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Lattice gases are investigated consisting of several boxes in which any

particle interacts only with particles at its nearest neighbour sites within the

same box, and particles can hop from one box to the other so that the total
number is conserved. Two equal square lattices with attraction between

particles in the same plane are simulated using the Monte Carlo method. While

the equilibrium properties of this system are related simply to those for the
plane, time relaxation diŒers. There are some interesting consequences, e.g., a

consideration of two lattices may permit the more accurate determination of

steady state properties in some cases, and novel phenomena may be exhibited.
The nature of ® nite-size eŒects for low density is peculiar also. Further cases

that exhibit interesting behaviour, even for one-dimensional boxes, are studied

analytically by means of exact and mean-® eld solutions.

1. Introduction and de® nition of model

The lattice gas [1] and its variations are known to capture sometimes the essential

cooperative physics in natural systems. Therefore, they may reproduce ideally in the

computer many interesting phenomena [2] such as condensation, phase equilibrium

and segregation, hydrodynamic ¯ ows, ionic conduction, crystal growth, and ad-

sorption by surfaces. In practice, however, simulations are hampered by the fact that

incorporating real features of natural systems into the models increases dramatically

the computer time needed. Even restricting to the crudest qualitative approximation

of reality, the time evolution of lattice gases towards ordered states is very slow if only

particle diŒusion, e.g., nearest-neighbour exchanges, are allowed which is often

required on physical grounds. Thus, it seems interesting to consider further variations

of the ordinary lattice gas that may improve both model versatility and computational

e� ciency.

The ordinary lattice gas consists of an sc lattice in d dimensions, Zd, with

con® gurations r ¯ ² r
x
; x ` Z d́ , where r

x
¯ 0(hole), or 1(particle). The (con® gur-

ational) energy is given by

H (r) ¯ ® 4J 3
NN

r
x

r
y
, (1)

where the sum is over all pairs of nearest neighbour (NN) sites. Let q 3 r kr Õ " 3
x

r
x

be

a density, r k r the number of lattice sites or volume, and N ¯ 3
x

r
x

the number of

particles. The nature of the equilibrium states in this system, to be denoted k hereafter,

is well known. In the in ® nite-volume limit ( r k r ! ¢ , N ! ¢ , q ¯ const.), k exhibits a

critical point for q ¯ 1 } 2 and d & 1 at temperature T
C,d

& 0, where equality holds for
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Table 1. The variation with density of the exact Onsager temperature T
coex, #

for the

coexistence curve of k 3 K
# , !

, and of the temperature T
C

locating the onset of condensation

in K
# , #

as estimated from the MC data (see section 2 for the interpretation of the
diŒerences between T

coex, #
( q ) and T

C
( q ) for low q ).

q T
coex, #

T
C

0 ± 50 1 1

0 ± 35 0 ± 999986 C 1

0 ± 20 0 ± 997 0 ± 97
0 ± 15 0 ± 988 0 ± 95

0 ± 10 0 ± 964 0 ± 93

d ¯ 1. For d " 1, one may have below T
C,d

coexistence of two phases, i.e., liquid of

density q
!
(T ) and gas of density 1 ® q

!
(T ) such that q ¯ xq

!
 (1 ® x) (1 ® q

!
), where x

represents the liquid fraction. The onset of condensation, x & 0, then occurs at

temperature T
coex,d

( q) which is the solution of q
!
(T ) ¯ 1 ® q ; T

C,d
3 T

coex,d
( q ¯ 1 } 2) ;

table 1 gives values for T
coex, #

( q). It is well established also that many properties of k

may be inferred from Monte Carlo (MC) studies for ® nite r k r .
We report here on some results for equilibrium states and time relaxation in lattice

gases with broken bonds. The most general system of interest, which we denote K
d,d « , ¼

(or, alternatively, K) is a sum of n adjacent disjoint lattice gases of dimension d, d « , ¼ ,

respectively. That is, K 3 V
j
k
j
, with k

j
U k

k
¯ W for any j 1 k ¯ 1, ¼ , n ; the volume

is r K r ¯ 3
j

r k
j
r ; the con® gurations have energy

H K (r) ¯ 3
n

j="

H
j
(rj). (2)

For simplicity, H
j
(rj) is assumed to have the structure of equation (1) (unless otherwise

indicated) ; rj ¯ ² r
x
; x ` Z d́ represents a con® guration of k

j
. The total number of

particles is conserved,

N ¯ 3
j

N
j
¯ 3

j

3
x ` k

j

r
x

¯ const., (3)

but N
j

is not. The case of K with n ¯ 2 is denoted K
d,d « hereafter. It comprises two

standard lattice gases, k
"

and k
#
, of dimension d and d « , respectively. The simplest

visualization occurs for d ¯ d « and r k
"
r ¯ r k

#
r if one lattice is on top of the other. Then,

K
d, !

