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Abstract

Some main properties of driven lattice gases as observed in a se-
ries of Monte Carlo simulations are brießy reviewed. The lattice is
either two- or quasi-two dimensional. Particles jump according to an
irreversible rule which induces a net steady current for appropriate
boundaries, and a sharp linear interface occurs in some circumpstances.
Several nonequilibrium phase transitions are described. The relation
with conduction in soild electrolytes is brießy discussed.

1 Introduction

Stochastic lattice gases are suited to study ordering phenomena in open sys-
tems, e.g. pattern formation, self-organization, and morphogenesis. In the
driven lattice gas (DLG) [1] particles jump stochastically to a NN hole under
competition between a heat bath at temperature T and a driving external
Þeld, Ex̂, of constant intensity E > 0. The steady state is then charac-
terized by a net particle current along the Þeld direction, +x̂, if permitted
by boundary conditions. A familiar case corresponds to Lx × Ly rectangles
with toroidal boundaries, particle density ρ, and the bath implemented by
the Metropolis algorithm. The latter implies that the probability per unit
time for the exchange of a particle and a hole is min {1, exp (−δH/kBT )} .
Here, δH represents the associated energy cost, which is computed assuming
that energy corresponds to the Ising Hamiltonian with NN particle attrac-
tions, and adding to this the work done by the Þeld (in the case of exchanges
along either +x̂ or −x̂). This system is denoted λE hereafter. The case λ0

in which the Þeld has been switched off corresponds to the celebrated equi-
librium system solved by Onsager for the inÞnite lattice, i.e., Lx →∞ and
Ly → ∞ [15]. Consider also ΛE consisting of two NN adjacent λE planes
both perpendicular to the ẑ axis. That is, any site in ΛE has Þve NN�s with
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one of them in the other plane. Any particle interacts only with the ones
at NN sites within the same plane (there are no interplane bonds) but may
hop to the other plane according to the same rule as for ŷ-jumps, i.e., the
Metropolis algorithm with no Þeld; cf. Ref.[12, 14] for more details. The
symbols λ∞ and Λ∞ stand hereafter for λE and ΛE, respectively, when the
Þeld is saturating which means that no particle may jump −x̂.

Monte Carlo (MC) simulations have been a main source of information
on the DLG. These (together with mean-Þeld approximations [8, 14]) have
revealed a rich variety of nonequilibrium phenomena as one varies the values
of T, ρ and E, and considers either two- (λE) or quasi-two- (ΛE) dimensional
lattices. Therefore, the DLG provides an introduction to the study of basic
questions in nonequilibrium statistical physics (where a general theory is
lacking) which is simple, natural and mathematically well-deÞned; in fact,
it has been used to test theory, and to obtain phenomenological information
to be incorporated by theory.

Figure 1: Computer and corresponding experimental results.

The model versatility has also allowed for a meaningful comparison be-
tween computer results and observations on real substances [6, 10]. Such
comparisons have suggested that the DLG may contain some of the essential
features of ionic conductivity in solid electrolytes. Figure 1 illustrates the
close similarity computer and experimental results may sometimes exhibit.
The (negative of the) logarithm of the current (number of actual +x̂-jumps
per site per unit time) versus the inverse temperature in λ∞ -main graph-
is compared in Þgure 1 with the corresponding quantity [16] in RbAg4I 5

-upper inset- and in KHg4I 5 -lower inset-. The similarity is also close if one
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compares (not shown) the speciÞc heat (e.g., temperature derivative of the
density of particle-hole bonds) in the model, on one hand, and in Ag2Se and
in AgI [17], for example, on the other. Concerning these similarities, it may
be remarked that, as in λE and ΛE, substances are often characterized by
low-dimensional conductivity. That is, it has been reported that the sample
geometry often compels free ions to move within a few layers only, or else
within quasi-one dimensional channels.

