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A Kinetic Description of Disorder

P.L. Garrido!, J. Marro' and M.A. Mufioz!:2

1 Instituto Carlos 1 de Fisica Teérica y Computacional. Facultad de Ciencias. Uni-
versidad de Granada. 18071-Granada, Espaiia.
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Abstract. Some strategies to study the kinetics of disorder in Ising-like systems
are reviewed.

1. Introduction

It has been known for a long time that the behavior of a physical system
. may drastically be affected by the presence of impurities. In order to get
some insight into the role played by impurities, defects or, in general, disor-
der, many different models have been proposed in the context of equilibrinm
statistical mechanics. One of the most straightforward ways to implement
disorder into well-known pure equilibrium models, consist on modifying its
interaction Hamiltonlan, in such a way that its translation invariance sym-
metry 1s broken. This can he achieved by introducing local variables in the
Hamiltonian that take random values from site to site. Being more specific,
et us comsider, for example, a situation in which the translation invariant
pure system is a d-dimensional lattice with sites occupied by spin variables.
Each spin configuration, s = {s, = £l;z € 2%}, has an associated energy
given by the Hamiltonian:

H(g;i):—ZJAsA , SAZ Hs_,;_ , {(hamil}

AcZd zeA

where J = {J4l4 C Z9}. The translation invariance property reflects in
the fact that the Hamiltonian has the symmetry: T,H(s;J) = H(T,s;.J) =
H(s;J) Yz € Z%, where the operator T, displaces any configuration by z:
s =T;s = {s} = sg;;2 € Z%}. This property, if applied to the Hamiltonian
(hamil) implies that Jo4 = J4 Yz, A.
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Let us assume first that the set A in (hamil) consists of all possible differ-
ent pairs of nearest-neighbor sites in a hypercubic lattice. The translation in-
varlance property implies in this case that J4 = J V.4, and equation (hamil}
reduces to the Ising Hamiltonian. On the other hand, when the translation
invariance symmetry is broken, several models of disorder are recovered. For
example:

(1) Assuming that, for every set A, J4 is a random variable distributed
around zero, we get the Edwards-Anderson model (Edwards and An-
derson 1975). This exhibits frustration (the spatial competition between
positive and negative couplings, J,4, prevents that all the exchange in-
teractions in eq.(hamil) are simultaneously minimized) that induces rare
macroscopie behavior cbserved in a class of materials known as spin
glasses; see, for instance, the review book by Fischer and Hertz (1991).

(ii) If J4 is a random variable taking only two different discrete values, J
or § with probabilities p and 1 — p, respectively, we get the bond dilute
Ising model which describes the physics of impure magnetic systems;
see, for instance, the review by Stinchcombe (1983). These two models
assutne that impurities are quenched in the lattice, i.e. , their kinetics is
neglected. '

A simple way to induce some kinetics of disorder in Ising-like models, Is
to consider the couplings J as thermal variables. In this case, there is time
variation of the spatial distribution of J’s that is determined by the need to
reach equilibrium with the spin degrees of freedom. This is the anneal [sing
model (Thorpe and Beeman 1976). However, impurities tend in this case to be
strongly correlated (for instance, located at the interfaces below the critical
point) which is not observed in general.

The above (equilibrium) models and some variations of them exhibit a rich
macroscopic behavior, and their study has helped the understanding of many
phenornena first observed in real materials. Nevertheless, in order to study
the broad variety of natural phenomena which appears to be related with
disorder, a less restrictive scenario needs to be considered. In particular, many
real systems under consideration are open to the environment, namely, driven
by some external non-Hamiltonian force and/or interacting with external
subsystems. Such general conditions may induce changes with time of the
disorder variables. In practice, however, one needs to pay both analitically and
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conceptually a high price for the consideration of kinetic disorder: steady non-
equilibrium situations ensue due to added competition and extra randominess.

2. Definition of the basic model

We focus our attention here on the study of some non-equilibrium lattice
models as defined via a master equation. Consider a system consisting of a
lattice and spin, s, and disorder, J, degrees of freedom, which evolve stochas-
tically according to a Markovian process (see, for instance, Garrido and Marro
1994). That is, the probability distribution, pifs, J), that the system has at
time t the configuration (s, J) satisfies the master equation:

Bepte(s, I) = (L + TLy) (s, J) (ME)

where

Lyg(s, I) = ) [e(s® — sD)g(s%, J) — e(s — s%|Dg(s, 1)) (Ls)

T

Lyg(s, )y = Y [w(dl — Dgls, L) —w(d — g(s, D] . (L5)
J!