3 k, and K
" , "

(K
# , #

) consists of two linear (square) lattices such that any site has

three (® ve) NN, with one of them in the other lattice, and K
$ , $

consists of two cubes

such that any site has six NN, with one of them in the other lattice if the given site

belongs to one of the contact surfaces. Such correspondence between sites in diŒerent

boxes does not occur if r k
"
r 1 r k

#
r , however. In general, we assume that the free (non-

contact) surfaces of k
"

and k
#

go to in® nity to obtain proper extensive properties ;

periodic (toroidal) boundary conditions are assumed, however, in computer studies

which refer to ® nite systems K
# , #

of volume r K r ¯ 2 r k r . In any case, equation (2) reads

H K (r) ¯ H
"
(r " )  H

#
(r # ) for K

# , #
, i.e., any two particles interact only if located at NN

sites such that both belong either to k
"

or to k
#
, as if the bonds between k

"
and k

#
are

broken (J ¯ 0 between any two sites in diŒerent boxes). No further restrictions on the

con® gurations of K are assumed ; in particular, any given particle has access to any of

the lattices.
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We have studied K
d,d « in some detail. It has an extra degree of freedom (particles

can leave a given box), which is important from various points of view. In the ® rst

place, we mention that density ¯ uctuations in K do not need to decay necessarily via

diŒusion in the same lattice. This may avoid the extremely slow evolutions that

characterize k, and helps us obtain good data in MC experiments. On the other hand,

the diŒerent realizations of K provide an interesting background to the study of several

problems. For example, the in¯ uence of spatial symmetries on critical behaviour, low

dimensional ionic conduction, and surface and other phenomena in layered systems.

Furthermore, K has allowed us a relatively easy study of phase coexistence, and this

has promoted the active use during the last few years of the Gibbs ensemble, a

computational procedure in which particles have access to several boxes (see, e.g.,

[3 ± 8]). We believe that the present case, K
d,d « , is more natural and conceptually

simpler, and also it seems more convenient in practice. As a matter of fact, we have

been able to obtain some precise numerical results, and analytical results as well for

some of the (simplest) cases of K. W e mention the following features of our method

which distinguish it from its predecessors : conserved quantities are the total number

of particles and the volume of each box ; one may have coexistence of phases within a

box ; con® gurations are related to each other by means of particle± hole exchanges, and

the MC step is reasonably simple ; it is feasible to simulate a relatively large system

size ; the density of each box does not ¯ uctuate dramatically in general, e.g., it does not

switch over during our experiments ; there is no need for sampling within a restricted

range of the order parmeter nor for restricting the value of the system density ; one may

approach reasonably critical and transition points ; and the diŒerent lattices involved

may diŒer essentially (e.g.) in dimension, volume, and interactions. Anyhow, the range

of phenomena to which the present method can be applied is probably comparable to

that for the Gibbs ensemble. Note that our system diŒers essentially from the case of

two planes that are coupled by a local interlayer (two-spin) interaction [9].

The paper is organized as follows. In section 2 we report on the main results for the

steady states of K
# , #

. In particular, MC data are shown to be consistent with simple

hypothesis, and we explore the consequences of this. Section 3 refers to some

interesting details of the time evolution of K
# , #

. In section 4 we describe brie¯ y some

general analytical facts for K, explicit exact results for K
" , " ,

¼ , and mean-® eld theory

for K
d,d

; it suggests, in particular, that some cases of K
d,d « may exhibit rich, novel

behaviour. A brief discussion of results is presented in section 5. The detailed MC

study of K
# , #

subject to the (irreversible) action of an external driven dissipative

electric ® eld (cf. section 5) is reported elsewhere [10].

2. Interpretation of Monte Carlo data for steady states of K2, 2

We have studied K
# , #

by the MC method with the Metropolis algorithm. The data

for q 3 r K r Õ " 3
x

r
x

¯ 1 } 2, where the sum is over the two planes, are for r K r ¯ 2 r k r ¯

9800, while lattices with r K r ¯ 20 000 or more have been considered for q ¯ 0 ± 35, 0 ± 2,

0 ± 15, and 0 ± 1 (and smaller lattices for q ¯ 0 ± 05 and 0 ± 01 have been inspected

qualitatively).

It is observed (® gure 1) that K
# , #

segregates for q ¯ 1 } 2 below a temperature T
C

into

liquid in one of the planes and gas in the other plane while the particles distribute

homogeneously between the two planes above T
C
. For q ! 1 } 2, the phase segregation

is qualitatively similar : a liquid cluster is in equilibrium for T ! T
C
( q) in one of the
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(a) (b)

Figure 1. Typical stationary MC con® gurations in the two planes of K
# , #

with 9800 sites

for q ¯ 1 } 2 : (a) T ¯ 1 ± 2T
C, #

" T
C
( q ¯ 1 } 2), where T

C, #
represents the Onsager critical

temperature, and (b) T ¯ 0 ± 95T
C, #

! T
C
( q ¯ 1 } 2).

(a) (b)

Figure 2. Typical MC con® gurations in the two planes of K
# , #

for q ¯ 0 ± 2 at T ¯ 0 ± 9T
C, #

!
T
C
( q ¯ 0 ± 2) : (a) in an equilibrium state, and (b) in a metastable-like but segregated state

observed earlier during the same evolution.

planes with the gas, and the other plane is ® lled completely by gas ; cf. ® gure 2(a). Such

a condensation in only one of the planes is observed to be `more stable ’ than the even

distribution of the liquid phase between the two planes as in ® gure 2(b) (cf. below for

a discussion of this fact). M oreover, it is observed that the densities q
L
(T ) of the liquid

and q
G
(T ) of the gas phases are both apparently independent of q ; compare the gas

phase in ® gures 1(b) and 2(a), for instance.
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Figure 3. The density q
L

of the liquid and q
G

of the gas phases for q ¯ 1 } 2 as a function of

temperature in the MC experiments. See section 2 for an interpretation of the deviation

from the Onsager solution (solid curve) observed here for T " T
C
.

