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We report first-order mean-field results for nonequilibrium random-exchange lattice systems, namely,
Ising-like models whose kinetics involve a simultaneous, random competition between ferromagnetic
and antiferromagnetic interactions that generally induces nonequilibrium steady states. We consider the
competition between symmetric bonds. *J,, symmetric bonds competing with broken ones, +J, and
J =0, nonsymmetric bonds, |J,| and —|J, |, and some of those systems under an external magnetic field
h. The time evolution and steady-state properties, including phase diagrams, are obtained for several lat-
tice coordination numbers, e.g., the case of simple-cubic lattices of dimension d <3. A comparison is
made with existing exact results for d =1, h =0, and +J,,.

I. INTRODUCTION AND DEFINITION OF MODELS

There is a consensus that the so-called spin glass be-
havior detected in diluted metallic alloys' is a conse-
quence of frustration. In fact, some unusual macroscopic
observations in a class of magnetic materials at low tem-
perature seem largely determined by the impossibility of
satisfying all the interactions when the exchange energies
are capable of both positive and negative values.’?”°
While this idea has certainly produced fundamental pro-
gress, it may be said that the understanding of spin
glasses is still an open problem.’~’ In addition to the
fact that exact results remain scarce, one may note, for
example, that nonequilibrium effects seem here to play a
fundamental role. For example, under some conditions,
frustration may prevent a system from reaching a single
(equilibrium) steady state and cause dynamics to deter-
mine relevant macroscopic behavior. Therefore, the fact
that there is at present, no solvable microscopic model
that is accepted to capture all the essential features of
ideal spin glasses, thus serving as a reference to studying
real materials, has several origins. Namely, this is not
only due to the resistance demonstrated by familiar equi-
librium models of disordered systems to admit a precise
analytical treatment, but also a consequence of the
present relatively poor development of nonequilibrium
statistical mechanics, which is probably relevant to the
understanding of those materials. Hence there is
significant interest in studying simple nonequilibrium
model systems incorporating microscopic disorder. This
belief has recently motivated a nonequilibrium version®°
of the model studied by Edwards and Anderson.” That
system, to be designated here as the nonequilibrium spin-
glass model (NSGM), allows investigation of nonequili-
brium steady states (eventually undergoing phase transi-
tions and critical phenomena), which is an active area of
research at present,® 2 and might also allow the exam-
ination of the possible relation between nonequilibrium
states and spin-glass behavior.

A simple version of the NSGM consists of a simple-
hypercubic d-dimensional lattice Q, whose sites sit in-
teracting Ising spins in contact with a thermal bath at
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temperature 7. The latter, together with the action of
some undetermined non-Hamiltonian agent, induces sto-
chastic changes in a way that the probability P(s,?) of
any spin configuration, s={s,=*1,rEQ}, at time ¢

satisfies a (Marcovian) master equation,ﬂ_23 i.e.,

AP(s;1)/3t=7 [c(s|s")P(s"1)—c(s"|s)P(s;1)] . (1.1)

sT

Here, s" represents the configuration obtained from s
after flipping the spin at site r, i.e., s,— —s,, and c(s"|s)
stands for the corresponding transition rates per unit
time. Unlike in more familiar cases, however, the latter
describes here a competing dynamics involving different
interactions. This peculiarity has two main effects; name-
ly, it induces some extra randomness and dynamical frus-
tration during the evolution, and the spin system may
thus be asymptotically driven to a nonequilibrium steady
state. Formally, the transition rates in this paper are
defined®”®

+ o

c(s’ls)=[c(s'IssN]= [ TdI fDe(sT s . (1.2)

Here, J stands for a random variable, with (normalized)
distribution f(J), which represents the interaction
strengths or bonds between pairs of spins, and ¢ (s'|s;J)
describe independent spin-flip or Glauber mechanisms®*
satisfying individually a detailed balance condition, i.e.,

c(s'|s;J)=c(s|s";J)exp(—BAH;) (1.3)

where B=(kT) ' and AH, =H(s";J)—H(s;J). This in-
volves a set of Hamiltonians which, for simplicity, we will
take to be of the nearest-neighbor (NN) Ising type with
no field, ie., H(s;J)=—J3NNS:Sy» Where the sum is
over all pairs of NN sites. A simple and natural choice
for the elementary transition rates appearing in definition
(1.2), 1s

c(s'[s;J)=¢(BAH,) , (1.4)

where ¢(X) is an arbitrary function except that it satisfies
d(X)=e *p(—X), $(0)=1, and #(X)—0 as X — 0, in
order to fulfill both (1.3) and appropriate boundary condi-
tions.
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Several different choices for the distribution f(J) of
bonds in (1.2) produce a number of interesting cases. The
simplest situation occurs for f(J)=8(J —J,), where
represents the Dirac delta function. Then, when J; is a
positive (negative) constant, a single ferromagnetic (anti-
ferromagnetic) Hamiltonian is involved, and any spin-flip
rate satisfying (1.3) drives the system to the equilibrium
state for temperature T and energy H(s;J,), whose na-
ture is well known.?! The crossover situation one may
imagine between those two limits is more intriguing. In
fact, the (kinetic) competition of J’s will then induce the
system to go asymptotically towards a steady state which
is a nonequilibrium one in general, as if it is acted on by
some external agent, whose nature depends on T, f(J),
&(X), and H (s;J). More precisely, when the bond distri-
bution is

fN=pd(J —Jy)+(1—p)8(J +J,y), Jo>0, (L.5)

a superposition of two independent spin-flip mechanisms
ensues, each one with its own coupling constant chosen
at random from distribution f(J). This means that kinet-
ics attempts to change the interaction strength at each
step to take the same value (*J, with respective proba-
bilities p and 1—p) all over the system. Note, however,
that, in so far as the elementary spin-flip processes are lo-
cal and the interactions in H (s;J) are restricted to NN,
so that only a small neighborhood of the spin s,, involved
by the attempted transition enters ¢(3 AH), kinetics at-
tempts to change interactions (only) around s .. This
justifies the name of NSGM given to the system.” Actu-
ally, starting from an arbitrary spatial distribution of
bonds (every one equal to each other, for instance) kinet-
ics will soon establish a random spatial distribution
which is a realization of f(J) at any given time during
the evolution. That is, instead of remaining frozen in, as
in the Edwards-Anderson model,? the spatial distribution
of bonds keeps changing with time in the NSGM system
as if it were locally driven by a kind of very fast infinite-
temperature mechanism. (This may be interpreted’ as a
first approach to the actual situation in natural systems
where atomic mobility might in practice induce a change
with time of the spatial distribution of impurities.) The
NSGM also differs from the annealed version of the
spin-glass model,?* where the bond disorder is instead in
equilibrium at temperature 7 with the spin degrees of
freedom. Another case of interest corresponds to the
bond distribution

