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We study nonequilibrium steady states, phase transitions and critical phenomena in a d-dimensional lattice
model which represents a magnetic system under the action of a field fluctuating very rapidly with time.

This induces competing kinetics which produces a sort of (dynamical) frustration which might occur also
i some natural disordered systems. The exact solution for = L partial exact results for o > 2, and a

comparison with some related models are reported.

KEY WORDS: Steady nonequilibrium states. nonequilibrium phase transitions. Ising-iike magnetic
systems. dilute aniiferromagnets. master equation with competing kinetics.

The quenched random-field Ising model (QRFIM) (Imry and Ma, 1975 see also
Imry, 1984, and Natterman and Villain, 1988, for reviews) is a ferromagnetic Ising
system whose spins at different sites suffer random local magnetic fields h in-
dependently assigned according to some distribution f(k), e.g., fthy = 36(h — k) +
$0(h + hg). where 3 represents the Dirac delta function and k, is a constant. This is
a paradigm of a disordered system questioning concepts and techniques in the theory
of critical phenemena. which is rather concerned with pure systems occurring for
J(h)y = o(h — hy). The QRFIM has also interested experimentalists (see, for instance,
Belanger, Rezende, King and Jacarino, 1985; Birgeneau, Shapira, Shirane. Cowley
and Yoshizawa, 1986) after the recognition (Fishman and Aharoni, 1979) that it may
describe true physical systems, namely, dilute antiferromagnets in a uniform field
whose spins are present at each lattice site with a probability which is independent
of other spins. In spite of this activity, exact results are rare and partial at present
(see, for 1nstance, Derrida, Vannimenus and Pomeau, 1978; Grinstein and Mukamel,
1983; Bruinsma and Aeppli, 1983; Bricmont and Kupiainen, 1988; Wher, 1989, for
some related work). Consequently, there still remain some doubts concerning both
the nature of an ordered phase which may possibly exist in the QRFIM for
d > 2, and the relevance of the various models proposed to analyze a large amount
of existing experimental data exhibiting unusual behaviour. In relation to the latter,
some of the difficulties revealed by the standard (equilibrium) analysis of random-field
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systems seem to be associated to the fact that their macroscopic behaviour is
influenced by kinetics and has other nonequilibrium features.

The study of other impure materials is hampered by similar difficulties. This has
been the main motivation to model recently spin glasses (Garrido and Marro. 1991)
and magnetically dilute systems (Garrido and Marro, 1992) by adopting a point of
view which differs from the standard consideration of quenched disorder. That 1s,
one may argue that impurities are not [rozen-in in natural systems but keep moving
in time due to atomic migration; unlike in the familiar annealed systems, however,
such a conceivable diffusion of disorder in real matter probably occurs rather
independently of the other (spin) degrees of freedom. Following this philosophy, we
study here Ising-like systems whose kinetics involve a random competition between
various external magnetic fields. This generates a sort of dynamical frustration whose
consideration might be relevant to the understanding of some of the peculiarities
exhibited by random-field systems in nature, given the situation described above. In
any case, our system is also interesting because 1t represents a magnetic system under
a randomly fluctuating magnetic field, e.g.. one which varies regularly with a much
shorter period than the mean time between successive transitions modifying the spin
configuration. Moreover. the competition which characterizes our model system is
in 4 sense equivalent to a non-Hamiltonian constraint which prevents the system
from reaching true equilibrium: the model may thus illustrate both nonequilibrium
phase transitions {and critical phenomena) and their possible occurrence in disordered
systems. We report in this note the main exact results from our study of this model;
we hope this will inspire further interest in the model perhaps molivating, 1n
particular, a related experiment. A more detailed mathematical study of a model
which generalizes the present one is reported in Lopez-Lacomba and Marro ( 1992},

Consider an interacting-spin d-dimensional lattice system at temperature 7" with
configurations s = {s, = +1} whose probability at time ¢ satisfies a (marcovian)
master equation (Glauber, 1963; Kawasaki, 1972; Ligget, 1985), 1e., ¢P(s;0)idr =
T [els |sYP(s"; 1) — cls7|s)P(s: )], where 5" is the configuration obtained from s after
flipping the spin at lattice site r, s, — —s,. Unlike in more familiar cases, the transition
rates per unit time for transitions from 5" to s, c(s|s”) = 0, will involve here a series
of simultaneously competing independent spin-flip or Glauber (1963) mechanisms.
Namely,

c(s'ls) = [els"ls: )] = J dhf (R)c(s"|s: h).

