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1. Introduction

It is usual to find in Nature systems which are in states much more
- complex that the ones at equilibrium. Think, for example, of a large iron
bar with both ends connected to heat reservoirs. When the temperature of
- the reservoirs is the same, the system evolves, after a while, to an equi-
" librium state. But when the temperature of each reservoir is different, it
appears a continuous heat flux from the warmer reservoir to the cooler
one. We say then that the system is in a nonequilibrium stationary state.
_ This is nonequilibrium because there exist a net current of something
through the system; it is stationary because the system properties do not
. change with time.
: In contrast with the case of systems at equilibrium states, no general
~ theory to study nonequilibrium stationary states exists. Therefore, one typ-
~ jcally needs to develop specific approximate methods to deal with particular
. problems (McLennan, 1989). These theoretical approaches are usually in-
spired in the ones used for systems at equilibrium states, and it is generally
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assumed that some concepts and technigues can be extrapolated to deal
with systems at nonequilibrium steady states. We would like to illusirate in
this paper that this attitude may be wrong in general, and that guite often
- the qualitative theoretical predictions are approximation-dependent. As an
example, we refer to a simple, mathematically well-defined lattice model
system: the two-temperatures Ising model (Garrido, Labarta, Marro, 1987,
Garrido, Marro, 1994). We describe below its macroscopic behavior by
means of an extensive Monte Carlo computer experiment. Furthermore, we
use a mean field type of theoretical approach to solve the model. We will see
that, under the latter approach, the system apparently behaves in a much
more complex manner than observed in Monte Carlo experiments. We
conclude that one should be careful when applying familiar theoretical
approximations to systems in nonequilibrium states: It is not obvious at all
that the qualitative results obtained are a characteristic of the correspond-
ing system.

2. Definition of Model system

The two-temperatures Ising model was introduced by Garrido, Labarta
and Marro (1987). Let us sketch its definition. At each site of a d-dimen-
sional simple cubic lattice, xeZ% there is a spin variable, s,= 4+ 1. Each
configuration s={s_, xe Z% has an interaction energy defined by

His)=—J > s, (2.1)

£y
[x=pi=1

where J >0 is the coupling constant. The evolution of the spin configuration
has a stochastic nature: the probability of varying the configuration is i) a
decreasing function of the increment of energy that the change implies, and
i1} is independent on the previous evolution history (Glauber, 1963). Because
of this type of dynamics, the function that carries the maximum information
about the system evolution is the probability to find the system at a configu-
ration s at time ¢, 1.e.,, P,(s). This probability evolves with time according to 2
master equation, namely,

oP,(s)
ot

=2 [l =>9)P(s) —cls=5)P,(s)] 22)

It 1s further assumed that each transition between consecutive configura-
tions, s—g', just inverts (flips) the spin at a site, 5,-» —s,, with probability
e{s—s)=c(s; x). The time evolution and the stationary properties of the
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model depend on the particular analytical form of c¢(s; x). The two-tempera-
tures Ising model is then defined by choosing:

c(s; x)=p®(B; AH(s; x))+{1— p)O(B,AH(s; ) {2.3)

where pe(0, 1], AH(s; x)=2Js, 2.~ 5, is the increment of energy that
produces the flip of the spin at x, and 8, 1= 1, 2, are two positive constants.
@(7) is any arbitrary positive function with the property: ®(A)=0(— 1) exp{— 1}
for example: @(4)=1—tanh(/2)=D (1) and D(A)=exp{— A4/2} =D, ().

In order to understand the meaning of the parameters introduced above,
we can do the substitution p==0(1) in (2.3). In those cases, it is straightforward
to show that the stationary solution of the master equation (2.2), 4,P,.(s)=0,
is the equilibrium Boltzmann distribution with the Ising Hamiltonian (2.1)
and the inverse temperature f, ), ie.,

Py(sjocexp{— iy, H($)} (2.4)

Then, the dynamics in equation (2.3) may be interpreted assuming that the
spin flip at each site x is attempted with prebability p as if it were in contact
with a thermal bath at temperature T, = ;! and with probability 1 —p as if
the temperature of the bath inducing the transition were 7, = 5 . Obvious-
ly, when T,=T,=T, one recovers the equilibrium distribution (2.4) with
temperature T for any value of pe[0, 1].

