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Abstract - This is a very short description of results in a series of studies of phase 

position in Ising-like or in~rac~g particle lattice systems which are very convenient 

for computational purposes. The condition of detailed balance does not hold in general due 

to the presence of either conflicting kinetics or driving dissipative fields. The systems 

exhibit interesting behaviour that may sometimes correspond to natural situations, e.g., 

they model ideal steady nonequilibri~ states in complex systems. 

INTRODUCTION 

Macroscopic phenomeM in complex systems often exhibit net s~tio~ currents or fluent of 

constant external agents that induce steady nonequilibrium conditions. No general model that generalizes 

equilibrium thermodynamics or Gibbs ensemble theory exists for these situations. One may set up 

relatively simple kinetic Ising-like lattice systems, however, that model (quite ideally, of course) some 

of the steady states that are observed in nature. 1 The models of interest belong to the class of 

probabilistic celldar automata or interacting partkiehpin systems in which kinetics consist of local 

probabilistic rules (That is, it is not convenient to distinguish here between discrete and continuous time 

stochastic processes;* furthermore, finite and infinite lattices are assumed to be equivalent for practical 

purposes.) These systems may be ~plemen~ in the ~rnpu~r as e~ciendy as the standard kinetic Isiug 

model that evolves towards equilibrium. Therefore, computational physics reveals itself as a most 

convenient tool to study steady nonequilibrium states. I find interesting the following approach from the 

point of view of this objective. One lirst considers any of the (now standard) kinetic lattice models, e.g., 

the lattice gas, the binary alloy, or the magnetic Ising model. They have in common the fact that the 

corresponding (particle, spin, etc.) configuration evolves in time by a stochastic process that satisfies 
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detailed balance which implies an asymptotic tendency towards the canonical equilibrium state. Then, 

however, detailed balance is impeded by modifying kinetics, e.g., by involving competing tendencies 

or driving dissipative fields. In any of these cases, the effect is similar to the action of an external, non- 

H~~~~~ agent. The resulting models might appear somewhat arbitrary at first glance but may model 

natural situations in practice such as fast ionic conductors, chemically reacting systems, microscopically 

disordered materials, and other interesting features of complex systems.* Furthermore, they allow a 

systematic theoretical study of nonequilibrium steady states and phase transitions. My lecture tries to 

illustrate some of the prolific behaviour that has been revealed recently by both analytical and numerical, 

Monte Carlo study of nonequilibrium lattice systems of that sort. I shall refer very briefly to a reaction 

diffusion model, to a nonequilibrium model of spin glasses, to a model of neural network, to a 

nonequilibrium ANNNI model, and to a driven diffusive system. 

SYSTEMS WITH COMPETING INTERACTIONS 

The models of interest have in colon that the ~onfi~ration, say s = (s,= + 1 ;xE X> , where 

X=Zd , evolves in time due to a stochastic process which is characterized by the following master 

equation for the probability of s at time t : 

aP(s;t)/at = L P(W) = cs* [c(s’+s) P(s’;t) - c(s4) P(s;t)l 

Here, c(s-4) is the probability per unit time for a transition from s to a new configuration s’ _ 

Different models correspond to different realizations of L . A familiar case is the Glauber generutor,3 

to be denoted Lo . This is implemented by choosing an arbitrary initial configuration and performing 

the following step reiteratively: First, a site x is selected at random; then, one attempts to flip spin 

s, , i.e., one attempts the change s, + -s, , according to some given criterion. The resulting 

configuration s’ is specifically written as sX . Alternatively, one may change the initial configuration 

reiteratively by the following step: First, two nearest-neighbour (NN) sites, x and y , are selected at 

random; then, one attempts me interch~ge, s, S sg , of the co~es~nd~g occupation variables (only) 

if Q,. = - 1 (i.e., if any one of the sites is occupied by a particle and the other is empty) according to 

some given criterion. The corresponding operator may be called the Kawasaki generator,4 to be denoted 

L, ; s’ is specifically written as sxy in this case. The simplest criterion one may use in any of the 

above cases to decide whether or not the a~rnpt~ move should be performed corresponds to the 

familiar M~opo~~ al~o~t~~ A configurational energy is defined, e.g., the one that corresponds to the 

NN Ising Hamiltonian H,(s)= -J C NNsq . Then, one computes the energy cost associated to the move, 

i.e., AH, = H,(9) - H,(s) , The move is performed with probability cb@AH,) = min(1, exp(-PAH,)}, 
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where /?=&T)-l is the inverse temperature that characterizes the bath involved. 

