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AbslracL The study by kinetic mean-field techniques of a ddimensional king system 
characterized by a sort of dpomicol &order reveals a rich phase diagram which exhibils 
a non-equilibrium lricnlical paint (only) for d > 2, and re-entrance phenomena. The 
system time evolution is stochastic due to the simultaneous action of wera l  independent 
spin-flip mechanisms, each cot’responding to a different applied magnetic field. Such 
competition brings a b u t  randomness and a type of frustralion that may occur also in 
real systems. I n  fad, this models the actual case of a magnetic system under a very 
rapidly fluctuating field, for example. Funhermore, the system may be interpreted as a 
non-equilibrium random-field system which. unlike the familiar quenched and annealed 
cases, contains a fast random dillusion of disorder. 

1. Introduction 

Mathematically well defined systems with non-Hamiltonian constraints which prevent 
the realization of thermodynamic equilibrium allow the study of non-equilibrium 
steady states and phase transitions, which is an active area nowadays. Moreover, 
they are sometimes good models for real situations in physics and other fields. For 
example, driven diffusive lattice gases may model solid electrolytes (Marro el a1 1991, 
and references therein), and reaction-diffusion Ising systems are relevant to spin 
diffusion in magnets, chemically reacting systems and population genetics (see, for 
instance, Smoller 1983). It has been claimed that non-equilibrium niodelr may also 
be relevant to understanding some of the poorly explained peculiar macroscopic 
behaviour of certain materials involving microscopic disorder such as spin glasses 
(Garrido and Marro 1991), magnetically diluted systems (Garrido and Marro 1992) 
and random-field systems (Mpez-Lacomba and Marro 1992, which we shall refer 
to as paper I hereafter). The argument behind this claim is that, even though 
most familiar models of these situations only involve quenched impurities, some 
of the reported unusual obsemtions in real systems might also be related to the 
possible diffusion of disorder. For example, one may assume that actual impurities 
diffuse due to a thermally activated random atomic migration, which is an effect 
contained in the non-equilibrium models. However, the only exact results which 
issued from the work reported in I mainly concerned one-dimensional systems. In 
an effort to provide a more convenient description that might allow some contact 
with experimental observations a non-equilibriunt spin-glass model has been studied 
by a kinetic mean-field method in the pair opproxintarion (Alonso and Marro 1992). 
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Following the same philosophy, we describe here a kinetic mean-field theory in the 
zeroth- and first-order approximations for the non-equilibrium random-field model in 
I. The latter system has the added interest that it may probably be implemented in 
the laboratory, as discussed below; we thus hope that the model and its laboratory 
version may help to understand some of the essential features in disordered systems. 

J J Alonso and J Marro 

2. Definition and interpretation of the model 

Consider a simple (hyper-) cubic d-dimensional lattice, 52. Le t  us denote by 
s 5 Is, = f l ; r  E 52)  any spin configuration which is in contact with a heat bath at 
temperature T ,  and by P ( s ; t )  the probability of s at time 1. The system evolves in 
time according to the master equation (see, for instance, Glauber 1963, van Kampen 
1981): 

a P ( s ; t ) / a t  = I s r ) P ( s r ; l )  - C(ST I s ) P ( s ;  t ) ] .  (2.1) .' 
Here, c(sr I s) represents the rate per unit time for transitions from s to s'; the latter 
differs from s in that the spin at site r has been flipped, i.e. s? - -sy, as in the 
so-called Glauber (1963) mechanivn. A main distinguishing feature of the model of 
interest is however that the kinetics involve the simultaneous competition of several 
independent (random) Glauber spin-flip mechanisms. That is, 

+a? 

c(sP 1 s) = l, dh  f(h) c(sr Is; h ) .  (2.2) 

Here, h represents the applied magnetic field, which is to be interpreted as a random 
variable with a normalized distribution f ( h ) ,  and each of the involved elementary 
Glauber mechanisms has an associated rate denoted by c(s' I s; h). As is usual, the 
latter is assumed for simplicity to satisfy individually a detailed balance condition, i.e. 

