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Phase transitions in driven lattice gases
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We have studied nonequilibrium lattice gases whose particles are driven by a field. The lattice is either a
half-occupied square lattice or else the union of two energetically uncoupled ones. Monte Carlo simulations of
the latter, which is always crossed by a dissipative particle current, show a tricritical point and a continuum of
Ising-like critical points as the field is decreased, in addition to non-Ising, anisotropic critical behavior at higher
temperatures for saturating fields. A comparison of the various phase transitions involved, and a detailed study
of scaling of correlations with system size, indicate the relevance of the anisotropic liquid-vapor interface
(rather than the driving fie)dor inducing non-Ising behavior in a class of systems. It is likely that some of the
properties reported here are experimentally observ8H63-651X96)07506-X]

PACS numbg(s): 66.10—x, 05.70.Fh, 64.60.Cn

I. INTRODUCTION AND SOME DEFINITIONS in more detail in Refs[3,5], for instance. In addition to
Ne, we have studied\g, which is the union of a pair of
Stochastic lattice gases are suited to studying orderingopies ofAg, A&, and\?, with corresponding sites(®
phenomena in open systems such as pattern formation, sefind r(?), in the two copies connected insofar as particle
organization, morphogenesis, efd—3]. In particular, the  jumping is concerned, but not energetically. In other words,
driven lattice gas(DLG) is believed to capture some of the 3 particle ar, i =1,2, may jump to one of five sites, one of
essential physics in a class of steady states with anisotropieghich lies in the other copy. Jumping along eitf¥eor ¥ in
The DLG is a lattice gas with nearest neighiN) attrac- A _ follows the same rules as forg, and jumping along
tions which evolves in time by stochastic NN particle-hole(i e., to the other copyfollows the Metropolis rule, as for
exchanges as induced by a heat bath at temperatutén-  § ]umps[3 6. The cases okg and A ¢ for which the field is
like the ordinary lattice gas, the DLG involves a driving saturating which means that no particle may perforax
external field EX, which causes preferential jumping of par- jumps, are denotel,. andA.., respectively.
ticles along one of the principal lattice directions,Conse- Previous Monte CarldMC) studies have revealed the
quently, the resulting steady states are characterized, for pgyain features of ordering in these models, and how they
riodic boundary conditions, by a net current of particlessometimes reproduce the behavior in nature. For example,
alongx for any E>0; this corresponds to a nonequilibrium, the net particle current which occurs in the models for any
dissipative conditiori4]. T>0 reminds one of the current of ionsfast ionic conduc-
For the sake of simplicity, we only consider below the {ors [7]. In the case of\.. and A.,, the current exhibits a
case in whichE is constant and the bath is implemented bysudden break of slope which marks a critical point located at
the Metropolis rule. The latter implies that the probability temperatureT... The latter equals approximately T#and
per unit time for the exchange of a particle and a hole de4.3T, (T, is the—equilibrium—Ising critical temperature for
pends on the corresponding energy c&stergyis defined dimensiond=2) for \,, and A.,, respectively. It is very
for this non-Hamiltonian system as the sum of the Isinglikely that similar folds and other anomalies observed before
Hamiltonian plus the work done by the fieldnly) for ex-  in the conductivity-versu3- curve of many substances have
changes alongk. Consequently, the probabilityper unit  the same origin, i.e., they mark the onset dhanequilibri-
time) for a NN jump is p=min{l,exg—(AH+E)/kgT]}, um) phase transitiof3]. For T<T,,, the models exhibit a
whereAH represents the variation of the Ising Hamiltonian liquid, particle-rich phase which coexists with its vapor. A
due to the exchange and one sEtsO (which reducesp to  novel feature is that this liquid happens to be striped, and the
the familiar Metropolis rulg unless the particle-hole bond interface is linear parallel t®. It seems natural to argue that
points +X (—X), in which caseE>0 (E<0). The lattice is  similar anisotropic interfaces, and perhaps some of the spe-
a rectangle oN=L, XL, sites with toroidal boundary con- cific properties ofAg, might be exhibited by certain mate-
ditions. Another simplifying restriction is that we only deal rials in which the currents occur within restricted, e.g., two
here with half-occupied lattices, i.e., the particle density isor quasi-two-dimensional geometries. This endows the study
p=3. of Ag and Ag with some practical interest. Comparing with
This system is hereafter denotkg; it has been described each other the behavior of these systémisich was initiated
in Refs.[6,8)]) is also interesting because of the extremely
slow evolution typical of most lattice gases. That is, very
*Present address: Laboratoire de Physique ataviigue des Mi-  slow relaxation hampers in practice the MC simulation of
lieux Heterogenes, Ecole Supeeure de Physique et Chimie Indus- Ag for any E=0 while the evolution may be accelerated in
trielles, 10 rue Vauquelin, 75231 Paris Cedex 05, France. Ag where density fluctuations have an additional mode of
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FIG. 1. MC data corresponding to the order
parametem for different sizes, as indicated, are
compared with field-theoretic predictions, Eq.
(2). Here 8= 3, v,=3 and further details as sug-
gested in Ref[14] (from where the data for the
black dots—which correspond to different
sizes—have been takgnand T,,=1.38 as ob-
tained independently from both cumulants and
specific heat. No scaling behavior is observed,
nor does the slopg seem to be of any signifi-
cance (cf. Ref. [6] for further evidencg The
same occurs fof,,=1.418(used in Ref[14]) as
illustrated by the insetwhere decimal logarithms
are avoidegl below T,,. (Temperatures are al-
ways in units of the 2D Ising critical temperature,
Ty, except for mean-field results as reported in
Figs. 4 and 5, ang = %; logarithms are decimal.

