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Abstract

We studied stochastic neural network models in which, in addition to long term learning, fast fluctuations of the synaptic
intensities occur so that the neuron activity update takes place assuming a set of synaptic intensities taken at random from a
given distribution. The influence of this distribution on the performance of the retrieval process and on the general behavior of
the network is discussed. 1999 Elsevier Science B.V. All rights reserved.

The mechanisms underling synaptic dynamics and
the influence of synaptic changes on the behavior of
real neural networks is not fully understood. Experi-
ments in the cortex and the hippocampus indicate a
high variability of synaptic response to spike trains,
and it seems that it is the dynamics of synaptic effi-
cacy on short time-scales – rather than random noise –
what causes this variability [1]. Experiments also indi-
cate that individual synapses are extremely unreliable
in spite of the high efficiency of the whole system [2].
It seems that the apparently noisy behavior is, rather
than a drawback for the efficiency of the system, re-
sponsible for the observed high processing power and
robustness of biological neural networks [3,4]. This
is also suggested by the fact that different kinds of
noise seem to couple each other to producestochas-
tic resonanceunder certain circumstances in biolog-
ical systems [5]. We report here on our studies of the
consequences of certain synaptic variations. Motivated
by recent observations, we consider a neural-network
model which, in addition to (slow) learning plastic-
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ity, involves fast fluctuations of the synapse intensities
around mean values corresponding to the given learn-
ing rule.

The model is a stochastic neural network ofN bi-
nary, fully connectedneuronswhose configuration,
s= {sx = ±1;x = 1, . . . ,N}, evolves in time com-
peting with synaptic variations as given by the master
equation

∂tPt (s,J)

= p
∑

x

[
ωJ(s

x;x)Pt(sx,J)−ωJ(s;x)Pt (s,J)
]

+ (1− p)
∑
x,y
x 6=y

∑
J ′xy

[
ω(J ′xy→ Jxy)Pt (s,Jxy)

−ω(Jxy→ J ′xy)Pt (s,J)
]
. (1)

J = {Jxy ∈ <} is the synapse configuration, andsx

(Jxy) stand for s (J) after the changesx → −sx
(Jxy→ J ′xy). For simplicity, we assume

ωJ(s;x)= ϕ
[

2

T
hx(s,J)

]
,
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where hx(s,J) = ∑
y 6=x Jxysy is a local field. We

consider here the choices

ϕ(X)= exp(−X/2) (ruleV ),

ϕ(X)= 2(1+ expX)−1 (ruleK),

and

ϕ(X)=min
{
1,exp(−X)} (ruleM).

This has a familiar limit case. That is, the stationary
solution of (1) forp = 1 (quenched synaptic intensi-
ties) andJxy = Jyx, is the canonical equilibrium state
for temperatureT and energy

HJ(s)=−1

2

∑
x

hxsx.

This is the Hopfield Hamiltonian if intensitiesJxy are
given by the Hebb’s rule [6]. However, our interest
is in the limit p → 0, i.e., when synapses undergo
very fast variations independently of the much more
slowly-varying neurons, which we believe may cor-
respond to some actual conditions in Nature. As dis-
cussed in detail in [7,8], one can invoke – once the
learning process is completed – two time scales which
are relevant in relation with (1): There is a fine time
scale,τ, in which neurons do not appreciably evolve
while synapse intensities fluctuate locally and, on the
other hand, neurons evolve in the presence of station-
ary synapses on the coarse scalet = pτ for p→ 0 and
τ →∞. Assumingω(Jxy→ J ′xy) independent of the
currents, one may represent this situation by means of

∂tPt (s)=
∑

x

[
$(sx;x)Pt (sx)−$(s;x)Pt (s)

]
, (2)

where$(s;x)= ∫ dJf (J)ωJ is the (effective) rate for
transitionssx →−sx andf (J) is the distribution of
synaptic fluctuations. The evolution ofs is thus by su-
perposition of canonical mechanisms, each for a dif-
ferent local fieldhx(s,J), such that$(s;x) will not
satisfy detailed balance in general. Therefore, the sys-
tem evolves asymptotically towards anonequilibrium
steady state which strongly depends on bothf (J) and
ϕ(X).

