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Alneact, We present a kinetic lattice system that evolves in general towards steady non- 
equilibrium states due to dynamical conflict between nearest- and next-nearest-neighbour 
interactions, Under two simple particular limits, the system would reach asymptotically the 
canonical equi!ihium' states for the ordinary Ising model and for the axial next-nearest- 
neighbour Ising (ANNNI) model, respectively. We find more generally that, independently 
of the lattice dimension, the steady state probability distribution for a given class of trans- 
ition rates has a quosi-cononicnl structure with a short-range effective Homilronioil. We solve 
exactly the one-dimensional version of this case, and compare its behaviour to the one for 
the ordinary ANNNI model. In particular, the system is shown to exhibit several spatially 
modulated phases and impure critical points. We also obtain some information on the phase 
diagram for the two-dimensional lattice. 

The one-dimensional lattice system called the axial next-nearest-neighbour king or 
ANNNI model (Elliot 1961; for reviews see Liebmann 1986, Selke 1992) consists of a 
linear chain with Ising spins, i.e. s== f 1 a t  each lattice site z= 1,2, . . . . Typically, 
interactions are ferromagnetic, say JNN > 0, between any pair of nearest-neighbour (NN) 
spins, (sz, s,+,), and antiferromagnetic, JNN~<O, between any pair of next-nearest- 
neighbour (NNN) spins, ( s ~ ,  s ~ + ~ ) .  The d-dimensional (simple-hyper-cubic) ANNNI 
model simply consists of one-dimensional ANNNI chains that connect to each other by 
NN interactions of strength Jo in all the 2(d- 1) traversal directions. This is supposed 
to describe, for example, the spatially modulated phase in certain msgnetic substances 
such as erbium. It is also of considerable fundamental interest. That is, the ANNNI 
model contains microscopic disorder and frustration whose study defies the standard 
methods of statistical physics. We define here a novel kinetic version of the ANNNI 
model, and present some results for the simplest version of it; most of OUT results are 
exact. 

Consider a d-dimensional simple-cubic lattice, a, with spin (equivalently, particle, 
etc.) configurations s- Is,= f 1 ; v&}. There are interactions of strength Jm between 
NN, as in the Ising Hamiltonian, H(s) = - JNN &,, =, SJ,. The probability of s changes 
with time according to the Markovian equation 

W ( s ;  t)/at=C [c(sls')P(s'; t)-c(s'ls)P(s; t)] 
fl 

where, unlike for the ordinary canonical Ising model, the transition rate describes a 
conflict between different tendencies at temperature T. More explicitly, ifs '  represents 
s with the sign of the spin variable at Y changed (due to a& s,+ -s,), the probability 
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that s transforms into S is a superposition of elementary events, or 
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+m 

c(s'~s)= d J-~(JNNN)o(s'Is; JNNN). (2) s_, 
Here, JNNN is a random variable of distribution ~(JNNN) normalized to unity. We 
assume for the elementary transition rate that 

@(AIS; JNNN) = Y(PAHJ-) (3) 

where P=(k,,T)-', ks is Boltzmann's constant, AHJm=H($; J m ,  
JNNN)-W; JNN, JNM.0, and 

where the last sum is over the NNN of r= (x, y, z) in the zdirection, denoted rr. Except 
for the fact that Jo = Jm for simplicity here (see, however, below after (12) for a different 
case), (4) isfomdlly identical to the Hamiltonian that characterizes the ordinary ANNNI 
model. Nevertheless, only the parameter Jm in (4) is a constant; according to (2), 
JNNN is a random variable that one may interpret that varies during time evolution. 
That is, (4) is not a real Hamiltonian for the system but decides kinetics via (3). 

The function Y in (3) is arbitrary. We are interested here, however, in the choice 

 cons con st. exp(-$~). (5 )  