relaxation, namely, jumping of particles to the other latticebeen reported for a number of different but very closely re-
[9]. lated systems. For example, we are aware this has been ob-
There is also a more fundamental interest for and  served for a different case of lattice gas with anisotropic
A... In particular, one would like to investigate the univer- dissipative flow[19], for some modifications ok.., which
sality class for the phase transitions in these systems, and ifisclude either anisotropic coupling&0] or else spin flips at
relationship with the universality class for the equilibrium a smaller rate than the exchanges in order to accelerate re-
counterpartsho and Ao, i.e., the influence the underlying |axation[17], for the case of a lattice gas under shizd],
anisotropy has on critical behavior. This issue has been aqy; the attice gas in which+% and — X jumps occur com-

dressed by field theory based on the proposal that Bjetely at random with same probabilitg2,23, and for the
Langevin-like equation with a drift is the continuous Versionyo-layer system\., [6].

of X, [10—-12. Assuming that the field operator islevant Therefore some questions concerning the nature of the
renormalization grougRG) techniques neal.. produce a ynderlying anisotropy and its influence on emergent proper-
solvable—classical—case for<d<5. This provides an in- tjes arise. It is important to compare the just mentioned sys-
teresting description of anisotropy and critical behavior. Intems with each other, and to determine what are the essential
particular, the existence of two independent correlationngredients for DLG behaviofand whether they are con-
lengths diverging with distinct exponents, €.g,=; and tajned in the continuous model or joMore generally, one
vy=73 for d=2, is predicted. It has led before to the expec-would like to consider the issue of universality for these
L)’:X VVL;1 is fixed. More explicitly, consider thensemble by comparing\g and Ag (which has been shown to be in-
averageof the local density{13,14], defined as the MC sta- teresting even foE=0 [9]) by means of MC analysis and

tionary averagédenoted - - - )) of mean-field(and other arguments. It has clarified the nature
of various phase transitions. In particular, we describe below
1 Ly=1Ly—-1 . L o
I S S (1-2 er 1 two different critical points iMAg. One of them occurs for a
“a Ly/| <o o (1=20¢y)e™, (1) gaturating field afr., (>To); this is of the samérare class

as the one in\.,. The other critical point occurs ing (but
where o, =0,1 andk=(0,2wL;1); a specific prediction is not in Ag) for finite E at a field-dependent temperature be-

thatm=(¢) behaves as low Tg; this is of the Ising variety, as fax,. The segrega-
tion in this case is such that no liquid-vapor interface exists.
m=L_ Al VXﬁW(sLi/VX), (2)  Therefore, théanisotropi¢ interface which develops just be-
low T.. may be at the origin of the peculiar, non-Ising critical
wheree=(T—T,) T, . and scaling behavior of the DLG abo¥g. We believe that