Further practical interest on the DLG is a consequence of the fact that
appropriate versions of it have been found useful to represent several phe-
nomena. These range from dynamics of macromolecules such as DNA frag-
ments undergoing Þeld-inversion gel-electrophoresis, to staging in layered
compounds, and growth of surfaces by hexagonal packing of discs [14]. On
the other hand, allowing for two planes, as in ΛE , not only reveals novel
phenomena but also has some computational interest. This is due to the
fact that a large amount of computer time is required to obtain reliable
quantitative results by the MC method concerning the phase transitions in
λ0. The reason is that, besides critical slowing down, a system exhibits
slow relaxation toward ordered steady states if the only mechanism is NN
exchanges, i.e., diffusion of particles, which conserves density. One may per-
haps obtain in this case statistically good enough stationary mean values for
short-range order parameters, for instance, but (e.g.) the structure function
stabilizes very rarely if at all within actual computer runs. However, ΛE
incorporates an additional degree of freedom, i.e., the particles can hop to
other lattice and, consequently, (slow) diffusion within the plane is not the
only relaxational mechanism, which helps to obtain good data [18].

Some of the properties of the DLG are reviewed below, mainly as ob-
tained from the MC study of Λ∞. A comment on the differences of behaviour
between Λ∞ and λ∞ is made when necessary. I refer to the original papers
[2]-[8], and to a recent review in Ref. [14] for further details.

2 Phase Transitions

λE is observed to behave for any E 6= 0 essentially differently from the equi-
librium case λ0. Some of the differences are illustrated in Þgure 2. The upper
curve represents the transition temperature in λ0 as a function of particle
density ρ; below is the corresponding result for λ∞. The observed critical
temperature is t∞ = 1.38 ± 0.01 for the inÞnite lattice in units of t0, the
equilibrium Onsager critical temperature. The shaded region corresponds
to metastable states, i.e., the phase transition is discontinuous (at least) for
ρ ≥ 0.2. The segregation is into liquid (particle-rich) and gas (particle-poor)
phases. Unlike for λ0, however, the gas is anisotropic, namely, microscopic
clusters occur which are lengthened along x̂ both above and below the tran-
sition temperature. Moreover, the liquid phase is striped deÞning a sharp
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interface parallel to x̂ all along the system. The ßuctuations or width of the
interface diverge as one approaches t∞.

Figure 2: Phase diagrams in two dimensions.

The origin for the differences between λ0 and λ∞ is, formally, that dy-
namics induces (for any E 6= 0) a preferential hopping in the Þeld direction
that impedes detailed balance except locally. In fact, no well-deÞned, e.g.,
short-range Hamiltonian which represents the energy exists that allows one
to write a canonical formula for the steady state. This is reßected in the
existence of a net steady (dissipative) current of matter throughout the sys-
tem (for periodic boundary conditions) if E 6= 0. The fact that t∞ À t0 is a
nonequilibrium anisotropic feature, which is to be associated to the action
of the Þeld on correlations and on the existence of the interface [8].

Figure 3: The two phase transitions in Λ∞ for varying ρ.

Λ∞ exhibits some novel behaviour as compared to λ. For ρ = 1
2 , a

continuous phase transition occurs at T∞ = 1.30 ± 0.01 which is similar
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to the one in λ∞. However, a liquid stripe forms now at each plane one
on top of the other. The observation t∞ > T∞ is consistent with the fact
that dynamics in λ∞ combines the thermal, random process along ŷ with
the action of the Þeld, while extra randomness (along ẑ) adds to this in
Λ∞. It makes Λ∞, say, less anisotropic than λ∞. This argument also implies
that no new symmetries are introduced by dynamics in Λ∞ (as compared to
those in λ∞), which suggests one to expect the same critical behaviour for
both systems. It has indeed been conÞrmed by MC simulations (and can be
proved for E = 0 [18]).

Figure 4: The correlation between planes for Λ∞.

As T is further decreased, Λ∞ exhibits a new phase transition at T ∗∞ <
T∞. The striped liquid phase coagulates in one of the planes only for any
T < T ∗∞. Two abrupt changes of slope in the curve for the current as a
function of temperature that are evident in Þgure 3 reveal the existence of
the two phase transitions in Λ∞; Þgure 4 for the two-site correlation function
between planes (for the only possible value of distance, r = 1) as a function
of temperature provides further evidence. The latter indicates T∞ ' 1.3
and T ∗∞ ' 0.95 for ρ = 1

2 (T is alwys in units of t0).

Figure 5: Phase diagrams for Λ∞ (−−−) and λ0 ( ).