The function 9(X) is critical in determinin g the asymptotic steady state to which the system 

evolves as t-+cx, . The Metropolis choice satisfies detailed balance, i.e., d(X) = exp( -X) 4(-X) . The 

latter is sufficient (but not necessary) to guarantee that the canonical equilibrium state is reached 

asymptotically. That is, the stationary solution of the master equation is P,(s) 0~ exp[-@H,(s)] for any 

function Cp(X) that satisfies detailed balance. Otherwise, the master equation may imply tendency 

towards a steady nonequilibrium state that may differ essentially (from a conceptual point of view, at 

least) from the equilibrium state. It occurs, for instance, when the stochastic process defined by L 

corresponds to one of the cases defined below. In fact, none of them may be described in general by a 

proper Hamiltonian, in which they also differ from the ordinary, equilibrium lattice models. A 

configurational function is still involved in some cases, however; for simplicity, such a function is taken 

here equal to the NN Ising Hamiltonian, H,(s) . 

Consider first the ordinary lattice gas with attractive interactions, i.e., J>O . The generator, 

however, is detined as L = p Lk + (1 -p) L, , where L, and LK are implemented in the computer 

by using probabilities $$AH,(s’)/I<BT] and $[AH,(s”y)lk,T’] , respectively. Both r$ and II/ satisfy 

detailed balance (they may correspond to the Metropolis algorithm but this is not necessary; $J and $ 

may even differ from each other). The combination of $ and $ which is implied by L does not 

satisfy detailed balance in general, however; in addition, one has T#T’ . Consequently, the lattice gas 

follows only for p E 1 , and p = 0 is the only case that corresponds to the ordinary magnetic Ising 

system, while steady nonequilibrium states occur otherwise in general. They are induced by the 

competition between, say reaction processes due to L, , that are activated by a thermal bath at 

temperature T , and dij%sion processes due to L, consisting of NN exchanges driven by a thermal 

bath at temperature T’ . The two processes are independent in continuous time, with p the c1 priori 

probability of exchanges per bond and 1 -p that of reactions per site. I refer elsewhere for details of 

the resulting behaviour as well as for some related theory and further interesting properties of the 

model.1*5‘7 Some main global conclusions that ensue from both exact and Monte Carlo studies are as 

follows. 

The study of two-dimensional systems reveals that the diffusion rate is irrelevant for T’ = 00 

(completely random diffusion), but not the reaction rate. The exact solution for microscopically fast 

diffusion, i.e., within the limit p+l , indicates that a phase transition exists which is of first order when 

the reaction rate is implemented by the Metropolis algorithm, and of second order with classical 

exponents for other realizations. The limit p+l is singular, however. Monte Carlo data for p < 1 

reveal that the phase transition is of first order for p > 0.83 only, i.e., a tricriticul point exists at 

pt 10.83 . Moreover, the critical exponents for p5pt have the equilibrium ( p = 0 ) values in 

agreement with renormalization group computations. On the other hand, the behaviour within the limit 
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p+l is mean field for T’ = 00 and Metropolis (reaction) rates. Some limited data suggest that no fnst- 

order phase transition occurs for Glauber (reaction) rates when p < 1 , in agreement with the exact result 

for p+l . The system with finite T’ has been studied for 4(X) =J/(X)=min(l , e-“} . Three distinct 

types of qualitative behaviour occur as one varies p , T and T’ : (a) equilibrium-like, Onsager second- 

order phase transitions (with some nonequilibrium features, however); (b) nonequilibrium first-order 

phase transitions whose discontinuities are very pronounced; and (c) some very weak, rare discontinuous 

phase transitions. As for equilibrium, the one-dimensional system with T’ = 00 and ~1 has a zero-T 

critical point for familiar reaction rates. An exception is 1 -s,[s,-l+s,+,ltanh(J/kBT)+ 

s,_,s,+,tanl?(J/k,T) that induces a mean-field second-order phase transition at finite temperature. On 

the other hand, the Monte Carlo data for p C 1 , T’ = 00 , and certain reaction rate might suggest the 

existence of a phase transition perhaps for p>O.5 at least; the corresponding transition temperature 

would increase with p . 