Let us consider in the following only functionsf (J)
such that

〈Jxy〉 ≡
∫
dJf (J)Jxy = 1

N

∑
µ

ξ
µ
x ξ

µ
y ,

where ξµ ≡ {ξµx = ±1} are µ = 1, . . . ,P memory
patterns, so that fluctuations are around values corre-
sponding to the Hebb’s learning rule in this particular
case of our model. The simplest behavior occurs for

f (J)= f1(J)≡
∏
x 6=y

δ

(
Jxy − 1

N

P∑
µ=1

ξ
µ
x ξ

µ
y

)
,

i.e., each individual synapse has a fixed Hebb value.
In practice, this avoids any synaptic fluctuations, in
particular, σ 2

xy(ξ ) ≡ 〈(Jxy − 〈Jxy〉)2〉 = 0, and the
model simply reduces to the Hopfield one. More
interesting are the cases:

f2(J)=
∏
x,y
x 6=y

P∑
µ=1

aµδ

(
Jxy − ξ

µ
x ξ

µ
y

Naµ

)
,

f3(J)=
P∑
µ=1

aµ
∏
x,y
x 6=y

δ

(
Jxy − ξ

µ
x ξ

µ
y

Naµ

)
, (3)

∑
µ aµ = 1. The variance is thenσ 2

xy(ξ )= (P/N)2−
N−2∑

µ,ν ξ
µ
x ξ

µ
y ξ

ν
x ξ

ν
y . The choicef2 corresponds to

synapses evolving in time independently of the others,
taking at each time the corresponding synaptic inten-
sity from one of the stored patterns, with probability
aµ. The factorization in this function implies that fluc-
tuations in different synapses are not correlated with
each other. This case admits a ‘quasi-canonical’ rep-
resentation in terms of an effective Hamiltonian [8].
This has the Hopfield structure in certain limits, and
some exact results may then be obtained [7]. A main
result forf2 is that such synaptic fluctuations add as
an extra noise to the thermal one, which reflects the
lack of correlations implied byf2. More interesting
is the superposition of products, each with probabil-
ity aµ, in f3. Each product corresponds to a spatial
map of synapse intensities associated to theµth stored
pattern. The synaptic system globally visits then, with
some probability, the set of synapses characterizing
each of the stored patterns. Therefore, the fluctuations
described byf3 contain the spatial correlations in the
stored patterns. This feature turns out to be essential
for the interesting behavior we illustrate next.

Our analytical results here concern the limitN →
∞ for finiteP ; however, both analytical and numerical
results indicate that our conclusions hold well for ar-
bitrarily largeP. Consider the mean field approxima-
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Fig. 1. Mean-field behavior of the stochastic network (2) for fluctuationsf3 and ruleV : (a) Pure statesm1(T ) for P = 50, 500 and 1000; solid
and dashed lines correspond to stable and unstable solutions, respectively. (b) The phase diagram forn= 1; the line indicates nonequilibrium
phase transitions of first (dashed) and second (solid) order, separating a region in which the system exhibits associative memory (F ) from a
region in which such property is absent (P ). Graphs (c) and (d): asymptotic behavior ofθ1 andm̃1; this illustrates a linear behavior ofθ1 with
lnP for P ∈ [104,1013] and that̃m1→ 1 for P →∞.

tion sx = 〈sx〉, which is compatible with the fact that
the local fieldhx involves long-range interactions, and
either orthogonal patterns, namely,N−1∑

x ξ
µ
x ξ

ν
x =

δµν, or quasi-orthogonal, as when{ξµx } is a set of
P ×N statistically-independent random variables. Un-
der these assumptions, one obtains from (2) forf3 that

∂tmµ =−2mµ

P∑
ν=1

aνB
+
ν − 2aµB−µ , (4)

wheremµ ≡ 1
N

∑
x ξ

ν
x 〈sx〉 is the overlap of the mean

network activity with theµ pattern, and

B±µ =
1

2

{
ϕ

(
2

aµT
mµ

)
± ϕ

(
− 2

aµT
mµ

)}
.