Another fact in Þgure 3 is that the phase transition in T ∗∞ (ρ) is dis-
continuous for any ρ while the one at T∞ (ρ) is continuous for ρ = 1

2 but
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discontinuous for ρ ≤ 0.35. The resulting phase diagram is in Þgure 5. The
low-temperature phase transition at T ∗∞ for ρ = 1

2 happens to become con-
tinuous as one decreases sufficiently the value of the Þeld (e.g., for E = 1).
No actual interface occurs in this case given that one plane holds gas and
the other liquid only. Interesting enough, one measures then the equilib-
rium critical exponent β = 1

8 in the presence of a steady current of matter
throughout the system. The phase diagrams of Λ∞ and λ0 are compared in
Þgure 5. The error bars here represent limits of metastability.

Another important issue is the critical behaviour in T∞ (for ρ = 1
2).

Unlike in T ∗E for E = 1 and ρ = 1
2 , where β =

1
8 , one measures β ' 0.3

(actually, β = 0.27± 0.02) both in T∞ for Λ∞ and in t∞ for λ∞ (ρ = 1
2 in

both cases).

Figure 6: The short-range order parameter for Λ∞.

The fact that β 6= 1
2 is indicated in Þgure 6. This represents the temper-

ature variation of the short-range order parameter deÞned [19] as

σ =

¿
n++n−−
n2

+−

À
where n++, n−−, and n+− stand, respectively, for the density of particle-
particle, hole-hole and particle-hole bonds, and h· · · i is the stationary aver-
age. One has

σ ∼ 31−α + const.32β

as the critical point is approached, i.e., 3→ 0, so that the situation in Þgure
6 discards the possibility of having classical critical behaviour.

The fact that 1
8 < β <

1
2 is further demonstrated in Þgure 7 for the tem-

perature variation of the order parameter [14] for Λ∞. Two familiar methods
to estimate β are illustrated in Þgure 7 ; any reasonable manipulation of data
indicates β ' 0.3. The observation that β differs from the equilibrium value
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should probably be associated to the presence of a peculiar interface in both
Λ∞ and λ∞.

Figure 7: Study of order-parameter critical-exponent for Λ∞.

Let us mention again on the possible relevance of the DLG to understand-
ing some properties of superionic conductors. These materials are charac-
terized by large ionic conductivities at low temperature which are imputed
to mobility in a liquid-like fashion of one type of ions (e.g., Ag+) through a
solid lattice set up by another type of ions (e.g., I−). Qualitative differences
have been reported between different materials concerning the temperature
variation of the conductivity in the region in which the changeover occurs.
This is illustrated in Þgure 8 which collects a series of experimental results
(the horizontal axis here corresponds to Tm/T where Tm is the associated
melting temperature).

Figure 8: Temperature dependence of conductivity [20].

It has been remarked [20] that one may classify all these cases in only
three distinct classes. Then it is interesting the observation [10] that these
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classes may correspond to three basic types of behaviour in the model. That
is, one observes discontinuities in Þgure 8 reminiscent of the phase transi-
tions of Þrst order reported above for small ρ (i.e., when many empty sites
are available for ionic diffusion), and one observes a rather continuous be-
haviour, as in the model second-order phase transition for ρ ≈ 1

2 (near half
occupation of available sites). It is also observed in the semi-logarithmic plot
of Þgure 8 that conductivity varies linearly in some cases. This corresponds
to the absence of a phase transition, as in some one-dimensional versions of
the DLG in which a continuous changeover from low to high conductivity
occurs for some values of the parameters. Figure 9 illustrates this (different
curves here correspond to ρ increasing to ρ = 1

2 from top to bottom).

Figure 9: Particle current for the one-dimensional DLG.

3 Correlations

The two-site correlation function, G (r) , conÞrms the existence of ordering
phenomena (e.g., Þgure 4 ), and reßects further interesting properties of the
DLG. In particular, it evidences that the density of the nonequilibrium gas
phase, ρ∞ (T ) , differs from the corresponding one in equilibrium, ρ0 (T ).
This is illustrated in Þgure 10 for T = 0.8 < T ∗∞; here, the values of G (r)
for large r are ρ2∞ = (0.959)2 and ρ2

0 = (0.955)
2, respectively (° and ∗ stand

for x̂ and ŷ nonequilibrium correlations, respectively).