SWN=qd8(N)+(1—=g)[pb(J =J)+(1—p)d(J +J,)],
(1.6)

where J,,J,>0. Kinetics then involve a simultaneous
competition between broken bonds and nonsymmetric
ferro- and antiferromagnetic interactions which, in par-
ticular, is expected'® to induce a sort of percolation phe-
nomena. Finally, the rectangular distribution

(2xJy)™!, when Jo(1—x)<J <Jy(1+x)

SfU)= 0 (1.7)

otherwise .

where J, and x are both constant positive-definite param-
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eters, is also interesting; this corresponds to a random-
exchange situation which involves a competition between
ferro- and antiferromagnetic interactions (only) for x > 1.

The NSGM cases (1.5) and (1.6) have been previously
solved exactly, under some conditions, for one-
dimensional lattices.”>!® That already revealed some
striking behavior which, as argued above, differs essen-
tially from the more standard (quenched) spin-glass mod-
els and from its corresponding annealed versions. That
solution was feasible because the steady solution of (1.1),
i.e., the limit of P(s;t) as t— o, may be written as
P(s)xexp(—E(s)), and it follows in some cases that
E(s) exists and it has only a finite number of items.
Namely, for d =1 in the absence of any external field,
and for certain choices of the function ¢(X), one simply
gets E(s)=—K, 35,5+, wWith

K,=—1n[[$(4K)][$(—4K)] 7] ;

here, K =BJ and [ ] denotes the average defined by (1.2)
and (1.4). Some partial exact results have also been re-
ported for d > 1;° namely, a simple (cellular-automaton)
representation of the evolution of the system at zero tem-
perature, and bounds for the location of a possible phase
transition. Those studies for d =1 have suggested, and
demonstrated some times, very rich phase diagrams and a
variety of critical behavior. This compels one to look for
more general results when d > 1, and also to consider
more complex one-dimensional versions than in previous
studies. In particular, a great deal of interest exists in
cases where a simple, short-ranged global or effective
Hamiltonian E (s) does not exist or cannot be found by
using the techniques now at hand.!!

We report in this paper analytical and numerical re-
sults for NSGM systems obtained by means of a kinetic
mean-field method in the pair approximation.'> We are
specifically concerned here about d-dimensional systems
under the presence of a field 4, i.e.,

H(s;J)=—J ¥ s.;s.+h ¥s, forallJ, (1.8)
NN r

where h is a constant, and we consider several lattice
coordination numbers corresponding, for instance, to
simple-cubic lattices with 1 <d < 3, for which no effective
Hamiltonian E (s) is known. This generalizes the exact
solutions found previously®!° for » =0 and d =1. We in-
vestigate here the influence of kinetics on (nonequilibri-
um) steady states by considering different transition rates.
In fact, while most of our results are for the algorithm by
Metropolis et al.,?

$(X)=min(1,e™%) , (1.9)
we also consider the cases?® 1322

d(X)=2(1+eX)"! (1.10)
and

HXy=e 5. (1.11)

The influence of the distribution f(J) on the steady-state
properties is more conveniently evaluated when the mod-
el admits an exact solution; consequently, we shall re-
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strict ourselves in this paper to the most familiar cases,
i.e., to distributions (1.5)-(1.7). Two different versions
will be considered for (1.6), i.e., the symmetric case
J,=J, and the asymmetric case corresponding to the
choice J,=1J,.

II. DETAILS OF THE METHOD

Our method of solution is based on a kinetic mean-field
approximation which has been successful in the study of
various lattice problems involving spin flips, interchange
processes, or both.!>!>1¢ The same method of solution
has been applied recently?’ to a kinetic Ising model,
whose dynamics involves a competition between two tem-
peratures,?® which essentially corresponds to one of the
versions we consider here. Note that mean-field approxi-
mations are exceptionally convenient here because they
are believed to be more realistic in the description of
nonequilibrium phenomena than in equilibrium; actually,
there are some recent indications in that
sense, 127 14,17-20,29

The resulting description in this paper has a mean-field
nature because it rests upon specific equations for the
time evolution of mean local quantities obtained from the
master equation (1.1) under well-defined hypotheses,
which amount to neglecting some correlations. In order
to make this explicit in the present case, where the sys-
tem evolves via spin-flip processes, let 4 =A(sp)
represent a microscopic dynamical function which de-
pends on the spin variables at a small compact set of sites
or local domain D whose configuration is sp. The
relevant averages are

(4),=3 P(s;t)A(sp)=3 Q(sp;t) A(sp) ,

Sp

where (using an obvious notation) Q(sD;t)Ezs_sDP(s;t)

represents the probability that D has configuration s, at
time ¢. For any given domain D, define the set of interior
sites to be denoted I, and the set of surface sites, S, as fol-
lows: D=I1{JS, IS =@, and I={rED; such that if r’
is an NN of r then r' €D}. That is, I contains all the lat-
tice sites in D which have all NN sites as elements of D,
while any rES will have at least a NN site outside D.
Then, one may conclude from the master equation (1.1)
in the approximation of interest that

