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Abstract

A stochastic neural-network model with superposition of neuron and synapse kinetics with a
priori probabilities p and 1−p, respectively, is presented. We report on exact and approximate
results for p → 0. This includes Hop�eld-like models in which synaptic intensities locally

uctuate around Hebbian values. It is illustrated how 
uctuations in
uence the phase diagram
and, in particular, that an appropriate choice of details may signi�cantly improve the retrieval
process. c© 1998 Elsevier Science B.V. All rights reserved
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The Hop�eld model for associative memory [1] is convenient to evaluate the rele-
vance of microscopic details, namely, additions or variations that try to capture some
of the essential features of biological systems; cf. [2–7], for instance. Among these de-
tails, the consequence of time variation of the neuron couplings are not yet well enough
understood. In fact, models either assume that synapse intensities are determined in a
previous learning, plasticity process that �xes them to constant values thereafter during
the neurons evolution, or else two di�erent time scales are invoked for synapses and
neurons, respectively, the former being much larger than the latter. However, it is often
recognized that such a quenched picture is not quite realistic. That is, besides plasticity,
biological synapse intensities vary locally on a time scale smaller than that for neuron
activity: On one hand, there are local 
uctuations of the neurotransmitters concentration
which induce substantial changes in the synapses during the time elapsed between the

∗ Corresponding author.
1 Supported by the DGICYT, Project No. PB91-0709, and Junta de Andaluc��a of Spain.
2 Present address: Institute for Nonlinear Science, University of California, San Diego, CA, USA.

0378-4371/98/$19.00 Copyright c© 1998 Elsevier Science B.V. All rights reserved
PII S 0378-4371(98)00036 -3



58 P.L. Garrido et al. / Physica A 253 (1998) 57–65

generation of two consecutive action potentials [8]. On the other, biological neurons
are typically connected in practice by more that one synapse [9], each having a di�er-
ent nature, either chemical or electrical, which transmit the action potential at di�erent
speed. As a net result of these (and other) processes, the mechanisms of emission,
release and activation that relate one neuron to the others are fast processes that ap-
pear mostly random to the observer [10]. In fact, it has been reported, for example,
neuron variability to repeated presentation of the same stimulus [11]. It seems now
out of question, however, that such apparent randomness is an essential feature of the
system. This is suggested, for instance, by the fact that di�erent kinds of noise might
couple each other to produce stochastic resonance under certain circumstances [12].
These observations motivated us to study a simple scenario in which the consequences
of random synaptic noise – coexisting with the more familiar thermal neural noise –
could be investigated. We present in this paper a simple stochastic model which, in
fact, allows for detailed analysis of the in
uence of various kinds of time variation of
synapses on the performance of a neural-network system, and we describe some main
preliminary results from our study.
Consider a binary-neuron con�guration, s = {sx = ±1; x = 1; : : : ; N}, that evolves in

time competing with synaptic variations in such a way that a con
ict results leading,
in general, to nonequilibrium steady states. More explicitly, some undetermined agents,
which include a heat bath at temperature T , induce stochastic time evolution of the
probability of state (s; J) at time t according to the master equation

@tPt(s; J) =p
∑
x

[−$J(sx → −sx)Pt(s; J) + $J(sx → −sx)Pt(sx; J)
]

+(1− p)
∑
x;y

∑
J ′xy

[−$(Jxy → J ′xy)Pt(s; J) + $(J
′
xy → Jxy)Pt(s; Jxy)

]
;

(1)

here J = {Jxy ∈ R ; x,y = 1; : : : ; N} is the con�guration of synapse intensities, and
sx(Jxy) stands for s(J) after the change sx → −sx(Jxy → J ′xy). For simplicity, we
assume

$(Jxy → J ′xy) independent of the current s ; (2)

and

$J(sx → −sx) = 	 (2�sxhx) ; 	 (X ) = 	 (−X ) e−X ; (3)

where � = (kBT )−1 and hx = hx(s; J) =
∑

y Jxysy is a local �eld; here we only
consider in detail the cases 	(X ) = e−X=2 (rate A), and 	(X ) = min{1; e−X } (rate
B). Conditions (2) and (3) are introduced for simplicity. The �rst one reducing Eq.
(1) to a stochastic non-generic case, amounts to assume that synapses undergo very
fast variations rather independently of the much more slowly varying neurons, which
we believe may sometimes re
ect the situation in nature and, in fact, is the case we
study below. As a consequence of condition (3), the stationary solution of Eq. (1),
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Pst(s), is, for p = 1 and Jxy = Jyx, the thermodynamic equilibrium state at T for
energy HJ(s) = − 1