C(S~ 1 S; / I )  = C ( S  1 s'; h )  exp[-PA H h ]  (2.3) 

where A H h  
the sake of simplicity also, the latter will be taken to be of the Ising type, i.e. 

H(s'; h )  - H ( s ;  h.), with respect to some specific Hamiltonian. For 

(2.4) 

where the first sum is over nearest-neighbour (NN) pairs of sites. 
The simultaneous competition (2.2) of independent canonical mechanisms makes 

the system similar to the magnetic Glauber or kinetic Ising model, except that 
the applied magnetic field changes randomly at each kinetic step according to the 
distribution f(h). As indicated in I, this has two different interpretations: (a) If 
one accepts that h represents the field acting on the whole system, as suggested by 
(2.4). the model corresponds to the case of a magnetic system under the action of a 
fluctuating magnetic field, or more precisely, under a field which is varying according 
to f(h) with a period shorter than the mean time between successive transitions 
modifying the spin configuration. Even though one may guess that this time interval 



Non-equilibrium random-field kinelics 9311 

is relatively short in general, the chances are that such a model situation may indeed 
by implemented in the laboratory. (Note, however, that it differs essentially from 
the case (see, Cor instance, Lo and Pelcovits 1990) in which a system is periodically 
driven by the action of a field between two ordered phases.) (b) The model admits 
a different interpretation when one realizes that the elementary Glauber mechanisms 
are local. That is, given that the elementaly rates involve in practice only a local, vely 
small domain of the lattice, the resulting effective rate (2.2) has the same property. 
Consequently, only the field acting on the spin (at site r) involved by each transition 
(i.e. sT - -sy) is randomly changed a t  each kinetic step to have some value h 
chosen from f(h). Thus, kinetics will soon establish a random spatial distribution of 
local fields, say f;( h), which is a realization of the given f ( h ) ,  independently of the 
initial condition f ; (h ) .  Consequently, under the latter intepretation, the system may 
be described (at each time) by the single Hamiltonian 

H ( s ; h ) = - J C s , s , , - C h , s , .  (2.5) 
NN P 

Here, h This 
corresponds to the familiar random-field king model (Imry and Ma 1975; see also 
Imbrie 1986, for instance) except for the fact that f : (h )  is continuously changed by 
the kinetics in such a way that it always maintains itself as a realization of f(h). As 
discussed with more detail in I, this induces randomness and a sort of (dynamical) 
frustration having two important features. On the one hand, it essentially differs from 
the quenched and annealed (equilibrium) random-field cases. On the other hand, the 
chances are that this kind of frustration may bear some relevance in relation to the 
macroscopic behaviour of natural disordered systems. It should also be mentioned 
that the thermodynamics is almost the same Cor the above two interpretations of 
the model. An exception concerns the amplitude of the energy fluctuations, which 
are anomalously large in case (a), given that any field change then affects the whole 
system, as proved in I; more generally, any macroscopic quantity which is non-linear in 
h will differ essentially Cor the two interpretations. Otherwise, the system properties, 
e.g. phase diagrams that are our main concern here, are the same. 

Finally, it may be remarked in order to clarify the nature of the model, that both 
interpretations have two simple well known limits for f( h)  = 6(h+h,), respectively, 
where 6 is the Dirac delta function and h, represents a positive constant. Namely, 
within those two limits, any spin-flip satisfying (2.3) will drive the system to the 
(unique) equilibrium state corresponding to temperature T and energy H ( s ;  T h o ) ,  
respectively. For more general distributions f(h), however, the situation is much 
more involved. In fact, the competition between several field values (equivalently, 
the random time variations of the spatial distribution of fields) will drive the system 
asymptotically towards a non-equilibrium steady state in general, as if the spins were 
acted on by some external non-Hamiltonian agent, whose explicit dependence on 
f ( h ) ,  T, J and c(s' 1 s) is unknown. This is expected to occur for the simplest field 
distribution describing a crossover between these two limiting conditions, i.e. for 

