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Modeling ionic diffusion in magnetic systems
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We present a solvable kinetic lattice model which includes microscopic disorder, namely, random exchange
energies(between pairs of spindluctuating randomly with time. This, which may ideally model fast ionic
diffusion in magnetic systems, impedes reaching equilibrium, in general. The resulting nonequilibrium steady
states exhibit additional randomness which induces complex behavior, including reentrance phenomena remi-
niscent of spin-glass behavidS0163-182608)02738-9

I. INTRODUCTION +oo
c(sx)zf dJp(Jd)cy(sx). 3)
The Isingspin glas$? is a conceptually simple example o
of systems with microscopic disorder. It consists of the The motivation for this is that, if the time variation of the
dimensional(e.g) sc lattice,z% and the Hamiltonian Jys (diffusion is fast enough compared with spin changes,
one may assume these evolving by a stochastic process char-
acterized by arffective competing rate as in E¢3).X? The
elementary rate;(s;x) concerns a particular distribution of
) Jyys and, therefore, a particular value of the enelrtys).
where J={J, e Rex,ye 2% is a set of random numbers For simplicity, it turns out convenient to deal in practice with
with given probability distribution. That is, each binary-spin fynctions c;(s;x) that satisfy detailed balance, i.&(s;x)
configuration,s={s,= + 1;xe 29}, has the potential energy =c;(sx)exd BH,(s) — BH;(s)]. This implies that the sys-
(1) for each realizatiod of disorder. The fact that the cou- tem evolves with time towards the eqw“bnmﬁmbg state
pling strength changes at random from one pair of spins t@orresponding tdinverse temperature8= (kgT) * and en-
the other simulates that, in a class of alloys, magneticallyargy Hy(9) if p(3)=I1y(J,,—J), i.e., when the dynamics
active ions are spatially distributed at random, and exchangg due to the action of a unique(s;x) alone. However, Eq.
energies have a damped oscillatory behavior with distancgg) describes more generally a competition of such tenden-
(Assuming random local fieldshy, in Eq. (1) is also cjes whose net asymptotic result is a nonequilibrium steady
interesting3,_6 for SlmpIICIty, however, we restrict ourselves state. Therefore, studying this System may be relevant to
to constant external fields in this paper, iB=he VX.)  petter understanding both “impure” systems and nonequi-
The setJ is constant with time for each realization of the |iprjium phenomena.
system, which corresponds goenchedlisorder or frozen-in We report in this paper on solvable versions of E@.
impurities. The interest is then on averages over both thgnd (3), and compare with other approachesy name|y, a pair
stationary distribution for the configuratiorBg(s), and the  approximatiof® and a computer simulatiotf,both concern-
weight, p(J), of different realizations of disordér.*° ing simpler cases. The situations we have investigated differ
The above has been generalized to include spatial distrconceptually from the(rather unrealistic annealed spin
bution of disorder varying with tim&-*?It has been argued glas® in which impurities are in equilibrium with the spins
that in order to model somewhat more realistically micro-—instead of constantly impeding canonical equilibrium. In
scopically disordered magnetic systems, one needs to invokgct, our study reveals certain behavior: the existence of the
time variations of thel,;s to take into account the conse- additional randomness implied by E@) amounts to a sort
quences of ionic diffusion. This constantly modifies the dis-of dynamic frustration or conflict during the evolution which
tance|x—y| between each specific pair of spins and, thereinduces interesting complex phenomena.
fore, makesl,, vary in practice also with time. As a first step
towards understanding this effect, fast random diffusion of
impurities has been studied. That is, one assumes that the
probability of s at timet, P.(s), satisfies the master equa- The explicit study of the general systeif2),(3) is
tion: difficult,’? so that we analyze in the following a simplified
version of it. Our modification consists of a mean-field limit,
dPy(9) since a large set of the system degrees of freedom is replaced
o 2 [e(SXP()—c(sxP(9)], (2 by the action of a coherent field. That is, we are only con-
xez cerned with details, including spin correlations, in a rela-
where therate or probability per unit time for the transition tively small compact domain of lattice sited.. This con-
(flip) from the configuratios={ ... ,s,_1,5¢,S¢+1, ...} t0  sists of two subsets,A; and Ar, such that Ac
s'={...,S¢1,—S¢,Sx+1, - - -} IS @ superposition of more =AUAg, A\NAg=0, A, isthe domain interior, and ¢
elementary processes, namely, is the border, defined as the subset of all sites &t that