2

∑
x hxsx. This is the familiar Hop�eld Hamiltonian if (quenched)

intensities Jxy are given by a learning rule such as the Hebb’s one [13], so that our
model has a well-known limiting case.
Our interest is in the limit p → 0 which introduces two relevant time scales in

the problem (after the learning process is completed): There is a �ne time scale, �,
in which neurons do not appreciably evolve while synapse intensities 
uctuate locally;
however, neurons evolve (as in the presence of a steady distribution for the synapses)
on the coarse scale t = p� for p → 0 and � → ∞. One may represent such situation
(cf. [14] for further details) by means of

@tPt(s) =
∑
x

[
$(sx; x)Pt(sx)− $(s; x)Pt(s)

]
(4)

with $(s; x) =
∫
dJf (J)$J, where f(J) is the (stationary) distribution for synap-

tic 
uctuations. This allows one investigating the consequences of di�erent choices for
f(J). We only consider in the following functions f(J) such that Jxy ≡

∫
dJf(J)Jxy =

(1=N )
∑

� �
�
x�
�
y , where �

� ≡ {��x = ±1} are � = 1; : : : ; P memory patterns, so that 
uc-
tuations are around values corresponding to a given learning rule – the Hebbian one
in this example – . Two simple cases (to be interpreted below) are

f1 (J) =
∏
x;y

P∑
�=1

a���xy (5)

and

f2(J) =
P∑
�=1

a�
∏
x;y

��xy ; (6)

where ��xy ≡ �(Jxy − (1=a�N )��x��y) and
∑

� a� = 1.
It turns out su�cient to analyze these two cases to illustrate our main point, namely,

that details concerning the synaptic noise a�ect essentially the system performance, so
that appropriate design of these details may signi�cantly improve the retrieval process
in neural networks. In order to illustrate this, we have obtained exact results for both
symmetric, Jxy = Jyx, and asymmetric couplings for a choice of e�ective rates $,
and have used the replica trick, mean-�eld theory, and computer simulations to deal
with other cases. Our study shows that evolution of synapses as in Eq. (1) essentially
modi�es the performance of the Hop�eld network, and various nonequilibrium phase
transitions [15] arise whose nature strongly depends on $. In particular, we �nd that
random 
uctuations according to f2 in Eq. (6), which describes 
uctuations involving
a kind of correlations, may notably reduce the error in retrieval processes, while this
is not the case for f1 in Eq. (5), which lacks such correlations, whose main e�ect
is introducing a tendency to stabilize the Hop�eld solutions. It is likely that a similar
conclusion, which one expects to hold beyond the Hop�eld-model scenario, applies
also to the behavior of biological systems. We report in this paper on the most general
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results from our study; further technical details and related numerical work are to be
reported elsewhere [16].
For rate A and f1, one may show that an e�ective Hamiltonian exists such that

Pst(s) ∝ exp(−�He� ) [15] with

He� (s) = −1
2

∑
x;y

Jxysxsy ; (7)

where 2�Jxy = ln(1+�)− ln(1−�); � = (1=�) Jxy tanh �� and � ≡ P=N for a� = 1=P.
If the ��xs are quasi-orthogonal to each other, it follows that

Jxy ≈ A(�)
1
N

∑
�

��x�
�
y ; A(�) =

1
��
tanh(��) : (8)

That is, if 
uctuations are described by the exceptionally simple distribution (5), the
resulting e�ective intensities are the Hebbian ones, except for the factor A(�), which
is induced by synaptic 
uctuations, and one obtains the Hop�eld Hamiltonian, but
corresponding to (e�ective) temperature Te� ≡ T=A(�). Then A(�) = 1, i.e., the
Hop�eld case, for �T−1 = 0 that occurs either if synaptic 
uctuations are irrelevant
compared to thermal noise (� 6= 0, T → ∞) or else if the number of stored patterns
is small compared with N in the thermodynamic limit (T 6= 0, � → 0). Otherwise
A(�)¡ 1, so that 
uctuations amount an extra noise added to the thermal one whose
variance depends on the degree of correlation between the stored patterns.
The replica trick and the saddle-point method may then straightforwardly be used

to obtain the (e�ective) free energy and relevant order parameters. For example, m� ≡
N−1∑

x �
�
x〈sx〉 = [[��tanh �e� {z

√
�r + (m+ h) · � }]] is the overlap with a condensed

pattern � (such that m� 6= 0 in the thermodynamic limit), and other parameters are
(using familiar notation) q = [[tanh2�e� {z