{hT}, where h,  is spaliul& distributed according to f ; ( h ) .  

f ( h ) = p 6 ( h - h , ) + ( l - p ) 6 ( h f h , )  (2.6) 

for example. Thus, the model may allow one to analyse a variety of non-equilibrium 
phase transitions which, as discussed above (cf paper I also, and references therein), 
might also occur in natural inipure systems. 
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The mean-field treatment in the present paper represents a step further within 
the latter aim, given that the restriction in I to exact results made it necessary to 
consider only systems fulfilling a certain global detailed balance condition which may 
not be realistic in general. In fact, that condition was only proved to hold in some 
one-dimensional systems. We shall avoid the use of this or a similar condition in 
general here. The only restriction below is that, in order to simplify the presentation 
of results, we shall refer to (2.6) with p = $ and to rates c(s I sr; h )  = q ( p A H , )  
in (2.2), where p G (kBT) - '  is the inverse temperature, with either 

q ( X )  = min(l,exp(-X)} (2.7a) 

which corresponds to the  algorithm by Metropolis ef a1 (1953), 

v ( x )  = { I +  exp(x)}-'  (2.76) 

which is a transition probability introduced by Kawasaki (1972). or 

q ( X )  = exp(-X/2) (2.7~) 

which has been used by van Beijeren and Schulman (1984) to study the driven diffusive 
lattice gas. Note that the consideration of several transition rates is interesting given 
the expected influence of the details of the kinetics on the properties of the steady 
non-equilibrium state. 

3. Zeroth-order mean-field description 

The system in section 2 is investigated below by a kinetic mean-field method which 
corresponds essentially to the  first-order theory used before to study, for example, 
the driven diffusive lattice gas (Garrido er al 1990) and the non-equilibrium spin 
glass (Alonso and Marro 1992). In addition to the first-order approximation which 
is presented in section 4, we have performed a zeroth-order approximation which 
is described in the present section. The main motivation for the latter is that it 
may be compared with the results from a computation by Aharony (1978) of the 
partition function for the quenched random-field king system in a mean-field zeroth- 
order (equilibrium) approximation. Such a comparison reveals that the two models 
have some significant differences, even when they are considered in their respective 
crudest treatment. It also follows that a zeroth-order approach hides some of the 
non-equilibrium features of the model. 

We first remark that the evolution of the magnetization, defined as m = ( s ~ ) ,  
follows in general from (2.1) as 

d m / d t  = F ( m )  3 -2(s,c(sr I S ) )  (3.1) 

where ( ) represents the usual thermal averagc. Consequently, the homogeneous 
steady states which are implied asymptotically (for t - M) by (3.1) simply correspond 
to solutions of F ( m )  = 0. On the other hand, our (kinetic) method cannot provide 
a global (thermodynamic) stability criterion, but only a local stability one: namely, 
any solution needs to fulfill ( a F / a m ) , ,  < 0. We also have the possibility of using 
(3.1) to investigate the trajectories m(t )  for different initial conditions, however. 
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The zeroth-order approximation corresponds to considering a cluster which 
consists of the spin sp only, and assuming that the influence of the rest of the 
system on s7 occurs through a self-consistent mean field. Then, 

(3.2) 

where q is the lattice coordination number, and consistency simply requires that the 
mean magnetization around site r, m, equals (s,). Thus, the choices (3.2) and (2.6) 
with p = f lead to 24s' Is) = p ( 2 p [ q J m  + h , ]~ , )  + p ( 2 p ( q J m  - h,]s,)  to be 
used in (3.1). The properties of the solutions corresponding to the different choices 
(2.7) may be summarized as follows. 