Here, ¢(s,J) stands for an arbitrary function, and s% is the configuration s
with the spin at site z flipped, i.e. 5, — —s;. The Glauber operator, L,
describes stochastic spin flips with an associated transition probability per
unit time {rate} o(s — s%[J) for given J. L induces stochastic changes on
J with rate w(J — J'), and it is assumed to be independent of the spin
copfiguration (further possibilities have been studied in Garrido and Marro

1994).

Both kinetic and stationary properties of the model depend in general on
the rate. However, if dynamics of J is suppressed, which corresponds to the
quenched case, I' = 0, and the rates ¢(s — sZ|J) in eq.(Ls) satisfy the detailed
balance property, namely,

o(s — %) = c(s® — slT)exp [--AH, |, A, = H(s%, ]) — H(s, J), (DB)

the stationary state correéponds to an equilibrium Gibbsian distribution,
characterized by the Hamiltonian (hamil), i.e. pet(s, J) oc exp[—H (s, J)].
Let us notice that, in this case, the detailed balance property (DB) implies




453

that the stationary state does not depend on the particular choice of ¢(g —
sZ{J). A simple, commonly considered choice, satisfying Eq. (DB), is

(s~ sEJ) = B(AH,) (rate)

where ® is an arbitrary function with the property &(X) =
®(—A)exp(~A) > 0. In particular, some specific examples are: ®(A) =
1 —tanh(A/2), min(1, exp(~A)) and exp(—A/2).

For I' > 0, (ME) induces kinetics of the disorder degrees of freedom. In
this case, the simultaneous action of the two kinetic mechanism in (ME),
makes that, a priori, the steady state is not Gibbsian, and, contrary to what
happens in the equilibrium, there is strong dependence on the analytical form
of the dynamical mechanisms (rates).

There is not a general theory, analogous to the equilibrium ensembles
theory, which relates in a simple and systematic way the microscopic structure
of non-equilibrium systems and their macroscopic properties. The lack of a
general theory\ makes the theoretical analysis of such systems to be quite
complex, and usually approximate schemes are required to get some insight
into their macroscopic behavior.

Under this circumstances, there are two different alternative approaches
to deal with this kind of systems. On one hand, sometimes it is possible to find
the exact solution of the probabilistic model by using some kind of statistical
analysis (specially in dimension d = 1) or mapping the system somehow into
an equilibrium one with effective parameters.

On the other hand, approximate schemes can be used. In particuiar, mean-
field type approximations can be constructed. The problem with that sort of
approach is that it is mainly based on the uncontrolled truncations of local
system correlations. It is common to use numerical simulations together with
mean field approaches to test one each other in order to get a comprehensive
understanding of the system-macroscopic-behavior . An alternative type of
approach is based in the representation of the original discrete Master equa-
tion, in terms of some continuous stochastic or partial differential equation.
For the latter equation further analytical methods are available.

In the next two section we discuss some recent results in the two pre-
viously mentioned directions: namely, the derivation of exact results, and

the construction of continuous descriptions of microscopic non-equilibrium
models.
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3. Some exact results: models with effective
Hamiltonian

Let us consider the limiting case: I' — co. This limit represent physical
situations in which the time scale for the evolution of the impurities is much
faster that the characteristic time scale for the spin evolution. In other words,
during the interval elapsed between two consecutive spin-flip processes, the
disorder degrees of freedom undergo enough changes to assure that their
associated probability distribution, p(J), reaches its steady state,

L;Pn(é’_) =0. (Ste)

One can easily argue (see, for instance Garrido and Marro 1994), that in
this case, the spin probability distribution, py(s} = >y (s, I}, is solution
of the effective Master equation

Sipe(s) = L pi(s) (M Eef)

where

L =3 puld)L, (Leff)
J

is an effective Glauber spin flip operator similar to L¢ in eq. {Ls).

Assuming that c(g — $%{J} has the equilibrium analytical form given by
equation (rate), the effective rate associated with the Glauber operator £&/f
can be written as

cors(s = 62 = pa(D)B(AH(J)). (ceff)
J

That is, an effective dynamics has been defined which is an stochastic su-
perposition of different mechanisms, ®(AH(J)), weighted with p.(J). Each
of the mechanisms, acting by itself, would drive the system to a different
equilibrinm state, and the competition of many of them introduces a kind of
dynamical frustration, which drives the system in general to a non-equilibrium
stationary state.