The above observations naturally lead us to assume that

q
L
(T ) ¯ q

!
(T ), q

G
(T ) ¯ 1 ® q

!
(T ), (4)

where q
!
(T ) is the Onsager solution for the condensed phase, i.e., 2q

!
(T ) ® 1 ¯

² 1 ® [sinh (2K )] Õ % ´ " /) , with K 3 J } k
B

T. In order to check for equation (4) directly, we

have estimated q
L
(T ) and q

G
(T ) for q ¯ 1 } 2 as the density within the plane holding the

liquid and the gas, respectively. The result is shown in ® gure 3. It reveals perfect

agreement with the Onsager solution for T ! T
C, #

(the Onsager critical temperature)

but not above T
C, #

; in fact, T
C

happens to equal T
C, #

for q ¯ 1 } 2 (see below), and one

may de® ne T
C
( q ¯ 1 } 2) as the temperature for which ® nite-size eŒects invalidate in

practice our approximation q
L
(T ) ¯ q

"
(T ), q

G
(T ) ¯ q

#
(T ) (i.e., the densities of the two

phases are evaluated simply by measuring the density within each plane during the

stationary regime of the MC experiment).

If one admits that segregation occurs in one of the planes only, particle

conservation (equation (3)) implies that

q ¯ "
#
q
G
(T )  "

#
[xq

L
(T )  (1 ® x) q

G
(T )], (5)

and equation (4) leads to

x ¯ 2( q® 1  q
!
) } (2q

!
® 1). (6)

Thus, one has the same density in both planes, q
"
¯ q

#
¯ q, for q ! q

G
(T ), and

it is required that q & 1 ® q
!
(T ) in order to have x & 0. In particular, the onset

of condensation (x ¯ 0) is characterized by q ¯ 1 ® q
!
(T ) which is also the condition

for the ordinary square lattice k. Therefore, K
# , #

has the same coexistence curve

as k, T
C
( q) ¯ T

coex, #
, and it also follows that K

# , #
has a critical point for q ¯ 1 } 2 at

T
C
( q ¯ 1 } 2) ¯ T

C, #
which is of the Onsager class, namely, the order parameter critical

exponent is b ¯ 1 } 8.

Another interesting consequence of equations (4)± (6) is the following. Let us

denote by x K ¯ 2( q K ® 1  q
!
) } (2q

!
® 1) the fraction (equation (6)) of the liquid phase

which is in one of the planes of K
# , #

when the overall density is q K , and by x k ¯
( q k ® 1  q

!
) } (2q

!
® 1) the corresponding quantity for the ordinary (square) lattice gas

at density qk ; q
!

¯ q
!
(T ). Then, if the condensed plane of K

# , #
is to be equivalent to the



1162 A. Achahbar et al.

Onsager plane, one needs the relation q K ¯ "
#
[q k  q

G
(T )] ¯ "

#
[ qk  1 ® q

!
(T )] between

the respective densities.

In order to check for the general validity of equations (4)± (6), it is convenient to

monitor the behaviour of a (non-conserved) order parameter de ® ned as the diŒerence

in density between the two planes. This is simply related to the Onsager solution,

D q(T ) 3 (2q) Õ " r q
"
(T ) ® q

#
(T ) r ¯ q Õ " r q® 1  q

!
(T ) r , (7)

and, consequently, to the diŒerence in density between the phases. (Note that

D q(T ) ¯ 0 for q ! q
G
(T ), and D q(T ) ¯ qÕ " [ q ® q

G
(T )] for q " q

G
(T ), for any T.)

The actual density q
i
(T ) in plane i ( ¯ 1, 2) at temperature T may be obtained in MC

experiments as an average over stationary con® gurations. As expected, one observes

that D q ! 1 as T ! 0, D q ! 0 as T ! ¢ , and monotonic variation of D q with tempera-

ture. The data are ® tted by equation (7) except for some peculiar ® nite-size eŒects

(next paragraph). We observe, in particular, that D q remains continuous for any

temperature and density. More precisely, on the assumption that D q C (T ® T
C, #

) b

as T ! T Õ
C, #

for q ¯ 1 } 2, we have measured the Onsager value b ¯ 1 } 8, and the

data for q 1 1 } 2 may be seen to be (roughly) consistent with the expectation

D q E (1 ® q) q Õ " [K
C

coth (2K
C
)] } [1 ® sinh % (2K

C
)] e, where K

C
3 J } k

B
T
C
( q), which is

obtained after writing T ¯ (1 ® e) T
C
( q) and expanding q

!
(T ) around e ¯ 0. In practice,

it is di� cult to con® rm the latter expectation numerically due to two facts. (1) The

proportionality between D q and T ® T
C
( q) is valid asymptotically only, and one may

estimate that the region for which it is expected to hold varies dramatically with q

and is rather small in general (e.g., the inverse of the proportionality coe� cient is

0 ± 18 for q ¯ 0 ± 10 and less than 2 ¬ 10 Õ # and 1 ¬ 10 Õ % for q ¯ 0 ± 20 and 0 ± 35, respectively).

(2) There is a peculiar ® nite-size eŒect for low q, as explained in the next paragraph.

