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Modeling ionic diffusion in magnetic systems
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We present a solvable kinetic lattice model which includes microscopic disorder, namely, random exchange
energies~between pairs of spins! fluctuating randomly with time. This, which may ideally model fast ionic
diffusion in magnetic systems, impedes reaching equilibrium, in general. The resulting nonequilibrium steady
states exhibit additional randomness which induces complex behavior, including reentrance phenomena remi-
niscent of spin-glass behavior.@S0163-1829~98!02738-6#
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I. INTRODUCTION

The Isingspin glass1,2 is a conceptually simple exampl
of systems with microscopic disorder. It consists of thed
dimensional~e.g.! sc lattice,Zd, and the Hamiltonian

HJ~s!52 (
x,yPZd

Jxysxsy2 (
xPZd

hxsx , ~1!

where J5$JxyPRe;x,yPZd% is a set of random number
with given probability distribution. That is, each binary-sp
configuration,s[$sx561;xPZd%, has the potential energ
~1! for each realizationJ of disorder. The fact that the cou
pling strength changes at random from one pair of spins
the other simulates that, in a class of alloys, magnetic
active ions are spatially distributed at random, and excha
energies have a damped oscillatory behavior with distan
~Assuming random local fields,hx , in Eq. ~1! is also
interesting;3–6 for simplicity, however, we restrict ourselve
to constant external fields in this paper, i.e.,hx5he ;x.)
The setJ is constant with time for each realization of th
system, which corresponds toquencheddisorder or frozen-in
impurities. The interest is then on averages over both
stationary distribution for the configurations,Pst(s), and the
weight, p(J), of different realizations of disorder.7–10

The above has been generalized to include spatial di
bution of disorder varying with time.11,12 It has been argued
that in order to model somewhat more realistically mic
scopically disordered magnetic systems, one needs to inv
time variations of theJxys to take into account the cons
quences of ionic diffusion. This constantly modifies the d
tanceux2yu between each specific pair of spins and, the
fore, makesJxy vary in practice also with time. As a first ste
towards understanding this effect, fast random diffusion
impurities has been studied. That is, one assumes tha
probability of s at time t, Pt(s), satisfies the master equa
tion:

]Pt~s!

]t
5 (

xPZd
@c~sx;x!Pt~sx!2c~s;x!Pt~s!#, ~2!

where therate or probability per unit time for the transition
~flip! from the configurations[$ . . . ,sx21 ,sx ,sx11 , . . . % to
sx[$ . . . ,sx21 ,2sx ,sx11 , . . . % is a superposition of more
elementary processes, namely,
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c~s;x!5E
2`

1`

dJ p~J!cJ~s;x!. ~3!

The motivation for this is that, if the time variation of th
Jxys ~diffusion! is fast enough compared with spin change
one may assume these evolving by a stochastic process
acterized by aneffective,competing rate as in Eq.~3!.12 The
elementary ratecJ(s;x) concerns a particular distribution o
Jxys and, therefore, a particular value of the energyHJ(s).
For simplicity, it turns out convenient to deal in practice wi
functionscJ(s;x) that satisfy detailed balance, i.e.,cJ(s;x)
5cJ(s

x;x)exp@bHJ(s
x)2bHJ(s)#. This implies that the sys-

tem evolves with time towards the equilibrium~Gibbs! state
corresponding to~inverse! temperatureb5(kBT)21 and en-
ergy HJ(s) if p(J)5)xyd(Jxy2J), i.e., when the dynamics
is due to the action of a uniquecJ(s;x) alone. However, Eq.
~3! describes more generally a competition of such tend
cies whose net asymptotic result is a nonequilibrium ste
state. Therefore, studying this system may be relevan
better understanding both ‘‘impure’’ systems and noneq
librium phenomena.

We report in this paper on solvable versions of Eqs.~2!
and ~3!, and compare with other approaches, namely, a p
approximation13 and a computer simulation,14 both concern-
ing simpler cases. The situations we have investigated d
conceptually from the~rather unrealistic! annealed spin
glass15 in which impurities are in equilibrium with the spin
—instead of constantly impeding canonical equilibrium.
fact, our study reveals certain behavior: the existence of
additional randomness implied by Eq.~3! amounts to a sort
of dynamic frustration or conflict during the evolution whic
induces interesting complex phenomena.