The exact stationary solution of the master equation (MEef) can be found
in many cases by working out whether the effective spin flip rate (ceff) holds
the detailed balance property (DB) with respect some effective Hamiltonian
(Garrido and Marro 1989). The disorder distribution, the spatial dimension
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and the structure of the competing Hamiltonian determine the existence or
non-existence of such an effective Hamiltonian 3.

To explicitely show that influence, let us consider as an specific exam-
ple, the reference Hamiltcnian (that is, the Hamiltonian used to define the
competing rates (ceff)) to be the Ising cne,

Hs N)==J 37 s, (18)
iz-yl=1

where the coupling J is a randem variable with a given stationary distribution
psi(J } -

iFrom the detailed balance property (DB) one can show in the one di-
mensional case that the stationary distribution asscciated to the effective
dynamics, defined by (MEef) and (Leff), is a Gibbsian distribution with an
Ising Hamiltonian, that is

() o< cxp [ (5, /3] (roe)
where i < (4T} >
Jeffzzll'l [m] (ke.ff)

and < g(J) »= 3, Pst(J)g(J) stands for the average of a given function
g(J) over the J stationary distribution.

In this way, the competition of different equilibrium rates * drives the
system to a Gibbsian state with the same reference Ising Hamiltonian but
with an effective coupling parameter. Such effective coupling depends on the
analytical form of the competing rates and on the disorder stationary state
as can be concluded from {keff).

‘This simple picture is specific of the one-dimensional model and cannot
be extended to higher dimensions (there are, however, some Monte Carlo

® Notice that even in cases in which a the detailed balance property does not hold, it
is possible to have an stationary Gibbsian measure. A well known example is given
by the rate ¢(s — )= 8Xp[—31(82+i+32+j )] defined on a two dimensicnal square
lattice with. periodic boundary conditions.  and 5 are the unit lattice vectors in
the X and Y axis directions respectively. This rate has not the detailed balance
property but the master equation stationary solution is a Gibbsian measure with
Ising Hamiltonian H = — TNy Sz8y.

* In the sense that each one acting alone drive the system fo a Gibbsian state
characterized by the one dimensional Ising Hamiltonian with different coupling,
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computer simulations performed in the two-dimensional version of the pre-
vious model which show that the stationary solution is an equilibrium one
with effective parameters, except at low temperatures (Gonzalez-Miranda et

al. 1994)).

"To show the lack of robustness of the effective detailed balance property,
even In one dimension, we point out that, there is no effective- Hamiltonian

description when a fixed magnetic field is included in the Ising Hamiltqnian
(1S}).

Nevertheless, there exists one particular case in which we are able to
find an effective Hamiltonian for any dimension. It corresponds to: I ) the
particular function ®(A) = exp(-A/2) is considered in (ceff) 2) the couplings
J4 of the Hamiltonian (hamil) are stochastically independent variables, which
evolve uncorrelately. In other words, Pst(d) = [Ty z2pa(J4). The effective
rate (ceft) is then written

Cefr (8 — s%) = H [ZP@(JB)exp(—JBsB)} (dd1)
B e} LV=

In this situation one may show that the stationary state in any dimension is
a Gibbsian one psi{s] o< exp(—H(s; J*I7)) (see for instance reference Garride
and Mufioz 1993), where

T %m [ < exp(Ja) > ] (JAeff)

Lexp(—J4) >

Let us emphasize that we are not able to find an effective Hamiltonian
when another analytical form of & is considered ipn (ceff), or if it is assumed
that J4 are correlated variables.

As a particular realization of equation (JAeff) let us choose the reference
Hamiltonian to be the general d-dimensional Ising Hamiltonjan,

lz-yl=1

where now the set B in equation (dd1} denotes pairs of nearest-neighbor sites
in the la_ttice, For any disorder distribution of the form

Pay(7) = f(J = Jy,) (dist)
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with f{J) being any probability distribution symmetric around zero, and
{J:gy} being a given set of couplings, it is straightforward to show that an
effective Ising Hamiltonian exits with effective couplings given by: J_w’igf = ng
independently of any parameter of the distribution f (for instance, if f is a
Gaussian distribution with variance o, the result will be o-independent).

Other similar realizations of (JAeff) can easily be worked out (Garrido
and Mufioz 1993). For instance, the non-equilitbrium tmpure Ising model cor-
responding to pgy(J} = p6(J — J°) + {(1-p)8(J), or the non-equilibrium spin
glass Ising model defined by pay(J) = pb(J — J) + (1 ~ p)6(J + JO).