For rates (2.7c), the system behaves as for h = 0. This result, which may be seen 
to hold also in the first-order approximation described in section 4, is a consequence 
of both the even character of f(h) and the peculiar nature of ( 2 . 7 ~ ) .  Formally, 
( 2 . 7 ~ )  admits a factorization that cancels out the contributions from the fields for 
even distributions, as noted in I. The rate ( 2 . 7 ~ )  is also atypical in the sense that it 
lacks a proper normalization, and in that it very strongly favours the states of lowest 
energy; as no reason exists in the present problem to incorporate those effects, we 
shall restrict ourselves below to the more realistic cases (2.7~1) and (2.76). 

For rates (276) ,  the steady states that follow from (3.1) satisfy 

m = ((tanhMqJ-1 + h)l)) (3.3) 

where (( )) represents the average defined in (2.2). This is precisely the solution 
obtained by Aharony (1978) after minimizing a free-energy function for the quenched 
random-field king model. Xvo main differences occur, however. First, the latter 
corresponds to equilibrium and, consequently, is rate independent. Secondly, we have 
no free energy which allows us to draw a stable solution such as the one indicated by 
line 4 in figure 1. In fact, the stable behaviour of the kinetic model in the present 
approximation needs to follow from (3.1) with F (  m) = ((tanh(p(qJm + h)]))  - m. 
The first conclusion, which is also evident from (3.3), is that m = 0 and m # 0 
are two possible solutions. The former is stable for any T > T,(h,) if we 
define the latter, to be interpreted as a lower limit of stabilily, as the solution of 
8F/8mlm=, = 0; this implies qJp1(1-tanh2(h,pI)] = 1, where p1 E (kBTl)-'. Of 
course, m # 0 solutions may coexist with m = 0 for T > Tl. Consequently, we define 
an upperlimitofstubiliry, say T 2 ( h , ) ,  as the solution of = 8F/8mJmZu = 0, where m 
denotes a solution of F(m) = 0; then, m = 0 is the only stable solution for T > T2. 
The lines Tl(h,) and T,(h , )  are represented in figure 1. The join together for 
T > T' and h, < h', where qJp' = 3 / 2  and tanh(p'h') = 3-'y2; p' E (kBT')-'. 
It may be seen that ( P ,  h') corresponds to a (non-equilibrium) tricritical point by 
developing the RHS of (3.3) in powers of m to write m = am - bm3 + . . .. That is, 
the condition a = 1 and b = 0 mark  the onset of a phase transition of second order 
for p < p' and h, < h', and the numerical analysis of (3.3) indicates that the phase 
transition is of first order otherwise. The area enclosed by lines 2 and 3 in the main 
graph of figure 1 is characterized by the fact that equation (3.1) has two stationary 
solutions, m = 0 and m # 0, respectively; i.e. m(t)  goes asymptotically to one or 
to the other (for T and h,  given) depending on the initial condition m(t = 0), as 
in a metastable state. It is remarkable that metastable states may occur for very low 
values of both T and h,, as indicated in figure 1. 
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Flgurr 1. The lower (lines 1 and 2) and upper (lines 
1 and 3) limits for local stability of m = 0 soIutions, 
T,(h,) and Tz(h,), respectively, for rates (2.7b) 
in the zemlh-order description of Section 3. Lines 
2 and 3 join at a lricritical point, (T', h:) .  The 
Solution by Aharany (1978) for the quenched system 
(lines 1 and 4) lies within the area where both 
m = 0 and m # 0 solutions may occur in the 
non-equilibrium system. (T is here in units of 
q J / k B ;  h ,  is in units of 9 J . )  The inset depicts 
the two l imits T,(h,) ,  labelled i = 1 and 2, 
respectively, for rates (2.74). The phase transitions 
are of fin1 order for any T and h,. 

Figure Z The Same as in figure 1 but in the f i ~ 1 -  
order approximation described in Section 4 for rates 
(27b) and valying values of thelattice mrdination 
number, as indicated. (T i s  in units of J / k B :  h ,  
i s  in uniw of J . )  The indicated tricritical points 
occur far (TI, h, )  = (l.h2,2.6) and (2.28, 2.90) 
when q = 5 and 6, respectively. The behaviour 
for rates (2.70) is qualitatively similar, with the 
corresponding tricritical p ine  a t  (1.85, 2.12) and 
(3.15, 1.95), respectively. 