This restriction results in part from the requirement that we want (3) to satisfy the 
condition of detailed balance, namely Y ( X )  =Y(-X)exp(-X). Then, the system (1)- 
( 5 )  has two simple equilibrium limits for which detailed balance is satisfied also by the 
superposition (2). The"trivial' case occurs for JmN=O;  then, (4) transforms into the 
Ising Hamiltonian, and one has that c(s'/s)=@(Sls; 0) from (2); consequently, the 
system reduces to the familiar kinetic version of the Ising model (Glauber 1963).For 
~(JN") =8(Jwconst), where 6 represents the Dirac function, (1)-(5) represent the 
simplest kinetic version of the ANNNI model one may think of, i.e. it leads asymptotically 
to the equilibrium state for temperature T and energy (4) with JNNN=const. The situ- 
ation is less simple otherwise given that (2) implies in general that the interaction to 
second neighbours, JN", does not have a single value but is sampled fromf(J-) 
at each step during time evolution. The resulting system generalizes the ANNNI model, 
and is a novel example of a class of stochastic king systems with competing interaction 
kinetics introduced in Garrido and Marro (1989). One may interpret that the (random) 
variations of JN" during evolution are due to very fast and completely random diffu- 
sion of impurities (of the sort that one may expect to occur in magnetic substances, 
for instance (cf Garrido and Marro 1994)). Anyhow, such a conflict between (NNN) 
interactions will lead the system generally to a steady non-equilibrium state whose 
nature is unknown, e.g. (non-equilibrium) phase transitions and critical phenomena 
may occur having a complex relation (if any) to the corresponding equilibrium situ- 
ations. Once the rest of the system parameters (e.g. the structure of and the constants 
in (4)) are given, the nature of the resulting phenomena will depend, even strongly, on 
the choices forf(Jm) and Y ( X )  determining the effective transition rate (2) (i.e. the 
latter will not satisfy detailed balance in general). It is our aim here to describe a simple 
case of (1)-(4) for which exact results may be derived for any lattice dimension d; in 
fact, it was for the sake of simplicity that the exponential structure in (5 )  was selected. 

' 
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The following result applies. The steady state for system (1)-(5) has, say, a quasi- 
canonical structure for any dimension d. We mcan that the limit of P(s; t) in (1) 
as f+co is P,,(s)=Z-' exp[-E(s)], where Z~&exp[-E(s)]. Here, E(s) is formally 
indentical to (4) but involves different effective coupling constants. We may express 
this by writing E(#) = H(s; K1 ; K2) ; then, one gets 

KI=BJNN (64 

tanh(2K2) = [[sinh(2gJN")~~cosh(2PJN")II -I (66) 

where e] denotes the average Withf(JN") defined by (2). The steady state is unique 
given that effective detailed balance holds for (5), i.e. 
e(s'ls) exp[-E(#)] =c(sls? exp[-E(s')]. The proof is a matter of algebra (the simplest 
way to verify this is to assume E(s)=H(s; Kl ; &), and look for expressions (6) by 
requiring effective detailed balance). This amounts to an extension to interactions other 
than the NN Ising ones of the method in Lbpez-Lacomba et a1 (1990) (to where we 
refer the reader for further details). This result holds for any d due to our choice ( 5 ) .  
Aimosf any other Y(X) would imply full non-equilibrium behaviour in general; this 
occurs, for instance, if Y(X) in (3) corresponds either to the rate used by Glauber 
(1963) to set up the kinetic version of the Ising model, or to the Metropolis algorithm 
which is familiar in Monte Carlo studies. 

In principle, one may study the consequences of the result in the previous paragraph 
for any d. We first refer here to the case d= 1. In fact, our study may be pursued by 
exact analytical methods (involving no assumption) for d= 1 only. Furthermore, the 
one-dimensional version of this (axial) system is expected to exhibit some of its most 
relevant features, as occurs for the ordinary ANNNI model. A specific question is the 
phase diagram for our generalized ANNNI model that results from (6), and its compari- 
son with the one for the ordinary case that follows from (4) if .IN" represents a 
constant. The latter has been studied by Stephenson (1970), Hornreich ef al (1979) and 
Tanaka et al(1987), for instance. 

The formal similarity between the two problems allows us to write Z=Tr[MN] for 
a chain of N spins with periodic boundary .conditions. M is the transfer matrix of 
eigenvalues 

I, = exp(KZ) { cosh(Kl ) f [sinh2(C ) + exp (-4K2)] I"} 

A3,,=exp(K2){sinh(K~ ) rt [cosh2(& ) -exp(-4K~)]"~}. 

( 7 4  

(7b) 

The correlation function ensues as 

G(n)= (s=s~+ , )=~a~ ' [ ( l  +E)~;+(I-E)vI  (8) 
where E- fsinh(24 )/{[sinh2(Kl ) +exp(-4K2)][coshZ(KI ) + e ~ p ( - 4 K ~ ) J } ' ~ .  Follow- 
ing Stephenson (1970), one may distinguish two well-defined cases: 

(i) For cosh(&) >exp(-2K2), the four eigenvalues of M are real and simple. One 
obtains that G(n)-f(l  +E)(L,/A,)' as n-m, and the correlation length is 6 -  I /  

(ii) For cosh(Kl)<exp(-2K2), two eignenvalues of M are real and simple and the 
other two are complex. Then, G(n)-l1 + ~ ~ ~ ~ ~ / ~ ~ ~ " c o s ( n p , + O ) ,  where 
p,~tan-'[Im(a,)/Re(a3)J and O-tan-'[lm(l+ &)/Re(l+ E)], and one has that 

1n(fll /a3). 