W e have also monitored the behaviour of the energy, e.g., E ¯ E
"
 E

#
, where

E
i
¯ r kr Õ " g+Õ

i
, and g+Õ

i
represents the stationary mean number of particle ± hole pairs

in plane i. It follows that r E
"
® E

#
r is the lattice-gas interface energy given exactly

by Onsager [11]. This is con® rmed by the data, except for ® nite-size eŒects.

The table compares the (Onsager) coexistence curve which follows from the

condition q ¯ 1 ® q
!
(T

C
) and the temperature T

C
( q) for the onset of condensation in one

of the planes that we have obtained numerically. The data are observed to deviate

beyond typical MC errors and systematically from the Onsager solution T
coex, #

( q) as

q is lowered. This is a peculiar eŒect related to the fact that one has x K ( q) ! x k ( q) for

® nite systems at a given density because some particles of the liquid droplet in K need

to go to the other plane to ® ll it with gas. Therefore, the onset of condensation (x ¯
0) occurs sooner for K than for k as one increases the temperature for a given density.

One may convince oneself that this eŒect is of the same order of magnitude as the

diŒerences reported in table 1, e.g., one may relate the coexistence curves as obtained

from x K ( q, T ) ¯ x k ( q, T « ) ¯ 0. The reported (strong) dependence on q seems asso-

ciated with the shape of T
coex, #

( q) which is very ¯ at near q ¯ 1 } 2 (where our MC

estimates cannot be distinguished in practice from the Onsager solution). Of course,

one has the usual ® nite-size eŒect adding to this. That is, the cost in surface tension for

a small droplet is higher than the gain in bulk free energy ; therefore, the system prefers

remaining homogeneous until a larger droplet can be formed. As for the other eŒect,

this implies that the onset of condensation in a ® nite system occurs at a lower

temperature than for the corresponding in® nite one, but it cannot explain the

relatively large diŒerences in table 1 for low q (incidentally, table 1 indicates that the

error in our data near q ¯ 1 } 2 due to this eŒect is also negligible).
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Summing up, it seems undoubtedly that equation (4)± (6) is a solution for K
# , #

;

then, it corresponds to the (unique) equilibrium state for this problem [12]. (We give

an extra argument in section 4 for this solution.) One may try to solve more

complicated cases of K by following a similar procedure. In general, however, a

previous M C study is required because the success of such a generalization based on

intuition only is not guaranteed a priori. As an example, we mention the case K
# , "

that

comprises a plane and a line (section 4) ; the situation may be even more involved for

other cases of K
d,d « , ¼ .

3. Some details of time evolution

The M C experiments have revealed also important diŒerences in time evolution

that suggests a peculiar relaxation of density ¯ uctuations in K.

A typical evolution with time of (the absolute value of) D q in K
# , #

is presented in

® gure 4 for q ¯ 0 ± 2. This illustrates one of the peculiarities of K which is more

pronounced at low density. An early evolution (lasting up to 1 ± 5 ¬ 10 & MC steps, see

caption to ® gure 4) occurs (case b of ® gure 4) in which the system might appear

stationary with large ¯ uctuations at ® rst glance. This corresponds to the situation in

which, in the absence of clustering, particles cannot get trapped in one of the planes.

Once nucleation begins, D q evolves more monotonically. It becomes truly stationary,

however, only after 4 ± 5 ¬ 10 & M C steps in the speci® c case b in ® gure 4. In fact, most

of our evolutions run up to more than 10 ’ MC steps. In any case, the stationary regime

that we have considered for averages extends for more than 10 & MC steps after both

the onset of nucleation and the apparent equilibration with time of relevant quantities.

W e note that, after a net nucleation process sets in, an almost linear evolution towards

full segregation occurs, and a stationary regime (in which the running average of, e.g.,

D q is constant) may be identi® ed easily in practice after long times, as in cases a and

b of ® gure 4 for t " 2 ¬ 10 % and t " 4 ± 5 ¬ 10 & MC steps, respectively.

Cases a and b of ® gure 4 diŒer from each other in the initial condition : the particles

are initially evenly distributed between the two planes for b, while all the particles are

initially in one of the planes for a. Therefore, ® gure 4 illustrates also the fact that one

may obtain steady states rather economically (and very accurately) for K
# , #

, as in case

a of ® gure 4. This is in contrast to the situation for the ordinary lattice gas k. That is,

the slope of the time evolution curves for k is typically non-zero (though it may be

small in practice) in a comparable run, and ¯ uctuations take a much larger time to

become canonical (unlike in the present case, as revealed by the relatively good

statistics of our data). The reason is that ¯ uctuations need to decay via diŒusion, which

is an extremely slow process for ordered states with conserved density, while particles

may search here for a hole in a given plane (for any q % 1 } 2) by means of hopping

processes either in the other plane or from one plane to the other. This peculiarity of

our system is illustrated further in ® gures 5 and 6. Figure 5 refers to the time evolution

of the quantity [13]

m ¯ [(M (sin)
y

) #  (M (cos)
y

) #  (M (sin)
x

) #  (M (cos)
x

) # ] " /# , (8)

where

M (sin)
y

¯
p

2L #
3
L

x="

3
L

y="

rr sin 0 2 p

L
y 1 , (9)

etc. ; here, r ¯ (x, y) and L # ¯ r k r . Figure 6 depicts typical MC con® gurations. These



1164 A. Achahbar et al.

Figure 4. The variation with time of the order parameter D q in typical MC experiments for

q ¯ 0 ± 2 and T ¯ 0 ± 8T
C, #

! T
C
( q ¯ 0 ± 2) and two diŒerent initial conditions (see text). A MC

step is, rather arbitrarily, de ® ned in this paper as the number of particle± hole NN pairs
samples per lattice site ; this is several times the standard unit for MC studies of the Ising

model.