For rates (2.7a). the corresponding equations generally present discontinuities 
for q J m  = h,, and it is more convenient to perform the analysis numerically. One 
exception to this is the analytical result exp(2&h0) = 2qJP1-1. The inset in figure 1 
depicts the corresponding behaviour. An outstanding result here is the absence of a 
critical point, i.e. the phase transition is always of first order, for rates (2.7~1). 

It is interesting to remark that the non-equilibrium system of interest has in 
the presenr approxinialion some of the quasi-canonical features found exactly before 
(Mpez-Lacomba el a1 1992, and references therein) for d = 1. With that aim, one 
may note that the steady state is characterized by aP(s;  t ) /a t  = 0 in equation (2.1) 
and, consequently, by the (sufficient) condition c(s I s')Psl(s') = c(sr I s)Psl(s). 
For the sake of simplicity, we shall restrict ourselves for the rest of this section to a 
system in which the latter holds; we have no physical justification for it but it provides 
a global stability criterion; in any case, it will not be used for the cases in section 4. 
It follows that the system may be described then by an effeclive free enew defined by 
f = -@-I  InC, P,,(s). Consequently, 

In order to compute (3.4) explicitly, one may write f = -0-l InC, g ( n ) r n N I 2 ,  
where z ( m )  5 ((c(2pIqJm + hO)) ) ) / ( ( c ( -2 /3 {qJm + h,]))) and g ( n )  is the 
number of configurations such that z v s v  = n N .  For large enough N, this may 
be approximated by the largest term in the sum, namely, f zz $( 1+ 6 )  In[$(l+ 6)] + 
;(I- Fz) ln[ i ( l -  e)] + 46 In z with 6 = (1 - z)( 1 + z)-'. Then, the self-consistency 
condition, i.e. 6 = m, leads to Pf = In[+( 1 - m2)]  - am In Z. The latter provides 
a global stability criterion, in particular; e.g. it reveals that the solutions m it: 0 
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(corresponding to lines 3 and 2, respectively, in the main graph and in the inset of 
figure 1) are the only stable ones in the non-equilibrium system when the equation 
F ( m )  = 0 is consistent with m = 0 solutions also. This is in contrast to the findings 
of Aharony for the quenched model (e.g. line 4 in figure 1); moreover, (global) 
stability depends here on the rate function in general, as indicated by equation (3.4). 

4. First-order mean-field description 

Let us consider now the more general system in section 2 (i.e. the restrictive condition 
C(S 1 s')P,,(s') = c(s' 1 s)P,,(s) is not presumed), and a larger cluster consisting 
of a spin and its q nearest neighbours. The cluster interacts with the rest of the 
system via a self-consistent mean field only. Consequently, correlations other than 

rep~eSent9 the number of spins at NN sites of r which have state up minus those 
having state down. The configuration is then described completely by means of two 
independent variables, e.g. m = (sJ  and e = (s,s,+,). Equivalently, we may use 
the density of up spins, denoted x = $ ( I  + m), and the density of u p u p  pairs of NN 
spins, denoted z = a( 1 + 2m + e). It is also convenient to introduce the notation 
y = 1-x, w E 1+ 2 - 2 1  and v E x-z, and Q ( n )  % ((p(2@[2nJ+ h]))). Standard 
techniques (Alonso and Marro 1992) then lead to 

NN ones are not allowed, and AH, = 2 ( n J  + h)s,, where n = -q, - q  + 2 ,.... P 

dx 9 Wq-n Zq-n 
- = F(x, z ;  T) % 
dt Y"  (a,)  [- yu-1 - -1 xq- 'P( $q - n )  (4.1~) 

n =U 

and 

The steady states may thus be obtained numerically as the solutions of F ( r ,  r; T) = 0 
and G(x,z;T) = 0, and a necessary condition for stability is ( a F / a r ) , ,  < 0, for 
instance. The latter may be complemented by integrating numerically (4.1) for several 
initial conditions. 