(A(sp)),/3t=T 3 8A(sp;r)c(sh|sp)Q(sp;t) .

r€ls,
2.1

Here, § A(s;r)= A(s")— A(s), and it is assumed that,
given the function c(s’|s) with r belonging to I, every
other site involved by c(s|s) belongs to D; this condition
is fulfilled by any familiar transition probability and, in
particular, by rates (1.9)-(1.11). It should be noted that
the temporal evolution of the system will proceed by per-
forming only flips on the spins belonging to I, while the
spins in S contribute to the energy and to the probability
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of the configuration within D. In order to obtain (2.1)
from (1.1) one also needs to assume that

S 3 84(sp;r)c(s’s)P(s;1)=0 .

res s

(2.2)

This is the fundamental approximation in the method; it
amounts to destroying correlations between the spins in
D and the rest of the system. Consequently, the effect of
assumption (2.2) may become negligible as D tends to
equal the whole lattice; in fact, varying the size of D
modifies the order of the approximation insofar as one
deals consequently (in a more detailed way) with the
correlations inside the domain D.

To examine the meaning of (2.2) more deeply, one may
note that the microscopic dynamical variables of interest
may be written for all practical purposes as
A(sp)=als, p)+s B(s, p), for all r€ D, where a(x) and
B(x) stand for arbitrary functions and s, j, represents s
when the spin variable s, is excluded. Thus,
8A(sp;r)=—2s5,B(s, p) and (2.2) reduces to
3 e {s.c(s"[s)B(s, p))=0. For an arbitrary 4 (sp), im-
plying that B(s, ) is also arbitrary, the latter condition
indicates that s c(s'|s) is zero on the average for any r
belonging to the surface of D. That is, (2.2) is equivalent
to neglecting some fluctuations in the local magnetization
surrounding I. This (nonequilibrium) approximation is
essentially analogous to the one in the familiar Bethe-
Peierls theory for equilibrium (in particular, it is a first-
order mean-field description) when D has a minimum
size, while the consideration of larger domains may suc-
cessively lead to higher-order approximations, as indicat-
ed above. The minimum size for D when kinetics consists
of spin flips is such that I contains a single spin for any
lattice dimension. Nevertheless, given that the system
here is expected to present antiferromagneticlike order,
one needs to consider clusters whose interior I contains
(at least) two NN spins surrounded by 2(d —1) spins be-
longing to the surface S. This allows for the necessary
definition of two sublattices; namely, each spin within I
then belongs to a different sublattice.

In addition to the two mentioned assumptions, the ex-
plicit use of equation (2.1) and the need of consistency of
the ensuing description requires further simplifications
concerning Q (sp;?). Namely, one may write (exactly)

Q(SD;t)=1+(erD>t 2 sr+<erDsr'€D)t 2 S¢Sy
re€D nr'eD

+...(Hsr)tnsr,

reD r€D

but the averages here, which are defined as taken with
P (s;t), are to be written in terms of (only) a few low-
order correlation functions, thus introducing a new ap-
proximation in the description of the system. (Note that,
in any case, this approximation needs to be consistent
with the previous ones.) In the present case, we will ap-
proximate the average ([],cps.), above by a function
of only {s,cp), and {s,cpSyep),, Where r and r’ are
NN, in order to remain within a first-order mean-field
description. This means in practice that
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Q(SD;I):Q(SD;<S>,<SS )NN;t)

is to be written in terms of the following quantities only:
the densities of up spins in sublattice i, to be denoted by
x;, with i =1,2 referring to the sublattices 1 and 2, re-
spectively, and the independent densities of different
kinds of NN pairs. In the present case, with two sites in
I, if we indicate state up by + and state down by —, one
may have four different types of NN pairs, namely + +,
— —, +—, and — +, where the two symbols always cor-
respond to sublattices 1 and 2, respectively, whose densi-
ties will be designated in the following as z, w, v, and v,,
respectively; note that w=1+z—x,; —x, and v, =x; —z.

N 2
Q(sp;x1,%x5,2;0)=p(sy,5,)p(+1s) ' p(—ls))

Here, p(s,s’') represents the joint probability for the NN
pair of spin variables (s,s’), p(s|s'):p(s,s’)p(s’)"1 is a
conditional probability, and p(s) is the probability of s.
Then, p(+,+)=z, p(—,—)=w, p(+,—)=v,;, and
p(—,+)=v, as a consequence of the definitions in the
preceding section. It is also convenient to refer to the
density of down spins at each sublattice, to be denoted by
yi(=1—x;), and define the variables m =1(m;+m,) and
A=1(m;—m,), where m; =x;—y,; stands for the magne-
tization density at each sublattice, i =1,2.

Combining Egs. (3.1) and (2.1), it follows that the main
independent equations describing the time evolution of
the system in this approximation are

dx;/dt=A,, i,j=12, i#j, (3.2)

ij?
and

(4d —1)(dz/dt)=2d(B,,+B,,) , (3.3)

where A4;; and B;; depend strongly on the system dimen-
sion and on the form assumed for the elementary transi-
tions rates, namely,

2d |2d
4,=3 |, [w ="y} =2 _(d —n)
n=0
—z2 " mrx 172 (d —n)) (3.4)
and
B,»j=n22:0 2’:1 [nwzd—nvjnyil—qu)_(d —n)
—(2d —n)z¥ " "yx} " ¥d_ (d —n)],
(3.5)
where
®,(X)= [ dJ f())$p(4XBIL2Bh) (3.6)

and f(J) and ¢(X) are the functions introduced in (1.2)
and (1.4), respectively.
Equations (3.2)-(3.5) may also be written in terms of

d—1-N* NG 2d
Up(+lsy) 2 p(—lsy)
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III. TIME EVOLUTION EQUATIONS
FOR A d-DIMENSIONAL SYSTEM

