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Anisotropic Lattice Gases
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We have studied lattice gases with a particle-conserving dynamic rule that
involves two principal parameters. One of them has two limiting values that
correspond, respectively, to a large, saturating constant field, which induces a
positive particle current, and to a random field (zero net current). Varying the
other parameter, either particle attractions or repulsions perpendicular to the
field are simulated. The nature of ordering is shown to be independent of the
value for the field parameter. In particular, the two indicated limiting cases of
the latter lead to the same order-parameter critical behavior, consistent with
P~ 1/3, in the presence of a linear interface for attractions in two dimensions.
Some qualitative features of the time relaxation are briefly described.
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Universality is well established in equilibrium critical phenomena. The
asymptotic behavior at critical points is determined by a few, essentially
geometrical properties of the system and its order parameter, and simplified
mathematical models, such as lattice systems and their continuum analogs
play an important role. Equilibrium is a very special case, however, in
which dynamics becomes irrelevant. Concluding about nonequilibrium
steady states, which may—by contrast—be determined by dynamics, is a
challenging problem. Consider lattice, Ising-like systems that, under
dynamic rules violating detailed balance, evolve irreversibly with time
towards nonequilibrium steady states. They may often (but not always) be
considered as perturbed equilibrium systems. For non-conservative cases
with the up-down symmetry, the dynamic Ising fixed point is predicted to
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be locally stable.'l> Although many examples of such simple behavior have
been reported (even beyond the intended range of validity of the argu-
ment),(2) this is not expected to hold in general. At the present time, the
latter assertion has a rather phenomenological basis; i.e., the limits of
influence of the dominant, pervasive Ising fixed point are far from clear
c u t  ( 2 , 3 )  j ^ s  i s  s o  b e c a u s e  t h e  r o l e  o f  s y m m e t r i e s  f o r  n o n - H a m i l t o n i a n

systems, e.g., which symmetries (of the lattice, configurations, forces, order
parameter, and dynamics) are the relevant ones, and how they influence
the emergent critical behavior, is not yet well enough understood.

We introduce in this letter a class of anisotropic lattice gas automata
(ALGA) that provide a simple scenario to analyze the influence of aniso-
tropies on phase transitions. Time evolution proceeds by nearest-neighbor
particle-hole exchanges as induced by superposition of a longitudinal field
mechanism and transverse thermal processes. Implementing this in the com-
puter by sequential updating—the only case we consider here—can be
made efficient enough as to conclude about the influence of the system
parameters on critical properties, and to describe the whole system evolu-
tion from an arbitrary disordered configuration to the final steady state.
The behavior of the ALGA is reminiscent of that reported for the driven
lattice gas (DLG) and its variations; cf. refs. 2 and 3, for instance. There-
fore, our study bears also some relevance concerning the DLG critical
behavior, which is presently under debate.'3 8> In fact, a main motivation
to study the ALGA was trying to confirm a changeover from classical to
non-classical critical behavior which is predicted by field theory for the
DLG as the driving field is modified. Another interesting feature of the
ALGA is that it exhibits non-trivial behavior while it involves rather simple
microscopies. In particular, the ALGA is characterized by the simplest
thermal process one can imagine; this is important because different rate
functions are known to induce (arbitrary) fluctuations in the DLG whose
detailed influence on the steady state is not yet well-understood.

The ALGA consist of the simple "cubic" lattice in d> 1 dimensions
with toroidal boundary conditions. Occupation variables at the lattice sites
have two states, <rr = I or 0, corresponding to the presence or not of a par-
ticle at site r; the particle density is n. The repeated rule inducing changes
with time of the configuration is as follows: A particle is selected at random
(and the time counter is increased by 1/JV, with N the number of sites);
then, also at random, one selects one of its nearest-neighbor sites. If this is
occupied, the process commences again. Otherwise, the exchange between
the particle and the (nearest-neighbor) hole is considered. Exchanges that
transfer a particle a distance + x or — x apart, where x is one of the prin-
cipal unit vectors of the lattice, are accepted with probability p or 1 — p,
respectively. Transverse particle-hole exchanges have probability b if the
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second neighbor in the direction of the attempted jump is a particle, and
I —b if it is a hole. Table I lists all the possible transitions for d=2. The
process is repeated as necessary (a minimum of 107 time units in practice).
Detailed balance is not satisfied by this rule in general. We mainly report
here on d — 2 and « = 1/2 (i.e., the half-filled square lattice) for p=l, 3/4
and 1/2, and varying values of b. Some details not included here, and other
cases of the parameters are reported elsewhere.'2'91