Figure 5. Typical variation with time in MC experiments of the order parameter m de® ned
in equation (8) for both K

# , #
and k , as indicated. The actual case here corresponds to

q ¯ 0 ± 1, T ¯ 0 ± 8T
C, #

, and r K r ¯ 20 000.

Figure 6. Typical con® guration for the two planes of K
# , #

(corresponding to the experiment in

® gure 5) showing a compact cluster which cannot be obtained in a comparable time

for k .
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® gures, which are self-explanatory, suggest considerable signi® cance for K
# , #

;

motivated by this, we are presently studying in more detail nucleation and spinodal

decomposition phenomena in one of the planes of K
# , #

.

We remark that, in spite of some apparent qualitative similarity (as described

above), the cases q ! 1 } 2 and q ¯ 1 } 2 exhibit some essential diŒerences. For example,

quantities take a much longer time (as measured in MC time) to stabilize for q ’ 1 } 2

(e.g., for q ¯ 0 ± 2) than for q E 1 } 2. It is a consequence in part of both the eŒect of the

interface (which occurs only for q ! 1 } 2) and the relative delay of nucleation as q

becomes smaller, as compared with the earlier occurrence of spinodal decomposition

for q E 1 } 2. Moreover, once segregation sets in, particles have for q ’ 1 } 2 a smaller

probability of being captured by a cluster. Another distinct feature is the occurrence

of metastable-like segregated states in some of the runs for q ! 1 } 2 (while they never

showed up for q ¯ 1 } 2 in our experiments) ; cf. the example in ® gure 2(b). These have

been observed to decay into states in which the liquid phase occurs in one of the planes

only, and may not appear for given values of q and T when one uses a diŒerent seed

for the random number generator or a diŒerent initial condition. We remark that these

states are not strictly metastable (in the usual sense) given that a segregated phase

exists, but they do not correspond to segregation in (only) one plane that seems to

characterize the equilibrium low temperature behaviour of K
# , #

. The states shown in

® gure 2(a, b) are both characterized by the same bulk free-energy density in the

in ® nite-volume limit. However, the state in ® gure 2(b) has an extra surface energy

which justi® es the MC observation that it is not really stable. In fact, we show in the

next section that such metastable-like states are consistent with the general formalism.

This suggests again the proli ® c behaviour one may expect for diŒerent variations of K

as compared with the relative simplicity of k.

4. Further analytical results

In this section, we complement our observations above by deriving analytically

some general conclusions. In particular, we show explicitly that equations (4)± (6)

follow on the assumption that segregation with two coexisting phases occurs at a low

enough temperature. W e also discuss the case K
# , "

, and obtain both exact and

approximate results for some speci® c cases of K.

Consider the general system K of energy given by equation (2), total number of

particles N , and total volume r K r , and r k
j
r is the volume of box j ( ¯ 1, ¼ , n). The

partition function is

Z K ¯ 3
r "

¼ 3
r n

d 0 N , 3
n

j="

3
x` k

j

r
x1 exp 9 ® b 3

n

k="

H
k
(rk) : , (10)

where d(X , Y ) represents the Kronecker delta function. Let us denote q
j
¯ N

j
r k

j
r Õ "

the particle density for each box, and de ® ne the (n ® 1)-component vector

qc 3 ( q
"
, ¼ , q

n Õ "
) ; q

n
is not included in qc but is determined by the given q ¯ N r K r Õ " .

One gets near the thermodynamic limit for K (i.e., as r K r ! ¢ , N ! ¢ , and

r k
j
r ! ¢ c j, with q and p

j
c j given ® nite constants) that

Z K E exp [ ® b r K r f( b, qc *)], (11)

where

f ( b, qa ) ¯ 3
n Õ "

j="

p
j
f
j
( b, q

j
)  p

n
f
n 0 b, p Õ "

n 9 q ® 3
n Õ "

j="

p
j
q
j: 1 . (12)
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Here, p
j
3 r k

j
r r K r Õ " , and qc * ¯ ( q $

"
, ¼ , q $n Õ "

) is the solution of ( ¥ } ¥ q
j
) f ( b, qc ) r q c=q c*

¯ 0 with

j ¯ 1, ¼ , n ® 1 ; more explicitly,

¥ f
j
( b, q $j

)

¥ q $j

¯
¥ f

n
( b, q « )
¥ q « )

q « = "
pn

9 q Õ 3n Õ "
j="

pj
q $
j
:
, j ¯ 1, ¼ , n ® 1. (13)

Stability requires that g
jk

¯ ( ¥ # } ¥ q$j
¥ q$k

) f ( b, qc *) is strictly positive, i.e., any eigenvalue

of

g
i"

¼ im
3

¥ mf ( b, qa )

¥ q
i"

¼ ¥ q
im
)
q a=q a*

(14)

is positive for any m ; i a ¯ 1, ¼ , n ® 1, a ¯ 1, ¼ , m . Each set of values for b, q, and

p
j

c j for which stability breaks down is a candidate for a critical point ; the true

equilibrium solution corresponds to the absolute minimum of f ( b, qc *).