Here, 4 represents a random applied magnetic field which has a (normahized)
distribution f{k). and each clementary Glauber mechanism driven by cls"| 5. h) satisfies
a detailed balance condition. Namely, c(s|s;h) = c(s|s”; hexp[ —fAH,], with
B =(kzT) ' and AH, = H(s"; h} — H(s; h). This involves a series of “Hamiltenians™,
His; h); these may be assumed to have the Ising structure, for example, i.e., H(s; h) =
—JZuns,s, — hZ,5,, for all h, where the first sum is over nearest-neighbour (NN)
pairs of siies and J is a consiant.

This model has two simple interpretations. On the one hand, each elementary
Glauber (canonical) mechanism acts at each kinetic step as if the strength of the
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applicd ficld is 4 all over the system. with # selected al random from fi/n. Disregarding
possible experimental difficulties, this situation may be implemented in the laboratory
by changing very rapidly the field acting on a magnetic sample, as indicated above,
Alternatively, given that Glauber processes are local, one may interpret the model
as one where only the field on the spin whose flip is attempted is changed at cach
kinetic step. Thus, independently of the initial distribution of local fields, the system
will always be acted on by a spariaf field distribution which is a realization of fik)
after some transient time. This is similar o the situation in the QRFIM, except that
such a spatial distribution will keep changing with time independently of the spin
system. We claim that similar changes in the spatial distribution of local fields may
occur in practice, for example, in a random-field system in which the magnetic ions
(acted on by random local fields) diffuse randomly, or in a dilute antiferromagnet (in
a uniform field) constantly having a random migration of non-magnetic ions. One
may convince oneself that the above two interpretations imply the same thermo-
dynamics, except for the definition of some Auctuations. For simplicity. we shall refer
explicity in the following to the former case. ic. to a magnetic system under a
fluctuating field. The system has then two well-defined limits for Sy =oth + hy)
corresponding to the {pure) kinctic Ising model with equilibrium states characterized
by temperature 7 and energy His; +h,). respectively. whose nature is well known,
Excluding these limits, the simultaneous competition between the independent fields
at each kinetic step will in general induce, as if the system were acted on by some
external non-Hamiltonian agent, an asymptotic tendency towards a steady non-
cquilibrinm state which may depend on fih) and o(s"|s; #) in addition to T,

The physical situations of interest naturally suggest that one can assume that the
rates can only depend on the “energy” cost of the attempted transition, e.g.,
os"|s i) = PIFAH,), where ¢tX) is an arbitrary function. except that ¢(X) =
¢~ “(—X) in order to fulfill the detailed balance condition. Lacking other criteria,
we shall consider the case ¢(X) =e "**[cosh(3xX)] ! This is actually rather
general, with o = 0, + | corresponding to familar rates introduced before in different
problems (see, for instance, Ligget, 1985; Kawasaki, 1966). We shall consider explicitly
distributions

SO = 3pdth — p ) + Spdth — )y + (1 — ploth — ) w, =+ 3, (1)

which are characterized by [#] = p and 14%] = 1@ + pC2. This induces a rich beha-
viour, and it allows for a significant comparison with previous results by Grinstein
and Mukamel (1983) for the one-dimensional QRFIM; in fact, these authors con-
sidered a field which is {spatially) distributed according to a particular case of (1).
Under the conditions stated, it follows by simple algebra that the stationary
solution of the above master equation may generally be written for the one-
dimensional system as* P¥(s) = Z~! expl — E(s)] with Z = X exp[ — E(5)] and

Es)= —K,Z,5.5., — pfhLs,, (2)