When one refers to a d-dimensional system, the domain
of interest (as defined above) may be characterized by the
spin variables at the two sites in I, say s; and s,, and by
the number of up spins within D, and D,, say N, and
N5. D, and D, are defined such that D,ND,=g,
D,UD, =S, and D; contains the 2d —1 sites (around the
interior site i) which belong to S and are NN of i. Thus,
the associated probabilities for the occurrence of a given
domain configuration are, within the (pair) approxima-
tion of interest,

1Nt
=N (3.1)

m, A, and z. Then, in the absence of a field (A =0) the
leading terms have the following structure:

dm /dt=mg (z;BJ]) , (3.7)
dA/dt=Ag,(z;B]), (3.8)
and
dz /dt=g;(z;8J) (3.9)
to first order in m and A. Here,
2d
gi(z;BN=3 |, |27 (4—2)
n=0
X 2(2d—1)—l‘iz_—" d(d —n),
(3.10)
2d
gz:BN=3 |, |22 7(4—2)
n=0
X 2(d—1)—% ®d—n), @11
and
2d |2d
g:(z;8N=3 |, |d —n)z? "ML —2)"®(d —n) ,
n=0
(3.12)

and we are naturally dropping the index * in the func-
tion defined by (3.6) when it refers to & =0.

IV. STEADY-STATE PROPERTIES
FOR h =0ANDd <3

The search for stationary solutions of the system
(3.7)-(3.12) may proceed by noting that, at high enough
temperatures, the stationary state is expected to be
characterized by m =A=0 and z given by g4(z;8J)=0;
these solutions are paramagnetic ones whose stability re-
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quires that g,(z;8J)<0 and g,(z;BJ)<0. In addition,
one may expect, at least, ferromagneticlike states charac-
terized by m#0 and A=0 and antiferromagneticlike
states characterized by m =0 and A%0. Thus, the tran-
sition points between disordered and ordered states may
be associated with solutions of g;(z;8J)=0 showing up
an incipient instability condition, i.e., those producing ei-
ther g,(z;B8J)=0 or else g,(z;BJ)=0. The former case
leads to

z=1d(2d—-1)"",
(4.1)
2d

2

n=0

2d

n (d —n)(d —1)"d ""®(d —n)=0 .

which corresponds to the transition between paramagnet-
ic and ferromagneticlike states. Actually, the equilibri-
um, noncompeting condition occurs for ®(n)=d¢(4nBJ,),
whose substitution into (4.1) leads to the familiar Bethe-
Peierls result, i.e., T.=2J,/kgln[d/(d —1)]. On the
other hand, the condition g,(z;BJ)=g;(z;8J)=0 leads
to

z=ld—-12d-1"",
4.2)

(d—n)(d—1)/d]*¥ "®d(d —n)=0.

2d

b

n=0

2d

n

which corresponds to transitions between paramagnetic-
and antiferromagneticlike phases. Given that we have re-
quired arbitrarily small values for m and A above, both
(4.1) and (4.2) will in general define lines of critical points;
first-order phase transitions only occur under some spe-
cial conditions, as revealed below.

The simplest case corresponds to a chain under zero
field. It then follows from (4.1) and (4.2) that ®(1)=0
and z=4, and ®(—1)=0 and z =0, respectively. This
implies in particular that, as it is also exhibited by the ex-
act one-dimensional solution of the same model,’ the
competition (1.5), i.e., the case

®(n)=pd(4nBJy)+(1—p)p(—4npBJ,) ,

precludes the existence of the pure zero-T critical point
for any p differing from either O or 1 and for any transi-
tion rate of the form (1.4). We also find that
z7'=2[14+®(1)2®(—1)" 2] for any T > 0.

Let us consider now the case d =2, h =0, and distribu-
tion (1.5). The critical line which follows from (4.1),
occurs for z. =1 and T, =T,(p), which is given by

g(pB.J)=(1Tp — 1)$(8B,J )+ (20p —4)$(4B.J )
—(20p —16)d( —4B,J,)
—(17p —16)¢( —8B.J)=0 , 4.3)

B.=(kgT.)”!, and the critical line which follows from
(4.2) occurs for z,=1 and for T=T,(p) obtained from
g(1—p,B.J)=0, B.=(kpT.)"'. To be more explicit,
when the elementary rates are of the Metropolis type,
(1.9), the transition line separating the ferromagneticlike

phase occurs at
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(17p —1)x2+(20p —4)x, +(32—37p)=0, z.=1 (4.4)

with Y, =exp(—28.J,), and one obtains a similar equa-
tion from (4.3), namely z; =} and (4.4) with p replaced by
1—p and x. replaced by y.=exp(—28.J,), for a line
separating the paramagnetic- and antiferromagneticlike
phases. By requiring 7.=0 (or T,=0), the solution p,
(or 1—py)=12 follows. Summing up, the steady states
for d =2 with Metropolis rates are characterized by
m =A=0 for any temperature T when 1—p, <p <p,,
are ferromagneticlike (in the sense that they are charac-
terized by m70 and A=0) for p 2p, and T <T,(p), are
antiferromagneticlike (characterized by m =0 and A¥0)
for p=<1—p, and T <T/(p), and the transitions occur-
ring at both T, (p) and T,(p) are always of second order.

It seems worthwhile to note that, in the same approxi-
mation, the corresponding annealed version of the equi-
librium model, i.e., assuming that an initial (spatial) bond
distribution (1.5) has finally reached equilibrium with the
Spi1212 system, is characterized by transition lines satisfy-
ing

(2p —)tanh(B.Jy)=+(2d —1)" !, (4.5)

which implies p,=2 for d =2, and py=1—py=1 as
d— . The comparison with the corresponding result
above, suggests that the dynamical competition between
bonds in the nonequilibrium system is more effective in
destroying magnetization than the, say, “correlated com-
petition” between bonds that characterize the annealed
case, as one should expect.