A few general results follow from the above. For example, consider a Hamiltonian

(equation (2)) with identical terms H
j

so that the free-energy density function is

f
j
( b, q

j
) ¯ f ( b, q

j
) for all j. Assume further that q$j

¯ q for all j. This is a solution of

equation (13), and the stability matrix is

g
jk

¯ p
j
( ¥ # } ¥ q # ) f ( b, q) [d( j, k)  p

k
} p

n
]. (15)

This solution becomes marginal for ( ¥ # } ¥ q # ) f ( b, q) ¯ 0, as for k with density q, as long

as q $j
¯ q corresponds to an absolute minimum of f ( b, qc *) (which may not be the case :

see below). Then, the free-energy density for K is precisely f ( b, q), and both K and k

have the same phase above coexistence and the same critical behaviour approaching

T
coex,d

( q ¯ 1 } 2) from above. Of course, this is far from implying that K behaves the

same as k in general. For example, q$j
¯ q does allow for inhomogeneities, and nothing

is said about q $j
1 q. In fact, equation (12) suggests that f ( b, qc *) characterizing K

through equation (11) may contain richer behaviour than the box function f ( b, q), and

the properties of K cannot be inferred straightforwardly from those of k. The only

simple general result seems to be that both systems have the same high temperature

phase, but this is implied only for equal H
j
’ s in as much as K is restricted to have

q
j
¯ q for all j (and it corresponds to an absolute minimum of the free energy).

One may go one step further for some cases of K by combining the above with some

extra information. We illustrate this fact by deriving the explicit solution (equations

(1)± (3)) for K
# , #

. Let us assume the existence of two coexisting phases within box k
j
.

Then,

lim

lj
! ¢

l
j
( f

j
( b, q

j
) ® f

j
( b, q $j

)) ¯ S
j
(x

j
, q $j

). (16)

Here, q $j
is a solution of ¥ f

j
( b, q$j

) } ¥ q $j
¯ 0, x

j
is the fraction of one of the phases in k

j
,

i.e., q
j
¯ x

j
q$j

 (1 ® x
j
) (1 ® q $j

), S
j

is the total surface free energy associated with the

interface between the domains, and l
j
represents the area of this interface (then, the last

term of equation (16) is the interfacial tension per unit area). Thus, the extremum

condition for f ( b, qc ) ¯ 3
j

p
j
f
j
( b, q

j
) reduces for equation (16) to the condition of

minimum global interface between the two phases. For K
# , #

, this implies that

q
"

¯ xq
!
 (1 ® x) (1 ® q

!
), q

#
¯ q

!
.

The existence of a similar argument is not guaranteed in general. Consider, for

exam ple, K
# , "

consisting of a line k
"

and a plane k
#
. It follows from equation (13) that
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all the particles go to k
#

at zero temperature. For a ® nite temperature, q
"

! q
#

because

the binding energy is larger for the line than for the plane, which implies q
#

" q and

q
"

! q. For very high temperatures, q
"

¯ q
#

¯ q. That is, there is dependence of q
"

and

q
#

on temperature which is a priori far from trivial and needs to be studied by

solving explicitly ¥ f
"
( b, q

"
) } ¥ q

"
¯ ¥ f

#
( b, q

#
) } ¥ q

#
or equation (13). In fact, it would

be interesting to reach a conclusion about the critical behaviour of K
# , "

.

Next, we derive some speci® c exact and mean-® eld results for some versions

of K. Consider ® rst a combination of n one-dimensional lattices, K
" , " ,

¼ with H
j
(rj) ¯

® 4J
j
3
x

r
x

r
x+"

® h
j
3
x

r
x
, j ¯ 1, ¼ , n. Here, h

j
¯ ® 4J

j
c j to have correspondence with

the Ising model with zero ® eld (and with the lattice gas at critical density). One obtains

for f in equation (11) :

b f ( b, qa ) ¯ 3
n

j="

p
j ( ® bh

j
q
j
 q

j
ln 9 4q

j
(1 ® q

j
)

(D
j
® 2q

j
 1) # :  ln 9 Dj

® 2q
j
 1

D
j
 1 : * , (17)

with q ¯ 3
n

j="

p
j
q
j
, and D #

j
3 (2q

j
® 1) #  4q

j
(1 ® q

j
) X

j
. On the other hand,

(D
j
® 2q

j
 1) (D

j
 2q

j
® 1) Õ " ¯ (D « ® 2q «  1) (D «  2q « ® 1) Õ " , j ¯ 1, ¼ , n ® 1, (18)

corresponds to equation (13) for h
j
¯ ® 4J ; here,

q « ¯ p Õ "
n 9 q ® 3

n Õ "

j="

p
j
q
j: , (19)

and D « is de® ned as D
j

with q
j

replaced by q « .
Let us consider n ¯ 2, which is equivalent to a chain with q ¯ const. in which

interactions are between next NN only. One may allow for diŒerent interactions

within each box, i.e., J
"