The stationary solution of (4) ism = (m1, . . . ,mP ),

with mµ = −aµBµ(∑P
ν=1aνB

+
ν )
−1, and non-trivial

solutions(m1, . . . ,mn,0, . . . ,0) with n 6 P and 1>
|mµ| > 0 appear continuously forT < Tc = 1; pure
states are forn = 1, and mixture states are forn >
1 andm =mn(1, . . . ,1,−1, . . . ,−1,0, . . . ,0) for aµ
independent ofµ. The behavior of the solutions for
T < Tc and nearTc depends on the elementary ruleϕ.
It ensues a second order phase transition for anyϕ; for
ruleV this occurs only for 3n > P while the solutions
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Fig. 2. Behavior from computer simulations of (2). This illustrates a dramatic improvement of pattern recognition processes for the fluctuations
f3 and ruleV : (a) Evolution with time of two overlapsmµ(s), µ = 1,2, for N = 2500, P = 10, andT = 0.8; the two noisiest trajectories
correspond to the standard Hopfield model for rates$1 (horizontal line) and$2 (slowly increasing line), respectively; the more regular behavior
is for$3. (b) Independent evolutions atT = 0.6 forN = 400 andP = 10, starting with the same initial condition, for$1 (inset) and$3 (main
graph).

are discontinuous forT < T̃ (n,P )≡ m̃nPθ−1
n , where

T̃ (n,P < 3n)= Tc, with

m̃n = sinhθn(ncoshθn + P − n)−1

and

nθn + (P − n)(θn coshθn − sinhθn)

−nsinhθn coshθn = 0.

After linearizing the system (4), one obtains∂tnµ =∑P
ν=1Qµνn

ν + O(n2), with n = (n1, . . . , nP ) and
nµ ≡ mµ − mµ,0 ∀µ, where m0 is a stationary
solution of (4). Any stable solution requires negative
eigenvalues ofQµν. Stability turns out to strongly
depend onϕ(X) and n: for rules K and M only
mixture states withn= P are locally stable; for ruleV
the only locally stable states are the pure(n= 1) ones
– see Fig. 1(a) – that appear, for large enough values
of P , for T < T̃ (1,P ), with large overlap with a
particular pattern,m1> m̃1. In general, this will make
very effective the retrieval of a pattern. Therefore, for
f3 and ruleV, the system exhibits associative memory
which is not affected by the presence of mixture states
that are locally unstable. In Figs. 1 (a) and (b) we
show, respectively, the nature of pure states for three
values ofP, and the resulting phase diagram forn= 1,
both for ruleV. Note that good, monotonic behavior
is suggested asP is further increased even up to very

large values, as shown in Figs. 1 (c) and (d) for the
behavior ofθ1 andm̃1 with P, respectively.

We also performed a series of computer simula-
tions of Eq. (2) in order to check and extend our an-
alytical results. For this purpose we consideredN ∈
[400,3600],P = 10 and the effective rates

$1=min

{
1,exp

[
2P

T

{
N−1− sx 1

P

∑
µ

ξ
µ
x mµ(s)

}]}
,

$2= exp

{
− P
T

[
1+ sx 1

P

∑
µ

ξ
µ
x mµ(s)

]}
,

and

$3= 1

P

∑
µ

exp

{
− P
T

[
1+ sxξµx mµ(s)

]}
,

wheremµ(s)= 1
N

∑
x ξ

µ
x sx. $1 and$2 correspond to

the Hopfield case, namely,f1 and, respectively, rules
M and V ; $3 corresponds to synaptic fluctuations
as given byf3 and ruleV. Our main results are
summarized in Fig. 2: The retrieval of a particular
pattern is much more efficient and robust for$3; see
Fig. 2(a). Contrary to the case$3, the retrieval of
information for$1 and$2 is importantly affected by
the noise; see Fig. 2(b).

Summing up, fluctuating synapses during neuronal
activity determine the behavior of a neural network,
in general. Our analytical and numerical studies of



102 J.J. Torres et al. / Computer Physics Communications 121–122 (1999) 98–102

a simple model that allows for a systematic study
of such fluctuations support this idea. After the sys-
tem has stored an arbitrary number of patterns in a
(previous) learning process, fast synaptic fluctuations
may strongly influence the retrieval of information.
The form of the distribution characterizing such fluc-
tuations and other details of the microscopic dynam-
ics have a crucial role in the emergent behavior; in
fact, the system is in anonequilibriumsteady state in
our case. Our analysis can be extended to asymmetric
synapses; see [9] for further details.
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