Beyond the above simple limiting cases, when T, #7, and pe(0, 1), we
are unable to find, in general, the master equation stationary solution P (s).
The competition of both temperatures generate nonequilibrium stationary
states in general. In particular, we will see that the steady state depends on
the function ® we choose in (2.3) (in contrast with the equilibrium case
p=40, 1 where no such a dependence occurs).

3. Monte Carlo simulations

Before we begin to attack the theorctical problem of how to obtain
information from these equations, let us show by means of a Monte Cario
computer simulation the real system behavior in two dimensions.

In addition to some preliminary numerical work by Garrido et al.
(1987), the macroscopic behavior of the two-temperatures Ising model in
2-dimensions has been studied more systematically by simulation of the
time evolution of square lattices of N =64 x 64 sites. In particular, we have
considered a fixed value of p=50000/2'¢=0.7629..., a range of T, and 7,
values (in units where J/K;=1), and two different dynamics, namely,
O,(4)=1—tanh(4/2), and @, (%)=exp(—4/2). It has required about
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®Bg(A) = 1 -tanh{A/2}

7 &a&% 1
05 ] ‘O\&u o.a»:
. %. 0.6-
- &N ]
4 & ED 0.4
0.6 - j X
] < é 0.2
" ] & ] o
] %DE L e I TSI B e e e
0.4 1 & & o 0.4 c;?ﬂ_ 7.2 1.6 z
i [} 2/ V2 erit
I % :
. Lol ¥
02— & m
E o B
< ©o ThsOn
* 00

O|:||s|1{||\|||r|l|||¢l|‘r||t|||||71]lil

0 2 4 6 8 1 .12 14 16 18 20
kT /S

Figure 1. Magnetization m versus T, = f; 2(J/k=1) [or the rate: @;{})=1 —tanh{4/2)
and p=0.7629... The symbols are: T, =p7'==0.25(x), 0.5 (), 1 (<) and 2.3 (C).
The solid line is the Onsager equilibrium solution for the Ising model and {#) are the
results for the Monte Carlo simulation in order to show the finite size effects. The
inset shows the same data but with T, scaled according to the critical temperature
for each case.

2.5 % 10° — 5% 10° MCS to stabilize the system and to obtain good statistics.
One of the relevant macroscopic magnitudes we have measured in the
experiment s the magnetization:

m=%§sz

Figures 1 and 2 depict its behavior. We see how the increasing of T,
decreases the critical temperature. Also, the magnetization tends to 1 when
T, goes to zero if the dynamics is @y, and whenever T, <T§? for @ (T{ is
the critical temperature for the ordinary Ising model). When T, > T§? for @,
the magnetization does not saturate to 1. In any case we always obtain a
second order phase transition.



COMPLEXITY AND NONEQUILIBRIUM STEADY STATES: AN EX AMPLE 107

Dy} = expl-Af2)

'1 &
1 k}.
] 0.8
0.8
1 0.6
1 0.4
0.6~
d 0.2
T -
m
i R s e e e R R AN wa
0.4 02 04 06 038 1.9 12 14 16 1.3
1 szTZcril
0.2
1 ..
4 . -®
0 [ r [ T l [} Fl B [l i ] E 1 t I 1 1 1 T j 1 1 T 3 I 1 3 L] n
0 1 2 3 4 5 6
KT/

Figure 2. The same as Figure 1 for the rate ®, () =exp(—i/2). The symbols are
here: 7, =23 (@), 2.5 (®) and 3.5 (A).:

4. Some theory

A simple theoretical approach one may think of to study this class of
systems is a kind of mean-field approximation (Mufioz and Garrido, 1993).
For systems at equilibrium states this kind of approaches is well defined;
they usually consist of neglecting the system fluctuations around its most
probable path in phase space and/or in breaking down some of the system
‘correlations. If well done, the final results are qualitative similar to the
actual system behavior, and they may be improved in a controlled manner
by taking into account more fluctuations and/or correlations.