* The details of this proof, as well as some general theorems for systems with competing kinetics, have
been worked out in Loper-Lacomba, Garrido and Marro (1990).
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where K, and /i, depend on 7. fih) and ¢(s"|s: k). Thus, even though a free energy is
lacking here (i.c., one may think of (2) as describing the spins acted on by an external
agent). the system properties may be obtained from Z. For instance. the magnetiza-
tion is simply M =27 '\7Z:(ph,)). and one may define the energy as U =
—J(E, 5,5, — A(Z,s,>. where 2 = k[ = p: (> represents the average with respect
to P¥(x). Thus. U= —J(¢In Z/CK )26 In Z:¢iBh,)]. The resulting behaviour may be
summarized as follows.

When x =0, one gets K, = ./, and tanh(fh,) = [sinh(Bk)][cosh(ph)]' which im-
plies h, = p for any symmetric distribution (1). Consequently, the system behaves the
same as the (equilibrium) Ising model under a field p, except for specific non-
equilibrium fluctuations due to the additional disorder induced by the fluctuating
field. Namely, there is no ﬂuctuatlon -dissipation relation; the mean square fluctua-
tions of the energy are instead o} = ([[H(s; k) — U]y = ks T2C, + o2 Here, C, =
(fU/CT), . represents a specific heat, dnd the extra fluctuations are o2 =
oiloy + M?). where o =[(h — 10°! = p{®. The mean square fluctuations of the
magnetization, M = N sinh{fin). are

oy = [[(Z,5,) — M)*| = Nes cosh(Bp0){ 1 — [w sinh(fi)]* 2.

where w = [sinh?(By) +e "7 and N ois the lattice size. Thus. as long as
1 =0, it follows that oy = pN?e* _and also the familiar behaviour ¢2U ™2 - 0 as
N — », while we have ¢2U 2 ~ pZ3(M/U)? in the same limit when jt # 0. The latter
fact implies, in particular, that, unlike for familiar cases, 62U 2 has a non-zero value
as T — 0 (when p # 0). The resulting critical exponents when = 0, on the other
hand, equal those of the Ising model. The relevance of these similarities between
equilibrium and certain nonequilibrium situations should not be overestimated.
however. In fact. they are a consequence of the symmetry of Fih). For instance,
the distribution f{h)=pdth —p )+ (1 —p)dth —p ) . > p_ . produces instead
K.=pJ and tanh(Bh,) =[ry + (1 = 2py _J[1 — (1 —2p)t. ¢t ]’1 with f, =
tanh[3p. +p 1.

The choice « = 0, which fixes a given kind of kinetics, also plays a simplifying role
in our system. In fact, one may prove that, for x # 0, the restriction to even
distributions, fih) = fl — k), is a necessary and sufficient condition for the existence
of a solution (2) satisfying Eis) — E(s") = In[c(s"{s)/c(s|s")]. Contrary to the situation
above, it then follows that 4, = 0 and

tanh(Z2K,)
= [sinh[p(k + 2J)}/cosh[afith + 20)]]{[cosh[ Bk + 2J)]/cosh[x2fh + 2000

or tanh(2K,) = "tanh[B{h + 27)]] for the particular case x = + 1. For a distribution
of zero mean,

Sih) = 3pdth — ) + 1pdlh + ) + (1 — p)ah), (3)

we get U= —2NJsin}K,[sinh(2K_)]"!, C, = —4NJ sinh}(K )[sinh(2K )] >
(K /CT), M =0, a3 = N exp(2K,),

6i = 4NJ? sinh}(K,)[sinh(2K ] % + Nai exp(2K,)
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and a; = pl°, where
tanh(2K,) = tanh(2pN) [ cosh(24.J) ~ (1 — P)osinh*(B) Jcosh 20, + sinh*()] !

for ¥ = +1. The main conclusion which follows from these equations is that, unlike
the standard QRFIM, the system here depicts an interesting, nonuniversal critical
behaviour as T 0" .