1 J
#
, and for an unequal partition of the volume between

the two lattices ; hence, p
"
3 u and p

#
¯ 1 ® u. Then, equation (18) reduces to

q
"
(1 ® q

"
) (2q

#
® 1) # exp (4bJ

"
) ¯ q

#
(1 ® q

#
) (2q

"
® 1) # exp (4bJ

#
). Some main facts for

K
" , "

are as follows. For b ! 0, we may write for the density at each line :

q
"

¯ q  b(1 ® u) e, q
#

¯ q ® bue, e ¯ 4q(1 ® q) (2q ® 1) (J
"
® J

#
). (20)

For J
"

¯ J
#
, this reduces to the case q

"
¯ q

#
¯ q at the beginning of the section.

Otherwise, the chemical potential in the Hamiltonian induces a larger density for the

line in which interactions are stronger (which favours the lowest energy). More

explicitly, D q 3 r q
"
® q

#
r ¯ 4bq(1 ® q) (2q ® 1) (J

"
® J

#
) for any u at a high enough

temperature, i.e., only q ¯ 1 } 2 corresponds to an even distribution of particles

between the lines. For b ! ¢ , one may write

q
"

¯ q $
"
 (1 ® u) e« c O(c# ), q

#
¯ q $

#
® ue« c O(c# ). (21)

Here, c 3 exp ² ® 4b(J
"
® J

#
) ´ , we are assuming J

"
" J

#
, and q $

"
and q$

#
are unknowns

such that q ¯ uq $
"
 (1 ® u) q $

#
. Consider u ¯ 1 } 2 and q ! 1 } 2 given the symmetry of the

problem. It follows that q$
"

¯ 0, q$
#

¯ 2q, and e« ¯ 4q(1 ® 2q) (4q® 1) Õ # is a solution for

q % 1 } 2. In addition, q $
"

¯ 2q ® 1 } 2, q $
#

¯ 1 } 2 is a solution for q & 1 } 4 (one needs to

go to higher orders to ® nd the corresponding expression for e« ). The general behaviour

of q
"

and q
#

as a function of temperature is illustrated in ® gure 7 for diŒerent values

of q and of the interactions. It may be understood as the result of competition at each

T betwen the free energy functions for k
"

and k
#
. Such an analysis and ® gure 7 suggest,
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Figure 7. The variation with temperature (J } k
B

¯ 1) of the density of particles, q
"
(solid curves)

and q
#

(dashed curves), within the two linear lattices of K
" , "

for J
#

¯ 1 } 2, as given by the
exact solution in section 4. The two lattices have the same volume fraction, p

"
¯ p

#
¯ 1 } 2.

The upper set of four curves is for global density q ¯ 0 ± 4, and the lower set is for q ¯ 0 ± 2.

The interaction strength for the other line is J
"
¯ ® 1 (curves labelled a) and 1 (curves

labelled b).

in particular, that the mechanism which controls the behaviour at high T (cf. above)

occurs here also but it competes with a sort of entropic mechanism near q ¯ 1 } 2, where

k
#

does not saturate due to a critical balance of energies. This shows up as an

interesting phenomenon : the ground state at T ¯ 0 is characterized by

D q ¯
1

2
3

4

2q for 0 % q % 1 } 4

1 ® 2q for 1 } 4 % q % 1 } 2.
(22)

M ore explicitly, one obtains from equation (21) that k
"

is empty for small enough

densities, while a sudden change occurs for q ¯ 1 } 4, and k
#

is half ® lled and the rest of

the particles go to k
"

for larger densities ( q % 1 } 2 in any case). On the other hand,

equation (21) implies that the tendency of k
"

towards saturation at a low enough

temperature depends on the diŒerence J
"
® J

#
as D q ¯ 2q ® e exp [ ® 4b(J

"
® J

#
)],

J
"

" J
#
.

One may study any mean-® eld Hamiltonian also. As an illustration, consider

n ¯ 2 for H
i
(ri) ¯ ® J

i
m

i
3
x

s
x
, i ¯ 1, 2 ; here, s

x
3 2r

x
® 1 and m

i
3 2q

i
® 1 correspond

to the more familiar Ising formalism. One obtains

bf
i
( b, q

i
) ¯ ® bJ

i
(2q

i
® 1) #  q

i
ln q

i
 (1 ® q

i
) ln (1 ® q

i
)  ln 2, (23)

and equation (13) transforms into

(1 ® q
#
) q

"
} [(1 ® q

"
) q

#
] ¯ exp ² 4b[J

"
(2q

"
® 1) ® J

#
(2q

#
® 1)] ´ .

The total density is q ¯ uq
"
 (1 ® u) q

#
, i.e., p

"
¯ u and p

#
¯ 1 ® u, in general. Then,

q
"

¯ q
#

¯ q holds for any q as long as J
"

¯ J
#
, or b ! 0 if J

"
1 J

#
; moreover, one has

q
"

¯ q
#

¯ 1 } 2 for J
"

1 J
#

if q ¯ 1 } 2. Of course, the system may exhibit also solutions

q
"

1 q
#
. If J

"
¯ J

#
, local stability of q

"
¯ q

#
¯ 1 } 2 breaks down at a temperature

T
C

¯ 8q(1 ® q) for any u. As expected, one obtains classical critical behaviour

q
i
® q E B

i
(T ® T

C
) " /# , i ¯ 1, 2, if either q ¯ 1 } 2 or else u ¯ 1 } 2.
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Figure 8. The variation with temperature of the densities of particles q
"

(upper line of each

[ -shaped curve) and q
#

(lower line), within the two lattices of the mean-® eld system
K

d,d
in section 4, for J

"
¯ 1, and p

"
¯ p

#
¯ u ¯ 1 } 2. DiŒerent values for J

#
and q are as

indicated.

