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Ising critical behavior of a non-Hamiltonian lattice system
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We study steady states in d-dimensional lattice systems that evolve in time by a probabilistic majority
rule, which corresponds to the zero-temperature limit of a system with conflicting dynamics. The rule
satisfies detailed balance for d =1 but not for d > 1. We find numerically nonequilibrium critical points

of the Ising class for d =2 and 3.

PACS number(s): 05.20. —y, 05.50.+q, 64.60.Cn

Impure models have been proposed that incorporate
diffusion of disorder of the kind that takes place in, e.g.,
dilute metallic alloys when magnetic ions diffuse [1-3].
They are kinetic Ising-like models evolving with time by
a dynamical rule, which is a stochastic superposition of
conflicting Hamiltonian evolutions (each of which would
by itself ultimately lead to a canonical distribution). In
particular, a nonequilibrium spin-glass model (NSGM)
has recently been introduced [4] that simulates fast ran-
dom diffusion of (nearest-neighbor, NN) exchange in-
teractions [1]. A conflict arises in this system because
whenever a spin flip is attempted, its NN exchange in-
teractions are all set equal to +J or —J with probabilities
p and 1—p, respectively, independently of spin
configurations. Some exact results have been obtained
for dimension d =1 [4], and (rather limited) mean-field
[5] and Monte Carlo (MC) [6] descriptions are available
ford > 1.

Previous studies [4—6] have indicated that the steady
states of the NSGM depend on the details of the non-
Hamiltonian dynamical rule, which exhibits their non-
canonical nature. So far, only a rule which combines two
Metropolis rates [7], one for each sign of J, has been used
in MC experiments. This is an exceptionally simple case
in the sense that it satisfies detailed balance for d =1 (but
not for d >1). More specifically, it admits an Ising-like
Hamiltonian for d =1, namely, H(s)=K3I s.S;+1,
where s={s,=+1;x €Z'} and K has a complicated
dependence on p and J, and on the temperature T of the
relevant heat bath. Consequently, this one-dimensional
case is equivalent to the ordinary Ising model at some
effective temperature [4]. The study of this simple version
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of NSGM by the MC method for d =2 and 3 (i.e., where
detailed balance does not hold) reveals the existence of
steady states of the ferromagnetic (antiferromagnetic)
type below a d-dependent line of critical points, T¢(p),
when p is large (small) enough. No counterpart to the
freezing phenomena (i.e., extremely slow relaxation) found
in quenched spin-glass models occurs, however. There-
fore, the NSGM is amenable to numerical analysis, which
has enabled us to obtain some information on its critical
behavior near T(p). The latter seems to be of the Ising
type, in general, although a departure from this has been
previously reported, which might indicate crossover phe-
nomena at a low enough temperature [6]. (The available
mean-field approximation is not sufficient to provide any
direct clue on this, but it reveals, for example, that a
modification of the rule may transform continuous into
discontinuous phase transitions for some values of p [5].)

This situation has motivated us to study systematically
for T—O0 the simple version of the NSGM described
above. In that limit, the dynamical rule of the NSGM
becomes simpler [4]. Time evolution may then be imple-
mented by choosing an arbitrary (e.g., random) initial
configuration and performing the following MC step
reiteratively: First, a site r of the simple-cubic lattice Z¢
is selected at random. Then, one attempts the fip
s,——s.. Let

€=s, 3 sp, (1)
[r—r'|=1
where the sum is over all NN of r; the flip takes place
with probability
p if e, <0
c(s,—>—s,]s)=1{1 if ,=0 ()

1—p ife,>0.
The numerical study of (2) is also motivated by the fact
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that it corresponds to a majority vote rule. Two varia-
tions of it have been considered before. Whereas the
probability that s, flips when the neighboring
configuration has an equal number of plus and minus
signs is 1 here, it is 1 —p and 1 for majority-vote models
in Liggett [8] and in Garrido and Marro [9], respectively,
the three models have the same transition probability
otherwise. It is easy to check that, just as for the NSGM,
detailed balance is satisfied in these cases for d =1 but
not for d > 1. de Oliveira [10] has studied numerically
(for d =2) a variation of (2) in which c¢(s,— —s[s)=1
for €,=0. Unfortunately, no precise criteria are known
to predict the effect of the details of the rule on critical
behavior and other steady-state properties of the system
[11-14].

Our MC results for periodic boundary-conditions are
summarized in Figs. 1-4, for lattices of 128 and 64° sites
(all steady-state averages involve approximately 10° MC
steps per lattice site after equilibration). The system ex-
hibits a sharp phase transition at p-(d) in d =2 and
d =3, where p-(2)=0.928 and p(3)=0.835; the former
value agrees with the one obtained by de Oliveira [10].
Note that the phase diagram T(p) must be symmetrical
about p =1, given that such a symmetry is contained in
the dynamical rule; consequently, a similar phenomenon
must occur at 1—pq(d). The transition is clearly of
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FIG. 1. The mean value of the order parameter (i.e., the mag-
netization) m EN"Elj,, where N is the number of lattice sites,
for d =2 as a function of the parameter p in (2). The solid in the
main graph corresponds to the Onsager solution of the Ising
model for N-—»c shifted (arbitrarily) by p=aT+b
(a=—0.133, b=1.23). The inset is a plot of {m )'/2, with
B= %, versus p for d =3. The data within the latter have ap-
proximately linear behavior (solid line) that extrapolates to a
value for pc, which is consistent with the rest of the data; vary-
ing the value of B by 7% or more produces a curvature of the
data points that may be noticed even by direct inspection in a
similar plot (and the data cannot be extrapolated then to the
value of pc estimated by other means).
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FIG. 2. The order