Hi(s)=— z 4 nysxsy_ Ed xSy, 1)

x,yeZ XeZ

II. DEFINITION OF MODEL
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(a) (b)

FIG. 1. () This illustrates the generic domaifi-={®,0}; the
domain interior,A,={@®}; and theborder, Ar={O}. (b) A spe-
cific domain ford=2, consisting of 12 spins, as considered in the
text; a distinction is made here between two sublattickg,
={@®}, andAz={O}.

have at least one nearest-neighbor outgide cf. Fig. 1(a).

The probabilities for the configurations,sc={s,;x

eAct, s={s;xe A}, and se={s,;xe Ag} may be re-
lated to each other by the equation,

Pi(sc)=Pi(s/s:)Pi(se), (4)

where Py(s/s:) is a conditional probability, and one as-
sumes the normalizations E{%}Pt(s, /Is£)=1, and

E{SF}Pt(sF)zl. A main feature of the model is that, for any

particular configurationsz, Pi(s/sc) satisfies the master
equation:

IP(s/
t(jt = EA [c(8x)P(STse) —c(s ;) Pi(s /s6)],

Xe A
©)
wherec(s ;x) is a superposition similar to E¢3), namely,

s 0=[les0T1= [ dap@eis . ©

The above is complemented with a choice Ry€sz), which
involves an appropriate coherent field to take into accoun
the relation between the spins A and those in the rest of
the lattice. That is, the total probabilify;(s) in the original
system is replaced here by the domain probabiitys:)
which invokes a field to be estimated self-consistently. Thi
produces a set of? coupled equationginstead of 2, N
>N,=card(\,), in the original problemwhose solution is
feasible for not too largé\, .

The steady state is defined as the solution o
IP(s/s)/dt=0. One may write quite generally that
Po(s/sc)=exp—BH(S ,se)—T'(se)},  which  defines
H(s ,S:), wherel'(sg) is determined by the normalization
of Py(s/sc). It follows that

—InPg(s/s), (7)

1
H(s se)= Il [T Pe(si/se)
2% | 1s}

where we have assumed tHd{(s ,s:) can be written as a
combination of products of spins inside the domain, i.e.,

N
Mes=2 2 I8, s ©
k=1 (j1.-K)

where J ; “are real numbers. Let us define the domain

configurational energy as
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Hi(sc)=— E nysxsy_ he 2 Sx - 9
X,yeAc xeAc
If we write the probability of the border as
Ps«saocexp[r(sawh 2 sy], (10
yeAp

wherel'(s) is the same function as before, one obtains after
using Eq.(4) that

1
Psi(sc)= J—vexp[—ﬁH(sl,sFHBhy;A sy], (11)

with

N=2 exp —BH(s )+ Bh 2, sy]. (12)
{sc} yeAg

The fieldh on the border is to be estimated self-consistently,
i.e., by requiring the same magnetization per sité jnthan

in Ag. One may easily generalize this, for example, by in-
volving several different fields if required by the nature of
order, as made explicitly in the next section.

Ill. SOME CASES OF THE MODEL

The formalism in the previous section is valid for any
dimensiond and size ofA,. We next deal with some cases
for which the model has a simple analytical solution exhib-
iting nontrivial behavior. More complex cases may be stud-
ied by solving implicit equations in the computer.

Consider first the simplest case, namehy,={x,} (any
d) so that the domain consists of an inter{oentra) spin,

Sxy! and itsq nearest neighbors. For simplicity, we restrict
urselves in the following to elementary rates such that
3(s:X)= ¢(BAH(sc)), where(using an obvious notatign

AH}(sc)=Hy(s',5) —Hy(s,5), and one has ¢(X)
= ¢(— X)exp(—X)—which corresponds to the detailed bal-