√
�r + (m+ h) · � }]], and r = q(1− �e� +

�e� q)−2. Here m ≡ {m�; � = 1; : : : ; k}, and h = {h�; � = 1; : : : ; k} are the conjugate
�elds; [[· · ·]] involves average over the distribution of condensed patterns (as well as an
integral corresponding to the Gaussian noise whose origin is the set of non-condensed
patterns).
In order to illustrate the implications of the above, consider h� = 0∀�. For T = 0, a

spin-glass solution, m� = 0 with q 6= 0, exists for any � ¡ �q = 2:618; q depends on �,
unlike for the Hop�eld model (where q = 1). That is, the fact that synapses 
uctuate
tends to impede the spin-glass phase, and the noise is so large when the number of
stored memories exceeds about 3N that the spin-glass solution does not exist. This
fact has a great formal interest, and also a practical one, because the spin-glass phase
hampers the e�ciency of retrieval processes; the improvement would be real if one
could simultaneously extend the pure, Mattis region [17] closer to �q, which is not
the case for this simple version of the model. As expected, the 
uctuations vanish as
� → 0, and we then recover the Hop�eld result. For T 6= 0, one has the Hop�eld
model with T replaced by Te� . The spin-glass phase occurs for T ¡ Tsg(�), where
2�T−1

sg (�) = ln(1 − �3=2) − ln(1 − 2� + �3=2) for � 6= 1, and T−1
sg (�) = tanh−1 12 for
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Fig. 1. Phase diagram for rate A and f1 if replica symmetry holds. The solid line, corresponding to the
function Tsg(�) in the main text, marks continuous phase transitions between the paramagnetic phase (P) –
which is characterized by zero overlaps with given patterns – , and the spin-glass phase (SG) – in which
the system retrieves a mixture of stored patterns – . The solid line ends at T = 0; � = �q = 2:618 (not
shown), i.e., the spin-glass phase, which is undesired from the point of view of an e�cient neural network,
does not exist for � ¿ �q; cf. the main text. The dashed line going as ∼ �1=2 is the corresponding Hop�eld
result. The lines near the origin depict a discontinuous phase transition such that ferromagnetic (F) states –
characterized by nonvanishing overlaps – are the only stable ones in the inmost region.

� = 1; this transforms into the Hop�eld result, Tsg(�) = 1 +
√
�, as � → 0. The

resulting phase diagram (Fig. 1 ) is therefore qualitatively similar to the Hop�eld one
if 
uctuations are small enough (� → 0) but di�erences are signi�cant for large �.
Furthermore, the Almeida – Thouless limit of stability of the ferromagnetic solution
[18] does not occur for any T¿0, because of the excess noise that increases with �.
The entropy associated with Mattis states is T−2(T 2e� − �2) times the Hop�eld result
(with T replaced by Te� ), so that it goes to zero as T → 0, unlike for the Hop�eld
case.
The (factorized) function f1 to which the preceding results concern implies lack of

correlation between 
uctuations at di�erent synapses: each intensity equals one of the
elements in one of the memorized patterns, which results in the mathematical simplicity
illustrated above. More interesting a priori are 
uctuations that may exhibit correlations,
such as f2 in Eq. (6). Each pattern �

� then contributes with certain probability to J,
which will re
ect the spatial correlations within � �. In the rest of the paper, we illustrate
this behavior for N → ∞. (We are strictly concerned with �nite P but it seems that
our results hold also for the asymptotic regime, P → ∞, as shown below.) From Eq.
(4), one obtains

@t〈sx〉 = −2〈sxa+x 〉 − 2〈a−x 〉 (9)

with 2a±x (s) ≡
∫
dJf(J)[	(2�sxhx)±	(−2�sxhx)], where 〈· · ·〉 means average with

Pt(s). Consider N → ∞ and the mean-�eld condition sx ≈ 〈sx〉, and develop the steady
solution around 〈sx〉 = 0∀x. This reveals a continuous nonequilibrium phase transition
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from paramagnetic- to ferromagnetic-like states at Tc, where det
{
Jxy=kBTc − �xy

}
= 0,

and low-T solutions which depend on limX→−∞	(X ). (This limit is �exp(−’X ),
where � = 1 and ’ = 1

2 for rate A, and � = 1 and ’ = 0 for rate B.) For
example, Tc = 1 when each pattern contributes with the same intensity to every synapse,
a� = 1=P.
For any set {��x} of quasi-orthogonal patterns, one �nds under condition sx ≈ 〈sx〉 as