5- I / ln~a,  in3 I. 
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This is known to imply an interesting behaviour for the ordinary ANNNI model 
which corresponds to K, = ~ J N N  and K2= BJ-. That is, G(n) has then a pure exponen- 
tial decay for (i), while it exhibits oscillations of wavevector 9 whose amplitude decays 
exponentially for (i). The disorder line or boundary between the two regions occurs 
for values of p that satisfy cosh(pJm)=exp(-2PJNm); consequently, it is required 
that JNNN=-IJNNN~ <O, and the boundary occurs at temperature T=T*(a)  that 
depends on the value for a=-J-/JNN>O. If we define the parameter 
r-exp[-2plJm+2JN"I], it foltows that C-ir-' for a < $  and 5 - 2 ~ - ' ~ f o r  a > ; ;  
one may interpret this as corresponding to critical indexes v =  1 and 4, respectively. 
For a = +  and T=O (the so-called frustration point), the correlation length remains 
finite; it reflects the fact that the pure critical point washes out due to the competition 
between NN and NNN interactions. 

The above picture essentially remains for (6). The implications of the latter are 
more varied, however, due to the complex dependence of the parameter K2 on tempera- 
ture. (We leave to the concemed reader the study of many one-dimensional cases that 
we do not consider explicitly here, e.g. the ones for the rate functions Y ( X )  =min( 1, e-") 
and "(A')= 1/(1 +ex) that correspond to the Metropolis and Glauber cases, respec- 
tively, for which (6)  does not hold.) Besides the essential dependence on Y ( X ) ,  the 
situation may be shown to depend strongly onf(J-). To maintain a close relation 
to the ordinary ANNNI case, we (only) illustrate below the case corresponding to the 
distribution 

~(JN")=P+J(JNNN- J+) +p-J(J-+ J-) + (1 -p)J(J-) ( 9 )  

where J+, J-> 0, andp=p+ +p- .  (Further cases o f f ( J m )  may be worked out exactly, 
however.) Then, one has for ~ + C O  that exp(-4K2)-(p-/p+) exp[Zp(J--J+)I that 
goes to CO, ( p -  / p i )  or 0 depending on whether J- is larger, equal or smaller than J+ , 
respectively. For p-0, one obtains K*-p(p+ J+-p-J-). That is, our system behaves 
at high temperature as the ordinary ANNNI model with J-=p+J+-p-J-, while the 
low-temperature behaviour is equivalent to having J-= s(J+ - J-) instead. 

It is remarkable that the effective NNN interaction K2(T) may change sign as one 
varies T for the simple choice (9). Let us define 

q I - i (J+ - J-)/JNN 

I 

I 
y - J+ /J- 

(which turn out to be the relevant parameters besides p +  and p - ) .  If follows that a 
changeover of the effective NNN interaction occurs from ferromagnetic to antiferromag- 
netic both for low enough T(according to whether q is negative or positive, respectively) 
and for high enough T (according to whether one has y>p- / p +  or y < p -  /p+, respec- 
tively). This and, more generally, the fact that K2/p has a complex dependence on T 
are at the origin of the qualitative differences we report below between the present 
model and the ordinary one. 

The case q > 0 corresponds to the most familiar version of the ANNNI model, i.e. 
JNN > 0 and JN" <O. Looking for the closest relation between the ordinary and gen- 
eralized model, one may consider p+ =p- = f besides q >O. Then, our model reduces 
precisely to the ordinary ANNNI system with JmN= i(J+- J-) for any temperature, 
i.e. K2/p becomes independent of Tin  this case. Otherwise, the behaviour of the two 
models may differ importantly, even for the simple choices (5) and (9). This is illustrated 

I 
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Figure 1. The disorder /he, K, =K, ( q ) ,  that separates a region to the left in which the 
correlation function exhibits a pure exponentially decay with distance (pr-0) from a region 
to the hght in which spatial correlations decay oscillating with wavevector Q (cf. the main 
text), as a function of q = - + ( J + - J - ) / J w  for different values of y = J + / J - . p +  andp-. 
This corresponds tp exact results for the one-dimensional system. (a) The bold full line is 
the result for the ordinary ANNNI model that corresponds to the quosi-canonical model 
studied here for p+ =p- = f and any y ;  the broken lines are for pi =p-  = a and, from left 
to right, for y =  2 ,  4 and f ;  the full lines are for the same values of y but forp, =p-= 
0.10. (b) The case p+ = f and p- = f for indicated values of y ;  note that the vertical axis 
has a different scale from that in part (a). 