Qance condition—,(0)=1, and ¢()=0. Three familiar

choices consistent with these properties aféX)=exp
(—XI2) (hereafter referred to asate A), ¢(X)=2(1+¢e¥)
(rate B), and¢(X)=min{1,e %} (rate C). For the indicated

fomain, the stationary conditional probability follows from

IPs(s /s)/ot=0 as

C(Sx,i %o)

C(SXO;XO) + C( - SXO;XO)

Po(Sq, /) = (13

after using Eqgs(4) and(11). One may check that the condi-
tion Pg( — sXO/sF)/Pst(sxolsF) =c(— Sx0§Xo)/C(Sx0§Xo) holds,

i.e., this is a very simple case in which the resulting effective
rate—not only the elementary one—also satisfies detailed
balance. One obtains from E(}) that

[[¢{BAY(s0)}]]
Sk In <
2 70 (= BAY(s)}]

BH(SXO!SF) =

with A°(se) =2{Zyc JyySy+he}. Therefore,
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yeAg

H(SxySF)=— > JxoySySxy: (15
yeAp
where
1 [[{BAY(s)H]
Jy vSy=—=1In ” . (16)
B2, boS 2 [[A{BAY(s)}]

This is an Ising-likeeffective Hamiltoniatf to be associated
to the domain of interest.
The restriction of these equations 1,={x,} (which

makes them quite inappropriate to describe relatively com

plex, e.g., antiferromagnetic ordenas compelled us to in-
voke a unigue coherent fieltl, in Eq. (10). The final solu-
tion is thus Eq.(11) with Eq. (14), whereh is given by the
self-consistence relation

Sy>

1
S — —
=53
with (- - -) representing the average with respecPtg(sc).
This may be transformed into

17

4 [q
> ( )y”®<n>=o, (18)
n=0 \N
wherey=e?#" and
A(n) 1/2 B n) 1/2 B(n) 1/2
@(n)=2n m %ﬂ) }—ZQ m y (19)
with  A(n)=[[¢(2BI(2n—q)+2Bhy)]] and B(n)

=[[¢(—2BI(2n—q)—2Bh.)]]. Before analyzing the con-
sequences of Eq18), we apply the formalism in Sec. Il to a
larger domain.

Considerd=2 and A as defined in Fig. &), i.e., the
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One may write this squematically as

gl(X,y):O, gZ(va):Ov (24)

where x=e?/", y=e?f"s, and the functionsgy;, j=1,2,
depend on the choice fqr(J).

IV. RESULTS

We describe in this section some of the consequences of
the equations in the previous one. Concerning the simplest
caseA,;={x,}, the solution is Eq(11) with Egs.(14) and
(18. For h,=0, the Ilatter has the symmetry
O(n)=—-0(q—n). It then follows thaty=1 always satis-
fies Eq.(18), which corresponds to the trivial solutiom
=0. We next investigate the possibility of spontaneous mag-
netization, i.e., nonzero solutions for the domaip= {x.}.

In the absence of competition, namely, fqu(J)
=1Il,,6(Ixy—Jo), one has that Ps(sc)
=Zgpexp{—BHep(sc)}, Where Hep(sc) = —JoZyc 4, Sy, Sy
—hEyEAFsy is the Bethe-Peierls Hamiltonian. That is, the
system reproduces the familiar mean-field approximation for
an equilibrium system. In fact, E§18) reduces to

1+ye?do] 971
Y=\—""%m-

y+e?hl
which has nonzero solutions foF<T., where Jo/kgT,
=21In(g/(q—2)) locates the transition from a paramagnetic
state to aferromagnetif state with spontaneous magnetiza-

(25

domain contains four interior spins surrounded by eight bor’[ion

der spins. Let us define two sublattices, and Ag, with
Ac=ApUAg, ApNAg=0, as indicated in the figure, and
the order parameters
1 1
m= — Sy, =
ng X H 2NA ><E

eAp

1
Sy— Z_NB XE Sy .

elAg
(20)

It turns out necessary to invoke two coherent fields.and
hg, acting on the border spins ik, andAg, respectively.
That is, the domain probability is now

1
Ps(sc) = /—vexp| —BH(S ,S)

with

N=S exp{—m<s,sF>+/ahA S siphs S sy}.
{sct YEAFA YEAFB
(22

The corresponding self-consistence relations are

Under competing dynamics fat=2, Eq.(18) reduces to
0(0)y?>+40(1)y+0(0)=0 which has two nonzero solu-

tions:
_ 2001 [[20(1))2
Y+=— 0(0) — ((0)} —-1. (26)