The parameter be [0, 1 ] controls a tendency of the jumping particle
either to approach its neighbor along any of the transverse directions (for
b> 1/2) or to separate from it (for b< 1/2). Consider a generalization of
the above system in which one samples the ±x directions with a priori
probability q, as compared to 1 — q for transverse directions.(2) The limits
q -> 0, 1 allow for two well-separated time scales for the field and thermal
processes, respectively. Assuming q = Q reduces the system to independent
chains acted on by the thermal processes only. The study of this case
indicates that b—l/2 plays indeed a role similar to the (inverse) tem-
perature parameter for the ordinary Ising chain. For q=\, the system
reduces to independent one-dimensional exclusion processes—quite asym-
metric for /;=1.(10) We shall only deal hereafter with q=l/2, i.e., no
a priori bias exists. (Note that investigating the influence of q on emergent
properties is interesting.'9') The parameter p e [ 1/2, 1] plays the role of a
field driving particles along x. For p = l, particles do not jump backwards,
—x; therefore, the steady state exhibits a positive, saturating particle
current. For/? = 1/2, the simulated field is random, i.e., displacements + x

Table 1. The Rate for the Two-Dimensional
System (With No A Priori Bias), Assuming

That the Preferred Direction, +x,
Is Vertical Upwards"

Transition

• a • -> G • •
• o • -»• • a
• D a-^a • a
a a m->n m a

a •
• ~* a
• D

Q ^ B

Rate

b
b

\-b
\ -b

P

l-p

" The symbols • and D stand for occupied and vacant
sites, respectively.
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are produced with equal probability, and there is no net current on the
average.

Figure 1 illustrates the evolution with time. For large enough b,
namely b>bc(p), where b,.(p) appears to correspond to a line of critical
points for the infinite lattice, the system segregates by developing first
clusters elongated along the x axis, which transform then into several strips
that finally coalesce into a single one. That is, the steady state exhibits
linear interfaces parallel to x separating rich- from poor-particle phases.
A natural way of revealing the presence of one or more strips is by
monitoring the anisotropic magnetization, defined m= |MV — Mv | l /2, where
Af v ( v ) is the ensemble average (computed in practice as a time average
during the steady state) of

The steady, single-striped states are better analyzed by computing the local
density, <p, defined as the ensemble average of

k = (0, 2nN 1/2). We have monitored m, (p, \ji oc mq>, and (p corresponding
to each phase; no essential differences are noticeable.

The observed nature of processes such as those in Fig. 1 deserve com-
ment, even though we cannot conclude definitely about (obtaining suf-
ficiently good statistics with this aim is far beyond our objectives here).
Studying m and \ji suggests that time relaxation occurs discontinuously by
steps, as caused by repeated "avalanches" of "all" sizes. Concluding about
it would require careful coarsening to avoid disturbing noise due to small-
scale cutoffs; e.g., our study is hampered by changes involving a few

Fig. 1. Typical evolutions with time of the 642 lattice for n= 1/2, 6 = 0.9, and (from left to
right, respectively) ( = 102, 103, 104, and 10'' time units. The field parameter here is p = 1/2,
but one obtains apparently the same configurations for/) = I. '2 ' The preferred axis, x, is vertical.



particles, and by the fact that the sizes investigated are small for the purpose.
Another interesting fact we should mention is that the time variation of the
pair correlation function appears to exhibit self-similarity properties""
if scaled using the mean width of strips as the relevant measure of time.
Again a definite conclusion in this regard would required much more data
than available, i.e., monitoring the whole evolution of very large systems.
We concentrate below on steady properties, for which reasonably conclu-
sions can be reached in practice for N> 104.