II. DEFINITION OF MODEL

The explicit study of the general system~2!,~3! is
difficult,12 so that we analyze in the following a simplifie
version of it. Our modification consists of a mean-field lim
since a large set of the system degrees of freedom is repl
by the action of a coherent field. That is, we are only co
cerned with details, including spin correlations, in a re
tively small compact domain of lattice sites,LC . This con-
sists of two subsets,L I and LF , such that LC
5L IøLF , L IùLF50, L I is the domain interior, andLF
is the border, defined as the subset of all sites ofLC that
11 488 ©1998 The American Physical Society
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have at least one nearest-neighbor outsideLC ; cf. Fig. 1~a!.
The probabilities for the configurations,sC5$sx ;x
PLC%, sI5$sx ;xPL I%, and sF5$sx ;xPLF% may be re-
lated to each other by the equation,

Pt~sC!5Pt~sI /sF!Pt~sF!, ~4!

where Pt(sI /sF) is a conditional probability, and one as
sumes the normalizations ($sI %

Pt(sI /sF)51, and

($sF%Pt(sF)51. A main feature of the model is that, for an

particular configurationsF , Pt(sI /sF) satisfies the maste
equation:

]Pt~sI /sF!

]t
5 (

xPL I

@c~sI
x ;x!Pt~sI

x/sF!2c~sI ;x!Pt~sI /sF!#,

~5!

wherec(sI ;x) is a superposition similar to Eq.~3!, namely,

c~sI ;x!5@@cJ~sI ;x!##[E
2`

1`

dJ p~J!cJ~sI ;x!. ~6!

The above is complemented with a choice forPt(sF), which
involves an appropriate coherent field to take into acco
the relation between the spins inLF and those in the rest o
the lattice. That is, the total probabilityPt(s) in the original
system is replaced here by the domain probabilityPt(sC)
which invokes a field to be estimated self-consistently. T
produces a set of 2NI coupled equations~instead of 2N, N
@NI[card(L I), in the original problem! whose solution is
feasible for not too largeNI .

The steady state is defined as the solution
]Pst(sI /sF)/]t50. One may write quite generally tha
Pst(sI /sF)[exp$2bH(sI ,sF)2G(sF)%, which defines
H(sI ,sF), whereG(sF) is determined by the normalizatio
of Pst(sI /sF). It follows that

H~sI ,sF!5
1

2NI
lnF)

$sI %
Pst~sI /sF!G2 ln Pst~sI /sF!, ~7!

where we have assumed thatH(sI ,sF) can be written as a
combination of products of spins inside the domain, i.e.,

H~sI ,sF!5 (
k51

NI

(
~ j1 ...jk!

Jj1 . . . jk
~k! sj1

. . . sjk
, ~8!

where Jj1 . . . jk
(k) are real numbers. Let us define the doma

configurational energy as

FIG. 1. ~a! This illustrates the generic domain,LC[$d,s%; the
domain interior,L I[$d%; and theborder, LF[$s%. ~b! A spe-
cific domain ford52, consisting of 12 spins, as considered in t
text; a distinction is made here between two sublattices,LA

[$d%, andLB[$s%.
t

s

f

HJ~sC!52 (
x,yPLC

Jxysxsy2he (
xPLC

sx . ~9!

If we write the probability of the border as

Pst~sF!}expH G~sF!1bh (
yPLF

syJ , ~10!

whereG(sF) is the same function as before, one obtains a
using Eq.~4! that

Pst~sC!5
1

NexpH 2bH~sI ,sF!1bh (
yPLF

syJ , ~11!

with

N5(
$sC%

expH 2bH~sI ,sF!1bh (
yPLF

syJ . ~12!

The fieldh on the border is to be estimated self-consisten
i.e., by requiring the same magnetization per site inL I than
in LF . One may easily generalize this, for example, by
volving several different fields if required by the nature
order, as made explicitly in the next section.

III. SOME CASES OF THE MODEL

The formalism in the previous section is valid for an
dimensiond and size ofL I . We next deal with some case
for which the model has a simple analytical solution exh
iting nontrivial behavior. More complex cases may be stu
ied by solving implicit equations in the computer.