Next, consider the ordinary magnetic Ising model. The generator is, however, a combination of 

two different, independent Glauber generators, L = p LG+ + (1 -p) Lc - , where the subscript refers 

to the sign of the exchange interaction J in the corresponding configurational function H,(s) . 

Therefore, after a site x is selected at random, one attempts in this case to flip spin s, according to 

the following criterion: all the exchange interactions between s, and its four NN are assumed to have 

the value J,>O with probability p , and - J, with probability 1 -p . The energy cost of the 

attempted flip is computed then by using H, with J equal to the selected value. Thus, one gets either 

AI-II,=~.I,s,~ NNofsy Or AH-Jo = - 2J,s, CNNof& v where the sums extend to all NN of site x. 

If the Metropolis algorithm is to be used, for example, the flip is performed with probability either 

min{ 1, exp( - pAI%,)} or min{ 1, exp(-BAH-J,)} , respectively. I refer elsewhere for the detailed 

description of this case.‘,‘-” Some of its main features are as follows. 

The resulting system is a sort of nonequilibrium impure &rig-like model in which NN interactions 

J change sign randomly with time. That is, kinetics involve the simultaneous action of two independent 

spin-flip mechanisms, each satisfying individually detailed balance and occurring as if the exchange 

interaction between the involved spins has a different value. It induces fast and random, spin- 

configuration-independent diffusion of microscopic disorder. This may be viewed as a first step in 

modelling spin glasses when magnetic ions diffuse. Under these conditions, the system is driven 

asymptotically towards pure ferromagnetic and antiferromagnetic steady states for p = 1 and 0 , 

respectively, while there will be (non-unique) steady nonequilibrium states otherwise in general. The 

consideration of such nonequilibrium impure model is appealing because some unusual observations in 

disordered materials are consistent with the existence of nonequilibrium effects, e.g., a dependence of 

the steady state on history has been reported. On the other hand, the model, which one may expect a 

priori to behave differently from the (equilibrium) quenched spin-glass model, essentially differs also 
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from the annealed version of the latter which involves an unrealistic representation (e.g.) of impurity 

diffusion that leads to impurities that are strongly correlated, which is not observed in general. 

The following picture emerges from a Monte Carlo study of square lattices for p > $5 (the 

system is symmetrical around p = Yz ): (a) A transition to a ferromagnetic state occurs at T,(p) for 

p large enough. (b) The parameter p has three main effects on the phase transition: both the degree 

of saturation and the transition temperature tend to decrease with p , and there is no low-T 

ferromagnetic state for any p 10.91 . (c) The indicated transition is qualitatively similar to the one in 

the pure system, i.e., to the equilibrium, Onsager one for p= 1 . In particular, it is of second order, 

and it seems consistent with the Onsager critical exponents. The magnetization for p=O.93 departs 

from the Onsager behaviour as p is decreased, however. It may indicate that critical exponents differ 

from the Onsager values for ~~0.93 . A finite-size study confirms the picture. There is also some 

evidence (whose significance needs to be evaluated) for the existence of order at low temperature 

between the ferromagnetic and antiferromagnetic regions. In any case, no freezing phenomena have been 

observed. It is remarkable as well that this system has a probabilistic cellular-automaton representation 

when T=O which is very convenient for numerical analysis, e.g., thermal fluctuations are absent, and 

finite-size effects are relatively small. It consists of the following rule to attempt the flip of spin s, : 

Compute % E s, C, sY , where the sum extends to the 2d NN of site x ; the flip is performed with 

probability p or 1 -p according to whether cr, is negative or positive, respectively; the flip is 

performed anyway if Q, is zero. This criterion, which is close to the kinetic rule that characterizes the 

so-called majority vofe models, induces steady states exhibiting a sort of nonequilibrium percolation 

phenomena whose critical exponents are the ones for the ordinary Ising model. 