in figure 1 where the phase diagram exhibits important variations with the parameters 
y, p +  and p-.  The situation depicted in figure I(n), where y < p + / p -  so that K2 is 
antiferromagnetic-like at any temperature, is apparently conventional. It is remarkable, 
however,  that tbe disorder line for p +  =p-  =0.10 (but not for p+ =p- =0.25) indicates 
the existence for certain given values of q of two (three if y = 0.25) transitions between 
normal and modulated phases. Even more interesting is the situation in figure 1(6), 
where different curves corres ond to different relations between y and p +  / p - ;  then, K2 
changes in figure I(b) at y = I from antiferromagnetic (for y < f )  to ferromagnetic (for 
y>  4) at high enough temperature (while it is always antiferromagnetic at low 7'). One 
observes in this case a behaviour similar to the one in figure ](a) for q"O.5, while the 
system can only be modulated at low enough T and becomes normal for high T if 
rj>>O.5 and y is large enough. Such a behaviour has no counterpart in the ordinary 
canonical case. It would be interesting to check if it occurs in nature. 

Figure 2 illustrates the correlation length for various cases; cf figure caption. The 
situation depicted, for instance by figure 2(b) for y=O.75, is remarkable. That is, the 
line q =0.3 reveals that correlations remain monotonic for any T, while for q = 0.4 a 
transition occurs to modulated, and then to monotonic behaviour again, as T is 
increased, and both the second transition and the critical point do not appear for r j  = 
0.5. On the other hand, it turns out that the most interesting impure picture~(and critical 
behaviour) occurs for P+m, as expected. This is already suggested by the fact that 
one has different types of curves near the origin in figtire 2. More explicitly, one obtains 
that 

P 
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Figure 2. The inverse correlation length as a function 
0 f k . T l J ~  for different values ofp;, p-. y J+ /J-  

l b l  I a i d  r)=-t(J+-J-)/J~~(asindicated).Thiscorre- 2.0 

sponds to exact results for the onedimensional sys- 
tem. (a) The case p + = &  p-=& y = i ;  this is 
qualitatively similar to the ordinary case (which cor- 
responds top+ =p- = & for any y). The minima in .$ 
locate the disorder line where the decay of correla- 
tions changes from monotonous to oscillating. As 
compared to the ordinary case, these minima occur 
here at lower temperature for a given value of r). 
The fnrIraIianpainrcorresponds to r)= i, where no 
thermal critical point occurs (cf. the main text, how- 
ever). (6)  The same for pI - & and p. = :, revealing 
the important qualitative differences induced by such 
variation in the values of the parameters p+ and p-: 
note that the horizontal axis has a diKerent scale than 
for that in part (a). (e) The same forp+=p-=O.IO 
and y = a .  

Thus, one may say that the correlation length diverges either as t - $(p+ /p-)r-'  or as 
5-2(p-/p+)r-I /*  for q larger or smaller than I, respectively; here, 
r=exp[-2pIJ+- J-+JNNI]. That is, one may (only) find a correspondence between 
these cases and the canonical cases v = 1 and v = by introducing a distance z to the 
critical point that is systemdependent. The situation is also interesting for q = f  (the 
frustration point). Then, the usual thermal critical point does not occur, but one gets 

I 

e-' -In{[l+ (1 +4p- / p + ) ' 9 / [ 1 +  (1 -4p- /p+) ' /2] }  

e-' - In{(p+ /4p- )In+ [ I  +p+ /4p- I@) 
(1 la) 

( I W  

for p+ / p -  > 4 and p +  /p-  <4, respectively. This reflects a sort of percolatiue critical 
behaviour for p+co and eitherp-+O orp++O, respectively. In contrast, one has that 
E-'-ln(I +$) forp, =4p-. Further thermodynamicquantitiesmayeasily beobtained 
from (6) and (7) by standard procedures. 

To obtain reliable information from (6)  for d> 1 is more difficult. One may try 
to use known analytical results for the two-dimensional ordinary ANNNI case. The 



A kinetic ANNNI model 1117 

r 

.5 I .a 1.5 
7l 

Figure 3. The phase diagram for the two-dimensional system obtained for Jw= &/IO after 
using our exact result (66) in (12) (open circles), (13) (full line), and (14) (asterisks). (0) 

The case y =  $ andp+=p-= f ;  the broken line corresponds to the ordinary ANNNI model. 
(b) Thecase y = t , p + = f  andp-=f;  cf. themain text. 

combination of both numerical and analytical approximate results shows that the ordin- 
ary ANNNI model may he in one of four different phases: 

(a) a paramagnetic phase occurs at high enough T for any a 
(b) a ferromagnetic phase, for a < 4 at low T; 
(c )  the so-called (2,2) antiphase in which two spins up alternate with two spins down 

in the ground state, for a > 4 at low T (cf. figure 3(a) where broken lines represent 
the boundaries for the above three phases); and 

(d)  an incommensurate modulated phase with continuously varying wavevector for 
4 i a e 2 at moderate T between the paramagnetic phase and the (2,2) antiphase 
for d= 2 (this seems to transform into an infinite sequence of commensurate phases 
for d= 3). 