The annealed spin-glass system also differs from the
NSGM in that the steady states of the latter may depend,
even strongly, on the distribution f(J) and on the rate
function (1.4). In order to illustrate the latter fact, con-
sider first the Kawasaki type of rate (1.10) which trans-
forms (4.1) into

17p—1 ,20p—4 20p—16 17p—16 _ 1
—2 + —1 - - ) _0, Z, =7 .
1+x; 1+x; 1+, 1+ 2 3

(4.6)

As shown in Fig. 1(a), even though some significant devi-
ations occur, the behavior implied by (4.6) is qualitatively
similar to the one for the Metropolis case (4.4). It may be
mentioned that both cases are characterized by (1)
Po=2, (2) a symmetry around p =1, which implies, in
particular, that A(T,1—p) behaves identically to m (T, p),
and (3) curves m =m (T) and A=A(T), which, due to the
competition, do not tend towards saturation as 7 -—0
when p < 1. The fact that the states are not self-similar,
i.e.,, no common behavior is depicted by curves such as
m =m (T) when one measures T in units of the transition
temperature and scales m arbitrarily, is also noticeable.
The qualitative (even semiquantitative) similarity found
between cases (1.9) and (1.10) does not hold, however, for
other transition rates. For example, the case (1.11),
which happens to produce the same results as the
choice' ¢(X)=e ~*/?[cosh(BJ,)] ¢ when one considers
the distribution (1.5), leads to
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(17p —1)x2+(20p —4)x.—(20p —16)x. '

—(17p —16)x.2=0, z,=1. @7

Even though the symmetry around p =41 with
A(T,1—p)=m(T,p) still exists, the situation implied by
(4.7) is more involved (and interesting) than those follow-
ing from either (4.4) or (4.6). This is illustrated by Figs.
1(b) and 2, which indicate that the solutions of (4.7) are
always stable (corresponding to second-order phase tran-
sitions, as discussed above for the other rates) when
T > T,, while unstable solutions representing first-order
phase transitions may occur when T < T,. Thus, (T5,p,)
is a sort of (nonequilibrium) tricritical point separating
first- from second-order phase transitions. Moreover, as
depicted by the phase diagram in Fig. 2, two different
phase transitions may occur for p,>p >p;: The high-
temperature phase transition corresponds to the familiar
equilibrium one, i.e., it separates ordered states from
states which are thermally disordered, while the low-
temperature phase transition, which is first order for
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D4 >p > ps and continuous for p; > p > p,, is to be associ-
ated with dynamics. That is, long-range order may be
suppressed at low temperatures by rates (1.11), which are
not normalized, given that they favor low-energy
configurations very strongly, and the effectiveness of the
competition is enhanced in such a way that any segrega-
tion is avoided in practice. Note, however, the essential
differences between this effect and the one reported for
some annealed systems,’* where some sort of low-
temperature suppression of order occurs that is indepen-
dent of the dynamical process and comes associated in-
stead with the properties of a certain bond distribution;
moreover, all the transitions therein are of second order
and there is no tricritical point consequently.

The transition line following from (4.1) when d =3
(and h =0) is defined via z, = 5 and
7299(3)+19449(2)+ 16209 (1) —720P( —1)

—384P(—2)—64P(—3)=0. (4.8a)

For distribution (1.5), (4.8a) reduces to

(793p —64)(12B,J,) +(2328p —384)$(8B,J,) +(2340p —720)¢(48,J,)

—(2340p — 1620)¢( —4B,J o) —(2328p — 1944)d( —8B.J ) —(793p —729)¢(— 12B,J5)=0 .

As one might expect, the ensuing picture is qualitatively
similar to the one for d =2 (cf. Fig. 2); actually, we only
expected singular the case d =1, where the equilibrium
critical point occurs at zero temperature.

We find it interesting to remark that the existence of a
region of the phase diagram, which is defined by
1—po <p <po, where steady states are characterized by
m =A=0 at any temperature, is an attribute of the mod-
el for any d when A =0. As is known to occur in the
standard (quenched) spin-glass model, this does not ex-

(4.8b)

r

clude the existence of a condensed phase whose descrip-
tion requires an order parameter which is independent of
m and A.? Such a possibility cannot be analyzed within
the present mean-field approach, however. This becomes
evident after realizing that the steady states with
m =A=0 are characterized by the value of z obtained
from condition g;(z;BJ)=0. This implies the existence
of lines in the phase diagram characterized by z =const,
which connect nonequilibrium self-similar (p,T) states
with the equilibrium state corresponding to p =1 (or 0)

FIG. 1. (a) Temperature dependence of the order parameter m for d =2, h =0, and distribution (1.5), as one varies p as indicated.
The solid lines are for these rates (1.9), and the dashed lines are for rates (1.10); they correspond to Egs. (4.4) and (4.6) respectively.
m =0 for all T when p <p,=0.8649 in both cases. The curves A=A(T,1—p) are identical to those for m =m(T,p). The tempera-
ture is given everywhere in units of Jo/kp. (b) The same as (a) except that transition rates are (1.11), i.e., the behavior implied by Eq.
(4.7). The curves here correspond to p =1, 0.95, 0.94, 0.93, and 0.912 from top to bottom. The solid lines represent stable solutions.
Unstable solutions (dashed lines) corresponding to discontinuous behaviors occur for p <p,=0.9396. Two discontinuities appear for
P <p,=0.9240 which finally coalesce at T=T;=0.87 for p =p; =0.9095.
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FIG. 2. Mean-field phase diagram for d-dimensional simple-
cubic lattice, A =0, (1.5) and different rates: curves 1, 2, and 3
are for (1.9), (1.10), and (1.11), respectively. The solid curves in-
dicate lines of critical points. Dashed curves correspond to
first-order phase transitions occurring for rates (1.11) below a
tricritical point at (7T,,p,). The curves are qualitatively similar
for d=2 and 3. Here p,=3%, p,;=0.9412, T,=2.8854,
T,=1.5574, and T,=0.431 for d =2.

and temperature T'. For instance, the solutions of (4.3)
correspond to states which are self-similar to the equilib-
rium state (p =1, 7'=2/In 2), and the line z=1} corre-
sponds to p =1, which is self-similar to (p =1, T'= o).
A Monte Carlo analysis might be very helpful in detect-
ing possible new qualitative kinds of order in the NSGM.