These transform into a unique solution ©(1)/0(0)=3,

which defines the critical temperatufie, for the second-

order phase transition. The value fiy depends op(J) and

#(X). As an illustration, we have explicitly worked out

Gaussian and bimodal distributions for the disorder.
Consider first

1

J)= —exp, — = (27
P 1} 27 p{ 2J°
For rateA, the phase transition is similar to the equilibrium
one above; in particulakgT./J;=2.88 ford=2, indepen-
dent of the parameters i27). That is, the dynamic compe-
tition does not induce any noticeable impure effect. For both
rate B and rateC, by contrastT, depends on the width.

As J/J,—0, one observes that the zero-temperature magne-
tization, m(T=0), tends to saturation; that is, the effect of

(ny_‘]O)z}
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FIG. 2. The phase diagram for the two-dimensional system with  FIG. 4. The phase diagram for the two-dimensional domain in
the Gaussian dynamic competitiG27) and(from top to bottom, as  Fig. 1(b) and the bimodal dynamic competitiof28). Different
indicated ratesA, B, and C, as defined in Sec. lll, when the curves are for rateB, C, andA, from top to bottom, respectively.
relevant domain has a single interior spin.

. - _ _ and compares with data from a computer simulation of the
impurities decreases as the Gaussian transforms info a system(2),(3) with rate C.14

function and, eventually, one recovers the equilibrium case The solution for the(two-dimensional domain in Fig.
with no competition. On the other hama(T)—0 foranyT  1(b) is Eq.(21) with Eq. (24). Let us consider now this case
asJ/J,— 1.0336, where the latter estimate is obtained as thavhen the time evolution involves the bimodal distribution,
solution of erf(,/23)=2. That is, a broad distribution of i-€., Ed.(6) with Eq. (28). The functions in Eq(24) for this
disorder makes so important the randomness that any longlistribution are

range order is suppressed; interestingly, this occurs suddenly

> — (1 — XA+ A (V4 x— X33 vAx3
at a well-defined value af/J,. Figure 2 represents the phase 91(%.¥) =a1(1 =Xy + @y + X=Xy =y

diagram for various rates when the dynamic competition is +ag(y?+x2—x%y?—x%yh
Gaussian, Eq(27). The fact that the rate so strongly influ-

i istinquishi ineti +ay(y3+x3—xty —xyh)
ences the steady state is a distinguishing feature of kinetic 4

systems with competing dynamics such as Egs-(3).1?

+ _33+ 2+2_32_23
Consider next as(Xy—Xx°y®) +ag(xy +x%y — X’y —x°y°),

(29
p<J>=1x'J P8y o) +(1=p)8(dgy+Jg)}, (28)  and
_ v yA3 34
i.e., Jy, equalsJy with probability p (both with time along 920,Y) = bay =x=xy*+X%y")
the time evolution and spatially in any given configuration +by(y?—x%+x2y*—x%y?)
and — J, with probability 1— p. The steady state in this case 3 a3 A
is independent of the ratéor the family of rates considergd +bs(y3—x3+xy*—x%y)

unlike for distribution(27). However, the probabilityp that

4__ 4 2 __ 2\ 3,2 2,,3
the bond is positive plays a role similar to the width for the D4y =X b (xy =Xy =Xy XY

Gaussian distribution above. In particular, a transition of sec- +bg(xy*—x3y), (30)
ond order is exhibited ak.(p), such that saturation requires . .
p—1, and no transition occurs f@r<p,. One obtaingy, where the coefficientsa; and b;, i=1,...,6,depend on

=2 for d=2. Figure 3 illustrates the situation in this case, T» P. and on the functioy(X). These equations lead to the
following principal results. Fop=1 and 0, the critical tem-
perature(for transitions from paramagnetic to ferromagnetic
or antiferromagnetic phases, respectiyelis kgT./Jg