There is a claim that these expectations are supported yie non-Ising critical properties of the models should be ex-
MC data[14,15. Systematic departures frof@) have been perimentally observable in nature. In order to clarify the rel-
reported6,16—18, however, and data obstinately fit the be- evant role played by the interface, we have studied further
havior m~e~# with 8=0.3 nearT,, for large enough sys- the scaling of correlations in the DLG. A question one
tems. On the contrary, the field-theoretic prediction thatshould try to clarify here is whether there is a single scaling
B=13, perhaps with weak logarithmic correctiorfer the  length or else two lengths associated, respectively, with each
(marginal) cased=2, is not confirmed in general. Figure 1 of the two principal lattice directions. We present a simple
illustrates how data depart from the predicti@). The ex-  description of the variations of the order parameter with sys-
istence of critical points which are characterized by an ordertem size, which just involves the existence of a unique scal-
parameter critical exponeyt whose value is apparently be- ing length. On the other hand, assuming that two lengths are
tween the classical3{ and equilibrium ) values has also needed to describe clusters and other inhomogeneities which
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FIG. 2. Some typical configurations obtained for the two planes oby the MC method for the 200X 200 lattice, a saturating field
acting horizontally, anda) T=1.5>T,., (b) T=1.1, i.e.,T,>T>T%, and(c) T=0.85<TZ . Small anisotropic clusters may be detected by
direct inspection. The phase transition which separ@esom (b) is continuous with peculiar critical behavior; the one which sepacabes
from (c) is discontinuous but it becomes continuous with Ising-like critical behavior for small enough values of the field.
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are observed to occur in the systems, MC data indicate that 1
they are not independent of each other. None of these obser-
vations appear to be consistent with the field-theoretic as-
sumption that the field is relevant in the sense of RG theory. P tiguia

Il. ORDERING AND CRITICAL POINTS

For reference, Fig. 2 illustrates three types of ordered
states which occur ir\ ., and the two distincinonequilib-
rium) phase transitions that are involved. A few facts are to
be emphasized. For temperatures abdygparticle density 0.85
is fixed atp=3 throughout this papgrsteady states are ho- 0.85 T 1.2
mogeneous on a large spatial scale but show clear anisotro- 0
pies on smaller scales. More specifically, clusters that are
stretched out along are often observed even by direct in-

spection, as in Fig. @. As descrlbed above'l,'x. _seems. to and the corresponding Onsager exact regsiiid line); dashed
Correspon_c(for the macroscopic systento a Cr'_t'cal pOIn_t . lines are a guide to the eyéThe neighborhood of the respective
below which the layered system segregates into coexistingitical regions, where it becomes difficult to accurately define in
liquid and gas phases. Figuréb? illustrates that the two practice the phases in MC simulations, is not shown.
planes ofA ., exhibit the same type of order, i.e., coexisting
states, for anyl’ within the rageT,.>T>T% . Nevertheless, 1
such symmetry between planes breaks down belg Ap:2—|<pl(T,p)>—<p2(T,p)>|, (5)
which marks the onset of phase transitions that are first- p
order-like, i.e., discontinuous for a saturating fi¢tsbe be-
low, howevey. Each plane is filled beloW?* by one of the is interesting. In the followingy stands for any of these
phases, either liquid or gas only; cf. Fig(c2 The pure quantities, namelyy= m, M, Ap, etc. In fact, even though
phases foll < T, (i.e., including the ones foF <TZ) exhibit e_ach of them cqrresponds to a different measure of correla-
well-defined anisotropies, as fdi>T... One may become tons, their stationary values should not differ from each
convinced of this fact by careful direct inspection of graphsother sufficiently near the critical poirithe region of most
such as the ones in Fig. 2, and it has been proved numerdterest herg which is indeed confirmed below. .
cally after studying the relevant correlation functigos fig- We first mention that one should expect the critical point
ure 10 of Ref[6]). Consistently with this, it has been argued &t T- in A.. to be identical to the more familiar one hn, .
that one effect of the field is transforming equilibrium This is already suggested by the fact that there is a strong
(E=0) liquid clusters roughly from spherical to triangular Similarity of segregated states; e.g., close direct inspection
(for appropriate values g5 andE) [24]. Summing up, two d0o€s not reveal any systematic qualitative differences be-
main questions ensue from MC simulations that deserve futveen the planes in Fig.(8) and corresponding configura-
ther study:(i) the apparent existence of two lengths, and thions of A... Furthermore, both systems have been demon-
influence of this fact on critical behavior, afid) the relation ~ Strated to have the same critical point 0 [9], and the
between the phase transitions exhibited\gyand Ag. We ~ Symmetries which are introduced for ay-0 by dynamics
address the latter problem firdt) is discussed in detail in I Ag are already present ing. That is, g and Ag are
Sec. . characterized by the sanficroscopi¢ dynamical rule, and

To perform quantitative comparisons, one may monitorit has been observed to produce the same typémaicro-
order parameter anenergy for instance. A natural way of _scoplo mterface_ln both systems. Therefore, we are assum-
measuring anisotropic ordering far=} is to compute the ng in the following thatA., and\.. have the same critical
average of1), m. The (anisotropi¢ squared magnetization Point, which seems confirmed by all the available MC data,