Let us finally mention a case in which we relax the aforementioned prop-
erty, 2}, in which we assumed that the disorder was totally uncorrelated, and
we still have an effective Hamiltonian. This oceurs in the so-called kinetic
ANNNI model (Ldpez-Lacomba and Marro 1994). In this case, the Hamilto-
* nian that defines the effective rate (dd1) is

H(gJ J) =T 3" sesy = 'Y spspras (ANNT)

jz—yl=1 z

where z is the unit vector pointing to one of the lattice directions. Namely,
the model is defined on a d-dimensional Ising modei in which a next-nearest-
neighbor interaction with strength J/ is added in one of the lattice directions.
It is assumed that the coupling J is fixed and J’ is a random variable, that is,

Pst depends only on J'. The effective Hamiltonian is found to be His; J, J;ff)
with
1 L exp(J') > ]
Loy = =1 J

All these models have interesting macroscopic behaviors which have been
studied in the above commented references where we refer the reader for more
details.
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4. The continuum description: looking for a suitable
starting point

This is a more broadly applicable method. It is suitable for the study of
pkase transitions and critical phenomena appearing in non-equilibriurn Mas-
ter equations. It is based on the observation that the strategies used in the
study of the critical dynamic properties of systems evolving towards an equi-
librium state can be extended to the analysis of non-equilibrium dynamieal
models. The idea is to construct a continuum version of the lattice model
whose equation of motion is a stochastic differential equation {Langevin equa-
tion) ®, -

The Langevin equation is a simplified representation of the microscopic
system that contains the most relevant features to describe properties that
depend on large scales in space and time. As the nature of critical phenom-
ena is usually determined only by large-scale properties and not by specific
microscopic details of the models, this approach is a natural way to study
phase transitions in both equilibrium and non-equilibrium situations,

In principle, such continuum deseription should be derived from the mi-
croscopic Master Equation by means of a coarse-graining procedure. That
is, changing in the original Master equation the spin variables by some new
local variables defined as averages of the spins over a large region. One ex-
pects that, in an adequate limit, the microscopic details are averaged away
and in the resulting Langevin description conly the large scale properties re-
main. However, the coarse-graining procedure cannot be, in general, applied
successfully without introducing some extra assumptions . Nevertheless, for
systems evolving towards an equilibrium distribution, it is used a very simple
method to construct a Langevin equation. First, one knows that the system
stationary distribution is given by a Gibbsian measure, p o exp[—H] for a

5 We indistinctly will use the Langevir or the Fokker-Planck equations. Both are
stachastically equivalent. The first one is a stochastic differential equation where
the unknowns are the local fields. The Fokker-Planck is a second order functional
differential equation in which the unknown is the probability to find the systems
at a given time with a given configuration.

® A. de Masi, P. Ferrari and J.L. Lebowitz managed to make in a rigorous manner
a coarse-graining procedure in a reaction diffusion model (de Masi et al. 1985) in
which the diffusion process is infinitely faster than the reaction one.
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given interaction Hamiltonian H. And second, one expects that the criti-
cal phenomena will be independent on the particular analytical form of the
dynamics. That is, one should write down a Langevin equatior such that
1t is guaranteed that the stationary state is the one given by the Gibbsian
measure. That is the strategy followed by Hohenberg and Halperin {1977) in
their, so called, model A, in order to describe the critical dvnamics of systems
with a non-conserved order parameter. The equation defining the model A
is:
8H

Orpr(r) = —Am + 7e(r) (HH)

where (1) is the coarse-graining density field at a given time ¢ on the point
r of the continuum space, and 7 is a stochastic white noise that reflects
the fluctuations on the density field due to the action of the microscopic
dynarnics. Equation (HH) is the starting point for the study of large scale
dynamic properties in equilibrium systems.

Coming back to cur non-equilibrium problem, we have obviously the same
aforementioned technical problems in the coarse-graining procedure. More-
over, any extra assumption may now change dramatically the system macro-
scopic behavicr. Finally, we cannot apply the Hohenberg-Halperin strategy
because we don’t know what is the measure corresponding to the station-
ary state, which is coherent with the fact that such state depends on the
microscopic dynamics. Nevertheless, it is possible to apply the idea of con-
structing a Langevin equation such that it is guaranteed, without solving the
equations, that its stationary distribution is equal to the exact one, solution
of the non-equilibrium Master equation, at least in some basic aspects. To

achieve that, it is necessary to introduce a suitable continuum version of our
Master Equation {MEef).