We have followed in practice a procedure which parallels the one in section 3. 
That is, one may expect x = f (m = 0) at high enough T, and one obtains 
consequently x = y, z = w and F (  4, z;  T) = 0. The only condition to characterize 
disordered steady states is therefore 

G( i, r; T )  = 0. (4.2) 

The solution of (4.2) is z = z ( T )  whose stability requires that ( a F / a ~ ) ~ = * , ~  < 0. 
The breakdown of the latter as T is decreased may be associated with the occurrence 
of a phase transition. This is of second order when a unique transition (critical) 
temperature exists, say T, T,(h,), such that 

aF(f,z;T)/axI,,;,, = 0 (4.3) 
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where z = z ( T )  is the solution of (4.2). It follows that (4.2)-(4.3) reduce after some 
algebra to 
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(4.4) 

This implies, in particular, that T, + 2Jk,'In[(q - 2)q-']  as h, + 0 which 
corresponds to the BethePeierls equilibrium critical temperature. The phase 
transition may be of first order, however. Consequently, we define an upper limit 
of local stability for m # 0 solutions, say T,(h,), as the temperature which makes 
(EJF/EJI)+*,~ = 0, where the values for I and z correspond to the stationary 
solution of (4.1). Thus, as in section 3, m = 0 is the only stable solution for 
T > T,(h,), metastable states (corresponding to locally stable solutions with m = 0 
and m # 0) occur for T2(ho)  > T > T,(h,) when both temperatures exist different 
from each other, and the only globally stable solutions occurring below the spinodd 
line T,(h,) are such that m # 0. The main results from such study may be 
summarized as follows. 

For a one-dimensional lattice, i.e. q = 2, equation (4.4) giving TI reduces to 
z = $ and Q(1) = ((p(2p[25 - h])))  = 0. For rates (276), this transforms into 
( l + C 2 7 p ) - ' + ( l + C - z 7 - 2 ) - 1  = o  , where C exp(-oh,) and 7 s exp(-2/35); 
a solution T,(h,) = 0 exists only for h,  < 25. That is, the system retains the 
familiar critical point at zero temperature for low enough fields, while it is overthrown 
when h, > 25 in (2.6) with p = f. For rates (2.7a), qZ(C-' + Cz)  = 0 and 
1 + C2q2 = 0, respectively, for h,  < 25 and h,  > 25. The solution of the former is 
T,(h, < 2 5 )  = 0, while there is no real solution for the latter equation. Summing 
up, the present approximation essentially reproduces the main exacl results in paper 
I when d = 1. 

The behaviour for q > 2 is summarized in figure 2 depicting T,(h,) (solid 
lines) and T,(h,) (dashed lines) when q is varied for rates (2.76); the behaviour 
is qualitatively similar for rates (2.7a) (cf the inset in figure 5 below). In general, 
the system tends to become macroscopically disordered as h,  is increased, the phase 
transition is always of second order for q = 3 and 4 (e.g. the case of a square lattice), 
while (non-equilibrium) tricritical points occur for q > 4 (e.g. for a three-dimensional 
simple cubic lattice) which indicate the existence of first-order phase transitions for 
relatively large values of the field parameter h,. Note that the metastable region 
extends over relatively small values of h,  for q = 6, but not for q = 5 where T,(h,) 
and T,(h,) go to zero at the same value of h,. Figure 3 reveals the existence of 
metastable states for low temperatures a t  a given value of the field when q = 6. 
Furthermore, figure 2 indicates that the slope of the T,(h,) curve changes sign also 
for q = 3 (but not for q = 4). Such behaviour is illustrated with more detail in 
figure 4; that change of sign, which does not occur for rates (2.7~). is the only 
qualitative difference we have observed between the macroscopic behaviour implied 
by rates (2.7a) and (2.76) in the present approximation. 