FIG. 3. The particle density of the pure phapgquia(T), as
obtained for\ ., (@) andA ., () using lattices of comparable size,

[4] as discussed below.
However, some important differences between and
M= ,/|(|\/|X2>_<|\/|y7>|, 3 Ag should be expected. This is illustrated by the behavior of
Piiquia(T) in Fig. 3. In addition to the fact that the liquid
where density is, in general, larger in the presence of the field,

which is due to different behavior of correlatiop8], one
observes in Fig. 3 that)iquiqa(T) is definitely larger fori.,

' (4) than for A..,. One might argue this is simply related to the
fact that the systems are finite, apdis the same in both

has also been studied. BoM and m are normalized such cases for giverT. Nevertheless, kinetic mean-fiefdumeri-
that they equal unity for the zero-temperature configurations¢al) methods which have been developed bef&&] dem-

For p=1 (the only case which is of interest hgrél and ~ onstrate a more essential difference betwegrand Ag. A

m have been deﬁned me as an average of the Correspond_ first al’gument is as follows. Consider, as a measure of en-
ing quantity over the two planes. Furthermore, measuring th&rdy. the density of particle-hole pairs, _, within the dis-
density of each phas@g,(T) and pjiquia(T), and the dif-  ordered phase ohg at high enough temperature. The time
ference of density between the two planesAgf, variation ofe,_ may be written quite generally within the

2

) 1 Lyoy=1 [Lxy~—1
MX( = (1-20y,)

P LeX Ly X Lyy) yioe1

x(y)=1



6042 J. MARRO, A. ACHAHBAR, P. L. GARRIDO, AND J. J. ALONSO 53
0.022
e
be
Ag
0.000 .
0 3 6

E

FIG. 4. Field dependence for a typical value of the temperature F|G. 5. Field dependence of transition temperat{iresinits of
[namely,T=3.2(J/kg)] of se=ex—e,, the difference between the (J/kg)]; the graph, which is adapted from Rg8], illustrates up to
density of particle-hole pairs alongand that along, for systems  the case of a saturating field. The upper curves are\forand
Mg and Ag as indicated. This has been obtained numerically froma | as indicated; the latter corresponds to the phase transition at
the kinetic mean-field theory in R€#8]. (The field is dimensionless Te between states such as the one in Fi@ 2nd the one in Fig.
throughout this work; see the main text in Sec. | for details. 2(b). The lower curve corresponds to the coagulation of the liquid

in only one of the planes of ¢, i.e., the transition al§ between
pair approximation as the sum of two terms, and I, states such as the one in FighRand the one in Fig. ). The
which describe the particle-hole exchanges within eachinonequilibriun tricritical point which characterized ¢ is indi-
plane, and a third terml,;_,, which describes interplane cated.
exchangessome further details that are not needed here may

be found in Ref[8]). The stationary solution for one plane, region namely, the closest neighborhood of the critical point

o cancels out bott, andl, for any E=0 while it turns
out that this causels_., to vanish only fore=0 because of

that has been accessible so far by the MC method, is
y~e P with 8=0.3 for both\., and A..; this is demon-

some field dependence within the dynamical rate. Thereforestrated in Fig. 1see also Ref§6,16]). Figure 7 suggests that

one has&eAE(t)/atzo for t—o due to cancellations be-

the two systems have the same critical thermodynamic am-

plitude as well.

As a confirmation of the above, we have obtained some
evidence from a few MC short runs that thepriori inter-
plane rate influences somewhat the transition temperature of
A.. . (In fact, we have observed that currents are a fundamen-
tal ingredient in this system. We believe, in particular, that
interplane currents are responsible for the phase transition at
LL?Z‘czo.95<Tm, which is indicated in Figs. 2 and)3The
same picture ensues from mean-field theory, which demon-

tweenlq, I,, andl,_, and, as a consequence, _ and
e\ differ in general from each other for aiy>0, i.e., the

corresponding steady states are not identical.

Mean-field theory also indicates that the differenceeof
between thex andy directions is generally smaller fokg
than for\g; this is shown in Fig. 4. That is, the existence of
the other plane causes anisotropy to decrease. It may be
derstood if one thinks of dynamics far: as consisting of a
competition between the field, on the one hand, and a the
mal process along, on the other. Then extra thermal ran-
domness(along z) adds to this forAg that (slightly) com-
pensates the anisotropic action of the field. If this argument
is right, one should expedt:>T2 , which is indeed a direct
result from mean-field computations, as illustrated by the
upper curves in Fig. 5. The same is supported by MC simu-
lations for saturating fields, which definitely indicates that
TA-T2>0 beyond statistical errors. This is demonstrated in
Fig. 6, which describes the size and temperature dependence
of the cumulan{17]:

4 [ )
37 2(e?)?