Figure 10: Spatial variation of two-site correlations for ρ = 1
2 .

8



Most intriguing is the question about correlation lengths. One might ar-
gue [11] that two independent lengths are needed to describe the anisotropic
clusters which characterize the DLG. Indeed, it is suggested by conÞgura-
tions such as the ones presented in Þgure 11. Let us assume this is correct,
and denote the two lengths by ξx̂ and ξŷ, respectively. They would corre-
spond to the mean displacement along x̂ and ŷ, respectively, of a hole (par-
ticle) within the liquid (gas) phase during time interval ∆t. Assuming the
two processes are independent, one should probably expect that ξx̂ ∼ ∆t,
as for a pure driving process, and ξ2

ŷ ∼ ∆t, as for a pure random walk.
Therefore, the expectation is that one should always expect that ξx̂ ∼ ξ2

ŷ

against the hypothesis.

Figure 11: Typical conÞgurations at high T for large E (two
on the left, [12]), and low T for small E (right, [21]).

The simplest and most accurate way to estimate these lengths is probably
to compute G (r) for the high-T gas phase. With this aim, one should have
in mind the fact that spatial correlations in this system (with conserved
density) exhibit slow, power-law decay with distance at high T [22, 12].
This means that one may expect

G (x, y) =
ax2 − by2

(x2 + y2)2

to be a good description for r = (x, y) large enough. This is in contrast
with the exponential relaxation with r that characterizes the equilibrium
systems except at criticality. Then a and b are a measure of the two lengths,
respectively. More explicitly, one may use the phenomenological formulae

G (x) ∼ 1

1 +

µ
x

ξx̂

¶2 , G (y) ∼ 1

1 +

µ
y

ξŷ

¶2 .

Such study has conÞrmed that the lengths ξx̂ and ξŷ are indeed well deÞned
[12]. Furthermore, the expectation above that ξx̂ ∼ ξ2

ŷ is nicely conÞrmed
within rather general conditions, as illustrated in Þgure 12.

The above indicates that only one length is independent and should
therefore matter for critical behaviour, e.g.,

ξ ∼
q
ξx̂ξŷ ∼ ξ

3
2
ŷ .
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It seems that one has here self-affinity (as in various interface phenomena).
That is, the clusters shape (but not its size) is given (e.g.) for each E,
and the relation between the two lengths is maintained as T is varied [13].
Would this be the case, ξx̂ would not participate in critical properties which
would instead be dominated by ξζŷ, with ζ ≈ 3

2 . This length would then be
mediated by the existence of the peculiar, linear interface along x̂.

Figure 12: The relation between two phenomenological lengths.

This explains also the old observation [5] that a unique length suffices to
characterize the scaling behaviour of the DLG. Under this hypothesis, one
is led to expect [5, 13] that the order parameter of the DLG satisÞes

m ∼
½
L−β/ν

¡
B xβ −Bs xβ−ν

¢
, T < TC

B0s x−ων , T > TC .

Here, 3 =
¯̄
(T − TC)T−1

C

¯̄
, TC represents either t∞ or T∞, and x = 3L1/ν

for L × L and 2 × L × L lattices; cf. Ref.[13] for a generalization of this
to rectangular lattices. This behaviour has recently been (re)conÞrmed for
both two- and quasi-two-dimensional lattices with β = 0.27, ν = 0.7; the
parameter ω is model dependent, as expected, and it was estimated to be
ω = 0.2 and 0.3 for λ∞ and Λ∞, respectively. The same values for β and ν
have been reported for several other nonequilibrium anisotropic systems in
which a peculiar interface occurs [13].

The prediction that the DLG has classical behaviour, e.g., β = 1
2 , is not

borne out [13]. Furthermore, it has repeatedly been demonstrated [7, 12, 23]
that the DLG does not behave isotropically if one Þxes the ratio LµxL−1

y ,
where µ = νx/νy. The latter two predictions come from a Þeld-theoretic
proposal in which two lengths are involved which diverge independently
with νx and νy, respectively, at TC [11]. It seems that a continuous version
of the DLG should not consider E as a relevant parameter but rather focus
on the inßuence of the interface.
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