Consider first the simplest case, namely,L I5$x0% ~any
d) so that the domain consists of an interior~central! spin,
sx0

, and itsq nearest neighbors. For simplicity, we restri
ourselves in the following to elementary rates such t
cJ(sI ;x)5f„bDHJ

x(sC)…, where~using an obvious notation!
DHJ

x(sC)[HJ(sI
x ,sF)2HJ(sI ,sF), and one has f(X)

5f(2X)exp(2X)—which corresponds to the detailed ba
ance condition—,f(0)51, and f(`)50. Three familiar
choices consistent with these properties aref(X)5exp
(2X/2) ~hereafter referred to asrate A!, f(X)52(11eX)
~rate B), andf(X)5min$1,e2X% ~rate C). For the indicated
domain, the stationary conditional probability follows fro
]Pst(sI /sF)/]t50 as

Pst~sx0
/sF!5

c~sx0
;x0!

c~sx0
;x0!1c~2sx0

;x0!
~13!

after using Eqs.~4! and~11!. One may check that the cond
tion Pst(2sx0

/sF)/Pst(sx0
/sF)5c(2sx0

;x0)/c(sx0
;x0) holds,

i.e., this is a very simple case in which the resulting effect
rate—not only the elementary one—also satisfies deta
balance. One obtains from Eq.~7! that

bH~sx0
,sF!52

1

2
sx0

ln
@@f$bDJ

x0~sF!%##

@@f$2bDJ
x0~sF!%##

~14!

with DJ
x0(sF)52$(yPLF

Jx0ysy1he%. Therefore,
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H~sx0
,sF!52 (

yPLF

Jx0ysysx0
, ~15!

where

b (
yPLF

Jx0ysy52
1

2
ln

@@f$bDJ
x0~sF!%##

@@f$bDJ
x0~sF!%##

. ~16!

This is an Ising-likeeffective Hamiltonian16 to be associated
to the domain of interest.

The restriction of these equations toL I5$x0% ~which
makes them quite inappropriate to describe relatively co
plex, e.g., antiferromagnetic order! has compelled us to in
voke a unique coherent field,h, in Eq. ~10!. The final solu-
tion is thus Eq.~11! with Eq. ~14!, whereh is given by the
self-consistence relation

^sx0
&5K 1

q (
yPLF

syL ~17!

with ^•••& representing the average with respect toPst(sC).
This may be transformed into

(
n50

q S q

nD ynQ~n!50, ~18!

wherey5e2bh, and

Q~n!52nF FA~n!

B~n!G
1/2

1FB~n!

A~n!G
1/2G22qFB~n!

A~n!G
1/2

, ~19!

with A(n)5@@f(2bJ(2n2q)12bhe)## and B(n)
5@@f„22bJ(2n2q)22bhe…##. Before analyzing the con
sequences of Eq.~18!, we apply the formalism in Sec. II to
larger domain.

Considerd52 andLC as defined in Fig. 1~b!, i.e., the
domain contains four interior spins surrounded by eight b
der spins. Let us define two sublattices,LA and LB , with
LC5LAøLB , LAùLB50, as indicated in the figure, an
the order parameters

m5
1

N (
xPL

sx , m5
1

2NA
(

xPLA

sx2
1

2NB
(

xPLB

sx .

~20!

It turns out necessary to invoke two coherent fields,hA and
hB , acting on the border spins inLA andLB , respectively.
That is, the domain probability is now

Pst~sC!5
1

NexpH 2bH~sI ,sF!

1bhA (
yPLFA

sy1bhB (
yPLFB

syJ ~21!

with

N5(
$sC%

expH 2bH~sI ,sF!1bhA (
yPLFA

sy1bhB (
yPLFB

syJ .

~22!

The corresponding self-consistence relations are
-

r-

2K (
xPL I

sxL 5K (
xPLF

sxL ,

2K (
xPL I A

sx2 (
xPL I B

sxL 5K (
xPLFA

sx2 (
xPLFB

sxL . ~23!

One may write this squematically as

g1~x,y!50, g2~x,y!50, ~24!

where x[e2bhA, y[e2bhB, and the functionsgj , j 51,2,
depend on the choice forp(J).

IV. RESULTS

We describe in this section some of the consequence
the equations in the previous one. Concerning the simp
caseL I5$x0%, the solution is Eq.~11! with Eqs. ~14! and
~18!. For he50, the latter has the symmetr
Q(n)52Q(q2n). It then follows thaty51 always satis-
fies Eq. ~18!, which corresponds to the trivial solutionm
50. We next investigate the possibility of spontaneous m
netization, i.e., nonzero solutions for the domainL I5$x0%.