(Further support follows from the behavior pfiq in Fig.

3. It also ensues fr.om this interpretation of dynamics in g 6. The dependence with size and temperature ofdhe
terms of a competition bgt\_/veen two.effects that, as CONmensionlesscumulant(6) for \.. (@) and A, (00): the crossings
cluded above, the same critical behavior should be expecteghyre |ocate the corresponding critical temperaf@i@, as indicated.
(as forE=0) for both\., and A..; that is, no new effects The four different sizes presented here arex20, 26x44,
nor symmetries are introduced by such a dynamical processpx 82, and 4 160, respectively, for both., and A, . This plot
in A, as compared to the caselof . As a matter of fact, the suggestsT?=1.38 andT2=1.30 in accordance with other evi-
only hypothesis that seems to describe correctlycttitical dence. Lines are a guide to the eye.

0.7

. (6)

9= 0.09

1.1
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| 0.6 0.8 .| 1.2
0.25 0.5 T/Tg

FIG. 9. A comparison of equilibrium and nonequilibrium
specific heatsthe solid line is the Onsager exact result and the dots
correspond to mean squared fluctuations ofghergy e(from the

FIG. 7. Temperature dependenceyef # for different assump-
tions aboutB, as indicated. Data fog correspond to thenagneti-
_za_tlc_Jn M_for A (_asterlsk$andAx (0) (poth are extrapolatlops o MC simulations reported in Fig. 8 fdE=1). The high-temperature
infinite sizeobtained from squared lattices by the method in Ref. " . .

phase transition which occurs 8t is suggested by data for

[16]), and to thelocal density mfor \. (@) (for the 40<160 . . . - .
lattice). The only three sets of symbols which exhibit independenceT>TE - The energye is defined as the probability of a particle-hole

of temperaturenear e =0 (which turn out to be fitted by the solid pair in the system.

line corresponding t@=1.24) are for3=0.27, andTX=1.38(as- . o o . .
terisk9, TA=1.30 (), andTA(L)=1.37 (@). of the Ising class. Some indication of this is given in Fig. 8,
which suggest@= . Even more convincing is perhaps Fig.
9, which shows quite a consistency of data for energy fluc-
tuations with the specific heat function corresponding to the
Onsager solution. This simplicity of behavior ag for

E<E, was a surprise to us. That is, one is dealing here with

strates that the transition & not occurring in\., depends
crucially on the dynamical rule. More explicitly, it has been
reported[8] that the Metropolis rule, but not other familiar

chgce_;,]_mduces thﬁ em;tencr:]e ofa nongu_:ﬁbﬁuzytmal a full nonequilibrium state in the senge.g) that a(dissipa-
point. This means that the phase transitionTgtis discon- tive) particle current exists, as illustrated in Fig. 10, but the

tinuous for_E Iarge eno_ugr_(as observed in'MC simulations  pahavior is much simpler than nedr,. For instance, no
for saturating fielgl while it becomes continuous for small g,ch fit, which suggests that a fluctuation-dissipation relation
enoughE. The point separating these two types of behaviot,g4s  has ever been observed so far arolind Inciden-
is estimated by the mean-field approximation to be artally, we mention that Fig. 10 suggests a change of slope

E=E;=3.5-0.1; cf. Fig. 5. _near the transition aty which is similar to the one often
The latter result has moved us to perform a SyStemat'?eported for fast ionic conductors

MC study of Ag for varying values ofE and T. The data
confirm the above. In particular, the existence of a critical

point (for p=1) at TX for any E<E.~2 has been demon- IIl. CORRELATIONS AND SCALING BEHAVIOR

strated. Interestingly enough, these critical points seem to be We turn now to the scaling properties of correlations and,

in particular, to the intriguing question about the apparent

0.45 existence of two correlation lengths; cf. first paragraph of the
Apb 0.006
025 L J
005 | | [ |
0.9 0.94 . 0.98 1 J
T/TE 0.003 1 { 1 I | | ]
0.9 0.98 " 1.06
FIG. 8. A plot of the difference of particle density between the Ty

two planes ofAg, as defined in Eq(5), nearTE(=0.95T) to
illustrate consistency with an order-parameter exporfﬁnté for FIG. 10. Temperature dependence Eor 1 (cf. Fig. 4 caption