The behavior in Fig. 1 is reminiscent of that exhibited by different
variations of the DLG.(2) The differences between the two systems are
important, however. First, the DLG is a perturbed equilibrium system,
whereas the ALGA has no limiting equilibrium counterpart. Second, the
relevant symmetries are essentially similar in both cases, except that
the ALGA, unlike the DLG when the lattice is half-filled, does not have the
up-down symmetry along the transverse direction. It has some important
consequences, e.g., non-complementary densities for the rich- and poor-
particle phases (which is often clear by direct inspection of configurations).
However, such a difference is quite irrelevant to the main conclusion below
(i.e., a comparison between the cases p — 1 and p= 1/2), and it does not
seem critical in other respects. (The latter belief is consistent with the trans-
verse process showing up in the simulations as a true thermal one, and
with the fact that various measures of order applied to the two phases did
not result into any noticeable difference.) Also important is that the ALGA
simplicity makes it much more convenient for numerical studies. On one
hand, the ALGA dynamics is given once for all whilst the rate function for
the DLG is left arbitrary—in fact, most known DLG properties concern
the Metropolis rate, the only one studied systematically so far. On the
other hand, the ALGA rule leads more efficiently to the steady state than
the DLG dynamics. In part, this is a consequence of the fact that the
ALGA algorithm requires one to check the state of only one nearest
neighbor of the particle-hole to be exchanged, as compared to six for the
2d DLG. Also noticeable is that the mean probability of any transverse
move in the latter can be approximated (for the Metropolis case at high
enough temperature, using familiar notation) by 2^6£clusterconf min{ 1,
exp( — A H / T ) } , which is always larger than 2/3, and goes to unity as
T—> oo, so that much larger fluctuations than for the ALGA case are
allowed. In fact, unlike for the DLG in a comparable experiment, it turns
out relatively simple to observe—within reasonable computer time—the
whole time decay of the ALGA from a random configuration, as in Fig. 1
(which might also indicate a somewhat different phase space in which sates
with several strips are more unstable than for the DLG). Finally, as a con-
sequence of the above, the ALGA rule has also turned out to be efficient
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in approaching the critical point rather closely for the standards. ( 4 ' 6 ) For
example, we have obtained rather good data (corresponding to stationary
averages over 108 independent configurations) for the 1282 lattice with p = 1
at 13 different values of b > I /2 within the range 0.001 s£ e ( = b/bc - 1) < 0.07.
This technical detail happens to be important, as it somewhat strengthens
some of the conclusions in this letter.

Our key result is that the parameter p is rather irrelevant for ordering,
even though a net current is only measured for pj^l/2. This is suggested,
for instance, by the comparison in Fig. 2 between steady-state configura-
tions for different p values at (approximately) the same distance from the
corresponding critical point. The behavior of the order parameter for the
1282 lattice is presented in Fig. 3. On the scale of the figure, the set for
p = 1 cannot be distinguished from the one for p = 1/2. We have generated
data for other sizes, and estimated b^, which locates the transition for each
L = ^/N, from analysis of the order-parameter susceptibility. The result of
this analysis is in Fig. 4. (It may be mentioned that, assuming v = 0.7, as
suggested by the DLG behavior,'2' when extrapolating to the infinite
system, gives bc = 0.855, 0.857 for p=\, 1/2, respectively, which equal the

Fig. 2. Typical steady state configurations of the 1282 lattice for p= 1/2 (a), and />= 1 (b).
The graphs are for e = b/b,.- 1 = 0.011 ( lef t ) and 0.144 (right). The axis x is vertical.
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Fig, 3. The variation with s = b/bt — 1, where £,-(/>) is given in the main text (cf. Fig. 4), of
the density <p for N= 1282, and p= 1 (squares) and 1/2 (asterisks). The dashed line is for the
corresponding two-dimensional DLG of the same size. The inset is a !n-ln plot of the data for
the ALGA in the critical region which gives slope /?= 1/3 for any p.

values we obtained independently from the cumulant method.'12)) Figure 3,
and its inset, involve s defined using the value of £f for L— 128 in Fig. 4,
namely, b]2\l) = 0.856 and b\2\\j2} = 0.858. The inset in Fig. 3 thus
reveals that not only bc, but also the thermodynamic amplitude differs
from one case to the other: the differences are small but systematic. In any
case, the same value for the order-parameter critical exponent, ft, is
suggested for any p.