Figure 9. The free energy functions for the system in ® gure 8, and for each of the boxes

(section 5) for J
#
¯ 1 } 2 and q ¯ 0 ± 3, for several values of the temperature.

Figure 8 depicts the behaviour of q
"
(T ) and q

#
(T ) for J

"
¯ 1, u ¯ 1 } 2, and some

representative values of J
#

and q. In as long as J
"
¯ J

#
, the high temperature phase

corresponds to an even distribution of particles between the two boxes, as expected. At

T ¯ T
C

¯ 8q(1 ® q), the system exhibits a second-order phase transition. As T ! 0, the

minority species segregates within one of the boxes, and the species of greater density

® lls up the rest, i.e., q
"
! 2q and q

#
! 0 for q % 1 } 2. For J

"
1 J

#
, no phase transition

occurs at any ® ne temperature but q
"

and q
#

tend to each other as T ! ¢ . Analysis of

equation (23) indicates that one of the boxes tends to attract particles more than the

other but no symmetry to be broken exists, as in the Ising model under non-zero ® eld.

As depicted by ® gure 9, metastable solutions occur for J
"
1 J

#
at low enough T ; they

disappear discontinuously at T ¯ 0 ± 73, where q
"
E 0 ± 52 and q

#
E 0 ± 08, for q ¯ 0 ± 3 and

J
"

¯ 2J
#

¯ 1. This is similar to the metastable-like behaviour reported above for MC

experiments (where J
"

¯ J
#
, however).
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The case J
"

¯ J
#

¯ 1 with u 1 1 } 2 is remarkable also. For q ¯ 1 } 2, one has

f ( q
"
) ¯ uf

"
( q

"
)  (1 ® u) f

"
(1 ® q

"
), which implies that 1 ® q

"
is a solution together

with any q
"
. (Symmetry occurs also if u ¯ 1 } 2 for any q, i.e., q

"
and 2q ® q

"
are twin

solutions.) Such symmetry no longer holds for q 1 1 } 2 ; one of the local minima of the

free energy then becomes metastable. Consequently, a phase transition occurs from

a homogeneous state to an inhomogeneous one which is unique, non-degenerate,

acting as a sort of absorbing state. Three regions of the phase diagram may be de® ned

(® gure 9). (i) For T ! T
C

¯ 8q(1 ® q), the stable solution q
"

coexists with a metastable

solution, say q!
"
. As T ! 0 one has q

"
! 1, and q!

"
! 0. (ii) The metastable solution

has a continuous transition at T
C
, and the new metastable solution is q !

"
¯ q. The

stable value q
"

decreases with increasing T within the range T
C

% T % T *, and a

discontinuity occurs at T * ; one obtains the critical values, e.g., qc
"
(u ¯ 0 ± 4) E 0 ± 47

and qc
"
(u ¯ 0 ± 2) E 0 ± 54. (iii) The system has a unique stable, homogeneous solution,

i.e., q
"

¯ q, for T " T *. One obtains, for instance, T * E 1 ± 93 for u ¯ q ¯ 0 ± 4, and

T * E 1 ± 54 for u ¯ q ¯ 0 ± 2.

5. Conclusion

We have studied some simple cases of K 3 V
i
k
i
which is not always simply related

to the ordinary lattice gas k. This is a consequence of the balance between the free

energies of the boxes k that are coupled non-trivially in K by chemical potentials. It is

remarkable that varied and interesting behaviour may be expected for lattices of

diŒerent volume, r k
"
r 1 r k

#
r ¼ , and interaction strength, J

"
1 J

#
¼ . The simplest case,

K
" , " ,

¼ , which consists of n equal lines, may be solved exactly (section 4). In particular,

equation (21) describes a transition at zero temperature as a function of q for n ¯ 2 in

which one of the lines is empty for q % 1 } 4, and changes over to density 2q ® 1 } 2 for

1 } 2 % q % 1 } 4. A phenomenon which is similar in a sense occurs at ® nite temperatures

in K
# , #

. There is phase segregation in only one of the planes below T
C
( q) which satis® es

equations (1)± (3). It has some interesting consequences which have been discussed in

sections 2 and 3. One may devise simple variations of K for which we did not ® nd any

relation with k ; it suggests that studying further variations of K is interesting by itself.

Although we have not investigated such a possibility here, it is clear that some

variations of K may be of practical interest. In particular, K
# , #

may model quasi two-

dimensional ionic conduction which occurs in certain solid electrolytes if provided

with an external dissipative electric ® eld driving the particles [10]. Another remarkable

feature of K that endows it with practical interest is that density ¯ uctuations do not

need to decay necessarily via diŒusion (in the same lattice) due to the existence of

further (uncoupled) lattices (® gures 4 and 6). It has been shown to help the study of

coexistence of phases, and it may be interesting for computer simulations of nucleation

and spinodal decomposition, for instance. In particular, some of the advantages of the

Gibbs ensemble for the study of, e.g., phase equilibrium of mixtures, etc., may also

hold for K, which seems computationally preferable.
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