E=1 (the field is dimensionless; cf. Fig).4The data were obtained of the particle current, namely, stationary average of the net number
from MC simulations of the 128128 lattice; the solid line corre- of particles crossing any section per unit time in directios-X
sponds to the predicted linear behavior. divided by N, as obtained from the MC simulations in Fig. 8.
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preceding section. The consideration of these matters hagten usingh=¢” here gives the correlation lengths as
pens to clarify further the relation betwekp, Ag, \o, and  &~e "4 andg,~e ™" for e—0, and A+ ) v=24. It

Ay. Letus denote by, andl, respectively, the two lengths ensues therefore that one should have rather generally below
which seem to be needed to characterize the anisotropiés, that

which are exhibited by the DLG for any value 6fandE. In

fact, anisotropic clusters have explicitly been reported before/(Ly,Ly;e,u)=efy(L e ") L te " 1uef).  (11)

both at highT [6,8] for any E and at lowT [24] for small ,

E. It is our belief thatl, andl, depend on each other. Our Let us assume also that one may write

argument may be made explicit for large at low T, for . 1 1

example. Then one may interpret the lengths, respectively, d&(bx-Ly:e.W=#(e. W)+ L, X(e,w)+L, Y(e,u) (12

th.e mean d|s_place_me_nt alonga.nd y OT a hOIG (particle to first order for large enough size. One has after combining
within the striped liquid(gag during a time intervalAt. If this with (11) that

the two processes are independent of each other, one may

imagine that a random walk occurs along heirection, i.e., X(e,u)=eP "1+ DX (1 ue?), (13
I§~DAt, whereD is the diffusion coefficient. However, one
should expect longitudinally th&~ vAt with v correspond- Y(e,u)=eP""Y(Lue?). (14)

ing to the(termina) velocity due to the applied field. There-
fore, the expectation is theh;~|§. One may analyze quan- AssumingA~0, as implied by our arguments above, one
titatively this possibility by assuming that correlations therefore has below., that
behave, approximately, as
X(Lue?) Y(lLue?

L L

ax?—by? P(Ly,Ly;e,u)=BeP+ef”

U™ Gy

(7
T<T.. (15)
for sufficiently largedistances. On this assumption one ob-
tains thata~ b® with s~2 over the whole range of tempera- The first confirmation of this kind of finite-size correction in
tures investigatefil6,6], in accordance with our expectation. honequilibrium anisotropic systems is probably in R&g].
This observation may be interpreted as indicating that thét was remarked there that the dependence of the order pa-
shape of theanisotropi¢ clusters is in practice determined rameterM on the sideL of ., conforms toM~L~" for
for each given value oF, and the relation between the two T<T., andM~L~* with roughly ~0.2 forT>T... Con-
lengths is then maintained dsis varied. Therefore, the ex- sequently, the proposal for squares was that
istence of a unique relevant correlation lengthnearT., is —Blvim B B—v
suggested whose relation with the other lengths may be _[LTP(BAP=B™TY) for T<T,, (16)
imagined to be roughly v Bex @7 for T>T,,
stl wherex=¢LY". The fact that this is an excellent description
&~ MN';Z_' 5~2, (8 of data for both\.. andA., is illustrated in Fig. 11. Interest-

_ ) ) ing enough, the empirical observation(it6) for T<T., cor-
for example. This explains th&; may not contribute to the responds tq15) with