One should expect that the bond distribution will also
significantly influence the macroscopic behavior. This is
evident, for instance, from the two equations defining the
lines of transition points separating paramagnetic from
ferromagnetic and antiferromagnetic regions for d =2
and A =0, namely,

160(2)+16P(1)—4P(—1)—D(—2)=0 (4.9)
and

P(2)+4P(1)—16P(—1)—16d(—2)=0, (4.10)

respectively, where @ is defined by (3.6). Restricting our-
selves, for simplicity, to the rate function (1.9) and to the
ferromagnetic case (4.9), we have

27 +(1—q)[(17p — )2 +(20p —4)x,

+(32—37p)]=0, 4.11)

when the distribution is (1.6) with J,=J,=J,, which
represents a diluted (symmetric) spin-glass, and

27g+(1—¢)[16px2+(17p — 1)y, —4(1—p)xt?

+(32—37p)]=0, (4.12)

when the distribution is (1.6) with J, =J, and J,=1J,,
which corresponds to a diluted spin glass with asym-
metric interactions. The ensuing magnetization and ener-
gy curves are qualitatively similar to those for distribu-
tion (1.5), and the transitions given by (4.11) and (4.12), as
well as the (antiferromagnetic) ones given by (4.10), are
always second order. The corresponding phase diagram
is depicted by Fig. 3. By requiring in (4.11) that T.=0
for any given p, a lack of ferromagnetic order follows
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Te/T

) q=1/7 Jq:1/10

X

0
1.0

FIG. 3. Phase diagram for d =2, & =0, Metropolis rates
(1.9), and bond distribution (1.6) representing, for several values
of the dilution variable g as indicated, the critical temperature
T, (in units of the Bethe-Peierls, equilibrium result) vs x; the
latter corresponds either to p or to 1—p according to whether
one considers the ferromagnetic case (4.9) or the antiferromag-
netic case (4.10), respectively. When the distribution (1.6) is
asymmetric, i.e., J,=J, and J2=%JO, the solid lines represent
the case (4.9) and the dashed lines represent the case (4.10). The
solid lines also represent very accurately both cases (4.9) and
(4.10) when the distribution is symmetric, i.e., J, =J, =J,.

when ¢ >qy(p)=(37p —32)/(37p —5); for p =1, this
reduces to gy(1)= %, which locates the onset of percola-
tion in this system. As expected, the same result follows
for go(p) in the asymmetric case due to some cancella-
tions occurring in (4.12) at zero temperature. On the oth-
er hand, the magnetization curves m =m (T) for the rec-
tangular distribution (1.7) tend to saturate for 0=x =1,
where x measures the width of the bond distribution,
while one gets m (0) <1 when one allows for interactions
of both signs by setting x > 1. Figure 4 illustrates the
corresponding phase diagram and compares it with the
one for the annealed system in the Bethe-Peierls approxi-
mation, i.e.,

2x =7In{cosh[(1+x)r']/cosh[(1—x)7 ']},
x#0,

where 7=kyzT/J,. The facts that the indicated phase
transition is second order and that the low-temperature
states are always ferromagneticlike are also noticeable.

3

X

FIG. 4. Phase diagram for d =2, h =0, Metropolis rates
(1.9), and the rectangular bond distribution (1.7) (solid line), and
for the corresponding annealed system (dashed line), both in a
first-order mean-field approximation.
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V. STEADY-STATE PROPERTIES WHEN £ +#0

When the system is acted on by an external magnetic
field, the analytical treatment becomes more complex. In
fact, there is not an exact solution even for d =1. More-
over, the necessary consideration of a domain of 4d spins
entangles our mean-field analytical description for A0
in such a way that a numerical treatment of approximate
equations such as (3.2)-(3.5) is required.

Consider first the case of d =1 with rates (1.9) and a
bond distribution given by (1.5). As expected, the sta-
tionary solutions are characterized by m+0 and A=0.
In particular, when T =0, the magnetization is a step
function of the applied field, which only depends on the
sign of 2J, — h, namely,

m(p) for h <2J,
m (h,p, T=0)= im,(p) for h =2J, (5.1
1 for h>2J, ;

the variation of m, and m, with p is depicted by Fig. 5.
The situation shown by (5.1) and Fig. 5 reflects the fact
that, in the absence of thermal fluctuations, any large
enough field (namely, 4 >2J,) saturates the system for
any bond competition [i.e., for any value of p in (1.5)],
while m(h,p, T =0) significantly depends on both A and
p otherwise. Thus, for small fields, one has m;—0 as
p—0, when the interaction tends to be fully antiferro-
magnetic, m;—1 as p—1, and there is a crossover situa-
tion for h=2J, in which m, is observed to increase
monotonically with increasing p from a nonzero value to-
wards saturation; cf. Fig. 5.

To understand the case of finite T and small p, it is
convenient to remark that, as illustrated by the inset in
Fig. 6, the antiferromagnetic equilibrium system (p =0)
has, for not very high temperatures, two qualitatively
different behaviors depending on the field value. Namely,
for h >2J,, the magnetization m has a definite tendency
towards saturation, which becomes stronger as 4 in-
creases and/or T is lowered, while there is a region corre-
sponding to small fields (for h <2J,) where m —0 as
h —0, more decisively as T is decreased. The main
graphs in Fig. 6 reveals that two qualitatively similar be-
haviors occur for p>0. In addition to that, the +J,

0<h<2Jo

p

FIG. 5. The zero-temperature isotherm m (h,p, T =0), cf.
Eq. (5.1), as a function of p for d =1, Metropolis rates (1.9), and
different range of values for the field, as indicated.
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1 T=0.1
0.5

n/Jo

FIG. 6. The field dependence of the isotherms m (h,p, T) for
different temperatures, as indicated, p =0.1, Metropolis rates
(1.9), and d =1. The inset represents the corresponding antifer-
romagnetic equilibrium result, i.e., p =0.