Let us introduce now the continuum version of the non-equilibrium models
we are going to deal with. The system consists of a d-dimensional latiice
where at each site there is a spin-like variable. We define at each point,
7 € R%, a field variable, @(r) € R, which is the averaged value of the spins
on a region of volume Q2 around z.- When {2 is large enough, ¢ is assumed to
be a continuous function on 7. The probability to find a field configuration,
¢ = {@(zr)ir € R*}, at time ¢, say P(i), evolves according to 2 Markovian
Master equation:
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8, P (p) = /R Jar /R dn f{n) {w”(f’“* eIF(e™r)

(MME?2)

~ue PRy,
where f(7), an even and analytical real function around the origin, stands
for the field incrementg distribution, "t = {e(r) + &bt € RY}, and
w“(_ce — ¢’} represents the transition probabilities per unit time. These are
defined as in eq.(cefl):

wp — o) = / K po( K (p — ¢ K), (rate2)
g=e)= p—y

where w{p — ¢/; K) = PHYN ' Ky — H%p; K)], and now HY%p: K) =
Q fpa dr h{g(r); K) is a continuum interaction Hamiltonian which depends
on the parameters K — {Kii=1, .

When we rescale the time variable ~ — 271, and we do the limit Q — o0,
the solution of the Master Equation (MME2) is Pr{p) = é(p ~v,) where v,
18 the solution of the so called deterministic equation:

Brvn(r) = ~E55(y,(r)) = /R dnf(nn < SV, (2 (e K)) >, (det2)

being Uy (o(r); K) = 1 7859 and < 4 = [, dE poy(K)A(K). Tn gon-

eral, for large enough Q, the stationary probability distribution solution of
the Master Equation (MME2) can be written as: Pil(p) exp[—V2{p)]
where fo(g) = QVp,s:() + Vist() + O 1), The non-equilibrium poten-
tial V() is expected to be continuous but not differentiable in some small
regions in the phase space (see for instance Graham and Tel, 1984, 1985,
1986) and it can be shown that it is a Lyapunov function for the underlying
deterministic dynamical system (Jauslin 1987).

In this conditions, the following theorem can be proven (Garrido and
Mufioz 1995; Mufioz and Garrido 1994):

Theorem: Let any Fokker-Planck equation

PR = g e [Eae + drte gt i, ()

such that its coefficients have the form
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Zo(p(r)) =5 [D-{p(r)) — Dy (p(x))
= _Do(e(r)) - Dyle(r)) (Th3)
=i{glr)) D_(ol)

2l [D+(£(:))J

where D;,(g(r_)) =< @(Un(g(z);ﬂ)) >. When f(n) = %[5(7) - 1)+

8(n + 1)], then

i) It reproduces the ezact deterministic dynamics given by eq.{det2).

i) The Vo,s¢ and Vi ,+ parts of its stationary solution almost cotncide
with the ezact one in a suttable neighborhood of all spatially homogeneous
deterministic solutions v*.

Using this theorem, it is possible to find a Fokker-Planck type of descrip-
tion for the competing-dynamics models which represent exactly the original
stationary distribution in some regions of phase space. These regions are very
* relevant because they determine the stationary eritical behavior of the sys-
tern. With this description as starting point it is feasible to perform suitable
analysis of the eritical properties by using well known methods developed for
the study of Fokker-Planck and Langevin equations (Jansen et al 1976).

Summarizing, we have defined a general model that includes a kinetic
mechanism to deseribe the disorder (impurities) time evolution. That induces
the associated stationary probability distribution to be a non-equilibrium
one. The theoretical tools available to study such non-equilibrium systems
are scarce and not too powerful. Nevertheless we have shown that one can
get Interesting results in the particular limit in which the disorder evolves
In a time scale much shorter that the spins. In such situation, and for a
particular analytical form of the microscopic dynamics, we have shown that
one can find the exact stationary distribution which is in fact a Gibbsian
one characterized by an effective Hamiltonian. However, the latter particular
results cannot be generalize for other rates and one should go to a much
simpler mesoscopic continuous descriptions to get some valid information
about the system behavior. In that context, we have shown that it is possible
to explicitely write down a Fokker Planek equation whose stationary state
coincides with the exact one in some relevant parts of the phase space.
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