More specificaily, the neighbourhood of the zero-7 point varies essentially accord-
ing to the relation between 2J and {, One has as 7 — (-

a) K, ~ K(1 = 720) + Lin(2/p) for 24 » ¢,
b) K. ~ § In[{4 — p)/p] for 2J = ¢, and
¢) K, ~21n[(2 — py/p] for 2J < <.

Consequently, case a is characterized by U — —NJ. M < 0.0 = 0.0} ~ N2ip)t 2.

70y and o2 ~ aiNQR/p) 22779 |, oy Casebis distinctly characterized by
U NIT—[(4—pp ' L+ (4 —pp 1Y LG,
Oh = N4 —pip 112, of = p22 = qp2

and o7 = 2NJ211 — 402 4 (P14 —p' 1 2 4 No[(4 — Pl 7' while it follows
in case ¢ that '— —NJ!| =L 2—pt 220 —p L s, Ty—=N[2—pp 1] 2
and af - 2NJ? 1 — 21 + (P2=p' "1 Y 4 No[2 - pip ']' 2 Concerning cri-
tical behaviour, for instance. these equations imply that the “pure” zero-T critical
point has been washed out in the latter two cases. as in the QRFIM, due o the
strong randomness induced by the fields. There is, however, some very atypical
situation in case ¢ with p = |, namely, ' 0, C, -0, ot = Nai, 6}, > N. and
K. —0asT-0 It may also be noticed that the correlation length. which is defined
as ¢ = —[intanh(K,)]] !, behaves like <~ 34 —pp 17112 and W2~ pp~ 17t 2
respectively, for cases b and ¢. That is S~p "Fasp-0so that one may define a
non-thermal critical exponent v, = }. On the contrary, case a retains the {familiar)
thermal critical point, though this has a nature which crucially differs from the one
in the pure model, ic. & ~ (50)' ¢ " where ¢ = exp(—2fJ)and v = | — 727,

The quenched case studied by Grinstein and Mukamel (1983) may be compared
with the above one when ¢ = %. In fact, a motivation for this model (GMM) was
aroused by the relevance of the parameter {/J observed by these authors, It should
be remarked, however, that even though the QRFIM may casily be shown to map
onto the Mattis (197¢) spin-glass model wnder a field, which is in turn equivalent to
the more standard spin-glass model by Edwards and Anderson (1975) (onlv) when
d =1, there is no general exact solution for the one-dimensional QRFIM, ie.. a
complete solution for arbitrary 7 and field distribution. Consequently, any compar-
ison we may report needs to refer to rather fragmentary cquilibrium results, We may
compare, for instance, results for the spin-spin correlation function, ) = spspy Do,
where (-5, involves both the usual ensemble average and the disorder average with
respect to f(h). Grinstein and Mukamel have found that, for - = tanh(fJ) # 1 (T = 0)
and Iz < 1 (which implies T — °C, I particular), one has g(l) ~ (pl 4+ 1X1 — py=!
neglecting terms of order 1 — p)z3 of smaller. In our model, g(/) = [tanh(K,)]". For
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2= + 1, a distribution (3). and large J (namely. for any [ > 2J). the latter result
implies in this limit that gi!) ~ (1 — p)'z' neglecting terms of order (1 — pyz'~°
or smaller. That is. the high-temperature nonequilibrium correlation shows a purely
exponential behaviour (as is expected te occur in the present nonequilibrium case:
see Cheng., Garrido, Lebowitz and Vallés, 1991, and references therein), unlike
what apparently occurs in the GMM. The correlation length behaves the same way
in both cases: {*'x —Ilnz—In{l — p). When T =10, g{l} ~ const(l — p)' in the
GMM, and g{f) ~ [3(1 — p)]' here. Again, a warning seems pertinent: the similarities
when 4 =1 between the QRFIM (or the GMM) and our model should not be
extrapelated beyond the conditions stated above, e.g., it is obvious that the two
models essentially differ when the kinetics corresponds to the case ¥ = 0, and a similar
conclusion follows when implementing the rates by the Metropolis algorithm (Me-
tropolis, Rosenbluth, Rosenbluth, Teller and Teller, 1953), for instance.