An important question is critical behavior at b c ( p ) > l / 2 . We have
presented in the inset of Fig. 3 some evidence that the critical exponent for
the order parameter is independent of p, and consistent with ft = 1/3 rather
close to the critical point, namely, for 0.001 ^e<0.05. The following
remarks are in order. This result concerns a finite lattice with N = 1282; we
have avoided using here finite-size scaling formulas, because no definite
theory exists for these anisotropic cases yet.(2) It should be noted, however,
that one may prove consistency with ft = 1/8 by analyzing data for the
1282-equilibrium-Ising model within a similar critical region."3'

We wish to remark that, besides observing the true asymptotic regime,
one needs an accurate estimation of the critical point before concluding
confidently about critical exponents. It was argued recently'6-71 that failing
to do so was the cause to observe f$ ̂  1/3 for the DLG (instead of /?= 1/2
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which is predicted for attractive forces by field theory,'51}. Therefore, we
have submitted our best-quality data to the stringent test illustrated in
Fig, 5, For p=l, the slope in a plot of log \j/ versus log e is observed to vary
somewhat within the region 0.001 <e<0.1. In order to make explicit this
fact, we have performed a running average; this gives the squares in Fig. 5.
That is, the effective critical exponent ft estimated in this way slightly

Fig, 4. The critical value b,., for />= 1 (squares) and 1/2 (asterisks), as a function of the lat-
tice side, L = V/A'. The bars indicate upper bounds for the corresponding errors, as obtained
by analysis of the order-parameter susceptibility. We set here (rather arbitrarily) v = 0.7;181 this
gives i(. = 0.855 (/>= 1) and 0,857 (/?= 1/2) for the infinite system, N-> oo, in accord with the
values obtained from the cumulant method."2' (The Ising value v=l leads instead to
bc. = 0.854, 0.856, respectively.) The inset shows the variation with p of our bc estimates for
A?=702 (upper curve) and 1282.

Table 2. Parameter Values That Produce Collapsing
of Data for the Order Parameter of the Indicated

Systems near e=0.(13)

System

P=1
p=l/2
DIG
Ising

/}

0.34
0.34
0.34
1/8

Critical point

0.856
0.858
1.29
2.28

Amplitude, A

2.05
2.08
1.63
1.19
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increases monotonically with decreasing e before it finally seems to stabilize
for e<;0.01. The minimum observed value, around e = 0.06, is fixQ.21
(which is the value reported before'4-8> for the DLG for 0.01 < e < 0.3); this
increases up to f}^ 1/3. The effect of allowing for variations of the critical
parameter within the range bf(p = 1 ) = 0,856 ± 0,002 (i.e., assuming that
our estimate is affected by errors larger than suggested by the correspond-
ing analysis) is also illustrated in Fig. 5. Applying the same method to our
data for p = l/2 (which are admitted to be of slightly poorer quality) gives
the same result.

Summing up, the lattice gas automata presented here appear to exhibit
for b>\/2 a line of critical points, bc(p), where the order parameter
behaves i/'~£/? as e->0 with /?~l/3, independent of p. The anisotropic
nature of the dynamic rule, and the resulting linear interphase are probably
at the origin of such rare bulk property. The situation is similar to the one
described before for the DLG,(2) which contains fundamentally the same
anisotropy and driving field. One is tempted to contrast the behavior of the
ALGA with existing field theory for the DLG(5> (in which, however, the
up-down symmetry holds), which predicts classical behavior (/?= 1/2) for
a saturating field but fie* 1/3 for a random one.(14) On the other hand, a
preliminary study of the ALGA for b < 1/2, i.e., repulsive interactions,
reveals that it also exhibits order, apparently independent of p,m which

Fig, 5. The temperature variation (very close to the critical point) of the quantity /?(e),
defined as the slope, in a running fit, of log \ji versus log e, for / > = ! (squares) and 1/2
(asterisks). The error bars here are a consequence of the ones in Fig. 4.
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again contrasts the field-theoretic prediction'15) that a saturating driving
field washes out any long-range order for the DLG with repulsive forces.
Consistent with such disagreements, which we interpret as caused by an
essential difference between the discrete DLG and available continuous
counterparts, it has been shown(3) that the latter might not always take
proper account of the microscopic field parameter. The fact that only one
relevant correlation length is involved by the present problem, which may
be seen as a side result of our study, was recently concluded from other
points of view.'8'16) The same ensues from the field-theoretic study of the
DLG in ref. 3, where it is attributed to the singular lack of Galilean
invariance when the driving field becomes infinite.
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