuminate some fundamental questions
in physics, biology and sociology.
As a matter of fact, lattice models of nonequilibrium processes have lately

begun to multiply at a dizzying pace. Sand piles, driven ßuids, traffic models,
contact processes, surface catalytic reactions, branching annihilating random
walks, and sequential adsorption are just a few examples. They are oversim-
pliÞed representations or caricatures of nature, but often capture some of the
essential features responsible for nonequilibrium ordering in real systems.[1]

2 Hopfield—like Neural Nets
Some intriguing examples of nonequilibrium phase transitions occur in a class
of neural net models. Consider a set of N binary neurons, s = {sx = ±1; x =
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1, . . . , N}, that evolve in time by the stochastic equation:[2]

∂P/∂t = p
X

x

[−*J(sx → −sx)P +*J(sx → −sx)Pt(s
x,J)]

+(1− p)
X
x,y

X
J0

xy

[−*(Jxy → J 0xy)P +*(J 0xy → Jxy)Pt(s,J
xy)] .

(1)

Here P ≡ Pt(s,J) where J = {Jxy ∈ <; x,y = 1, . . . , N} stands for the set of
synaptic weights, sx represents s after the change sx → −sx, and Jxy is J after
the change Jxy → J 0xy. For simplicity, the rates are

*(Jxy → J 0xy) independent of the current s,
*J(sx → −sx) = ϕ

¡
2T−1sxhx

¢
.

(2)

Here, T is a temperature parameter that controls the stochasticity of the neurons
evolution, ϕ is an arbitrary function, and the local field is hx = hx(s,J) =P

y Jxysy. One further assumes that the system contains information from a
set of M previously stored patterns,

ξµ = {ξx = ±1; x = 1, . . . , N} , µ = 1, ...,M, (3)

and that this is stored in the synapses according to Hebb�s rule for learning:[3]

Jxy ∝
MX
µ=1

ξµxξ
µ
y . (4)

For p = 1 under these conditions, eq.(1) reduces to the HopÞeld model.[4, 3] In
this case, neurons evolve in the presence of static synapses and asymptotically go
to the equilibrium for temperature T and energy H =

P
x hxsx. The resulting s

sometimes resembles one of the M stored patterns, so that the system is said to
exhibit associative memory. This is generally poorly performed, however, e.g.,
the system eventually goes to a mixture of several of the stored patterns.
In the limit p→ 0, (1) transforms into:[1]

∂Pt(s)/∂t =
X

x

[*(sx; x)Pt(s
x)−*(s; x)Pt(s)], (5)

where

*(s; x) =

Z
dJf(J)ϕ

£
2T−1sxhx (s,J)

¤
. (6)

The fact that this superposition does not satisfy the condition of detailed bal-
ance impedes the system from reaching equilibrium. Instead, it may go asymp-
totically to a nonequilibrium steady state.[1] In this case, dramatic changes of
behavior may be observed for varying f and ϕ. For certain ϕ and f(J) such that
simulates each synaptic weight taking at each time the value Jxy = ξ

µ(t)
x ξ

µ(t)
y ,

independently of the others, so that the Hebb�s rule holds as a time average,
one obtains the phase diagram of Fig.1(Left).[2] Apart from some metastable
behavior, this shows (using the magnetic language) a paramagnetic phase (P)
of disordered states in which the system lacks associative memory, a spin—glass
phase (SG), in which stable states are undesirable mixtures of several of the
stored patterns, and a ferromagnetic phase (F) with the sought behavior. The
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latter, however, as for the HopÞeld system, is restricted to a small region near
the origin, so that the capacity is very limited. In fact the only noticeable dif-
ference with the HopÞeld case is the curve that separates SG from P, which
strongly curves downwards in the present case.[5]

Figure 1: Phase diagram (temperature parameter versus capacity α ≡
N/M) for two versions of (1) in the limit p → 0,i.e., for synapses that
ßuctuate very rapidly and take at random at each time the Hebb value
associated to one of the Mstored patterns. Left: Each synaptic weight
takes a value at each time which is independent of the others, as if each
pair (x, y)would visit a different pattern. The dashed line is the HopÞeld
result; this transforms in the present case into the upper solid curve going
to α = 2.6. Right: All synapses visit coherently the same pattern at each
time. This was obtained for a macroscopic net, namely, for N →∞.