N → ∞ for �nite P, that @tm� = −2m�∑� a�B
+
� − 2a�B−

� , where 2B
±
� = 	(2M

�)±
	(−2M�) with M� ≡ �a−1� m�. This has the stationary solution

m =
(
m1; : : : ; mP

)
; m� =

a�B−
�∑P

�=1 a�B
+
�
: (10)

In addition to the trivial solution, one obtains (m1; : : : ; mn; 0; : : : ; 0) with n6P and
1¿|m�|¿0 for T¡Tc = 1. Mattis states are for n = 1 : there are 2P such solu-
tions for P stored patterns. Spin-glass or mixture states are for n ¿ 1 and m =
mn(1; : : : ; 1;−1; : : : ;−1; 0; : : : ; 0) for a� independent of �.
More explicit results depend on the choice for 	. Consider rate B, which transforms

Eq. (10) into |m�| = 
−
� =

∑
� 


+
� with 


±
� ≡ a�[1 ± exp(−2 |M�|)], i.e., m� depends

on a� and on the other P − 1 overlaps. The low-temperature behavior depends on the
type of solution (m1; : : : ; mn; 0; : : : ; 0); for n = P; |m�| = a� at T = 0; for P − n(¿ 0)
zero overlaps, the other n non-zero overlaps at T = 0 are |m�| = a�=(1 +

∑P
�=n+1 a�).

For a� = 1=P; m� can only take values 0 and ± |mn| for any T , and one has below Tc
that

|mn| =
{
(P − n)−1 (1− T ) ; n ¡ P
P−1√3(1− T ); n = P

as T → 1−; (11)

which transforms continuously into |mn| = (2P − n)−1, n6P, as T→ 0. For rate
A, m� = a� sinhM�(

∑
� a� coshM�)

−1, so that m� depends on a� and on the other
P − 1 overlaps, and it follows at zero-T that m� = a�(

∑n�
�=1 a�)

−1sign (m�)���, where
� stands for the pattern such that |m�| = max� |m�|, and n� is the number of overlaps
|m�| = |m�|. Therefore, m� = sign (m�)��� for n� = 1, so that the system can then
recover a pattern without error at T = 0. For a� = 1=P with m� = 0;±|mn|, where mn
is a functions of T , n, and P, two di�erent types of mixture may occur for T ¿ 0: If
n ¿ 1

3P, mn = 0 for T¿Tc, and

|mn| =
√
6(1− T )
P(3n− P) as T → 1− ; (12)

if n6P=3, however, mn behaves discontinuously at, say, T̃ (n; P) such that T̃ (n; P ¡
3n) = Tc, as in a �rst-order phase transition. This behavior is illustrated in Fig. 2.
Most interesting in this case is the fact that the existence of a discontinuity allows for
large overlaps just below T̃ . In order to con�rm these results obtained after combining
(9) with a mean-�eld type of approximation – which we, however, expected to be
realistic for the present highly-connected system – , we performed some exploratory
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Fig. 2. Phase diagram for n = 1 as given by (10), i.e., rate A and f2. The line, corresponding to the
function T̃ (1; P) in the main text, indicates (nonequilibrium) phase transitions of second (solid) and �rst
(dashed) order. T̃ (1; P) increases always less than linearly with P; cf. the main text. The existence of a
nonequilibrium tricritical point is a remarkable feature of our system which causes good retrieval properties
for any P ¿ 3 at �nite temperature.

Fig. 3. The percentage of error, as measured by (1− m1)=2, during retrieval processes for Mattis states for
T ¡ T̃ in the case of Fig. 2 (shadow surface), where the error is only large for very small P near Tc, and
the corresponding Hop�eld result (grid). This comparison illustrates our comment in the caption for Fig. 2.

Monte Carlo simulations concerning a network of 3600 neurons; we thus obtained the
same behavior for m1(T; P) within statistical errors and, in particular, we con�rmed the
existence of the nonequilibrium tricritical point at P = 3 for Mattis states which is
predicted above. Also remarkable is the result that we report in Fig. 3, which is also
fully consistent with our Monte Carlo observations [16].
The solutions (10) correspond, in general, to a saddle point whose details strongly

depend on 	, so that speci�c analysis are required. For rate B, (local) stability depends
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on the sign of the eigenvalues of the matrix of elements Qij = 2ai
∣∣Mi

∣∣ exp(−2 ∣∣Mj
∣∣)+

�ij{2�exp(−2
∣∣Mj

∣∣) −∑
� a�[1 + exp(−2 |M�|)]}; it follows that only mixture states,

n = P, are stable. The relevant matrix for rate A is Qij = 2(� coshMi−∑
� a� coshM�)