For systems in states away from equilibrium as the above two-tempera-
tures Ising model, the situation is guite different. First, one lacks a general
theory which allows for an a priori control of the mean-field approach.
Second, as we show below, the qualitative results differ in some cases from
the Monte Carlo ones.

The starting point is the Bragg-Williams approach to the Ising model.
Let N be the number of lattice sites, and N, and N _ the total number of
spins with values +1 and —1 respectively, with N=N_+N_. The total
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magnetization is then defined by M=N, —N_=3 s and the following
relations hold: L

N, = % (N+M), N_==(N-M)

The mean-field Hamiltonian is build up by assuming that all lattice pairs
interact vig the same coupling strength, i.e., J/N. Therefore, one has

Hy(M)=— —}{; > 548y = —JNm? (3.1
52

where m= M/N is the system magnetization. The probability to find the
system with the magnetization m when it is in equilibrium with a thermal
bath at temperature 7' is

N
N(l1+m)

Qeq (m) = 2

exp{BINm?}

The two-temperatures [sing model in the Bragg-Williams approximation
is then defined by equations (2.2) and (2.3) with the mean field Hamiltonian
- H, in (3.1). The master equation (2.2} is originally defined for spins and not
for the magnetization. To set up the corresponding one for the magnetiza-
tion, we define the probability to find the system with magnetization m at
time

Qt(m): Z (S(m—‘le Z S:_c) Pr@): (32)

where P,(s) obeys the Master Equation (2.2). Taking partial derivative with
respect to time in both sides of equation (3.2), and using (2.2), we get

—g—t Q,(m)= ﬂ;ﬂ [c (m+ gNE —>m) Q,(m+ %—]5) ~c(m—>m+ %) Qt(m)], (3.3)

where

c(m~1~ 2—; am): —I; (1+,um+ %) {p(D [4[31J(um+ %)il “+
+(1 —p)®|:4ﬁ2J(um+ %)]}

64
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The master equation (3.3) can be solved explicitely for N— o (van Kampen,
1981):

Qm)=5(m—m,) | (3.5)

where #1, is the solution of the differential equation:

armt: - Z {pn+ mr) [p@(4ﬁ1 qumr)“*m(l *p)(l)(ﬁlﬁz Jumr)] (36)

I

The stationary solutions, m,, are found by equating to zero the right hand
side of equation (3.6). However, it is more illuminating to write down the
latter equation as the dynamics associated with a Hamiltonian system with
a potential U= U(m), ie.

d,m, = —dm,U(m,) (3.7

where U(m) is defined by integrating the right hand side of (3.6) with respect
to m,. The analytical integration obviously depends on the explicit form of
®(1) but we can integrate it by assuming that ®(4) admits an analytical
expansion around zero. In this case we get:

. U(m):Uo“i‘ i a;mzn”*“z, (38)
n=0
where
_ 1 (I)(En + 1)(0} (D(Q_,,)(O)
K I: s 1) w(2n+ 1)+ G w(2n)} (3.9)
Here,
W(n)=p(4ﬂ1 J)n+(1 _p)(4ﬁ2.f)”, (310)

and ®/0) is value of the n-th derivative of ® at zero. We see from equa-
tion (3.8) that m=0 will always be the stationary solution of equations (3.6)
or (3.7). There are other solutions nearby m=0. For instance, if we consider
the potential expansion (3.8) up to m®, we find that

s —a;F.Jat—~3aya, (3.11)

3a,

i a stationary solution of equation (3.7) whenever af =3a,a, and the right
hand side of equation (3.11) is larger than zero. The local dynamical stability
of these solutions is guaranteed by asking that the potential second deriv-
ative computed at m, is larger than zero. Then, the stable solutions are:
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mg=0 i ag,>0

st

—a,+./ai+3la,la, |1 .
msezi[ 1 1+ 5lag 2:' if ag<0 and a,>0

st

3a, (3.12)
+ 2_+_3 1/2 2
= 4 | l*aitSaga, il gp<—1 and a,<0
3a2 3(22 )