Finally, we mention that, excluding the variations of the steady state with dynamics 
we have reported above, most qualitative features of the non-equilibrium system in the 
present (kinetic) approximation agree with those of the quenched random-field king 
model as revealed by the (equilibrium) first-order mean-field treatments by Bruinsma 
(1984) and Yokota (1988). A noteworthy exception is the fact that the quenched 
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Figure 3. Stationary Solutions of equations (4.1) 
for q = 6, rates (2.7~). and h,l J = 2.15 when 
the initial slate has magnetization mg = 0 and 
mg = 1, as indicated, to illuStrate the cxistence of 
metastable states at both IOW and high (but not at 
intermediate) temperatures. 

Figure 4. Stationary solutions of equations (4.1) 
for q = 3, rates (2.76) and different values of the 
field parameter h,, as indicated, 10 illusuate the 
existence of disoniered slates a t  low lcmperalurcs 
for some values ot h,. 

Flgure 5. The exact bounds defined in section 5 
(dashed lines) "pared to the mean-field results in 
Section 4 (solid lines) for rates (2.7b) (main graph) 
and (2.70) (insel) when d = 2 and 3, as indicated 
by the numben near the C U N ~ S .  

system has a tricritical point for any q > 3; i.e. the equilibrium and non-equilibrium 
models seem to differ essentially in that respect, at least, for q = 4. 

5. A comparison with exact bounds 

Precise bounds defining a region of the phase diagram in which a kinetic lattice system 
is necessarily ergodic may be found exactly. They are a consequence of a theorem 
(Ligget 1985) which may be stated roughly as follows: if the effective transition rate 
is written c(sr I 6 )  = p ,  - E, p, n,,, sr, where a represents any set of spins, 
p ,  = 2-N E,, c(s' I s) and p ,  = -2-N C,(nrE,, S~)C(S" I s), the system is ergodic 
when 6 p ,  - E, 1p-l > 0. Consequently, one may use (2.2) and (2.7) to find 
a relation between T and h, which makes 6 = 0. The explicit expression of that 
relation for the d-dimensional non-equilibrium random-field model with rates (2.76) 
and (2 .7~)  has been reported before (Upez-Lacomba and Marro 1992). The inset in 
figure 5 depicts the corresponding result for the more familiar (also, analytically more 
involved) case of rates ( 2 . 7 ~ ) .  Figure 5 contains also a comparison between the exact 
bounds for rates ( 2 . 7 ~ )  and (2.7b), on the one hand, and the mean-field results in 
section 4, on the other. The comparisons in figure 5 suggest that the bounds implied 
by the theorem above are relatively accurate and, consequently, may be useful in 
practice, especially for the latter case of rates. 
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6. Conclusions 

The present paper deals with a lattice interacting-spin (alternatively, particle) model 
with competing kinetics whose exact solution was reported before for a one- 
dimensional lattice (Mpez-Lacomba et a1 1992, Upez-Lacomba and Marro 1992). 
The system time evolution is stochastic due to the competition of two (or more) spin- 
flip (alternatively, creation-annihilation) mechanisms which involve a random external 
magnetic field (alternatively, chemical potential) in addition to the usual heat bath. 
The competing kinetics induce a sort of dynamical frustration which might occur in 
real disordered systems. In fact, it may be implemented in the laboratory, e.g. by 
exposing a magnet to a field which is continuously varying according to f( h)  (with 
a period much shorter than the mean time between successive transitions modifying 
the spin configuration). In general, this will drive the spin ystem asymptotically 
towards a non-equilibrium steady state (i.e. the competing kinetics acts in practice 
as an external agent, and the asymptotic state is not an equlibrium state of s in 
general), unlike the case for the annealed and quenched random-field models. The 
differences between the quenched, annealed and non-equilibrium models may be 
interpreted as follows: while the local field is randomly assigned in space according 
to a distribution f ( h ? )  which remains frozen-in for the quenched case, and f (h , )  
contains essential correlations in the annealed system, where the impurity distribution 
is in equilibrium with the spin configuration, the non-equilibrium case in a sense is 
similar to the quenched system at each tinze during the stationary regime, but h, 
keeps randomly changing with time (very fast), also according to f (  h) ,  at each site. 
Consequently, while frustration does not occur in the annealed case, some randomness 
and frustration influence the behaviour of the nonequilibrium system. These effects 
are dynamic, however, so that macroscopic differences should be obsewable between 
the non-equilibrium and the quenched cases. 