�ij − 2aiM i sinhMj. For n = 1 (Mattis states) this has an eigenvalue changing sign at
T = T̃ (1; P) ≡ mcP�−1, P ¿ 3, where �+ (P − 1)(� cosh �− sinh �)− sinh � cosh � =
0, and one has from Eq. (10) that mc = sinh �(cosh � + P − 1). The system exhibits
associative memory below T̃ (1; P); cf. Fig. 2. In addition to the fact that locally-stable
mixture states do not exist, it is noticeable that good, monotonic behavior is suggested
as P is further increased even up to very large values, e.g., � ' 2:663+ 1:051 ln P �ts
well for P ∈ [104; 1013]. That is, our results seem to hold as P → ∞.
Finally, we mention that some of the above can be extended to the case of asym-

metric synapses, namely, when Jxy and Jyx are independent variables. Consider, for
example, Jxy = (1=P)

∑
� �

�
xy with �−1�

�
xy = A1�

�
x�
�
y + A2�

�
x + A3�

�
y + A4. For f1, one

obtains after some algebra the expression (7) for He� with

�Jxy = ��A4 + 1
2 lnKxy ; (13)

where Kxy =
∑4

i=1 �
i
+�

i
xy(

∑4
j=1 �

j
−�

j
xy)−1 with �1xy =

∑
� �

�
x�
�
y ; �2xy =

∑
� �

�
x; �3xy =∑

� �
�
y ; �4xy = P, and �

1
± = ±�1 + �2�3; �2± = ±�2 + �1�3; �3± = ±�3 + �2�1; �4± = 1 ±∏3

i=1 �i; �i ≡ tanh ��Ai. (Here one would need to work out some requirements in order
to have Jxy = Jyx, which guaranties that the result is a true e�ective Hamiltonian.)
For f2, one obtains P@tm� = −2m�∑� C

�− 2B� for the overlap with a given pattern,
� �, and P@t〈sx〉 = −2〈sx〉

∑
� C

� − 2∑�A
�B� for the mean activity in the net. Here

A� = (A3m� + A4〈sx〉)=(A1m� + A2〈sx〉); 2B� = 	(X+) −	(−X−), and 2C� = (1 −
A�)	(X+) + (1 +A�)	(−X−) with X± ≡ 2�P[(A1 ± A3)m� + (A2 ± A4)〈sx〉] for
quasi-orthogonal patterns under the mean-�eld condition sx ≈ 〈sx〉. One may obtain
further interesting behavior from these equations, e.g., they can, in principle, be solved
numerically to obtain m� and 〈sx〉 as a function of T; P and the asymmetry parameters
Ai, which is beyond our objectives in this paper.
Summing up, we have presented a kinetic Hop�eld-like network in which the neuron-

synapse con�guration, (s;J), varies with time according to the Markov processes (1),
with p(1−p)−1 the rate of variation of s relative to that of J. Using di�erent methods,
we conclude about the limit p → 0, Eq. (4). This corresponds to fast random 
uc-
tuations of synapse intensities according to the distribution f(J). Our study indicates
that synaptic time variations competing with neuron activity, which is likely to oc-
cur in biological systems, in
uence importantly the behavior of the network. We have
only studied in detail distributions f1 and f2, such that intensities 
uctuate around a
Hebbian learning rule, and two familiar cases of dynamic rules. The simplest case,
f1, admits for one of the rules (A) a simple description in terms of an e�ective
Hamiltonian. For appropriate choice of details, this implies an e�ective temperature
– and a modi�ed phase diagram, Fig. 1 – . When 
uctuations accomplish with f2,
which respects the spatial correlations that characterize the memorized patterns, steady
states have a nonequilibrium nature, as if acted on by a non-Hamiltonian agent, thus
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depending essentially on dynamics. For one of the rules (B), the only stable solution is
a mixture that has nonzero overlaps with any of the P stored patterns, i.e., associative
memory is not exhibited. For the other rule (A), however, Mattis states exist below
a line that has a nonequilibrium tricritical point separating continuous from discontin-
uous phase transitions (Fig. 2). In the latter case, the overlaps may be large (close
to either +1 or −1) for large P, and recovering errors remain systematically much
smaller than the corresponding ones in the Hop�eld case (Fig. 3). We have con�rmed
the main results from our analytical study by means of Monte Carlo simulations (not
presented here). We have also obtained closed equations for asymmetric synapsis. No
doubt it would be interesting to study systematically these equations as well as further
variations of the basic system (1) by numerical and approximate methods.
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