critical and scaling behavior of the DLG; only, which is
essentially mediated by the existence of the interface along —B=X(1ue?+Y(1Lue? a7
X, matters. A similar situation has been reported (®elf-
affine) interface phenomend25]. Self-affinity has been only if A is zero or sufficiently smalland L,=L). One
shown to imply in the critical point of some growth models a cannot conclude so generally aboVg because the param-
logarithmic behavior which has indeed been observed teterw in (16) turns out to be model dependent; cf. caption
characterize the size fluctuations of the interface of the DLJor Fig. 11.
[26,15. Checking(15) for rectanglesl(,# L) would require high
The above suggests that anisotropic critical behavior isjuality data for many different shapes; we only consider here
not a consequence of two correlation lengths but of the propsquared geometries, which is much more convenient. In any
erties of the interface. This fact may explain also the DLGcase, squares have provided us an even more stringent test of
scaling properties which have been reported before. To sdbe validity of (15) than the one in Fig. 11. This is illustrated
this, let us assuméagainst our beligf that two relevant in Fig. 12, in which the finite-size corrections are isolated
lengths exist, and consider the Hamiltonian from the bulk (unlike in Fig. 11. One obtains from the
analysis in Fig. 12 for the quantityl corresponding ta\.,
3 ) 5 . that B=1.24, and thaX(1,us? +Y(1,ue?) is constant, im-
H_J dr[(Vy) +ey +uy®], u>0, ©  plying Bi=1.1, for 1<é~g~*<L; these values foB and
B, agree well with previous estimates in REE6]. Figure 12
for instance. Following standard reasoning and notatior@lso reveals the expected departure from scaling fouthe
[27,28, the pair correlation function is physicalregion £>L. Interesting enough, the corrections in
(15 turn out to have different sign, namely,
G(X,y;e,u)=N2TIG(ATTAx Ay e " un?). (100 X(Lue?) >0, Y(1,ue’)<O0; cf. below. The above formulas
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1
O 15x15 1.25 "
I 30x30 u
¥ O 50x50 T'<To
A 100x100 g’
0.5 | O
O
O
T>Tw
(a)
0 ' 0.8 !
0 0.5 1 )
F () 0 e/L !
! O 2x16x16 FIG. 12. A plot of e ~%%" versuse ~%7/L with T,=1.3, as
[ 2x40x40 suggested by Eq(15) for L,=L,=L. This plot contains all the
P O 2x70x70 available data for the squared layered system for different values of
A 2x120x120 L, namelyL=16(O), 40(d), 70(< ), and 120(). The line best
T < Too fitting the data near the origin has slopel.1, and extrapolates to
0.5 - B=1.24, in accordance with the rest of the analysis.
The assumptions about the driving force, which is intro-
T>Tw (b) duced as a relevant variable, seem to be at the origin of the
failure of the presently accepted continuous version of the
00 0'5 . DLG. The latter involves a driftd(¢)=ao+ a e+ - - N
) F(z) which causes the nonequilibrium system to have the critical

behavior of the Gaussia®#? model (with an indirect influ-
ence of¢*). One should expect under such assumption for
the drift that(J(¢))=a(1—m?) with a independent ofl
gufﬁciently near(but excluding the critical point{ 29]. How-

ever, the latter result does not seem to be supported by the
plots in Fig. 14, where daftdf the assumptions of the model
are acceptedsuggest a more complex behavior Xgfp).

FIG. 11. The(dimensionlessorder parameteversusthe right-
hand side of Eq(16) for different sizes and systems, as indicated.
The values for the parameters, to which the plot turns out to be ver
sensitive, have been obtained by the method in RE8]. These
graphs refer to8=0.27 andv=0.7, and(a) T.,=1.38, =0.2,
B=1.24,B,=0.8, andB.=0.33 for the case of.. that includes all
available data for £ k<200 belowT, and k>7 aboveT., and
(b) T.=1.3,w=0.3,B=1.24,B,=1.1, andB,=0.38 for the case
of A, including all data for 16 k<300 belowT,, and«>3 above
T... The data outside the indicated ranges which deviate {f6n
as expectedsee the explanation belgware not included here.

IV. DISCUSSION

We have compared by MC simulations and kinetic mean-
field theory the various phase transitions which are exhibited
by the layered DLGAg, and by the standard DLQ,,,, for

cannot be fitted to data if the valugg=3 and v=3 that
half occupied lattices. The interest is in ttr@nequilibriun)

characterize the continuous modéb] are used instead of
the values reported here.

In order to see further consequences(bl)—(14), we
remark that it is implied forA # 0 that

-0.9

X(s,u)_
Y(e,u)

e Avf(Lue?). (18)

i

This provides an explicit method for estimating the value of
A, and one may check the field-theoretic predictits; 2 or
Av=1. We have estimate®/Y from the behavior om for

the layered system. That is, several sets of data, each corre-
sponding to a different lattice size and shape, have been
combined with(12) to obtain X/Y by the least squares
method. The main result is illustrated in Fig. 13. This, con-
firming the other evidence, may be interpreted as an indica-
tion that no singularity occurs i18) ase—0". It rather
suggests thah =0 given that the boun¢iX/Y|<1 is indi-
cated, and one obtains from the physical regienékL in
this figure thatX/Y~0.28& —0.98 near the critical point for
the finite-size corrections.