In the absence of competition, namely, forp(J)
5)xyd(Jxy2J0), one has that Pst(sC)
5ZBP

21exp$2bHBP(sC)%, where HBP(sC)52J0(yPLF
sx0

sy

2h(yPLF
sy is the Bethe-Peierls Hamiltonian. That is, th

system reproduces the familiar mean-field approximation
an equilibrium system. In fact, Eq.~18! reduces to

y5H 11ye2bJ0

y1e2bJ0
J q21

, ~25!

which has nonzero solutions forT,Tc , where J0 /kBTc
5 1

2 ln„q/(q22)… locates the transition from a paramagne
state to a~ferromagnetic! state with spontaneous magnetiz
tion.

Under competing dynamics ford52, Eq.~18! reduces to
Q(0)y214Q(1)y1Q(0)50 which has two nonzero solu
tions:

y652
2Q~1!

Q~0!
6AH 2Q~1!

Q~0! J 2

21. ~26!

These transform into a unique solution forQ(1)/Q(0)5 1
2 ,

which defines the critical temperatureTc for the second-
order phase transition. The value forTc depends onp(J) and
f(X). As an illustration, we have explicitly worked ou
Gaussian and bimodal distributions for the disorder.

Consider first

p~J!5)
xy

1

A2p J̃
expH 2

~Jxy2J0!2

2J̃2 J . ~27!

For rateA, the phase transition is similar to the equilibriu
one above; in particular,kBTc /J052.88 for d52, indepen-
dent of the parameters in~27!. That is, the dynamic compe
tition does not induce any noticeable impure effect. For b
rateB and rateC, by contrast,Tc depends on the widthJ̃.
As J̃/J0→0, one observes that the zero-temperature mag
tization, m(T50), tends to saturation; that is, the effect
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impurities decreases as the Gaussian transforms intod
function and, eventually, one recovers the equilibrium c
with no competition. On the other hand,m(T)→0 for anyT

asJ̃/J0→1.0336, where the latter estimate is obtained as
solution of erf(J0 /A2J̃)5 2

3 . That is, a broad distribution o
disorder makes so important the randomness that any l
range order is suppressed; interestingly, this occurs sudd
at a well-defined value ofJ̃/J0 . Figure 2 represents the pha
diagram for various rates when the dynamic competition
Gaussian, Eq.~27!. The fact that the rate so strongly influ
ences the steady state is a distinguishing feature of kin
systems with competing dynamics such as Eqs.~2!–~3!.12

Consider next

p~J!5)
xy

$pd~Jxy2J0!1~12p!d~Jxy1J0!%, ~28!

i.e., Jxy equalsJ0 with probability p ~both with time along
the time evolution and spatially in any given configuratio!,
and2J0 with probability 12p. The steady state in this cas
is independent of the rate~for the family of rates considered!,
unlike for distribution~27!. However, the probabilityp that
the bond is positive plays a role similar to the width for t
Gaussian distribution above. In particular, a transition of s
ond order is exhibited atTc(p), such that saturation require
p→1, and no transition occurs forp,p0 . One obtainsp0
5 5

6 for d52. Figure 3 illustrates the situation in this cas

FIG. 2. The phase diagram for the two-dimensional system w
the Gaussian dynamic competition~27! and~from top to bottom, as
indicated! rates A, B, and C, as defined in Sec. III, when th
relevant domain has a single interior spin.

FIG. 3. The phase diagram for the two-dimensional system w
the bimodal dynamic competition~28! when the relevant domain
has a single interior spin; the result is independent of the elemen
rate for ratesA, B, andC. The symbols correspond to comput
simulation results in Ref. 14 for the system~2!,~3! with rateC.
e

e

g-
nly

s

tic

-

,

and compares with data from a computer simulation of
system~2!,~3! with rateC.14

The solution for the~two-dimensional! domain in Fig.
1~b! is Eq. ~21! with Eq. ~24!. Let us consider now this cas
when the time evolution involves the bimodal distributio
i.e., Eq.~6! with Eq. ~28!. The functions in Eq.~24! for this
distribution are

g1~x,y!5a1~12x4y4!1a2~y1x2x4y32y4x3!

1a3~y21x22x4y22x2y4!

1a4~y31x32x4y2xy4!

1a5~xy2x3y3!1a6~xy21x2y2x3y22x2y3!,

~29!

and

g2~x,y!5b1~y2x2x4y31x3y4!

1b2~y22x21x2y42x4y2!

1b3~y32x31xy42x4y!