competition induces new qualitative effects for small
fields; e.g., the system is most affected by the competition,
m becomes practically independent of 4 when
kpT <<h <2J,, and m depends on h when h <<kzT and
h <2J, (unlike for T =0). This interesting region of the
phase diagram may be investigated by linearizing (3.2)
and (3.3) with respect to both m and 4 /kzT. It then fol-
lows that

_ am
XI IE I
oh h=0
:iT(1+2K)(P)(2+q)+K2(2—p —gqx?) (5.2)
2 pY*+K+qx’e ’ '

where k=®(1)/P(—1), 7r=kzT/J, (as before), and
x=exp(—27"!), which is singular at =0 only when
one recovers the equilibrium result, X; !~ T exp(+2/7),
for p =0 or 1; otherwise, X; '~7[q +(q/p)!/?] as T—0.
It is also interesting to compare X| with

XIIET—IEG(|i_j'), (5.3)
ij
where

One has in general for d =1 in the present first-order
mean-field description:!®

G(j)=4xy[(z—xY/xy}, j>O0, (5.5)

which reduces here to G(j)=[(1—k)/(1+k)}; thus,
X =(rx)~1. Although X,; depicts a behavior which is
qualitatively similar to the one shown by X| in (5.2), their
ratio generally differs from unity, implying that a
fluctuation-dissipation theorem breaks down for 0<p < 1;
this is illustrated by Fig. 7.

We have also analyzed equations (3.2) and (3.3) for
d =2 and h70 when dynamics is implemented by the
Metropolis rate (1.9) and the bond distribution is (1.5).
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X, /X, 0
h/Jo
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0 5
1.0 " : . , : T
0 7

exp(=2/T)

FIG. 7. Temperature dependence of the ratio between the
two susceptibilities defined, respectively, by (5.2) and (5.3) for
d =1 and Metropolis rates. The numbers identifying the curves
corresponding to p and to 1 —p, i.e., there is a symmetry around
p= % The inset represents the behavior of X[ 1(T).

The ensuing behavior may be summarized as follows.
When T =0, m and A behave much as step functions
slightly different from (5.1), namely,

wi(p), for h <2J,
ulh,p, T=0)= {u,(p), for 2J,<h <4J, (5.6)
a for h>4J,,

where p stands for either m or A and a=1 or 0, respec-
tively. At h =2nJ, the behavior is singular for
n=0,1,2,... ; this is not an artifact to be associated
with the singular nature of Metropolis rates, but it also
occurs for continuous functions such as (1.10). The vari-
ation of u;, i =1,2, with p is illustrated in Fig. 8. As ex-
pected, this reveals (1) that m; monotonically increases
with p, and (2) a tendency towards saturation (m;—1) as
p—1, (3) the fact that m, <m, for all p, which only

K

FIG. 8. Variation with p of the parameters in Eq. (5.6) corre-
sponding to zero-temperature isotherms. Here, ps =0.3367 and
p7=0.1593.

FIG. 9. Solutions m =m(T) for p =0.9 and, from top to bot-
tom, h/J,=0.1, 0.05, 0.02, and 0. The inset represents
m =m (h) for p =0.9 and T =0.1.

reflects that m increases with 4, and (4) the existence of
solutions A0 for small p, say for p <p,. Note, however,
that, contrary to the naive intuition that 4 tends to des-
troy antiferromagnetic order, one has here that
Pe¢>1—py and that A,>A, for ps<p<p¢ with
ps=0.1182.

The insets in Figs. 9 and 10 represent isotherms for
7=0.1 and p=0.9 and 0.1, respectively, where the step
shape is still evident. The singular behavior mentioned
above of u(h) at h =2nJ is also clear therein. The main
graph in Fig. 9 illustrates the function m (T) for small
fields when p=0.9; it is noticeable there that
m—m(p =0.9)Fm(h =0) as T—0. The main graph
in Fig. 10 represents the situation for relatively larger
fields and p =0.1, where solutions A0 also exist. Sum-
ming up, for a given value of A, one has two types of solu-
tions with m+0; namely, A=0 and m decreases with T
for T > T*(h), whereas A0 and m increases with T for
T <T*(h). The function T*(h) is not simple, e.g., it does
not decrease monotonically with 4 as one might naively
expect, except for p =0, 1, which corresponds to equilib-
rium. The behavior of T*(#) is illustrated in Fig. 11.

FIG. 10. Solutions m =m(T) (solid lines) and A=A(T)
(dashed lines) for p =0.1 and A /J,=3, 1, and 0, as indicated.
The inset represents the variation with 4 when 7 =0.1.
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h/Jo
FIG. 11. The function T*(h) defined at the end of Sec. V for
p =0, 0.1, and 0.13, as indicated.

VI. CONCLUSIONS

We have considered the nonequilibrium spin-glass
model (NSGM) introduced in Ref. 9, namely, an Ising-
like model system whose dynamics involves a simultane-
ous competition of exchange energies (bonds) according
to distribution f(J). Given that the most elementary
dynamical (spin-flip) processes are local, this is essentially
equivalent to having the bonds spatially distributed ac-
cording to f(J), which varies randomly with time in-
dependently of the evolution of the spin degrees of free-
dom; this may perhaps occur in some natural systems.
The model is solved by a kinetic mean-field method in the
pair approximation which deals with local clusters of two
sites and their surrounding nearest-neighbor sites; this al-
lows for the explicit consideration of two sublattices. We
have studied several coordination numbers, correspond-
ing to d-dimensional simple-cubic lattices with 1 <d <3,
and different transition rates for the elementary spin-flip
process, and the case of a system under an external mag-
netic field 4. This treatment leads to the characterization
of nonequilibrium steady states, stability conditions, and
phase diagrams for situations in which an exact solution
is still lacking.