The resulting phase diagram is, however, as in Fig.1(Right) for other choices
of ϕ and f.[6] This is obtained for f(J) simulating that all synapses take at
each t the value Jxy = ξ

µ(t)
x ξ

µ(t)
y corresponding to one of the patterns. That is,

while µ(t) differs locally from one pair (x, y) to the other in the previous case, it
takes the same value throughout the system in Fig.1(Right), which corresponds
to coherent synaptic dynamics. Moreover, unlike for Fig.1(Left), the phase
transition here is generally of Þrst order, which results in a much smaller error
of recovery. This is important, for instance, when one aims at recognizing a
pattern out of a set including damaged image of it.[7] Also remarkable is that
mixtures do not occur, which is computationally convenient.

3 Neural Automata
The above suggests one to investigate a cellular automaton version of the latter
case. This is theoretically more involved �see, however, Ref.[8, 9] for some
cases that can be solved analytically� so that its time evolution was simulated
in the computer by the Monte Carlo method. The simulation may proceed by
choosing at random any pattern, say µ, and updating all the neurons in the
lattice assuming the synapses corresponding it, namely, Jxy = ξµxξ

µ
y . This step

is repeated again and again. The draw is such that the time average for each
local Jxy gives Hebb�s rule, i.e., hJxyi ∝

PM
µ=1 ξ

µ
xξ

µ
y . A main result from these
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simulations is that even the good performance of the corresponding sequential
version �Fig.1(Right)� is improved.[9]
A further improvement of this neural automaton ensues by allowing for the

stochasticity of neurons and synapses to be controlled by different (say) temper-
ature parameters. Consider the system described above whose state at time t is
determined by St ≡ {stx} and Jt ≡ ©

J txy

ª
. One also has the set (3) ofM binary

patterns. For the case of interest, we can identify Jt by the pattern µ(t) that
determines all the synapses at time t; therefore, the state of the system is char-
acterized by the set (S, µ). It turns out convenient to deÞne the overlap at time
t of the current state St with each of the memorized patterns, mt =

PN
x=1 ξ

µ
xs
t
x.

Time evolution proceeds according to

P t+1(S, µ) =
X
S0

X
µ0
T [(S, µ) → (S0, µ0)] P t(S0, µ0), (7)

where T [(S, µ) → (S0, µ0)] is the probability for the indicated transition. Let
us assume that this is separable, namely, that T [(S, µ) → (S0, µ0)] = Tµ

0
n (S →

S0) · TSs (µ→ µ0), and that

Tµ
0

n (S → S0) =
nY
i=1

ϕ
h
−βnξµ0

x (sx − s0x)
³
mµ0 − s0xξµ

0
x N

−1
´i

(8)

and

TSs (µ→ µ0) = ψ

·
−1

2
βsN((mµ)2 − (mµ0

)2)

¸
. (9)

Here, ϕ and ψ are arbitrary functions, and βn and βs are the inverse temperatures
that control the neuron and synaptic sub�systems, respectively.
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Figure 2: The phase diagram (neuron versus synaptic temperatures in
arbitrary units) for the neural automata deÞned by equations (7)-(9). See
the main text for characterization of phases.

Fig.2 depicts the resulting phase diagram for certain choices of functions
ϕ and ψ.[10] (It is remarkable that modifying these functions may essentially
change the diagram. That is, there is an �in principle� enormous variety of
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phases the model may exhibit and, consequently, a great versatility concern-
ing possible applications.). In addition to paramagnetic (P) and ferromagnetic
(F) phases, the system in the regions marked O has dynamic associative mem-
ory: After a transient time in which one of the stored patterns is recovered,
the system jumps to one of the other possible attractors, and keeps doing so.
Furthermore, this jumping is not completely at random but computer simula-
tions uncover some non�trivial structure of time correlations. More speciÞcally,
jumping between patterns depends on the activities, and non�trivial time cor-
relations develop as the neuron temperature is lowered, namely, in region O(I).
(However, the system in O(II) stays the same amount of time wandering in
each attractor.) This behavior suggests one many interesting applications of
the algorithm.
Finally, before going to a discussion (which �due to lack of space� is omit-

ted in this written version of my talk) we mention that different network archi-
tectures have been investigated. One thus concludes that a power�law or scale�
free topology is advantageous compared to the corresponding diluted network.
There is also some deÞnite evidence that hubs, i.e. the few most highly connected
nodes, play then a fundamental role in making the retrieval of information more
robust and efficient. This is most interesting as the scale�free property is known
to hold in many natural systems, including cultured neurons.[11]
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