short-range
oc=(N,.N__(N,_)2)(N,,,N__,and N, _ are the num-
ber of particle-particle, hole-hole, and particle-hole NN pairs,
respectively, and { - - - ) stands for the Monte Carlo average), as
a function of p for d =2. The solid line in the main graph is the
Ising result (shifted as in Fig. 1) estimated from the values for

parameter,

the magnetization and energy assuming
o=(N,.N__)(N._) 2 Theinset is a plot of y '/? versus
p for d =3; here, y={(m —{m })*), and the assumption y =3
is made to obtain linear behavior on both sides of the estimated
value of pc.
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FIG. 3. The cumulant U,=1—4(m*)/{(m?)* for d =2.
One has that U, :% for p > pc¢, as for the pure Ising model at
low temperature, while a more intriguing distribution of m
values is revealed by the data for p <p; cf. the main text.
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FIG. 4. The mean number of particle-particle NN pairs as a
function of p for d =2 (main graph) and 3 (inset). The solid line
in the main graph is the Onsager result (shifted as for Fig. 1).

second order. In addition, inspection of the neighbor-
hood of p. also reveals that the critical exponents for
both square and simple-cubic lattices have the same
values (within statistical error) as the corresponding
(thermal) ones for the pure Ising model. Figures 1 and 2
support this statement: The inset in Fig. 1 shows a plot
of m /8 (for B=0.31) versus p for d =3. Our data points
deviate significantly from straight lines when plotted for
values of B that differ from 0.31 by more than 0.02. Simi-
lar plots (not shown) of our data for d =2 are consistent
with B=1. The inset of Fig. 2 shows data points for y
[defined as {(m —{m ))?)], obtained for d =3, plotted
as x!/7 versus p for y=1.25. Only variations of more
than 7% of the latter value of ¥ lead to significant devia-
tions of our data points from straight-line behavior. The
same procedure leads to a value of ¥y =1.75 when applied
to our data points for d =2. Therefore, the values we
have obtained numerically for both 8 and ¥ in d =2 and
d =3 are consistent with the critical indexes 8 and y of
the pure Ising model. That is, (2) leads to Ising critical
behavior. We remark that errors in our data are excep-
tionally small, e.g., we have obtained ¥ as accurately as .
This is because (i) there are no thermal fluctuations, and
because it turns out that (ii) all the relevant quantities
evolve monotonically and smoothly with time and that
(iii) finite-size rounding-off effects are small for the sizes
studied (see Fig. 1, for instance). These facts mark an im-
portant qualitative difference between rate (2) and, e.g.,
the Metropolis one for the ordinary Ising model.

Figure 3 shows our data points for the cumulant
U,=1—1(m*)/{(m?)2. 1t follows straightforwardly
for macroscopic systems from the definition of U,, that
U, =2 if {(m )0 and the system is in a single phase,
which we indeed obtain for p > p-(=~0.93). On the other
hand, {m )=0 for p <p.. It does not then follow that
U,, =% for macroscopic systems. A normal distribution
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of m implies U,, =0, since {(m*)=3(m?)? then. Our
data points are therefore not consistent with a normal
distribution of m, in general. This behavior, reminiscent
of spin glasses, is, quite likely, related to the disordered
nature of the system.

Figure 4 suggests a singularity in the mean number of
particle-particle NN pairs at p., and a very rapid in-
crease for p >p.; po marks the onset of the ordered
phase. The curves agree well very near p. with the equi-
librium thermal (e.g., Onsager) ones after scaling of the
temperature variable of the Onsager case according to
p=aT +b(a=-—0.133 and b =1.23), but the agreement
gets systematically worse as one goes away from p..
That is, it seems that there is agreement in their singular
behavior at the critical point, but the behavior that en-
sues from rule (2) differs, in general, from the thermal
behavior of the Ising model for both d =2 and d =3. In-
spection of Fig. 2 for p > p. leads to the same conclusion.
We have found that the slope of the curves in Fig. 4, for
specific-heat-like quantities, agrees (within statistical er-
ror) with the corresponding mean-square fluctuations;
thus, Einstein’s fluctuation-dissipation relation holds;
analysis of the corresponding critical behavior gives some
consistency with a=0.

Summing up, (2) induces (steady nonequilibrium) or-
dering. The associated critical phenomena are of the Is-
ing variety for any 1 <d =<3, even though the underlying
mechanism differs fundamentally from the one in the
pure Ising model. For example, no simple relationship
exists between (2) and the familiar rules of Metropolis or
Glauber [7], and relevant quantities exhibit a smooth
monotonic behavior as a function of time, which con-
trasts with the relatively noisy one in ordinary MC exper-
iments. Nevertheless, our findings are consistent with
some expectations: A perturbative treatment [15] sug-
gests that the original Ising critical point is stable (even
though additional critical points might become dominant
[1]) under small amounts of irreversibility for any model
with short-range interactions respecting the symmetry of
the lattice and exhibiting symmetry under spin inversion.
This seems to be the case for majority-vote rules such as
(2) and for the simple version of the NSGM mentioned
above. Ising behavior has been reported also for a model
of chemical reactions with desorption [16], for a model of
the immune system [17], and for a reaction-diffusion lat-
tice gas [18], for example. The model investigated here is
not microscopically equivalent to the Ising model; it
seems, however, that their critical behavior does not
differ, although their macroscopic behavior does so in
general for d > 1. One would like to know the precise
generality of this result. For instance, it is not general
enough to cover the case in which one adds a random
spin-flip process to a majority rule [13], which has been
reported [14] to induce Landau-classical critical behavior
for d =3.
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