It has been estimated (Homreich et a1 1979, Kroemer and Pesch 1982) that the boundary 
of the ferromagnetic phase satisfies 

- J N N N / J N N ;  

sinh(2Kl +4K2) siu(2Ko) = 1 (12) 

and that the boundary of the (2,2) antiphase fulfils 

exp(2Ko) = [I -exp(4K2)1/([1 -exp(-KI +2K2)l[l -exp(& +%)I} (13) 

for d=2. A phenomenological method (Villain and Bak 1981) that confirms the above 
suggests also the existence of the modulated phase (4, and the boundary between (4 
and (c )  at low enough temperature appears to be characterized by 

K, +2K2= -2 exp('2K0). (14) 

Here, Kj = PJw, K~=OJNNN and KO = ~ J o ;  for comparison purposes, we consider now 
transversal NN interactions of strength Jo#Jm in our system also. It is questionable 
whether one may simply substitute (6)  in (12)-(14). (That is, the latter refer to (4) 
when both JNN and JN" are constant but might not hold for more involved coupling 
constants such as the ones here.) Assuming this is allowed, we obtain the situation 
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illustrated in figure 3. Figure 3(a) depicts departures of the phase diagram from the 
ordinary case for one of the simplest versions of the generalized model. Figure 3(b) 
reveals that the combination of (6) and (13) seems to induce a novel boundary for any 
y>p+ / p -  at high temperature. More precisely, the case in figure 3(b) exhibits a solution 
for ~ 1 0 . 5 ,  a different one for 11’0.55, and it seems that two solutions occur for 
0.50<~<0.55 and 0.70<1/K0<0.71. The new solutions seem to arise due to the fact 
that Kz may change sign at high T; it could be just an artefact related to our assumption 
that (13) applies to the generalized model. 

We remark that two different temperatures may be defined in our generalized kinetic 
model of dimension d although (2) satisfies detailed balance for (5). That is, besides T 
which represents the canonical temperature associated with the NN term of E@), one 
may define TCE= K z / P  associated with the NNN term; the latter has a complex depend- 
ence on T, in general. In fact, one cannot construct a canonical steady probability 
distribution with a unique parameter that has the role of an effective temperature. (For 
the ordinary one-dimensional system, one may interpret T c ~  as an effective temperature 
and JNN as an external field by substituting S $ ~ + , = O = ;  such a simple mapping no 
longer holds for our kinetic systems, however). Therefore, it could be naive to classify 
the steady states that follow from (1) to (4) with (5) as ordinary canonical equilibrium 
states for any d. This is also shown by the one-dimensional case above whose behaviour 
in terms of Tis  rather intricate. 

The behaviour described above suggests that our model might have an interesting 
macroscopic, e.g. critical, behaviour for d= 2, perhaps even for the quasi-canonical case 
that corresponds to (5). Unfortunately, one does not have any exact analytical method 
here to obtain critical behaviour for d> 1; in fact, most results dealing appropriately 
with fluctuations for the ordinary ANNNI model are numerical. Anyhow, it is quite 
interesting that one may state the result (6) for any d as long as the effective transition 
rate (2) is a composition of exponential functions as in (5). As one may be convinced, 
this is related to the fact that the exponential structure of the rate simplifies notably 
the interactions between a given spin and its surroundings. 

As a final remark, we recall two qualitative features of the generalized model that 
are not shared by the ordinary ANNNI case. The two cusps exhibited sometimes by the 
correlation length in figures 2(b) and 2(c) are related to the Tdependence of the effective 
NNN interaction K2/P in (66). Anyhow, important differences with the ordinary case 
are expected given that the specific dependence of Kz/p on temperature depends on 
the values for v and y, and Kz may even change sign as Tis varied. On the other hand, 
the significance of the novel upper band in the ferromagnetic phase boundary of figure 
3(6) is unclear to us at the present time, as discussed above. In fact, a better understand- 
ing of the present system for d >  1 requires further analysis; we are presently studying 
this system numerically. 
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