Three variations of this nonequilibrium spin-glass model have been studied that are worth to be 

mentioned. A competition between different values for the applied magnetic field, h , occurs during the 

evolution of time in one of them. In addition to impure systems in which local fields diffuse, this may 

model a magnetic system under a very rapidly fluctuating field. ” The case in which several values for 

both J and h compete during the evolution has been shown analytically to exhibit a varied and 

interesting, e.g., non-universal behaviour in one dimension. This may perhaps be relevant to the study 

of neuronal activity noise and the so-called profon glasses. l3 Also interesting is a nonequilibrium version 

of the ANNNI problem. l4 It is remarkable that some analytical results have been obtained exactly for 

dimension larger than one in some of these systems.‘3*14 

QUASI TWO DIMENSIONAL LATTICE GASES 

This section concerns a different method for inducing irreversibility. Consider first the ordinary 
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lattice gas, X , on (e.g.) a square lattice of volume 1 h 1 with periodic boundary conditions. The 

energy is H(s)=-45 CNNsxsy, J>O , where s={s,; xEZ*, s,=O,l} , and the sum is over all pairs 

(x,y) of NN sites. p = 1 X 1 -’ C x s, is a density, and N = p 1 X ) is the number of particles. In 

the infinite-volume limit, X exhibits a continuous phase transition for p= i/2 at the Onsuger 

temperature Tc , while there is a discontinuous transition for p #= l/z at temperature T&J) . Next, 

consider A = h, U X, of volume I A I = 2 I X 1 ; here both h, and A, are defined as X , and 

x,nx,=a . , ‘W That is A consists of two twin square lattices such that any site has five NN with one 

of them in the other plane. The configurations have energy H,(s)=H(sl)+H(sZ) , where si = (sr;r E Zz> 

is a configuration of Xi , and i = 1,2 . That is, all bonds between the planes are broken. No restriction 

exists on the possible configurations s of A , however; in particular, any given particle has access to 

any of the two sub-lattices. Irreversibility is introduced by assuming that particles are driven by a 

constant external electric field E that points along one of the principal lattice directions. For simplicity, 

E*oo , so that no particle can jump against the field direction under the influence of thermal 

fluctuations. Therefore, one implements case L, in the computer, and the Metropolis criterion is 

modified in the sense that one adds the work done by the field to the energy cost. That is, AH, = 

H,,(P) - H,(s) - E.(x-y)(s,-s,) , where H,(s) does not involve any interaction between planes. In 

addition to the fact that detailed balance only holds locally here, due to the last term in the expression 

for AH, , E is not the gradient of a potential, so that no obvious Hamiltonian including the electric 

energy exists, and a net steady dissipative current sets in (e.g.) for periodic boundary conditions. Let 

us denote by & and AE the nonequilibrium systems one obtains by applying such dynamics to X and 

A , respectively. (Then, A, may denote A, within the limit E+w .) The case h, is the (2d) driven 

d@ksive system that may model solid electrolytes or fast ionic conductors.17 The case A, is a non-trivial 

variation of the latter. ‘* 

The main facts concerning ordering in these systems are as follows. For p= ‘/z below a 

temperature T* , A.,, (which denotes A, when the jield is turned ofi exhibits a liquid (equilibrium) 

phase of density pL(T)=po(T) that fills one of the planes, and a gas of density pG(T) = 1 -p,(T) that 

fills the other plane; p,(T) is the Onsager solution, e.g., p,(T) = l/2 + l/4{ 1 -[sinh(2J/kBT)]-4 }1’8 

at low temperature. For p < 95 below T*(p) , one plane holds a liquid drop of density p,(T) 

coexisting with gas of density l-p,(T) , and there is only gas in the other plane. Then, 