A more complete evaluation of the significance of our model compels one to
compare this with the random-field system in which the impurities are not quenched
but annealed, ie., they have reached equilibrium with the other degrees of freedom
instead of remaining frozen in. This may be defined via

~
i

Zy={ZAT. S = J [T dh,fih)S explB Y sidsis, + ).
j1 5 i

It follows that the partition function Z, may be written as ||cosh{fih) ~ —
[sinh(fh)]*} ' 2% = 5 times that of the familiar NN one-dimensional Ising model under
a field A, with

A = 187" In{[[coshifh] + isinh(gh) ][ coshifh)] — “sinh(fh ] "L (4)

Thus, given that x is independent of s and that (4) leads to

tanh(fA) = [[sinh(f#)][cosh(fm]] ',

the solution P, .(s) implied by Zy equals the one for the Ising model under a field
A, and also the one for the nonequilibrium system with » = 0. Consequently, annealed
configurational quantities such as the magnetization, its fluctuations, and spin-spin
correlation functions are identical to those for the two above-mentioned systems,
while thermal quantities such as U, Cy, ete. will in general differ essentially, and will
show up a strong dependence on f(h) in addition to the one involved by A. For
example, when on¢ defines AU as the difference between the energies for the
nonequilibrium (with « = 0} and annealed systems, one gets AL/ = (tanh(f) for
distribution (1)} when p = 1; thus, AUV >0 as 7— =, and AU > { as T— 0. In any
case, the comment at the end of the last paragraph also applies here; in fact, the
disorder in our system is not in equilibrium with the other degrees of freedom.
Some exact results concerning the nonequilibrium system with arbitrary d may
also be pointed out. The fact that transition rates need to have a positive lower bound
(Ligget, 1985) implies that, for any distribution f(#) and # = 0, for instance, the system
is ergodic (so that it needs to remain in a unique phase) when f§ < f,, where the
latter satisfies [1 + tanh(B,/)]*" = 2{1 + [[sinh(B)][cosh(f#]]} ! This defines



MAGNFTIC SYSTEM UNDER A FLUCTUATING FITLD 147

a region of the phase diagram where long-range order may be found. Similar resuls
follow easily for other rates. It is also worthwhile to note that the mode! behaviour
may be represented at 7 = 0 by simple random cellular antomata. For instance. the
case x = + 1 with distribution (3) is equivalent at 7= 0 to the cellular automaton
osls) =1 —=s,0,[1 + 5p0iiy)]. 1 —s[x(6, + 6.) + Wo,7, + a.7,1] and
L —5.[2%0, + W3T, 0,7, + 0,6,63) + 0%, 0 ,6110T,]

(with Lm,n=1,2,3, I#¥m#n) for d=1,2 and 3, respectively. The following
notation has been used to shorten the formulae: oy =4, i+, 0, =
Ill(SrJrj + Sr*j)v 03 = ;(SrJrk + Sr*k)* T1 = SppiSrois T = sr+er7j’ and T3 = Sp xSy —ka
where r + ' (v’ = 1, j or k) represent NN of site r,

X = g4+ pl2 + 26(2,) + Ba)]).

v =gl =2 2pbi,) + pii,)],

2= 414 + 1p[30(4,) + 46(4,) + 67,1,

w = g[—4 — 3pii4,) + po(;,)],

and
v=g 1+ p[58(4,) — 400:5) + HAiy]

X)) = OX)&(—X) — 2] where ©(Y) =0 for X < 0 and OX) =1 for X > I, and
4y = ¢/2J — n. This algorithm may easily be implemented on a compulter to obtain
information about the behaviour of the system at very low temperatures. Moreover.
the positivity of the lower bound for ¢(s|s) characterizing this cellular automaton
may be seen to imply, in particular, that the system at zero temperature with { > 6J
is ergodic, so that no phase transition can occur, for any p > O when ¢ = 1 for any

23

p> 3 when d =2, and for any p > 2} when ¢ = 3.
We have benefited from stimulating discussions with Julio F. Fernandez.
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