The main specific results may be summarized as fol-
lows: When A =0, the present mean-field approach re-
veals no unexpected behavior; in particular, one recovers
the known exact results for d =1 (Refs. 9 and 10) qualita-
tively. The case d =2, where the symmetric bond distri-
bution (1.5) produces very different phase diagrams ac-
cording to whether the transition rates are given by (1.9),
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(1.10), or (1.11), is more interesting. For example, only
(1.11) leads to the existence of both first-order phase tran-
sitions and tricritical points separating the latter from
second-order phase transitions. Moreover, a competition
of rates (1.11) leads to the suppression of long-range or-
der in some cases. Such a strong dependence of the
steady-state properties on the details of dynamics, and
the breakdown of dissipation-fluctuation theorems in gen-
eral, are distinct features of the NSGM. The considera-
tion of the bond distribution (1.6), on the other hand, re-
veals the decisive influence of f(J) on the macroscopic
properties of the system. For instance, order is only pos-
sible when g <(37p —32)/(37p —5) for J,=J,=J, and
the symmetry around p =3, which is observed to hold
otherwise, is destroyed for J, =2J,=J,. The behavior is
qualitatively similar for d =3, as expected in a mean-field
model.

A most striking behavior is observed for A0. For
Metropolis rates, a bond distribution such as (1.6), and
d =1 and d =s the following occurs: (1) the magnetiza-
tion m (h,p,T =0) is a step function of (the sign of)
h —2nJ,, (2) the system saturates for any p when h >2J,,
and (3) m =m(p), such that m —1 as p—1, for h =2J,.
For the same rates and bond distribution, the magnetiza-
tion of the two-dimensional system at zero temperature is
independent of p (as for d =1) when h >4J,, and AF0
for p <0.3367. Moreover, A increases with 4 for some
values of p, which runs counter to naive intuition that
fields tend to destroy antiferromagnetic order. When the
temperature is finite, the behavior becomes even richer.
In particular, order parameters have a strong dependence
on h for h =2nJ,, and a transition occurs at temperature
T*(h), which separates phases with m 70 and A0 from
phases with m 0 and A=0, if p and 4 are small enough.

The present study generates interest in a numerical
study of the NSGM, e.g., a Monte Carlo simulation to
characterize the kind of order one might expect (follow-
ing the trend in quenched models) at very low tempera-
tures for d = 2 for bond distribution (1.5) and p = 1.

ACKNOWLEDGMENTS

We acknowledge very useful discussions with Pedro L.
Garrido and with Julio F. Fernandez. This work was
partially supported by Direccion General de
Investigacion Cientifica y Técnica, Project PB88-0487,
Plan Andaluz de Investigacion (Junta de Andalucia), and
Commission of the European Communities.

V. Cannella and J. A. Mydosh, Phys. Rev. B 6, 4220 (1972); in
Magnetism and Magnetic Materials, Boston, 1973, Proceed-
ings of the 19th Annual Conference on Magnetism and Mag-
netic Materials, edited by C. D. Graham and J. J. Rhyne, AIP
Conf. Proc. No. 18 (AIP, New York, 1974), p. 651.

28. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975); 6,
1927 (1976).

3G. Toulouse, Commun. Phys. 2, 115 (1977).

4G. Parisi, Phys. Rep. 67, 97 (1980).

K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986),

and references therein.

6M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory
and Beyond (World Scientific, Singapore, 1987).

D. S. Fisher, G. Grinstein, and A. Khurana, and other papers
in Phys. Today, “Special Issue: Disordered Solids,” De-
cember 1988, pp. 56-67, and references therein.

8J. Marro and P. L. Garrido, in Statistical Mechanics of Neural
Networks, edited by L. Garrido (Springer-Verlag, Berlin,
1990).

9P. L. Garrido and J. Marro, Europhys. Lett. 15, 375 (1991)



10 418

10P. L. Garrido and J. Marro, J. Phys. A (to be published).

A, L. Lépez-Lacomba, P. L. Garrido, and J. Marro, J. Phys.
A 23, 3809 (1990).

12p. L. Garrido, J. Marro, and R. Dickman, Ann. Phys. (N.Y.)
199, 366 (1990).

BH. van Beijeren and L. S. Schulmann, Phys. Rev. Lett. 53, 806
(1984).

14A. De Masi, P. A. Ferrari, and J. L. Lebowitz, Phys. Rev.
Lett. 55, 1947 (1985); J. Stat. Phys. 44, 589 (1986).

I5SR. Dickman, Phys. Rev. A 34, 4246 (1986); 38, 2588 (1988).

16p_ L. Garrido and J. Marro, Physica A 144, 585 (1987).

173, Krug, J. L. Lebowitz, H. Spohn, and M. Q. Zhang, J. Stat.
Phys. 44, 535 (1986).

183 Marro, J. L. Lebowitz, H. Spohn, and M. H. Kalos, J. Stat.
Phys. 38, 725 (1985).

19p, L. Garrido, J. Marro, and J. M. Gonzalez-Miranda, Phys.
Rev. A 40, 5802 (1989).

20M. Droz, Z. Ricz, and P. Tartaglia, Phys. Rev. A 41, 6621

J. J. ALONSO AND J. MARRO 45

(1990).

21H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena (Clarendon, Oxford, 1971).

22T. M. Ligget, Interacting Particle Systems (Springer-Verlag,
New York, 1985).

23R. J. Glauber, J. Math. Phys. 4, 294 (1963).

24M. F. Thorpe, and D. Beeman, Phys. Rev. B 14, 188 (1976).

25N. Metropolis, A. W. Rosenbluth, N. M. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

26K . Kawasaki, in Phase Transitions and Critical Phenomena,
edited by C. Domb and M. S. Green (Academic, London,
1972), Vol. 4.

21T. Tomé, M. J. de Oliveira, and M. A. Santos, J. Phys. A 24,
3677 (1991).

28p. L. Garrido and J. Marro, J. Stat. Phys. 49, 451 (1987).

29A. Onuki and K. Kawasaki, Ann. Phys. (N.Y. 131, 217
(1981).