We have reported here an analysis of the model for several values of the 
coordination number, 1 < q < 6, by a kinetic mean-field method used before in 
other non-equilibrium problems (see, for instance, Garrido et a1 1990, Alonso and 
Marro 1992). The zeroth-order description, which corresponds to the Bragg-Williams 
approximation in equilibrium, confirms the existence of some essential differences 
from the corresponding solution for the quenched system (Aharony 1978). For 
instance, thc steady state strongly depends on the transition rate (2.3) involved 
by (2.1) in the non-equilibrium system, e.g. a tricritical point separating first- from 
second-order phase transitions occurs for some choices of transition rates but not 
for others. On the other hand, the model may be described within the zeroth-order 
approximation by means of an efective free energy (which is rate dependent); this is 
a feature found exactly before for some onedimensional cases (Lbpez-Lacomba et 
al 1992). Nevertheless, the system for d > 1 lacks in general such a (say) quasi- 
canonical feature in a first-order description which corresponds to the Bethe-Peierls 
approximation in equilibrium. Novel features are then a dependence of the phase 
diagram on q, the tendency of the system to get disordered at lower minimum values 
for T and h,  as q is decreased, and the existence of metastable states near T = 0 
when h, and q are large enough. This is qualitatively similar to the case of the 
quenched system in the same approximation (Bruinsma 1984, Yokota 1988), but 
some interesting differences occur. For example, the non-equilibrium system only has 
a tricritical point for q > 4, while this occurs for q > 3 in the quenched case. 

The latter fact suggests more dramatic differences (e.g. concerning critical 

J J Alonso and J Marro 
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behaviour) may exist between the non-equilibrium and quenched cases when 
performing a more realistic description. In any case, the known exact results for 
d = 1 and the present approximate description advises a detailed study of the 
non-equilibrium system for d > 1. In fact, it has motivated us to initiate both a 
Monte Carlo study and an analytical treatment going beyond the first-order mean- 
field approximation. It would be very interesting to investigate also some of the 
practical realizations of our system as described above. 

Finally, we remark on a fact concerning the possible experimental realizations of 
a random-field system. Namely, some studies (Fishman and Aharony 1979; see also, 
Birgeneau el 01 1982 and references therein) have described a relation in equilibrium 
between a quenched random-field model and a diluted antiferromagnet (whose spins 
are only present at each lattice site with a given probability) in a uniform field; in 
fact, the latter is considered as a practical realization of the former. Thus, it is 
interesting to check whether such a relation also holds for non-equilibrium systems 
in a mean-field approximation. A non-equilibrium dilute antiferromagnet under a 
constant field may be modelled (Alonso and Marro 1992) by considering competing 
kinetics which involve a distribution g(  J) = p6( J + J,,) + (1 - p ) 6 (  J) of exchange 
energies (instead of fields), with Ju > 0, and a uniform field h. It follows that those 
two nonequilibrium systems behave quite distinctly, independently of the order of the 
approximation investigated. In particular, the non-equilibrium dilute antiferromagnet 
has m # 0 solutions a t  any temperature under the presence of any uniform external 
field, and no broken symmetry from m = 0 to m # 0 OCCUIS, in contrast to the 
non-equilibrium random-field system above. Given that  a similar result was reached 
exactly for the one-dimensional non-equilibrium system before (Ldpez-Lacomba el ul 
lW), it seems one should conclude that the mentioned relation is an equilibrium 
feature which holds only for quenched disorder but breaks down if the systems are 
far from equilibrium. 
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