A =2.8309, slightly smaller than the corresponding Bethe

20 1

@ | value of 2.88(cf. above; otherwise, this model version gives
ke T g curvesm(T) that are very close to the ones for the Bethe-
) =2 Peierls solution. Fop € (0,1), the behavior strongly depends

on the choice forp(X). For ratesB andC, T, is a function
' of p; the function is different for each rate, and vanishes for
0.0 N p<po With pp=0.8636, 0.8664 for the cas@&andC, re-

0.8 09 spectively. The latter value is to be compared wiip
=0.8649 obtained from the pair approximatithand p,

FIG. 3. The phase diagram for the two-dimensional system witt=0-928 obtained from computer simulatithpoth for the
the bimodal dynamic competitiof28) when the relevant domain Same system. The phase diagram is presented in Fig. 4. Ex-
has a single interior spin; the result is independent of the elementai§ept for the fact that the rate determines here the steady state,
rate for ratesA, B, andC. The symbols correspond to computer the differences with the situation in Fig. 3—for rat®sand
simulation results in Ref. 14 for the syste®),(3) with rateC. C — are small(Note that Fig. 4 is fop>3; the situation is
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FIG. 6. Variation with temperature of the magnetization for dif-
FIG. 5. Three illustrative isotherms showing the variation of theferent cases, for the domain in Figbl and rateA. The curves are

coherent fielch with p for the system in Fig. 4 with ratB. for the Bethe-Peierlgequilibrium) solution, and for the kinetic sys-
tem with p=0.95, 0.94, 0.92, and 0.90, respectively, from top to
similar for the antiferromagnetic phase<3.) Figure 5il-  bottom. The situation is similar fop<3 in the antiferromagnetic

lustrates the variation of the coherent fidldvith p at three  phase.
different temperaturedor rate B). This shows both the fer-
romagnetic and the antiferromagnetic regions; the latter e
hibits the expected symmetry for the two involved fields.
The situation for raté turns out to be quite different, as

Egs.(2),(3) that ionic diffusion is so fast as compared to spin
XfIips that one can take care of coupling changes by means of
an effective, competing dynamics. In order to obtain an ex-

I g o _ _ plicit case, we have approximated Eq&),(3) by the
indicated in Fig. 4. The critical temperaturg,=T,(p), o (therent—field description in Sec. Il whose steady state may

cates, as before, a transition from paramagnetic to ferro . NN
antiferromagnetic phases. However, when the temperature € obtained exactly, €.9., Eq21)—(24). Within this context,

below a second critical valué,,(p), another second-order lonic diffusion has two principal effects. On one hand, it

phase transition occurs between fhsomagnetiphase and relieves some of the features, such as freezing phenomena
. " that seem to characterizpin-glass behaviorOn the other

a phase that apparent{in the present descriptiprdoes not

exhibit any long-range order. We interpret that a new kind othand’ diffusion makes the system relax ta@nequilibrium

order, different from the ordinary, ferromagnetic Iong-ranges'te"j‘qy state, in general. Consequer_ltly, the details of the e
. ) . laxation process—such as the rate in the model—determine
order, occurs below,(p) that characterizes a kind spin-

glassphase. As shown in Fig. 4, thigentrantphase transi- the steady state. We have shown that, for some choices of

4 . : parameters, the model exhibits interesting behavior, e.g., re-
?(?rn SZCF659?£%[85%825%32% étoziconngfsoogctrft fc:) rrger entrance phenomena. Therefore, modeling appropriately the

) . . T rocess of ionic diffusion, and perhaps including other ef-
>0'937.5' F|gur§ 6 depicts different magnetization curve ects (e.g., local random fields one may induce complex
confirming this picture.

Summing up, we studied a solvable mean-field version o odel b_ehavior. This strongly suggests tha_t ionic diffusion in
a kinetic Ising n,10del of disorder proposed earfikthis ex- ?tgnetlc Sll.JbStaQCES r(rjlay be ?t thef ((j)_rlglnd of somet of the
tends our previous study of simpler cas&$! The case pre- (often peculian observed properties of disordered systems.
sented here can systematically be generalized in the com-
puter. A key feature of our system is that it allows for
economical evaluation of the effects of ionic diffusion on the  This work was supported by the DGICYT under Project
observed properties of spin-glass materials. It is assumed iNo. PB91-0709 and by thaunta de Andalue
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