1b4~y42x4!1b5~xy22x2y2x3y21x2y3!

1b6~xy32x3y!, ~30!

where the coefficients,ai and bi , i 51, . . . ,6, depend on
T, p, and on the functionf(X). These equations lead to th
following principal results. Forp51 and 0, the critical tem-
perature~for transitions from paramagnetic to ferromagne
or antiferromagnetic phases, respectively! is kBTc /J0
52.8309, slightly smaller than the corresponding Be
value of 2.88~cf. above!; otherwise, this model version give
curvesm(T) that are very close to the ones for the Beth
Peierls solution. ForpP(0,1), the behavior strongly depend
on the choice forf(X). For ratesB andC, Tc is a function
of p; the function is different for each rate, and vanishes
p,p0 with p050.8636, 0.8664 for the casesB andC, re-
spectively. The latter value is to be compared withp0
50.8649 obtained from the pair approximation,13 and p0
50.928 obtained from computer simulation,14 both for the
same system. The phase diagram is presented in Fig. 4.
cept for the fact that the rate determines here the steady s
the differences with the situation in Fig. 3—for ratesB and
C — are small.~Note that Fig. 4 is forp. 1

2 ; the situation is

h

h

ry

FIG. 4. The phase diagram for the two-dimensional domain
Fig. 1~b! and the bimodal dynamic competition~28!. Different
curves are for ratesB, C, andA, from top to bottom, respectively
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similar for the antiferromagnetic phase,p, 1
2 .) Figure 5 il-

lustrates the variation of the coherent fieldh with p at three
different temperatures~for rateB). This shows both the fer
romagnetic and the antiferromagnetic regions; the latter
hibits the expected symmetry for the two involved fields.

The situation for rateA turns out to be quite different, a
indicated in Fig. 4. The critical temperature,Tc5T1(p), lo-
cates, as before, a transition from paramagnetic to ferro
antiferromagnetic phases. However, when the temperatu
below a second critical value,T2(p), another second-orde
phase transition occurs between theferromagneticphase and
a phase that apparently~in the present description! does not
exhibit any long-range order. We interpret that a new kind
order, different from the ordinary, ferromagnetic long-ran
order, occurs belowT2(p) that characterizes a kind ofspin-
glassphase. As shown in Fig. 4, thisreentrantphase transi-
tion occurs forpP@0.8782,0.9206#, it becomes of first order
for pP@0.9206,0.9375#, and it does not occur forp
.0.9375. Figure 6 depicts different magnetization curv
confirming this picture.

Summing up, we studied a solvable mean-field version
a kinetic Ising model of disorder proposed earlier;11 this ex-
tends our previous study of simpler cases.13,14 The case pre-
sented here can systematically be generalized in the c
puter. A key feature of our system is that it allows f
economical evaluation of the effects of ionic diffusion on t
observed properties of spin-glass materials. It is assume

FIG. 5. Three illustrative isotherms showing the variation of t
coherent fieldh with p for the system in Fig. 4 with rateB.
x-

or
is

f

s

f

m-

in

Eqs.~2!,~3! that ionic diffusion is so fast as compared to sp
flips that one can take care of coupling changes by mean
an effective, competing dynamics. In order to obtain an
plicit case, we have approximated Eqs.~2!,~3! by the
coherent-field description in Sec. II whose steady state m
be obtained exactly, e.g., Eqs.~21!–~24!. Within this context,
ionic diffusion has two principal effects. On one hand,
relieves some of the features, such as freezing phenom
that seem to characterizespin-glass behavior. On the other
hand, diffusion makes the system relax to anonequilibrium
steady state, in general. Consequently, the details of the
laxation process—such as the rate in the model—determ
the steady state. We have shown that, for some choice
parameters, the model exhibits interesting behavior, e.g.
entrance phenomena. Therefore, modeling appropriately
process of ionic diffusion, and perhaps including other
fects ~e.g., local random fields!, one may induce complex
model behavior. This strongly suggests that ionic diffusion
magnetic substances may be at the origin of some of
~often peculiar! observed properties of disordered system
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FIG. 6. Variation with temperature of the magnetization for d
ferent cases, for the domain in Fig. 1~b! and rateA. The curves are
for the Bethe-Peierls~equilibrium! solution, and for the kinetic sys
tem with p50.95, 0.94, 0.92, and 0.90, respectively, from top
bottom. The situation is similar forp,

1
2 in the antiferromagnetic

phase.
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