p = %p, + l/2 [xp, + (1 - x)pG] , and there follows x = 2@ - 1 +p,)l(2p, - 1) . The particles tend to be 

distributed homogeneously for T > T*b) where P = 1 --p,(T*) ; T*b> = T&P) , where the latter is the 

transition temperature for h ; in particular, T*(p= L/2) = Tc . Define the difference of density between 

the two planes, Ap(T) = (1/2p) I pi(T)-p,(T) I ; Ap(T) = p-l I p- 1 +p,(T) 1 . This behaves 

continuously for any p . More precisely, A,, has the Onsager critical point for p = $5 , and the order 

parameter is continuous for p < Yz also. 
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The situation for A, is qualitatively different. At high enough T , the particles distribute evenly 

between the two planes. The distribution within each plane is not completely homogeneous but some 

anisotropic clustering is evident (cf. the graphs (a) in Figs. 1 and 2, for p = 0.5 and 0.2 , respectively). 

The latter is related both to the anisotropy of the state and to the slow decay of spatial correlations. As 

T is lowered starting from a random distribution, the system exhibits phase segregation and, apparently, 

two kinds of phase transitions occur: First, for (say) T,*b) > T > T,‘(p) , one observes that the liquid 

separates into two approximately equal strips, one on top of the other in a different plane (graphs (b) in 

the figures). For very low temperature, say T -CT,‘@) , the particle-rich or liquid phase is in one plane 

(graphs (c)). This is qualitatively similar to the segregation that occurs in h, except for the existence 

of the second plane holding gas. The field induces clear anisotropies below T,‘(p) . That is, the liquid 

configurations are strip-like oriented parallel to the field for p < *A , as for X, . Moreover, the gas 

seems to exhibit the sort of anisotropic clustering mentioned above for high T . 
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(a) 0) (cl 

Figure 1: Typical steady state Monte Carlo co@urations for p = H ; cf. the main text. The 

field acts horizontally. 

As a consequence of the above effects, the relation between A and A, is not straightforward. 

It seems that a main effect of the field is to modify the interface (in addition to the correlations) so that 

the density of the liquid which is p,(T) at equilibrium changes to p,(T) , and the density of the gas 

is l-p,(T) . That is. p,(T)#p,(T) which makes the liquid fraction x and, consequently, the 

transition temperature to differ from the ones for the equilibrium case. On the contrary, one may expect 

that A, and X, have the same transition temperature and, probably, the same critical behaviour. In 
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a sense, the relation between X, and A, may be similar to the one found before at equilibrium 

between X and A. l5 More specifically, one may assume that p=%(1-p,)+%[xp,+(1-x)(1-p,)] 

and, therefore, x=2@-1 +p,)l(2p,-1) for A, . This is to be compared with x = 

2(p- 1 +p,)l(2p,- 1) for A . One would expect accordingly that x = (p- 1 +p,)l(2p, - 1) for X,. 

This is basically confirmed by the Monte Carlo data. The difference between p,(T) and p,(T) is large 

for striped configurations due to the presence of the nonequilibrium interface all along the system; if no 

interface exists, the difference between p,(T) and p,(T) is extremely small in general; the difference 

between the phases that is observed then is to be associated to the different nature of correlations. 

(a) (b) (c) 

Figure 2: The same as Fig. 1 for p = 0.2 ; cf. the main text. 

The Monte Carlo study has monitored the difference of density between the planes, and between 

the phases, e.g., 6p(T) = pL(T)-pG(T) = 2p,(T)- 1 ; they are closely related to each other (only) 

under the above assumption. The data confirm that p,_+pc= 1 for any p and T , and indicate that 

p,(T,p)fp,(T,p) in general. That is, the nonequilibrium liquid and gas phases for p= i/4 and 

T<T,‘(p) differ from the equilibrium ones. It is observed that Gp(T,p) ( =2~_(T,p)-l ) is 

discontinuous at T = T,*(p) for p < < 95 , and at T=T,‘(p) for any p . The latter fact probably 

reflects the discontinuous behaviour of the interface, i.e., 6p(T) apparently increases when one crosses 