O
0

-1

€ 0.25

FIG. 13. Temperature dependence of dimensionless relation
X(e,u)/Y(e,u) [cf. Eq. (12)] as obtained by the least squares
method from data fom corresponding to different sizéaamely,

2X 20X 20, 2X26X44, 2xX32xX82, 2X40Xx160, 2X20X16,

2X 26X 26, 2X 30X 36, and 2<40x 64). The line is the empirical

fit XI'Y=0.27%—0.977 foré<L.
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0.06 Our final conclusion is twofold. On the one hand, the
*e present study suggests which basic ingredients are to be in-

J Sl ) cluded in a field-theoretic version of the DLG and related
1-m™ e~ ok /;’ﬁ systems, e.g., it seems that a drift which is relevant should
W not be invoked. The critical behavior of the DLG appears

) . & rather simple from the perspective of known results for other

o nonequilibrium lattice systems. That is, the observations

T - above in the neighborhood dt. and T may be interpreted

7 as further evidence that the Ising critical point is rather ro-

003~ s bust[30]; only the presence of a peculiar linear interface

' n ' (and not a driving field, which exists in the two situations

investigatedl is strong enough to induce a measurable
gnomaly nearT,,. We believe this issue deserves further
study. On the other hand, it is suggested that several systems
(mentioned in Sec.)Ibelong to the universality class of the
steady state which is obtained by a dynamical rule whicHPLG. Therefore, experiments that focus on the nature of the
reduces itself to the Metropolis algorithm f&=0. Ag ex-  (nonequilibrium critical behavior of substances that could
hibits two different phase transition&ig. 2). The one at belong to this class would be of great interest. A specific
T.,.=Te_..=1.30is similar(for a saturating fielfto the one  question here is whether the observat@#0.3 is an actual
at temperaturd,,=1.38 in\,,. That is, in addition to the characteristic of the class or an artifact, e.g., a difficult con-
fact that A exhibits (for p=3) a configuration within each dition might give rise to areffective exponentlt should be
plane apparently indistinguishable from the onexin, both  stressed that our MC analysis describes a well-defined scal-
systems are observed to be characterized by the same critigaly region with no indication of any crossover phenomena at
indexes, e.9.8~0.3 (perhaps alsa~0.7 with rather large all. However, variations of3 from the above quoted value
error barg, and by the same scaling behavior over a wideshould not be ruled out if investigating even closer the criti-
range of values foll andL. The measured dependence of c3| point is finally allowed, e.g., in laboratory experiments.
MC data on lattice shape and size is consistent with the exg|ow power-law decay of spatial correlations, as (if,
istence of a unique correlation length which dominates afhich is a feature of the DLG clagé], has been observed in
criticality, in spite of the fact that observed anisotropy of fluid whose walls are kept at different temperat[&].
clusters might advise one _considering two Iength_s_in generaElore definite in characterizing the DLG class seems to be
The*layered DLG exh|b|t§ a}nof[her phase transition for aMYhe presence of a linear interface or a similar anisotropic
E atTE.<TE' It has some similarities with t_he one I f(_)r ., feature. The chances are that some low-dimensional conduc-
E=0, i.e., the equilibrium case. In particular, the I|1qU|d tors [7] and perhaps fluids under she@?] are good ex-
phase exte_nds completely over one of the plaffersp=3) amples. In relation with the latter, we mention that mean-
so that no mt_erface occurs mdepgndently of thg vaIuE.of field critical behaviol{32] has been reported in accordance
Therefore, this is an |r_1terest|ng S|tuat_|on to be mvestlgatequth field theory[33]. On the other hand, som@nomalies
We have followed a hint from mean-field theory and foundreporteol for ionic fluidg34] might also be analyzed from

th.attfa anntu;al point occurs foiﬁ= Eﬁgzh(E°=3'5i.Q‘l . this perspective, i.e., trying to identify there a nonequilib-
within the pair approximatignso that the p ase transition Is (steady condition and a linear interface.
continuous for anfE<E. The study of the critical point at

T indicates that it belongs to the Ising universality class for
anyE. Summing up, a clear departure ®from the Onsager
value is observed nedr, , when the system exhibits a linear
liquid-vapor interface throughout the system along the direc- Financial support from DGICYT of Spain, Grant No.
tion of the applied field, while such departure is not observed®B91-0709, and useful comments by Dr. K.T. Leung and Dr.
within a similar critical region neafg , E<E,, in the ab- R.K.P. Zia are acknowledged; we also thank Dr. J.S. Wang
sence of the interface. for communication of Refl18] before publication.

FIG. 14. Temperature dependence of the particle current divide
by (1-m2") from MC simulations, for different values of, as
indicated. Lines are a guide to the eye.
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