There are two different situations depending on the form of the dynamics @:

a)

b)

®2(0)<1/6: then, a; >0 V(p, B,, f,) wich implies that there is a
second order phase transition on the parameter a,. When a, >0,
there is a disordered phase characterized by the value m_=0 of the
order parameter. This disordered phase persist until a, =0, where it
appears continuously an ordered phase characterized by |m|>0.
Then, any set of values (p, §,, §,} that are solution of the equation
ao=2—w{1)=0 define a critical point. It is interesting to remark
that a, is independent on the explicit form of the dynamics ®.
®>(0)>1/6: Then, the sign of a, can be positive or negative, depend-
ing on the values (p, fi,, ,) choosen. When g, >0, we have the same
behavior as in case a), that is, a second order phase transition at the
critical point defined by q,=0. When a, <0, there is a disordered
phase when a,>a?/3a,, an ordered phase |m,|>0 when a, <0, and
the coexistence of both phases when 0<a,<a?/3a,. Obviously, this
analysis is based on local dynamical stability. Global stability analy-
sis is needed to known exactly which one of the solutions in the
coexistence region is globally stable. Anyway, the order parameter in
this case is discontinuous with respect to a,. This behavior is charac-
teristic of a first order phase transition. Finally, the values (p, 81, B2
that are simultaneous solution of the equations: a,=0 and a,=0
define a tricritical point.

Tt is also possible to extract the stationary solutions of equation (3.6)

when

By—o0 for a given value of (p, ;). In order to study this, it is

necessary to know the asymptotics of ®(4). In general, one can expect that
®(A)—~a exp{—bAi} when i—oc0. Assuming this behavior, we can show that

w— ]

if <1, and m-+>my<1 if b1, when B,—co. That is, the order

parameter saturates or not to unity depending on the assymptotic form of
the dynamical function.

5. Conclosion

In order to compare the above results with the Monte Carlo experiment
-in section 3, we have solved the implicit equation 8,m,=0 in (3.6) for the
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Figure 3. Numerical solution of my, for the mean field equation (3.5) at stationary
state, d,m,,~0, Dg(4), T, =2(J/k=1/2) and different p values.

two particular dynamics: D)= 1-tanh(2/2) and Dy (D) =exp{—2/2). We
sec inmediately that @, and @, are representative of cases a) and b) respec-
tively. )

Figures 3, 4 and 5 represent the resulting magnetization m versus B 1 for
some fixed values of §, and different values of p. In Figures 3 and 4 we
observe the expected second order phase transition with a critical tempera-
ture of 7 1 =(1-p)/t — B;p), which is independent of the dynamical func-
tion @. We see that 710 when p—0. It is also noticeable that f;1=1 for
any f,=1. The asymptotic behavior of ®, guaranties that m=m,<1 for

0.8 -
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Figare 4. The same as Figure 3 for @, () and 7,=2.
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Figure 5. The same as Figure 3 for ®,(4) and T, =0.25.

$7 1 =0. The qualitative behavior depicted in the figures is similar to the one
from the Monte Carlo simulation. However, there are some important
differences:

1. The mean field theory predicts that no longer exists a second order
phase transiticn below some critical value T{” = p. Instead, an ordered
state appears for all T, values.

2. For the ®, dynamics, there exists a tricritical point and, therefore, a
first order phase transition needs to occur in the parameter space of
the system.

These two qualitative effects do not occur in the computer simulatiorn,
where only second order phase transitions are apparent for any values of p,
T, and T,

Summing up, we have seen explicitely with this example that some of the
theoretical results are qualitatively correct while others describe new, proba-
bly spurious phenomena. The a priori control of approximations when
dealing theoretically with nonequilibrium systems is an open question in
general. In fact mean field approximations may in some cases produce an
incorrect description. This is probably related to the fact that fluctuations
do not play in nonequilibrium systems the same role as in equilibrium, e.g.,
a fluctuation-dissipation relation may not hold, in general, away from equi-
librium.
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