T,‘(p) for any p as T is increased. It is observed also an apparent tendency of 6p(T) to decrease 

with decreasing p for a given T CT,‘@) . These facts are confirmed by Ap(T,p) when possible. Also 
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interesting is the behaviour of the order parameter m=max{m,,m,} , where m, = 

Y&(1--p)]-” 1 CM,*> - <M,*> 1 ” with M,,2CV) = 1 h 1 -VZ c h(v) [cvo (1 --%)I* . Here, h 6’) 

indicates that summation is along the horizontal, i.e., field (vertical) direction on each plane. This 

confirms that the phase transition at T,‘(p) is discontinuous for any p , while the one at the higher 

temperature T,*@) is discontinuous for p < C M but the discontinuities are very small if any as one 

approaches p=% , and Tm*b= l/z) should correspond to a critical point for the infinite system. 

Moreover, one concludes with confidence that m - 1 T-T,*b= $5) 1 B as T-T,*@= 55) with 

T,*(p=%)=1.30f0.01 and fl=0.27f0.02 for the infinite lattice. On the contrary, the Onsager case 

0 = l/s and the Landau case fl= 55 (even if one allows for a logarithmic correction) are clearly 

excluded. This suggests again the crucial effect of the field due to the existence of a nonequilibrium 

interface. ( Ap(T) and &I(T) exhibit a similar critical behaviour near T_*(P= M) , while 6~ is 

characterized by /3 - ‘/‘a for E =0 .) Previous numerical experiments have suggested that /I 5: U for 

other 2d nonequilibrium conservative lattice systems that involve anisotropies. (Approximately, the 

same value has been reported for a 2d field-theoretic driven diffusive system when the applied field is 

random but not for the present case of constant field. In spite of the latter result, I suggest that fl= U 

characterizes the two-dimensional driven-diffusive lattice system as well as some related anisotropic 

nonequilibrium systems. It seems desirable and potentially very interesting trying to confii the 

existence of a novel universality class in three- and lowdimensional fast ionic conductors under proper 

nonequilibrium conditions. 16-18) 

Finally, I mention that a specific question in nonequilibrium systems is the nature of correlations. 

One might argue that correlations should perhaps not decay here as slowly as for X, given that 

particles can hop to other plane in A, (e.g., the structure function is easily stabilized due to this effect). 

Nevertheless, a log-log plot of both Gh(r) and G,(r) produces straight lines of slope -2 (e.g.) for 

2 <r and T ~2.5Tc ; this supports here the result G(x,y) = (ax*-by*)(x*+y*)-* found before for the 

2d driven diffusive system. On the other hand, one may estimate the correlation length from the 

phenomenological fit Gh,Jr) - [1 +(r/&,)2]-1 that is confirmed by the data for large enough r . The 

values of &, and i, obtained in this way have critical behaviour at T,*(p=%) that may be 

characterized by the exponents v,, and Y” , respectively, and it seems that yh=2v, (this is based on 

the assumption that vhf v, , and I believe, however, that one should not rule out completely the 

possibility that vh- = v, if the latter are properly defined). Summing up, one may relate to each other the 

nonequilibrium system A, , the ordinary two-dimensional driven diffusive system h, , the ordinary 

lattice gas A, , and the lattice gas in two planes A,, . The nature of both short- and long-range 

correlations, and the existence for some values of T and p of a nonequilibrium interface whose length 

is proportional to one of the system linear dimensions, makes A, essentially different from its 

equilibrium counterpart I& (and also from X, ). There is a close relation between A, and X, , 
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however, that, in particular, makes the study of an apparently artificial model rather relevant for 

nonequilibrium theory ( A, has an intrinsic interest and, perhaps, some practical relevance as well). 

On the other hand, the numerical study of A, turns out to be more rewarding than that of X, , and 

even more than the MC study of the familiar A, . Further numerical effort should parallel a better 

understanding of scaling behaviour for anisotropic situations. I refer elsewhere for further details. 1-7~15-18 
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